1
|
Tortola L, Piattini F, Hausmann A, Ampenberger F, Rosenwald E, Heer S, Hardt WD, Rülicke T, Kisielow J, Kopf M. KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo. Mucosal Immunol 2022; 15:656-667. [PMID: 35589985 PMCID: PMC9259492 DOI: 10.1038/s41385-022-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Luigi Tortola
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Annika Hausmann
- Department of Biology, Institute of Microbiology, ETH, Zurich, Switzerland
| | - Franziska Ampenberger
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Esther Rosenwald
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Sebastian Heer
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | | | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.
| |
Collapse
|
2
|
Munir S, Frøsig TM, Hansen M, Svane IM, Andersen MH. Characterization of T-cell responses against IκBα in cancer patients. Oncoimmunology 2021; 1:1290-1296. [PMID: 23243592 PMCID: PMC3518501 DOI: 10.4161/onci.21625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nuclear factor κ light chain enhancer of activated B cells (NFκB) is constitutively active in most cancers, controlling multiple cellular processes including proliferation, invasion and resistance to therapy. NFκB is primarily regulated through the association with inhibitory proteins that are known as inhibitors of NFκB (IκBs). Increased NFκB activity in tumor cells has been correlated with decrease stability of IκB proteins, in particular IκBα. In responso to a large number of stimuli, IκB proteins are degraded by the proteasome. Cytotoxic T lymphocytes (CTLs) recognize HLA-restricted antigenic peptides that are generated by proteasomal degradation in target cells. In the present study, we demonstrate the presence of naturally occurring IκBα -specific T cells in the peripheral blood of patients suffering from several unrelated tumor types, i.e., breast cancer, malignant melanoma and renal cell carcinoma, but not of healthy controls. Furthermore, we show that such IBα-specific T cells are granzyme B-releasing, cytotoxic cells. Hence, the increased proteasomal degradation of IκBα in cancer induces IκBα-specific CTLs.
Collapse
Affiliation(s)
- Shamaila Munir
- Center for Cancer Immune Therapy (CCIT); Department of Hematology and Oncology; Copenhagen University Hospital; Herlev, Denmark
| | | | | | | | | |
Collapse
|
3
|
Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB. Mediators Inflamm 2016; 2016:1431789. [PMID: 27881903 PMCID: PMC5110889 DOI: 10.1155/2016/1431789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (IκBα). In DC, LPS increased MCP-1, TLR-4, and nuclear factor-κB1 (NFκB1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NFκB1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NFκB may be involved in the LPS-induced regulation of these genes.
Collapse
|
4
|
Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling. Exp Cell Res 2014; 331:58-72. [PMID: 25304104 DOI: 10.1016/j.yexcr.2014.09.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/27/2014] [Indexed: 01/18/2023]
Abstract
The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO-IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO(Y308S) mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo.
Collapse
|
5
|
Palenski TL, Gurel Z, Sorenson CM, Hankenson KD, Sheibani N. Cyp1B1 expression promotes angiogenesis by suppressing NF-κB activity. Am J Physiol Cell Physiol 2013; 305:C1170-84. [PMID: 24088896 DOI: 10.1152/ajpcell.00139.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nuclear factor-κB (NF-κB) is a master regulator of genes that control a large number of cellular processes, including angiogenesis and inflammation. We recently demonstrated that cytochrome P-450 1B1 (Cyp1B1) deficiency in endothelial cells (EC) and pericytes (PC) results in increased oxidative stress, alterations in migration, attenuation of capillary morphogenesis, sustained activation of NF-κB, and increased expression of thrombospondin-2 (TSP2), an endogenous inhibitor of angiogenesis. On the basis of a growing body of evidence that phenethyl isothiocyanate (PEITC) and pyrrolidine dithiocarbamate (PDTC) function as antioxidants and suppressors of NF-κB activation, we investigated their potential ability to restore a normal phenotype in Cyp1B1-deficient (cyp1b1(-/-)) vascular cells. PEITC and PDTC inhibited NF-κB activity and expression in cyp1b1(-/-) EC and PC. We also observed restoration of migration and capillary morphogenesis of cyp1b1(-/-) EC and decreased cellular oxidative stress in cyp1b1(-/-) EC and PC without restoration to normal TSP2 levels. In addition, expression of a dominant-negative inhibitor κBα, a suppressor of NF-κB activation, decreased NF-κB activity without affecting TSP2 expression in these cells. In contrast, knockdown of TSP2 expression resulted in attenuation of NF-κB activity in cyp1b1(-/-) vascular cells. Furthermore, expression of TSP2 in wild-type (cyp1b1(+/+)) cells resulted in increased NF-κB activity. Together, our results demonstrate an important role for TSP2 in modulation of NF-κB activity and attenuation of angiogenesis. Thus Cyp1B1 expression in vascular cells plays an important role in the regulation of vascular homeostasis through modulation of the cellular reductive state, TSP2 expression, and NF-κB activation.
Collapse
Affiliation(s)
- Tammy L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | |
Collapse
|
6
|
Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cell Mol Life Sci 2012; 69:2057-73. [PMID: 22261743 DOI: 10.1007/s00018-011-0912-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/04/2011] [Accepted: 12/21/2011] [Indexed: 12/22/2022]
Abstract
Termination and resolution of inflammation are tightly linked to the inactivation of one of its strongest inducers, NF-κB. While canonical post-stimulus inactivation is achieved by upregulation of inhibitory molecules that relocate NF-κB complexes to the cytoplasm, termination of the NF-κB response can also be accomplished directly in the nucleus by posttranslational modifications, e.g., ubiquitination of the RelA subunit. Here we reveal a functional role for RelA monoubiquitination in regulating NF-κB activity. By employing serine-to-alanine mutants, we found that hypo-phosphorylated nuclear RelA is monoubiquitinated on multiple lysine residues. Ubiquitination was reversed by IκBα expression and was reduced when nuclear translocation was inhibited. RelA monoubiquitination decreased NF-κB transcriptional activity despite prolonged nuclear presence and independently of RelA degradation, possibly through decreased CREB-binding protein (CBP) co-activator binding. Polyubiquitin-triggered proteasomal degradation has been proposed as a model for RelA inactivation. However, here we show that proteasomal inhibition, similar to RelA hypo-phosphorylation, resulted in nuclear translocation and monoubiquitination of RelA. These findings indicate a degradation-independent mechanism for regulating the activity of nuclear RelA by ubiquitination.
Collapse
|
7
|
Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-κB addiction and its role in cancer: 'one size does not fit all'. Oncogene 2011; 30:1615-30. [PMID: 21170083 PMCID: PMC3141287 DOI: 10.1038/onc.2010.566] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/25/2010] [Indexed: 12/12/2022]
Abstract
Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.
Collapse
Affiliation(s)
- MM Chaturvedi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Laboratory for Chromatin Biology, Department of Zoology, University of Delhi, Delhi, India
| | - B Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - VR Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - BB Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Oyegunwa AO, Sikes ML, Wilson JR, Scholle F, Laster SM. Tetra-O-methyl nordihydroguaiaretic acid (Terameprocol) inhibits the NF-κB-dependent transcription of TNF-α and MCP-1/CCL2 genes by preventing RelA from binding its cognate sites on DNA. JOURNAL OF INFLAMMATION-LONDON 2010; 7:59. [PMID: 21138578 PMCID: PMC3002343 DOI: 10.1186/1476-9255-7-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/07/2010] [Indexed: 11/28/2022]
Abstract
Background Tetra-O-methyl nordihydroguaiaretic acid, also known as terameprocol (TMP), is a naturally occurring phenolic compound found in the resin of the creosote bush. We have shown previously that TMP will suppress production of certain inflammatory cytokines, chemokines and lipids from macrophages following stimulation with LPS or infection with H1N1 influenza virus. In this study our goal was to elucidate the mechanism underlying TMP-mediated suppression of cytokine and chemokine production. We focused our investigations on the response to LPS and the NF-κB protein RelA, a transcription factor whose activity is critical to LPS-responsiveness. Methods Reporter assays were performed with HEK293 cells overexpressing either TLR-3, -4, or -8 and a plasmid containing the luciferase gene under control of an NF-κB response element. Cells were then treated with LPS, poly(I:C), or resiquimod, and/or TMP, and lysates measured for luciferase activity. RAW 264.7 cells treated with LPS and/or TMP were used in ChIP and EMSA assays. For ChIP assays, chromatin was prepared and complexes precipitated with anti-NF-κB RelA Ab. Cross-links were reversed, DNA purified, and sequence abundance determined by Q-PCR. For EMSA assays, nuclear extracts were incubated with radiolabeled probes, analyzed by non-denaturing PAGE and visualized by autoradiography. RAW 264.7 cells treated with LPS and/or TMP were also used in fluorescence microscopy and western blot experiments. Translocation experiments were performed using a primary Ab to NF-κB RelA and a fluorescein-conjugated secondary Ab. Western blots were performed using Abs to IκB-α and phospho-IκB-α. Bands were visualized by chemiluminescence. Results In reporter assays with TLR-3, -4, and -8 over-expressing cells, TMP caused strong inhibition of NF-κB-dependent transcription. ChIP assays showed TMP caused virtually complete inhibition of RelA binding in vivo to promoters for the genes for TNF-α, MCP-1/CCL2, and RANTES/CCL5 although the LPS-dependent synthesis of IκB-α was not inhibited. EMSA assays did not reveal an effect of TMP on the binding of RelA to naked DNA templates in vitro. TMP did not inhibit the nuclear translocation of NF-κB RelA nor the phosphorylation of IκB-α. Conclusion TMP acts indirectly as an inhibitor of NF-κB-dependent transcription by preventing RelA from binding the promoters of certain key cytokine and chemokine genes.
Collapse
Affiliation(s)
- Akinbolade O Oyegunwa
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, 27695-7615, USA.
| | | | | | | | | |
Collapse
|
9
|
Lee CM, Kumar V, Riley RI, Morgan ET. Metabolism and action of proteasome inhibitors in primary human hepatocytes. Drug Metab Dispos 2010; 38:2166-72. [PMID: 20837660 PMCID: PMC2993455 DOI: 10.1124/dmd.110.035501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/13/2010] [Indexed: 01/03/2023] Open
Abstract
Proteasome inhibitors are important tools for studying the roles of the proteasome in cellular processes. In this study, we observed that the proteasome inhibitors N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132), epoxomicin, and lactacystin were ineffective and bortezomib was completely effective in inhibiting cytokine-stimulated nitric oxide production in primary cultures of human hepatocytes that had been treated with the cytochrome P450 inducer phenobarbital. The inefficacy of MG132 was due to its metabolism by CYP3A enzymes, as deduced from its rapid, ketoconazole-sensitive clearance by pooled human liver microsomes and cultured hepatocytes. The efficacy of MG132 was increased by inclusion of ketoconazole in the hepatocyte incubations and decreased by prior treatment of the cultures with the CYP3A inducers phenobarbital or rifampicin. Epoxomicin was also rapidly metabolized by CYP3A, whereas bortezomib and lactacystin were much more stable metabolically in human liver microsomes or hepatocyte cultures. Thus, bortezomib is a better choice than MG132, epoxomicin, or lactacystin in cells with high activities of CYP3A enzymes. The reason for the lack of efficacy of lactacystin in human hepatocytes has yet to be determined, but it too should not be used for studies of proteasome function in human hepatocytes.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Department of Pharmacology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
10
|
Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthritis Res Ther 2009; 11:R165. [PMID: 19889203 PMCID: PMC3003513 DOI: 10.1186/ar2850] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/21/2009] [Accepted: 11/04/2009] [Indexed: 12/29/2022] Open
Abstract
Introduction Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-κB signalling pathway. Methods We have recently demonstrated that in chondrocytes resveratrol modulates the NF-κB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-κB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1β-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Results Treatment with curcumin and resveratrol suppressed NF-κB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-α receptor-associated factor 1) and prevented activation of caspase-3. IL-1β-induced NF-κB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Iκκ and proteasome activation, inhibition of IκBα phosphorylation and degradation, and inhibition of nuclear translocation of NF-κB. The modulatory effects of curcumin and resveratrol on IL-1β-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. Conclusions We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual compound.
Collapse
Affiliation(s)
- Constanze Csaki
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| | | | | |
Collapse
|
11
|
Lászlí CF, Wu S. Old target new approach: an alternate NF-kappaB activation pathway via translation inhibition. Mol Cell Biochem 2009; 328:9-16. [PMID: 19224334 PMCID: PMC2740372 DOI: 10.1007/s11010-009-0067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
Abstract
Activation of the transcription factor NF-kappaB is a highly regulated multi-level process. The critical step during activation is the release from its inhibitor IkappaB, which as any other protein is under the direct influence of translation regulation. In this review, we summarize in detail the current understanding of the impact of translational regulation on NF-kappaB activation. We illustrate a newly developed mechanism of eIF2alpha kinase-mediated IkappaB depletion and subsequent NF-kappaB activation. We also show that the classical NF-kappaB activation pathways occur simultaneously with, and are complemented by, translational down regulation of the inhibitor molecule IkappaB, the importance of one or the other being shifted in accordance with the type and magnitude of the stressing agent or stimuli.
Collapse
Affiliation(s)
- Csaba F. Lászlí
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Kunnumakkara AB, Ichikawa H, Anand P, Mohankumar CJ, Hema PS, Nair MS, Aggarwal BB. Coronarin D, a labdane diterpene, inhibits both constitutive and inducible nuclear factor-kappa B pathway activation, leading to potentiation of apoptosis, inhibition of invasion, and suppression of osteoclastogenesis. Mol Cancer Ther 2008; 7:3306-17. [PMID: 18852134 DOI: 10.1158/1535-7163.mct-08-0432] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compounds isolated from members of the Zingiberaceae family are traditionally used as a medicine against inflammatory diseases, but little is known about the mechanism. Here, we report the isolation and structural identification of coronarin D [E-labda-8(17),12-diene-15-ol], a labdane-type diterpene, from Hedychium coronarium and delineate its mechanism of action. Because the transcription factor nuclear factor-kappaB (NF-kappaB) is a key mediator of inflammation, apoptosis, invasion, and osteoclastogenesis, we investigated the effect of coronarin D on NF-kappaB activation pathway, NF-kappaB-regulated gene products, and NF-kappaB-regulated cellular responses. The coronarin D inhibited NF-kappaB activation induced by different inflammatory stimuli and carcinogens. This labdane also suppressed constitutive NF-kappaB activity in different cell lines and inhibited IkappaBalpha kinase activation, thus leading to the suppression of IkappaBalpha phosphorylation, degradation, p65 nuclear translocation, and reporter gene transcription. Coronarin D also inhibited the NF-kappaB-regulated gene products involved in cell survival (inhibitor of apoptosis protein 1, Bcl-2, survivin, and tumor necrosis factor receptor-associated factor-2), proliferation (c-myc, cyclin D1, and cyclooxygenase-2), invasion (matrix metalloproteinase-9), and angiogenesis (vascular endothelial growth factor). Suppression of these gene products by the diterpene enhanced apoptosis induced by TNF and chemotherapeutic agents, suppressed TNF-induced cellular invasion, and abrogated receptor activator of NF-kappaB ligand-induced osteoclastogenesis. Coronarin D was found to be more potent than its analogue coronarin D acid. Overall, our results show that coronarin D inhibited NF-kappaB activation pathway, which leads to inhibition of inflammation, invasion, and osteoclastogenesis, as well as potentiation of apoptosis.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Unit 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Mathes E, O'Dea EL, Hoffmann A, Ghosh G. NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J 2008; 27:1357-67. [PMID: 18401342 DOI: 10.1038/emboj.2008.73] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/12/2008] [Indexed: 11/09/2022] Open
Abstract
IkappaB proteins are known as the regulators of NF-kappaB activity. They bind tightly to NF-kappaB dimers, until stimulus-responsive N-terminal phosphorylation by IKK triggers their ubiquitination and proteasomal degradation. It is known that IkappaBalpha is an unstable protein whose rapid degradation is slowed upon binding to NF-kappaB, but it is not known what dynamic mechanisms control the steady-state level of total IkappaBalpha. Here, we show clearly that two degradation pathways control the level of IkappaBalpha. Free IkappaBalpha degradation is not controlled by IKK or ubiquitination but intrinsically, by the C-terminal sequence known as the PEST domain. NF-kappaB binding to IkappaBalpha masks the PEST domain from proteasomal recognition, precluding ubiquitin-independent degradation; bound IkappaBalpha then requires IKK phosphorylation and ubiquitination for slow basal degradation. We show the biological requirement for the fast degradation of the free IkappaBalpha protein; alteration of free IkappaBalpha degradation dampens NF-kappaB activation. In addition, we find that both free and bound IkappaBalpha are similar substrates for IKK, and the preferential phosphorylation of NF-kappaB-bound IkappaBalpha is due to stabilization of IkappaBalpha by NF-kappaB.
Collapse
Affiliation(s)
- Erika Mathes
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA
| | | | | | | |
Collapse
|
14
|
Dissociated invasively growing cancer cells with NF-kappaB/p65 positivity after radiotherapy: a new marker for worse clinical outcome in rectal cancer? Preliminary data. Clin Exp Metastasis 2008; 25:491-6. [PMID: 18324356 DOI: 10.1007/s10585-008-9155-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 02/22/2008] [Indexed: 12/28/2022]
Abstract
Objectives Nuclear factor-kappaB (NF-kappaB), especially p65 subunit, seems to be associated with origin and progression of cancer. The aim of the study was to determine expression of NF-kappaB/p65 in rectal cancer patients before and after radiotherapy as well as to assess the relationship between NF-kappaB/p65 expression, other tumor characteristics, and disease progression. Further aim was to evaluate whether expression of NF-kappaB/p65 in tumor tissue may serve as a predictive marker of patient outcome. Patients and methods Twenty-five patients with rectal cancer undergoing pre-operative radiotherapy were included in the study. Unirradiated rectal cancer specimens were obtained from diagnostic colonoscopy. Irradiated rectal cancer specimens were obtained from surgically removed part of the rectum with the tumor. NF-kappaB/p65 expression was determined by immunohistochemistry. Results Cytoplasmic positivity in cancer cells and nuclear positivity in lymphocytes were detected. In post-radiotherapy specimens single tumor cells or small clones of them deeply infiltrating the wall of the rectum, that were characterized by high NF-kappaB/p65 expression, were found. Patients with presence of these cells in post-radiotherapy specimens have worse clinical outcome in terms of overall survival and disease-free interval. Conclusion While the NF-kappaB/p65 positive staining of the epithelial cells did not have any clinical implications in this study, it may be of clinical significance in the future. Residual invasively growing cancer cells with high NF-kappaB/p65 positivity found in specimens after radiotherapy and surgery may be used to find what patients have a worse outcome. Thus, patients being at risk of cancer progression and requiring more aggressive anti-cancer therapy may be identified.
Collapse
|
15
|
Sadagopan S, Sharma-Walia N, Veettil MV, Raghu H, Sivakumar R, Bottero V, Chandran B. Kaposi's sarcoma-associated herpesvirus induces sustained NF-kappaB activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression. J Virol 2007; 81:3949-68. [PMID: 17287275 PMCID: PMC1866142 DOI: 10.1128/jvi.02333-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro Kaposi's sarcoma-associated herpesvirus (KSHV) infection of primary human dermal microvascular endothelial (HMVEC-d) cells and human foreskin fibroblast (HFF) cells is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, and induction of several cytokines, growth factors, and angiogenic factors. Since NF-kappaB is a key molecule involved in the regulation of several of these factors, here, we examined NF-kappaB induction during de novo infection of HMVEC-d and HFF cells. Activation of NF-kappaB was observed as early as 5 to 15 min postinfection by KSHV, and translocation of p65-NF-kappaB into nuclei was detected by immunofluorescence assay, electrophoretic mobility shift assay, and p65 enzyme-linked immunosorbent assay. IkappaB phosphorylation inhibitor (Bay11-7082) reduced this activation significantly. A sustained moderate level of NF-kappaB induction was seen during the observed 72 h of in vitro KSHV latency. In contrast, high levels of ERK1/2 activation at earlier time points and a moderate level of activation at later times were observed. p38 mitogen-activated protein kinase was activated only at later time points, and AKT was activated in a cyclic manner. Studies with UV-inactivated KSHV suggested a role for virus entry stages in NF-kappaB induction and a requirement for KSHV viral gene expression in sustained induction. Inhibition of NF-kappaB did not affect target cell entry by KSHV but significantly reduced the expression of viral latent open reading frame 73 and lytic genes. KSHV infection induced the activation of several host transcription factors, including AP-1 family members, as well as several cytokines, growth factors, and angiogenic factors, which were significantly affected by NF-kappaB inhibition. These results suggest that during de novo infection, KSHV induces sustained levels of NF-kappaB to regulate viral and host cell genes and thus possibly regulates the establishment of latent infection.
Collapse
Affiliation(s)
- Sathish Sadagopan
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
O'Connor S, Shumway S, Miyamoto S. Inhibition of IκBα Nuclear Export as an Approach to Abrogate Nuclear Factor-κB–Dependent Cancer Cell Survival. Mol Cancer Res 2005. [DOI: 10.1158/1541-7786.42.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Deregulation of the transcription factor nuclear factor-κB (NF-κB) leading to its constitutive activation is frequently observed in human cancer. Because altered NF-κB activities often promote the survival of malignant cells, its inhibition is regarded as a promising anticancer strategy. Because activation of the latent cytoplasmic NF-κB complex can be induced by a wide variety of different stimuli, its deregulation may occur by an equally large number of distinct mechanisms. This diversity raises a conundrum in conceptualizing general approaches to attenuate NF-κB activity in cancer. Here, we provide evidence that inhibition of IκBα nuclear export is a viable target to generally abrogate constitutive NF-κB activity in different cancer cell types. We show that inhibition of IκBα nuclear export has an important course of events in cancer cells harboring constitutive NF-κB activity—an initial increase in the pool of stable nuclear NF-κB/IκBα complexes that leads to a reduction of constitutive NF-κB activity and subsequent induction of apoptosis. Importantly, similar effects on multiple different cancer cell types indicate that inhibition of nuclear export of IκBα leads to broad inhibition of constitutive NF-κB activation regardless of various deregulated, upstream events involved.
Collapse
Affiliation(s)
- Shelby O'Connor
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stuart Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
17
|
Ross JS, Kallakury BVS, Sheehan CE, Fisher HAG, Kaufman RP, Kaur P, Gray K, Stringer B. Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 2004; 10:2466-72. [PMID: 15073126 DOI: 10.1158/1078-0432.ccr-0543-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The nuclear transcription factor nuclear factor-kappa B (NF kappa B) and its inhibitor, I kappa B, regulate the transcription of various genes involved in cell proliferation, adhesion, and survival. The NF kappa B transcription factor complex plays a role in cancer development and progression through its influence on apoptosis. More recently, NF kappa B has been shown to be activated in human and androgen-independent prostate cancer cells. To our knowledge, this is the first study demonstrating the prognostic significance of NF kappa B immunoreactivity in prostate adenocarcinomas (PACs). EXPERIMENTAL DESIGN Using prostatectomy specimens, we performed immunohistochemical staining for NF kappa B and I kappa B alpha (Santa Cruz Biotechnology) on formalin-fixed, paraffin-embedded sections obtained from 136 patients with PAC. Cytoplasmic and nuclear immunoreactivity was scored for intensity and distribution, and results were correlated with preoperative serum prostate-specific antigen, tumor grade, stage, DNA ploidy (Feulgen spectroscopy), and biochemical disease recurrence. RESULTS Forty-nine percent of PACs overexpressed cytoplasmic NF kappa B, and 63% showed decreased I kappa B expression. Cytoplasmic NF kappa B overexpression correlated with advanced tumor stage (P = 0.048), aneuploidy (P = 0.022), and biochemical disease recurrence (P = 0.001). When we compared the means for the NF kappa B-positive and -negative subgroups, NF kappa B overexpression correlated with preoperative serum prostate-specific antigen (P = 0.04) and DNA index (P = 0.05). Fifteen percent of PACs expressed nuclear NF kappa B, which correlated with high tumor grade (P = 0.001) and advanced stage (P = 0.05). Decreased I kappa B alpha expression correlated with high tumor grade (P = 0.015). On multivariate analysis, tumor stage (P = 0.043) and NF kappa B overexpression (P = 0.006) were independent predictors of biochemical recurrence. CONCLUSION These results support a role for NF kappa B pathway proteins in the tumorigenesis of PACs. The findings are also consistent with reported experimental studies suggesting a new strategy of combined chemotherapy and specific NF kappa B blockade in decreasing the rate of disease relapse.
Collapse
Affiliation(s)
- Jeffrey S Ross
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shumway SD, Miyamoto S. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. Biochem J 2004; 380:173-80. [PMID: 14763901 PMCID: PMC1224141 DOI: 10.1042/bj20031796] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2003] [Revised: 02/03/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
Inducible activation of the transcription factor NF-kappaB (nuclear factor kappaB) is classically mediated by proteasomal degradation of its associated inhibitors, IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. However, certain B-lymphocytes maintain constitutively nuclear NF-kappaB activity (a p50-c-Rel heterodimer) which is resistant to inhibition by proteasome inhibitors. This activity in the WEHI-231 B-cell line is associated with continual and preferential degradation of IkappaBalpha, which is also unaffected by proteasome inhibitors. Pharmacological studies indicated that there was a correlation between inhibition of IkappaBalpha degradation and constitutive p50-c-Rel activity. Domain analysis of IkappaBalpha by deletion mutagenesis demonstrated that an N-terminal 36-amino-acid sequence of IkappaBalpha represented an instability determinant for constitutive degradation. Moreover, domain grafting studies indicated that this sequence was sufficient to cause IkappaBbeta, but not chloramphenicol acetyltransferase, to be rapidly degraded in WEHI-231 B-cells. However, this sequence was insufficient to target IkappaBbeta to the non-proteasome degradation pathway, suggesting that there was an additional cis-element(s) in IkappaBalpha that was required for complete targeting. Nevertheless, the NF-kappaB pool associated with IkappaBbeta now became constitutively active by virtue of IkappaBbeta instability in these cells. These findings further support the notion that IkappaB instability governs the maintenance of constitutive p50-c-Rel activity in certain B-cells via a unique degradation pathway.
Collapse
Affiliation(s)
- Stuart D Shumway
- Program in Cellular and Molecular Biology, Department of Pharmacology, University of Wisconsin, 3795 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
19
|
O'Connor S, Shumway SD, Amanna IJ, Hayes CE, Miyamoto S. Regulation of constitutive p50/c-Rel activity via proteasome inhibitor-resistant IkappaBalpha degradation in B cells. Mol Cell Biol 2004; 24:4895-908. [PMID: 15143182 PMCID: PMC416427 DOI: 10.1128/mcb.24.11.4895-4908.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Constitutive NF-kappaB activity has emerged as an important cell survival component of physiological and pathological processes, including B-cell development. In B cells, constitutive NF-kappaB activity includes p50/c-Rel and p52/RelB heterodimers, both of which are critical for proper B-cell development. We previously reported that WEHI-231 B cells maintain constitutive p50/c-Rel activity via selective degradation of IkappaBalpha that is mediated by a proteasome inhibitor-resistant, now termed PIR, pathway. Here, we examined the mechanisms of PIR degradation by comparing it to the canonical pathway that involves IkappaB kinase-dependent phosphorylation and beta-TrCP-dependent ubiquitylation of the N-terminal signal response domain of IkappaBalpha. We found a distinct consensus sequence within this domain of IkappaBalpha for PIR degradation. Chimeric analyses of IkappaBalpha and IkappaBbeta further revealed that the ankyrin repeats of IkappaBalpha, but not IkappaBbeta, contained information necessary for PIR degradation, thereby explaining IkappaBalpha selectivity for the PIR pathway. Moreover, we found that PIR degradation of IkappaBalpha and constitutive p50/c-Rel activity in primary murine B cells were maintained in a manner different from B-cell-activating-factor-dependent p52/RelB regulation. Thus, our findings suggest that nonconventional PIR degradation of IkappaBalpha may play a physiological role in the development of B cells in vivo.
Collapse
Affiliation(s)
- Shelby O'Connor
- Department of Pharmacology, University of Wisconsin, 301 SMI, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
20
|
Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004; 23:2275-86. [PMID: 14755244 DOI: 10.1038/sj.onc.1207410] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
21
|
Yu HG, Zhong X, Yang YN, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE, Schmitz F. Increased expression of nuclear factor-kappaB/RelA is correlated with tumor angiogenesis in human colorectal cancer. Int J Colorectal Dis 2004; 19:18-22. [PMID: 12827408 DOI: 10.1007/s00384-003-0494-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Recent studies have shown that nuclear factor-kappa B/RelA (NF-kappa B/RelA) is involved in tumor angiogenesis. This study examined whether NF-kappa B/RelA expression is associated with vascular endothelial growth factor (VEGF) expression and microvessel density in human colorectal cancer. MATERIALS AND METHODS Ten specimens from normal colorectal mucosa and 52 colorectal adenocarcinomas were obtained by surgery or endoscopy. Immunohistochemical expression of NF-kappa B/RelA, VEGF, and CD34 was detected on paraffin-embedded tissue sections. RESULTS NF-kappa B/RelA and VEGF were significantly overexpressed and associated with microvessel density in colorectal cancer. A significant association was found between NF-kappa B/RelA and VEGF expression. Clinicopathological features were not correlated with NF-kappa B/RelA, VEGF expression, or microvessel density. CONCLUSION Our results suggest that increased expression of NF-kappa B/RelA contributes to tumor angiogenesis in colorectal cancer. VEGF may play an important role in mediating the NF-kappa B/RelA angiogenic pathway.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan Univeristy, Jiefang Road 238, 430060, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou M, Gu L, Zhu N, Woods WG, Findley HW. Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53. Oncogene 2003; 22:8137-44. [PMID: 14603254 DOI: 10.1038/sj.onc.1206911] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the possible role of inhibiting NF-kB activation in sensitizing tumor cells to chemotherapy-induced apoptosis, we transfected the dominant-negative mutant inhibitor of NF-kB (IkBm) into the EU-1 cell line, an acute lymphoblastic leukemia (ALL) line with constitutive NF-kB activation. Overexpression of IkBm significantly reduced constitutive NF-kB activity in EU-1 cells, resulting in decreased cell growth. In response to apoptosis induced by chemotherapeutic drugs, IkBm-transfected cells (EU-1/IkBm) exhibited increased sensitivity to vincristine (VCR), whereas sensitivity to doxorubicin (Dox) was not changed as compared to neo-transfected control (EU-1/neo) cells. To further evaluate the link between IkBm and sensitivity to Dox and VCR, we demonstrated that both endogenous IkBalpha and ectopic IkBm bind to p53. In response to Dox, the cytosolic p53.IkBalpha complex rapidly dissociated due to downregulation of IkBalpha. However, the p53.IkBm complex did not dissociate under these conditions. Although treatment of EU-1/IkBm cells with Dox increased the expression of p53, the nondissociating p53.IkBm complex resulted in decreased p53 function, as demonstrated by absence of cell-cycle arrest and induction of p53 target genes. Contrastingly, VCR-induced cell death neither downregulated IkBalpha nor induced p53, as shown by the lack of NF-kB activation and p53-mediated gene expression in VCR-treated cells. Our data suggest that IkBm simultaneously downregulates NF-kB activation and sequesters p53 in the cytoplasm, thus enhancing NF-kB-regulated apoptosis but blocking p53-dependent apoptosis.
Collapse
Affiliation(s)
- Muxiang Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Nasopharyngeal carcinoma, Kaposi's sarcoma, and B-cell lymphomas are human malignancies associated with gammaherpesvirus infections. Members of this virus family are characterized by their ability to establish latent infections in lymphocytes. The latent viral genome expresses very few gene products. The infected cells are therefore poorly recognized by the host immune system, allowing the virus to persist for long periods of time. We sought to identify the cell-specific factors that allow these viruses to redirect their life cycle from productive replication to latency. We find that the cellular transcription factor NF-kappaB can regulate this process. Epithelial cells and fibroblasts support active (lytic) gammaherpesvirus replication and have low NF-kappaB activity. However, overexpression of NF-kappaB in these cells inhibits the replication of the gammaherpesvirus murine herpesvirus 68 (MHV68). In addition, overexpression of NF-kappaB inhibits the activation of lytic promoters from MHV68 and human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). In lymphocytes latently infected with KSHV or EBV, the level of NF-kappaB activity is high, and treatment of these cells with an NF-kappaB inhibitor leads to lytic protein synthesis consistent with virus reactivation. These results suggest that high levels of NF-kappaB can inhibit gammaherpesvirus lytic replication and may therefore contribute to the establishment and maintenance of viral latency in lymphocytes. They also suggest that NF-kappaB may be a novel target for the disruption of virus latency and therefore the treatment of gammaherpesvirus-related malignancies.
Collapse
Affiliation(s)
- Helen J Brown
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
24
|
Park WY, Hwang CI, Im CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim JH, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS. Identification of radiation-specific responses from gene expression profile. Oncogene 2002; 21:8521-8. [PMID: 12466973 DOI: 10.1038/sj.onc.1205977] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 08/12/2002] [Accepted: 08/13/2002] [Indexed: 12/31/2022]
Abstract
The responses to ionizing radiation (IR) in tumors are dependent on cellular context. We investigated radiation-related expression patterns in Jurkat T cells with nonsense mutation in p53 using cDNA microarray. Expression of 2400 genes in gamma-irradiated cells was distinct from other stimulations like anti-CD3, phetohemagglutinin (PHA) and concanavalin A (ConA) in unsupervised clustering analysis. Among them, 384 genes were selected for their IR-specific changes to make 'RadChip'. In spite of p53 status, every type of cells showed similar patterns in expression of these genes upon gamma-radiation. Moreover, radiation-induced responses were clearly separated from the responses to other genotoxic stress like UV radiation, cisplatin and doxorubicin. We focused on two IR-related genes, phospholipase Cgamma2 (PLCG2) and cytosolic epoxide hydrolase (EPHX2), which were increased at 12 h after gamma-radiation in RT-PCR. TPCK could suppress the induction of these two genes in either of Jurkat T cells and PBMCs, which might suggest the transcriptional regulation of PLCG2 and EPHX2 by NF-kappaB upon gamma-radiation. From these results, we could identify the IR-specific genes from expression profiling, which can be used as radiation biomarkers to screen radiation exposure as well as probing the mechanism of cellular responses to ionizing radiation.
Collapse
Affiliation(s)
- Woong-Yang Park
- Ilchun Molecular Medicine Institute, Seoul National University, Chongnogu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim BY, Gaynor RB, Song K, Dritschilo A, Jung M. Constitutive activation of NF-kappaB in Ki-ras-transformed prostate epithelial cells. Oncogene 2002; 21:4490-7. [PMID: 12085227 DOI: 10.1038/sj.onc.1205547] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Revised: 03/27/2002] [Accepted: 04/02/2002] [Indexed: 11/08/2022]
Abstract
The signaling pathway responsible for the activation of nuclear factor-kappaB (NF-kappaB) by oncogenic forms of Ras remains unclear. Both, the transactivation and DNA binding activities of NF-kappaB, were increased in 267B1 human prostate epithelial cells transformed by viral Kirsten-ras (267B1/Ki-ras cells) compared with those in the parental cells. This increased NF-kappaB activity was attributed to a heterodimeric complex of p50 and p65 subunits. Although the abundance of the inhibitor protein IkappaBbeta was higher in 267B1/Ki-ras cells than in 267B1 cells, an electrophoretic mobility-shift assay suggested that IkappaBalpha is responsible for the activation of NF-kappaB in the former cells. Consistent with this notion, the phosphorylation of IkappaBalpha appeared increased in 267B1/Ki-ras cells, and the proteasome inhibitor I abolished the constitutive activation of NF-kappaB in these cells. The expression of dominant negative mutants of either NIK (NF-kappaB-inducing kinase) or IKKbeta (IkappaB kinase beta) inhibited the activity of NF-kappaB in 267B1/Ki-ras cells. Furthermore, chemical inhibitors specific for Ras activation, sulindac sulfide and farnesytranferase inhibitor I, markedly reduced IkappaBalpha phosphorylation and NF-kappaB activation in the Ki-ras-transformed cells while transfection of these cells with NIK or IKKbeta counteracted the inhibitory effect on NF-kappaB activation. These results suggest that oncogenic Ki-Ras induces transactivation of NF-kappaB through the NIK-IKKbeta-IkappaBalpha pathway.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC 20007, USA
| | | | | | | | | |
Collapse
|
26
|
Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 2001; 20:7597-609. [PMID: 11753638 DOI: 10.1038/sj.onc.1204997] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Revised: 09/06/2001] [Accepted: 09/18/2001] [Indexed: 11/08/2022]
Abstract
While the role of nuclear transcription factor activator protein-1 (AP-1) in cell proliferation, and of nuclear factor-kappaB (NF-kappaB) in the suppression of apoptosis are known, their role in survival of prostate cancer cells is not well understood. We investigated the role of NF-kappaB and AP-1 in the survival of human androgen-independent (DU145) and -dependent (LNCaP) prostate cancer cell lines. Our results show that the faster rate of proliferation of DU145 cells when compared to LNCaP cells correlated with the constitutive expression of activated NF-kappaB and AP-1 in DU-145 cells. The lack of constitutive expression of NF-kappaB and AP-1 in LNCaP cells also correlated with their sensitivity to the antiproliferative effects of tumor necrosis factor (TNF). TNF induced NF-kappaB activation but not AP-1 activation in LNCaP cells. In DU145 cells both c-Fos and c-Jun were expressed and treatment with TNF activated c-Jun NH2-terminal kinase (JNK), needed for AP-1 activation. In LNCaP cells, however, only low levels of c-Jun was expressed and treatment with TNF minimally activated JNK. Treatment of cells with curcumin, a chemopreventive agent, suppressed both constitutive (DU145) and inducible (LNCaP) NF-kappaB activation, and potentiated TNF-induced apoptosis. Curcumin alone induced apoptosis in both cell types, which correlated with the downregulation of the expression of Bcl-2 and Bcl-xL and the activation of procaspase-3 and procaspase-8. Overall, our results suggest that NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin abrogates their survival mechanisms.
Collapse
Affiliation(s)
- A Mukhopadhyay
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
27
|
Huang TT, Miyamoto S. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Mol Cell Biol 2001; 21:4737-47. [PMID: 11416149 PMCID: PMC87155 DOI: 10.1128/mcb.21.14.4737-4747.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most prominent NF-kappaB target genes in mammalian cells is the gene encoding one of its inhibitor proteins, IkappaBalpha. The increased synthesis of IkappaBalpha leads to postinduction repression of nuclear NF-kappaB activity. However, it is unknown why IkappaBalpha, among multiple IkappaB family members, is involved in this process and what significance this feedback regulation has beyond terminating NF-kappaB activity. Herein, we report an important IkappaBalpha-specific function dictated by its amino-terminal nuclear export sequence (N-NES). The IkappaBalpha N-NES is necessary for the postinduction export of nuclear NF-kappaB, which is a critical event in reestablishing a permissive condition for NF-kappaB to be rapidly reactivated. We show that although IkappaBalpha and another IkappaB member, IkappaBbeta, can enter the nucleus and repress NF-kappaB DNA-binding activity during the postinduction phase, only IkappaBalpha allows the efficient export of nuclear NF-kappaB. Moreover, swapping the N-terminal region of IkappaBbeta for the corresponding IkappaBalpha sequence is sufficient for the IkappaB chimera protein to export NF-kappaB similarly to IkappaBalpha during the postinduction state. Our findings provide a mechanistic explanation of why IkappaBalpha but not other IkappaB members is crucial for postrepression activation of NF-kappaB. We propose that this IkappaBalpha-specific function is important for certain physiological and pathological conditions where NF-kappaB needs to be rapidly reactivated.
Collapse
Affiliation(s)
- T T Huang
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
28
|
Tam WF, Wang W, Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol 2001; 21:4837-46. [PMID: 11416157 PMCID: PMC87179 DOI: 10.1128/mcb.21.14.4837-4846.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mature B lymphocytes are unique in containing nuclear Rel proteins prior to cell stimulation. This activity consists largely of p50-c-Rel heterodimers, and its importance for B-cell function is exemplified by reduced B-cell viability in several genetically altered mouse strains. Here we suggest a mechanism for the cell specificity and the subunit composition of constitutive B-cell NF-kappaB based on the observed properties of Rel homo- and heterodimers and IkappaBalpha. We show that c-Rel lacks a nuclear export sequence, making the removal of c-Rel-containing complexes from the nucleus less efficient than removal of p65-containing complexes. Second, the nuclear import potential of p65 and c-Rel homodimers but not p50-associated heterodimers was attenuated when they were complexed to IkappaBalpha, leading to a greater propensity of heterodimers to be nuclear. We propose that subunit composition of B-cell NF-kappaB reflects the inefficient retrieval of p50-c-Rel heterodimers from the nucleus. Cell specificity may be a consequence of c-Rel-IkappaBalpha complexes being present only in mature B cells, which leads to nuclear c-Rel due to IkappaBalpha turnover and shuttling of the complex.
Collapse
Affiliation(s)
- W F Tam
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
29
|
Pagliari LJ, Perlman H, Liu H, Pope RM. Macrophages require constitutive NF-kappaB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol 2000; 20:8855-65. [PMID: 11073986 PMCID: PMC116114 DOI: 10.1128/mcb.20.23.8855-8865.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB is a critical mediator of macrophage inflammatory responses, but its role in regulating macrophage survival has yet to be elucidated. Here, we demonstrate that constitutive NF-kappaB activation is essential for macrophage survival. Blocking the constitutive activation of NF-kappaB with pyrrolidine dithiocarbamate or expression of IkappaBalpha induced apoptosis in macrophagelike RAW 264.7 cells and primary human macrophages. This apoptosis was independent of additional death-inducing stimuli, including Fas ligation. Suppression of NF-kappaB activation induced a time-dependent loss of mitochondrial transmembrane potential (DeltaPsi(m)) and DNA fragmentation. Examination of initiator caspases revealed the cleavage of caspase 9 but not caspase 8 or the effector caspase 3. Addition of a general caspase inhibitor, z-VAD. fmk, or a specific caspase 9 inhibitor reduced DNA fragmentation but had no effect on DeltaPsi(m) collapse, indicating this event was caspase independent. To determine the pathway leading to mitochondrial dysfunction, analysis of Bcl-2 family members established that only A1 mRNA levels were reduced prior to DeltaPsi(m) loss and that ectopic expression of A1 protected against cell death following inactivation of NF-kappaB. These data suggest that inhibition of NF-kappaB in macrophages initiates caspase 3-independent apoptosis through reduced A1 expression and mitochondrial dysfunction. Thus, constitutive NF-kappaB activation preserves macrophage viability by maintaining A1 expression and mitochondrial homeostasis.
Collapse
Affiliation(s)
- L J Pagliari
- Division of Rheumatology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
30
|
Xia Y, Chen S, Wang Y, Mackman N, Ku G, Lo D, Feng L. RelB modulation of IkappaBalpha stability as a mechanism of transcription suppression of interleukin-1alpha (IL-1alpha), IL-1beta, and tumor necrosis factor alpha in fibroblasts. Mol Cell Biol 1999; 19:7688-96. [PMID: 10523657 PMCID: PMC84809 DOI: 10.1128/mcb.19.11.7688] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the NF-kappaB/RelB family of transcription factors play important roles in the regulation of inflammatory and immune responses. RelB, a member of this family, has been characterized as a transcription activator and is involved in the constitutive NF-kappaB activity in lymphoid tissues. However, in a previous study we observed an overexpression of chemokines in RelB-deficient fibroblasts. Here we show that RelB is an important transcription suppressor in fibroblasts which limits the expression of proinflammatory mediators and may exert its function by modulating the stability of IkappaBalpha protein. Fibroblasts from relb(-/-) mice overexpress interleukin-1alpha (IL-1alpha), IL-1beta, and tumor necrosis factor alpha in response to lipopolysaccharide (LPS) stimulation. These cells have an augmented and prolonged LPS-inducible IKK activity and an accelerated degradation which results in a diminished level of IkappaBalpha protein, despite an upregulated IkappaBalpha mRNA expression. Consequently, NF-kappaB activity was augmented and postinduction repression of NF-kappaB activity was impaired in these cells. The increased kappaB-binding activity and cytokine overexpression was suppressed by introducing RelB cDNA or a dominant negative IkappaBalpha into relb(-/-) fibroblasts. Our findings suggest a novel transcription suppression function of RelB in fibroblasts.
Collapse
Affiliation(s)
- Y Xia
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Doerre S, Corley RB. Constitutive Nuclear Translocation of NF-κB in B Cells in the Absence of IκB Degradation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Members of the NF-κB/Rel family of transcription factors are involved in many aspects of B lymphocyte development and function. NF-κB is constitutively active in these cells, in contrast with most other cell types. In the inactive form, NF-κB/Rel proteins are sequestered in the cytoplasm by members of the IκB family of NF-κB inhibitors. When activated, NF-κB is translocated to the nucleus, a process that involves the phosphorylation and proteasomal degradation of IκB proteins. Thus, NF-κB activation is accompanied by the rapid turnover of IκB proteins. We show that while this “classical” mode of NF-κB activation is a uniform feature of IgM+ B cell lines, all IgG+ B cells analyzed contain nuclear NF-κB yet have stable IκBα, IκBβ, and IκBε. Furthermore, Iκβε levels are at least 10 times lower in IgG+ B cells than in IgM+ B cells, an additional indication that the regulation of constitutive NF-κB activity in these two types of B cells is fundamentally different. These data imply the existence of a novel mechanism of NF-κB activation in IgG+ B cells that operates independently of IκB degradation. They further suggest that different isoforms of the B cell receptor may have distinct roles in regulating NF-κB activity.
Collapse
Affiliation(s)
- Stefan Doerre
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Ronald B. Corley
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
32
|
Abstract
Neurotrophins activate multiple signaling pathways in neurons. However, the precise roles of these signaling molecules in cell survival are not well understood. In this report, we show that nerve growth factor (NGF) activates the transcription factors NF-kappaB and AP-1 in cultured sympathetic neurons. Activated NF-kappaB complexes were shown to consist of heterodimers of p50 and Rel proteins (RelA, as well as c-Rel), and NF-kappaB activation was found to occur independently of de novo protein synthesis but in a manner that required the action of the proteasome complex. Treatment with the NF-kappaB inhibitory peptide SN50 in the continuous presence of NGF resulted in dose-dependent induction of cell death. Under the conditions used, SN50 was shown to selectively inhibit NF-kappaB activation but not the activation of other cellular transcription factors such as AP-1 and cAMP response element-binding protein. Cells treated with SN50 exhibited morphological and biochemical hallmarks of apoptosis, and the kinetics of cell killing were accelerated relative to death induced by NGF withdrawal. Finally, experiments were conducted to test directly whether NF-kappaB could act as a survival factor for NGF-deprived neurons. Microinjection of cells with an expression plasmid encoding NF-kappaB (c-Rel) resulted in enhanced neuronal survival after withdrawal of NGF, whereas cells that were transfected with a vector encoding a mutated derivative of c-Rel lacking the transactivation domain underwent cell death to the same extent as control cells. Together, these findings suggest that the activation of NF-kappaB/Rel transcription factors may contribute to the survival of NGF-dependent sympathetic neurons.
Collapse
|
33
|
Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dörken B, Scheidereit C. Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 1999; 18:943-53. [PMID: 10023670 DOI: 10.1038/sj.onc.1202351] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A common characteristic of malignant cells derived from patients with Hodgkin's disease (HD) is a high level of constitutive nuclear NF-kappaB/Rel activity, which stimulates proliferation and confers resistance to apoptosis. We have analysed the mechanisms that account for NF-kappaB activation in a panel of Hodgkin/Reed-Sternberg (H-RS) cell lines. Whereas two cell lines (L428 and KMH-2) expressed inactive IkappaBalpha, no significant changes in NF-kappaB or IkappaB expression were seen in other H-RS cells (L591, L1236 and HDLM-2). Constitutive NF-kappaB was susceptible to inhibition by recombinant IkappaBalpha, suggesting that neither mutations in the NF-kappaB genes nor posttranslational modifications of NF-kappaB were involved. Endogenous IkappaBalpha was bound to p65 and displayed a very short half-life. IkappaBalpha degradation could be blocked by inhibitors of the NF-kappaB activating pathway. Proteasomal inhibition caused an accumulation of phosphorylated IkappaBalpha and a reduction of NF-kappaB activity in HDLM-2 and L1236 cells. By in vitro kinase assays we demonstrate constitutive IkappaB kinase (IKK) activity in H-RS cells, indicating ongoing signal transduction. Furthermore, H-RS cells secrete one or more factor(s) that were able to trigger NF-kappaB activation. We conclude that aberrant activation of IKK's, and in some cases defective IkappaBs, lead to constitutive nuclear NF-kappaB activity, which in turn results in a growth advantage of Hodgkin's disease tumor cells.
Collapse
Affiliation(s)
- D Krappmann
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Cuervo AM, Hu W, Lim B, Dice JF. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 1998; 9:1995-2010. [PMID: 9693362 PMCID: PMC25451 DOI: 10.1091/mbc.9.8.1995] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Accepted: 06/04/1998] [Indexed: 11/11/2022] Open
Abstract
In lysosomes isolated from rat liver and spleen, a percentage of the intracellular inhibitor of the nuclear factor kappa B (IkappaB) can be detected in the lysosomal matrix where it is rapidly degraded. Levels of IkappaB are significantly higher in a lysosomal subpopulation that is active in the direct uptake of specific cytosolic proteins. IkappaB is directly transported into isolated lysosomes in a process that requires binding of IkappaB to the heat shock protein of 73 kDa (hsc73), the cytosolic molecular chaperone involved in this pathway, and to the lysosomal glycoprotein of 96 kDa (lgp96), the receptor protein in the lysosomal membrane. Other substrates for this degradation pathway competitively inhibit IkappaB uptake by lysosomes. Ubiquitination and phosphorylation of IkappaB are not required for its targeting to lysosomes. The lysosomal degradation of IkappaB is activated under conditions of nutrient deprivation. Thus, the half-life of a long-lived pool of IkappaB is 4.4 d in serum-supplemented Chinese hamster ovary cells but only 0.9 d in serum-deprived Chinese hamster ovary cells. This increase in IkappaB degradation can be completely blocked by lysosomal inhibitors. In Chinese hamster ovary cells exhibiting an increased activity of the hsc73-mediated lysosomal degradation pathway due to overexpression of lamp2, the human form of lgp96, the degradation of IkappaB is increased. There are both short- and long-lived pools of IkappaB, and it is the long-lived pool that is subjected to the selective lysosomal degradation pathway. In the presence of antioxidants, the half-life of the long-lived pool of IkappaB is significantly increased. Thus, the production of intracellular reactive oxygen species during serum starvation may be one of the mechanisms mediating IkappaB degradation in lysosomes. This selective pathway of lysosomal degradation of IkappaB is physiologically important since prolonged serum deprivation results in an increase in the nuclear activity of nuclear factor kappa B. In addition, the response of nuclear factor kappa B to several stimuli increases when this lysosomal pathway of proteolysis is activated.
Collapse
Affiliation(s)
- A M Cuervo
- Department of Physiology, Tufts University, School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Selected clones of the sympathetic precursor-like cell line PC12 (rCl8) are resistant to oxidative cell death induced by the Alzheimer's disease-associated amyloid beta protein (Abeta) and hydrogen peroxide (H2O2). Here, we show that the transcriptional activity and DNA binding activity of the redox-sensitive transcription factor NF-kappaB and its nuclear expression are constitutively increased in rCl8 cells compared with their nonresistant parental PC12 cell (PC12p) counterpart. Suppression of the transcriptional activity of NF-kappaB in rCl8 cells with the synthetic glucocorticoid dexamethasone or by direct overexpression of a super-repressor mutant form of IkappaBalpha, a specific inhibitor of NF-kappaB, reversed the oxidative stress resistance phenotype of these cells and ultimately led to increased cell death after the challenge with H2O2. Dexamethasone treatment also caused an increase in the protein level of IkappaBalpha. Our data show that an increased baseline of NF-kappaB activity may mediate the resistance of these cells of neuronal origin to oxidative stress. Therefore, the presented model may help to identify possible neuronal target genes of NF-kappaB and to further elucidate the molecular basis of the differential sensitivity of neurons in neurodegenerative conditions associated with an increased oxidative burden, such as in Alzheimer's disease.
Collapse
|
36
|
Schauer SL, Bellas RE, Sonenshein GE. Dominant Signals Leading to Inhibitor κB Protein Degradation Mediate CD40 Ligand Rescue of WEHI 231 Immature B Cells from Receptor-Mediated Apoptosis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Recently, we demonstrated maintenance of nuclear factor (NF)-κB/Rel factors plays a major role in B cell survival. Treatment of WEHI 231 immature B cells with an Ab against the surface IgM protein (anti-IgM) induces apoptosis that can be rescued by engagement of CD40 receptor. The dramatic decrease in high basal levels of NF-κB/Rel activity induced by anti-IgM treatment led to cell death. CD40 ligand (CD40L) treatment prevented the drop in NF-κB/Rel factor binding by inducing a sustained decrease in inhibitor (I) κB-α and transient decrease in IκB-β protein levels. In this study, we have investigated the regulation of these NF-κB/Rel-inhibitory proteins. In exponentially growing WEHI 231 cells, the IκB-α and IκB-β proteins decayed with an approximate t1/2 of 38 and 76 min, respectively, which was blocked effectively upon addition of the proteasome-specific inhibitor (benzylcarbonyl)-Leu-Leu-phenylalaninal (Z-LLF-CHO). Anti-IgM treatment stabilized IκB-α and IκB-β proteins. CD40L treatment resulted in a dramatic decrease in t1/2 (<5 min) for both IκB molecules, which was inhibited by addition of Z-LLF-CHO. CD40L treatment also caused a delayed increase in IκB-β mRNA levels, most likely contributing to the observed recovery of IκB-β levels. Microinjection of IκB-α-glutathione S-transferase fusion protein into nuclei of WEHI 231 cells ablated protection by CD40L from receptor-mediated killing. Furthermore, CD40L rescued apoptosis induced upon microinjection of a vector expressing wild-type IκB-α, but not a 32A/36A mutant form of IκB-α, unable to be phosphorylated and hence degraded. Thus, control of turnover of IκB proteins by CD40L plays a major role in maintenance of NF-κB/Rel and resultant rescue of WEHI 231 cells from apoptosis.
Collapse
Affiliation(s)
| | - Robert E. Bellas
- †Biochemistry, Boston University Medical School, Boston, MA 02118
| | | |
Collapse
|
37
|
Li JM, Shen X, Hu PP, Wang XF. Transforming growth factor beta stimulates the human immunodeficiency virus 1 enhancer and requires NF-kappaB activity. Mol Cell Biol 1998; 18:110-21. [PMID: 9418859 PMCID: PMC121461 DOI: 10.1128/mcb.18.1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) is the prototype of a large superfamily of signaling molecules involved in the regulation of cell growth and differentiation. In certain patients infected with human immunodeficiency virus type 1 (HIV-1), increased levels of TGF-beta promoted the production of virus and also impaired the host immune system. In an effort to understand the signaling events linking TGF-beta action and HIV production, we show here that TGF-beta can stimulate transcription from the HIV-1 long terminal repeat (LTR) promoter through NF-kappaB binding sites in both HaCaT and 300.19 pre-B cells. When introduced into a minimal promoter, NF-kappaB binding sites supported nearly 30-fold activation from the luciferase reporter upon TGF-beta treatment. Electrophoretic mobility shift assay indicated that a major factor binding to the NF-kappaB site is the p50-p65 heterodimeric NF-kappaB in HaCaT cells. Coexpression of Gal4-p65 chimeric proteins supported TGF-beta ligand-dependent gene expression from a luciferase reporter gene driven by Gal4 DNA binding sites. NF-kappaB activity present in HaCaT cells was not affected by TGF-beta treatment as judged by the unchanged DNA binding activity and concentrations of p50 and p65 proteins. Consistently, steady-state levels of IkappaB alpha and IkappaB beta proteins were not changed by TGF-beta treatment. Our results demonstrate that TGF-beta is able to stimulate transcription from the HIV-1 LTR promoter by activating NF-kappaB through a mechanism distinct from the classic NF-kappaB activation mechanism involving the degradation of IkappaB proteins.
Collapse
Affiliation(s)
- J M Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
38
|
Miyamoto S, Seufzer BJ, Shumway SD. Novel IkappaB alpha proteolytic pathway in WEHI231 immature B cells. Mol Cell Biol 1998; 18:19-29. [PMID: 9418849 PMCID: PMC121444 DOI: 10.1128/mcb.18.1.19] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 10/08/1997] [Indexed: 02/05/2023] Open
Abstract
The Rel/NF-kappaB family of transcription factors is sequestered in the cytoplasm of most mammalian cells by inhibitor proteins belonging to the IkappaB family. Degradation of IkappaB by a phosphorylation-dependent ubiquitin-proteasome (inducible) pathway is believed to allow nuclear transport of active Rel/NF-kappaB dimers. Rel/NF-kappaB (a p50-c-Rel dimer) is constitutively nuclear in murine B cells, such as WEHI231 cells. In these cells, p50, c-Rel, and IkappaB alpha are synthesized at high levels but only IkappaB alpha is rapidly degraded. We have examined the mechanism of IkappaB alpha degradation and its relation to constitutive p50-c-Rel activation. We demonstrate that all IkappaB alpha is found complexed with c-Rel protein in the cytoplasm. Additionally, rapid IkappaB alpha proteolysis is independent of but coexistent with the inducible pathway and can be inhibited by calcium chelators and some calpain inhibitors. Conditions that prevent degradation of IkappaB alpha also inhibit nuclear p50-c-Rel activity. Furthermore, the half-life of nuclear c-Rel is much shorter than that of the cytoplasmic form, underscoring the necessity for its continuous nuclear transport to maintain constitutive p50-c-Rel activity. We observed that IkappaB beta, another NF-kappaB inhibitor, is also complexed with c-Rel but slowly degraded by a proteasome-dependent process in WEHI231 cells. In addition, IkappaB beta is basally phosphorylated and cytoplasmic. We thus suggest that calcium-dependent IkappaB alpha proteolysis maintains nuclear transport of a p50-c-Rel heterodimer which in turn activates the synthesis of IkappaB alpha, p50, and c-Rel to sustain this dynamic process in WEHI231 B cells.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Human Oncology, University of Wisconsin-Madison, 53792, USA.
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
NF-kappaB and activator protein 1 (AP-1) are dimeric transcription factors involved in transcriptional regulation in many cells, including neurons. We have examined their activity during mouse cerebellum development, a postnatal process starting just after birth and completed by the fourth postnatal (PN) week. The activity of these factors was analyzed by binding of nuclear extracts to a synthetic oligonucleotide representing the kappaB site of human immunodeficiency virus or the AP-1 site of the urokinase promoter. NF-kappaB activity was observed from 7 PN, was restricted to the developing cerebellum, and was not observed in the early postnatal neocortex and hippocampus. On the other hand, AP-1 activity was not found in cerebellum but was present in both neocortex and hippocampus. Moreover, a kappaB-driven transgene was found to be increasingly expressed in the cerebellum from 5 PN to 10 PN but not in the adult. The regulation of NF-kappaB activation in mouse cerebellum was analyzed by intraperitoneal injection of glutamate receptor antagonists to 9 PN mice, which abolished NF-kappaB-binding activity, suggesting an endogenous loop of glutamate receptor activation. Glutamate receptor agonists, on the other hand, induced NF-kappaB nuclear translocation in the cerebellum of 5 PN mice, which is a stage in which NF-kappaB is not yet endogenously activated. This effect was specific for NF-kappaB and not observed for AP-1. In adult mice, NF-kappaB activity was absent in the cerebellum and was not induced by intraperitoneal injection of glutamate receptor agonists. These data show that NF-kappaB is specifically activated during cerebellum development and indicate an important role of glutamate receptors in this process.
Collapse
|
41
|
Abstract
Constitutive activation of NF-kappaB in WEHI 231 early mature B cells resembles the persistent activation of NF-kappaB that is observed upon prolonged stimulation of other cells. In both cases, NF-kappaB DNA binding complexes are found in the nucleus, despite the abundance of cytosolic IkappaB alpha. Recently, we have shown that prolonged activation of 70Z/3 cells with lipopolysaccharide results in the degradation of IkappaB beta, followed by its subsequent resynthesis as a hypophosphorylated protein. This protein was shown to facilitate transport of a portion of NF-kappaB to the nucleus in a manner that protects it from cytosolic IkappaB alpha. We now demonstrate that the most abundant form of IkappaB beta in WEHI 231 cells is a hypophosphorylated protein. This hypophosphorylated IkappaB beta is found in a stable complex with NF-kappaB in the cytosol and is also detected in NF-kappaB DNA binding complexes in the nucleus. It is likely that hypophosphorylated IkappaB beta in WEHI 231 cells also protects NF-kappaB from IkappaB alpha, thus leading to the continuous nuclear import of this transcription factor.
Collapse
Affiliation(s)
- R J Phillips
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
42
|
Lambert PF, Ludford-Menting MJ, Deacon NJ, Kola I, Doherty RR. The nfkb1 promoter is controlled by proteins of the Ets family. Mol Biol Cell 1997; 8:313-23. [PMID: 9190210 PMCID: PMC276082 DOI: 10.1091/mbc.8.2.313] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene encoding NFKB1 is autoregulated, responding to NF-kappa B/Rel activation through NF-kappa B binding sites in its promoter, which also contains putative sites for Ets proteins. One of the Ets sites, which we refer to as EBS4, is located next to an NF-kappa B/Rel binding site, kB3, which is absolutely required for activity of the promoter in Jurkat T cells in response to activation by phorbol 12-myristate 13-acetate (PMA), PMA/ionomycin, or the Tax protein from human T cell leukemia virus type I. We show that EBS4 is, required for the full response of the nfkb1 promoter to PMA or PMA/ionomycin in Jurkat cells. EBS4 is bound by Ets-1, Elf-1, and other species. Overexpression of Ets-1 augments the response to PMA/ionomycin and this is reduced by mutation of EBS4. Elf-1 has less effect in conjunction with PMA/ionomycin, but by itself activates the promoter 12-fold. This activation is only partly affected by mutation of EBS4, and a mutant promoter that binds Ets-1, but not Elf-1, at the EBS4 site responds to PMA/ionomycin as efficiently as the wild-type. Ets proteins may be responsible for fine-tuning the activity of the nfkb1 gene in a cell-type-specific manner.
Collapse
Affiliation(s)
- P F Lambert
- Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
Phillips RJ, Gustafson S, Ghosh S. Identification of a novel NF-kappaB p50-related protein in B lymphocytes. Mol Cell Biol 1996; 16:7089-97. [PMID: 8943364 PMCID: PMC231712 DOI: 10.1128/mcb.16.12.7089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In most cell types other than mature B lymphocytes and macrophages, the transcription factor NF-kappaB remains in an inactive form in the cytosol by being bound to the inhibitory proteins IkappaBalpha and IkappaBbeta. To investigate the regulation of constitutively active NF-kappaB in B lymphocytes, we have examined the composition of Rel protein complexes in different mouse B-cell lines. As reported previously, the constitutively active complex in mature B cells was predominantly p50:c-Rel. However, the kappaB binding complex in the plasmacytomas that were examined lacked c-Rel and instead contained only a p50-related protein. This p50-related protein (p55) cross-reacts with three different p50 antisera, exists in both the cytosol and the nucleus, and is the protein that binds to kappaB sites in plasma cells. Transfection of reporter constructs into plasma cells indicates that the p55 complex is also transcriptionally active. The p55 protein can be detected in splenocytes from mice lacking the p105/p50 gene, and therefore it appears to be the product of a distinct gene. The implications of the existence of a NF-kappaB p50-related protein in plasma cells that is capable of binding to kappaB sites and activating transcription are discussed.
Collapse
Affiliation(s)
- R J Phillips
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
44
|
Van Antwerp DJ, Verma IM. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol 1996; 16:6037-45. [PMID: 8887633 PMCID: PMC231606 DOI: 10.1128/mcb.16.11.6037] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signal-induced degradation of I(kappa)B(alpha) via the ubiquitin-proteasome pathway requires phosphorylation on residues serine 32 and serine 36 followed by ubiquitination on lysines 21 and 22. We investigated the role of other regions of I(kappa)B(alpha) which may be involved in its degradation. Here we report that the carboxy-terminal PEST sequence is not required for I(kappa)B(alpha) signal-induced degradation. However, removal of the PEST sequence stabilizes free I(kappa)B(alpha) in unstimulated cells. We further report that a PEST deletion mutant does not associate well with NF-(kappa)B proteins but is degraded in response to signal. Therefore, we conclude that both association with NF-(kappa)B and a PEST sequence are not required for signal-induced I(kappa)B(alpha) degradation. Additionally, the PEST sequence may be required for constitutive turnover of free I(kappa)B(alpha).
Collapse
Affiliation(s)
- D J Van Antwerp
- Laboratory of Genetics, The Salk Institute, San Diego, California 92186, USA
| | | |
Collapse
|
45
|
Betts JC, Nabel GJ. Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996; 16:6363-71. [PMID: 8887665 PMCID: PMC231638 DOI: 10.1128/mcb.16.11.6363] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteolytic degradation of the C-terminal region of NF-(kappa)B precursors to their active DNA binding forms represents an important regulatory step in the activation of NF-(kappa)B. NF-(kappa)B2(p100) is found ubiquitously in the cytoplasm; however, the site and mechanism of processing to p52 have not previously been defined. We show by deletion mapping that processing of NF-(kappa)B2(p100) terminates at alanine 405 to generate p52 and is prevented by specific inhibitors of the multicatalytic proteinase complex. Although the C-terminal I(kappa)B-like domain of NF-(kappa)B2(p100) was constitutively phosphorylated, disruption of this phosphorylation by mutagenesis demonstrated that it was not required as a signal to mediate processing. Mutational analysis further showed that cleavage of NF-(kappa)B2 is not dependent on a specific sequence motif adjacent to alanine 405, the ankyrin repeats, or other C-terminal sequences but is directed by structural determinants amino terminal to the cleavage site, within the Rel homology domain and/or the glycine hinge region. The level of processing of NF-(kappa)B2(p100) was much lower than that of NF-(kappa)B1(p105) and differed from that of I(kappa)B-alpha, suggesting differential control of processing of NF-(kappa)B/I(kappa)B family members.
Collapse
Affiliation(s)
- J C Betts
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109-0650, USA
| | | |
Collapse
|
46
|
Wu M, Arsura M, Bellas RE, FitzGerald MJ, Lee H, Schauer SL, Sherr DH, Sonenshein GE. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells. Mol Cell Biol 1996; 16:5015-25. [PMID: 8756660 PMCID: PMC231503 DOI: 10.1128/mcb.16.9.5015] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal levels; this decrease in c-myc expression immediately precedes the induction of cell death. Here we have modulated NF-kappaB/Rel factor activity, which regulates the rate of c-myc gene transcription, to determine whether the increase or decrease in c-Myc-levels mediates apoptosis in WEHI 231 cells. Addition of the serine/threonine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), which blocks the normally rapid turnover of the specific inhibitor of NF-kappaB/Rel IkappaBalpha in these cells, caused a drop in Rel-related factor binding. TPCK treatment resulted in decreased c-myc expression, preventing the usual increase seen following anti-Ig treatment. Whereas inhibition of the induction of c-myc expression mediated by anti-Ig failed to block apoptosis, reduction of c-myc expression in exponentially growing WEHI 231 cells induced apoptosis even in the absence of anti-Ig treatment. In WEHI 231 clones ectopically expressing c-Myc, apoptosis induced by treatment with TPCK or anti-Ig was significantly diminished and cells continued to proliferate. Furthermore, apoptosis of WEHI 231 cells ensued following enhanced expression of Mad1, which has been found to reduce functional c-Myc levels. These results indicate that the decline in c-myc expression resulting from the drop in NF-kappaB/Rel binding leads to activation of apoptosis of WEHI 231 B cells.
Collapse
Affiliation(s)
- M Wu
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Schmitz ML, Indorf A, Limbourg FP, Städtler H, Traenckner EB, Baeuerle PA. The dual effect of adenovirus type 5 E1A 13S protein on NF-kappaB activation is antagonized by E1B 19K. Mol Cell Biol 1996; 16:4052-63. [PMID: 8754803 PMCID: PMC231401 DOI: 10.1128/mcb.16.8.4052] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genomes of human adenoviruses encode several regulatory proteins, including the two differentially spliced gene products E1A and E1B. Here, we show that the 13S but not the 12S splice variant of E1A of adenovirus type 5 can activate the human transcription factor NF-kappaB in a bimodal fashion. One mode is the activation of NF-kappaB containing the p65 subunit from the cytoplasmic NF-kappaB-IkappaB complex. This activation required reactive oxygen intermediates and the phosphorylation of IkappaBalpha at serines 32 and 36, followed by IkappaBalpha degradation and the nuclear uptake of NF-kappaB. In addition, 13S E1A stimulated the transcriptional activity of the C-terminal 80 amino acids of p65 at a core promoter with either a TATA box or an initiator (INR) element. The C-terminal 80 amino acids of p65 were found to associate with E1A in vitro. The activation of NF-kappaB-dependent reporter gene transcription by E1A was potently suppressed upon coexpression of the E1B 19-kDa protein (19K). E1B 19K prevented both the activation of NF-kappaB and the E1A-mediated transcriptional enhancement of p65. These inhibitory effects were not found for the 55-kDa splice variant of the E1B protein. We suggest that the inductive effect of E1A 13S on the host factor NF-kappaB, whose activation is important for the transcription of various adenovirus genes, must be counteracted by the suppressive effect of E1B 19K so that the adenovirus-infected cell can escape the immune-stimulatory and apoptotic effects of NF-kappaB.
Collapse
Affiliation(s)
- M L Schmitz
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Schwarz EM, Van Antwerp D, Verma IM. Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol 1996; 16:3554-9. [PMID: 8668171 PMCID: PMC231350 DOI: 10.1128/mcb.16.7.3554] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
IkappaBalpha is a phosphoprotein that sequesters the NF-kappaB/Rel transcription factors in the cytoplasm by physical association. Following induction by a wide variety of agents, IkappaBalpha is further phosphorylated and degraded, allowing NF-kappaB/Rel proteins to translocate to the nucleus and induce transcription. We have previously reported that the constitutive phosphorylation site resides in the C-terminal PEST region of IkappaBalpha and is phosphorylated by casein kinase II (CKII). Here we show that serine 293 is the preferred CKII phosphorylation site. Additionally, we show compensatory phosphorylation by CKII at neighboring serine and threonine residues. Thus, only when all five of the serine and threonine residues in the C-terminal region of IkappaBalpha are converted to alanine (MutF), is constitutive phosphorylation abolished. Finally, we show that constitutive phosphorylation is required for efficient degradation of free IkappaBalpha, in that unassociated Mutf has a half-life two times longer than wild-type IkappaBalpha. A serine residue alone at position 293, as well as aspartic acid at this position, can revert the Mutf phenotype. Therefore, the constitutive CKII phosphorylation site is an integral part of the PEST region of IkappaBalpha, and this phosphorylation is required for rapid proteolysis of the unassociated protein.
Collapse
Affiliation(s)
- E M Schwarz
- Laboratory of Genetics, The Salk Institute, San Diego, California, 92186, USA
| | | | | |
Collapse
|
49
|
Lee H, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE. Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line. J Exp Med 1995; 181:1169-77. [PMID: 7869034 PMCID: PMC2191927 DOI: 10.1084/jem.181.3.1169] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Treatment of immature murine B lymphocytes with an antiserum against their surface immunoglobulin (sIg)M results in cell death via apoptosis. The WEHI 231 B cell line (IgM, kappa) has been used extensively as a model for this anti-Ig receptor-mediated apoptosis. Anti-sIg treatment of WEHI 231 cells causes an early, transient increase in the levels of c-myc messenger RNA and gene transcription, followed by a rapid decline below control values. Given the evidence for a role of the c-myc gene in promoting apoptosis, we have characterized the nature and kinetics of changes in the binding of Rel-related factors, which modulate c-myc promoter activity. In exponentially growing WEHI 231 cells, multiple Rel-related binding activities were detectable. The major binding species was identified as p50/c-Rel heterodimers; only minor amounts of nuclear factor kappa B (NF-kappa B) (p50/p65) were detectable. Cotransfection of an inhibitor of NF-kappa B (I kappa B)-alpha expression vector reduced c-myc-promoter/upstream/exon1-CAT reporter construct activity, indicating the role of Rel factor binding in c-myc basal expression in these cells. Treatment with anti-sIg resulted in a rapid transient increase in the rate of c-myc gene transcription and in the binding of Rel factors. At later times, formation of p50 homodimer complexes occurred. In cotransfection analysis, p65 and c-Rel expression potently and modestly transactivated the c-myc promoter, respectively, whereas, overexpression of the p50 subunit caused a significant drop in its activity. The role of activation of Rel-family binding was demonstrated directly upon addition of the antioxidant pyrrolidinedithiocarbamate, which inhibited the anti-sIg-mediated activation of the endogenous c-myc gene. Similarly, induction after anti-sIg treatment of a transfected c-myc promoter was abrogated upon cotransfection of an I kappa B-alpha expression vector. These results implicate the Rel-family in Ig receptor-mediated signals controlling the activation of c-myc gene transcription in WEHI 231 cells, and suggest a role for this family in apoptosis of this line, which is mediated through a c-myc signaling pathway.
Collapse
Affiliation(s)
- H Lee
- Department of Biochemistry, Boston University Medical School, Massachusetts 02118
| | | | | | | | | | | |
Collapse
|
50
|
Lacoste J, Petropoulos L, Pépin N, Hiscott J. Constitutive phosphorylation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells. J Virol 1995; 69:564-9. [PMID: 7983756 PMCID: PMC188611 DOI: 10.1128/jvi.69.1.564-569.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) encodes a strong transcriptional activator, Tax, that stimulates transcription indirectly through the viral long terminal repeat and also activates a number of cellular genes via association with host transcription factors. The NF-kappa B/Rel pathway is a target for Tax trans-activation, and Tax has been correlated with increased NF-kappa B-binding activity and NF-kappa B-dependent gene expression in HTLV-I-infected cells. In this study we demonstrate that constitutive phosphorylation and increased turnover of the regulatory I kappa B alpha protein in HTLV-I-infected MT-2 and C8166 cells and Tax-expressing 19D cells contribute to constitutive NF-kappa B-binding activity, which consists primarily of c-Rel, p52(NFKB2), and p50(NFKB1). I kappa B alpha mRNA expression is also increased 7- to 20-fold in these cells, although the steady-state level of I kappa B alpha protein is reduced in HTLV-I-infected and Tax-expressing T cells. These results indicate that the viral Tax protein, by indirectly mediating phosphorylation of I kappa B, may target I kappa B alpha for rapid degradation, thus leading to constitutive NF-kappa B activity.
Collapse
Affiliation(s)
- J Lacoste
- Abe Stern Cancer Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | |
Collapse
|