1
|
González-Rubio G, Martín H, Molina M. The Mitogen-Activated Protein Kinase Slt2 Promotes Asymmetric Cell Cycle Arrest and Reduces TORC1-Sch9 Signaling in Yeast Lacking the Protein Phosphatase Ptc1. Microbiol Spectr 2023; 11:e0524922. [PMID: 37042757 PMCID: PMC10269544 DOI: 10.1128/spectrum.05249-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/18/2023] [Indexed: 04/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded ptc1Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G1 cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in ptc1Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in ptc1Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of ptc1Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. IMPORTANCE This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G1 without compromising further division rounds in the mother cell.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Nunez‐Rodriguez JC, Ruiz‐Roldán C, Lemos P, Membrives S, Hera C. The phosphatase Ptc6 is involved in virulence and MAPK signalling in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2020; 21:206-217. [PMID: 31802599 PMCID: PMC6988432 DOI: 10.1111/mpp.12889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.
Collapse
Affiliation(s)
| | - Carmen Ruiz‐Roldán
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Pedro Lemos
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Sergio Membrives
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Concepcion Hera
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| |
Collapse
|
3
|
Sharmin D, Sasano Y, Sugiyama M, Harashima S. Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:392-8. [PMID: 25449759 DOI: 10.1016/j.jbiosc.2014.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/13/2014] [Indexed: 02/07/2023]
Abstract
The phosphorylation status of cellular proteins results from an equilibrium between the activities of protein kinases and protein phosphatases (PPases). Reversible protein phosphorylation is an important aspect of signal transduction that regulate many biological processes in eukaryotic cells. The Saccharomyces cerevisiae genome encodes 40 PPases, including seven members of the protein phosphatase 2C subfamily (PTC1 to PTC7). In contrast to other PPases, the cellular roles of PTCs have not been investigated in detail. Here, we sought to determine the cellular role of PTC6 in S. cerevisiae with disruption of PTC genes. We found that cells with Δptc6 disruption were tolerant to the cell wall-damaging agents Congo red (CR) and calcofluor white (CFW); however, cells with simultaneous disruption of PTC1 and PTC6 were very sensitive to these agents. Thus, simultaneous disruption of PTC1 and PTC6 gave a synergistic response to cell wall damaging agents. The level of phosphorylated Slt2 increased significantly after CR treatment in Δptc1 cells and more so in Δptc1Δptc6 cells; therefore, deletion of PTC6 enhanced Slt2 phosphorylation in the Δptc1 disruptant. The level of transcription of KDX1 upon exposure to CR increased to a greater extent in the Δptc1Δptc6 double disruptant than the Δptc1 single disruptant. The Δptc1Δptc6 double disruptant cells showed normal vacuole formation under standard growth conditions, but fragmented vacuoles were present in the presence of CR or CFW. Our analyses indicate that S. cerevisiae PTC6 participates in the negative regulation of Slt2 phosphorylation and vacuole morphogenesis under cell wall stress conditions.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu Sasano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Sharmin D, Sasano Y, Sugiyama M, Harashima S. Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 2014; 31:393-409. [PMID: 25088474 DOI: 10.1002/yea.3032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/02/2014] [Accepted: 07/12/2014] [Indexed: 11/06/2022] Open
Abstract
A key mechanism of signal transduction in eukaryotes is reversible protein phosphorylation, mediated through protein kinases and protein phosphatases (PPases). Modulation of signal transduction by this means regulates many biological processes. Saccharomyces cerevisiae has 40 PPases, including seven protein phosphatase 2C (PP2C PPase) genes (PTC1-PTC7). However, their precise functions remain poorly understood. To elucidate their cellular functions and to identify those that are redundant, we constructed 127 strains with deletions of all possible combinations of the seven PP2C PPase genes. All 127 disruptants were viable under nutrient-rich conditions, demonstrating that none of the combinations induced synthetic lethality under these conditions. However, several combinations exhibited novel phenotypes, e.g. the Δptc5Δptc7 double disruptant and the Δptc2Δptc3Δptc5Δptc7 quadruple disruptant exhibited low (13°C) and high (37°C) temperature-sensitive growth, respectively. Interestingly, the septuple disruptant Δptc1Δptc2Δptc3Δptc4Δptc5Δptc6Δptc7 showed an essentially normal growth phenotype at 37°C. The Δptc2Δptc3Δptc5Δptc7 quadruple disruptant was sensitive to LiCl (0.4 m). Two double disruptants, Δptc1Δptc2 and Δptc1Δptc4, displayed slow growth and Δptc1Δptc2Δptc4 could not grow on medium containing 1.5 m NaCl. The Δptc1Δptc6 double disruptant showed increased sensitivity to caffeine, congo red and calcofluor white compared to each single deletion. Our observations indicate that S. cerevisiae PP2C PPases have a shared and important role in responses to environmental stresses. These disruptants also provide a means for exploring the molecular mechanisms of redundant PTC gene functions under defined conditions.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
5
|
Feng J, Zhao Y, Duan Y, Jiang L. Genetic interactions between protein phosphatases CaPtc2p and CaPph3p in response to genotoxins and rapamycin inCandida albicans. FEMS Yeast Res 2013; 13:85-96. [DOI: 10.1111/1567-1364.12012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | | - Yinong Duan
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | | |
Collapse
|
6
|
Yang Q, Jiang J, Mayr C, Hahn M, Ma Z. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Environ Microbiol 2013; 15:2696-711. [PMID: 23601355 DOI: 10.1111/1462-2920.12126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/03/2013] [Accepted: 03/20/2013] [Indexed: 01/17/2023]
Abstract
Type 2C Ser/Thr phosphatases (PP2Cs) are involved in various cellular processes in many eukaryotes, but little has been known about their functions in filamentous fungi. Botrytis cinerea contains four putative PP2C genes, named BcPTC1, -3, -5, and -6. Biological functions of these genes were analysed by gene deletion and complementation. While no phenotypes aberrant from the wild type were observed with mutants of BcPTC5 and BcPTC6, mutants of BcPTC1 and BcPTC3 had reduced hyphal growth, increased conidiation, and impaired sclerotium development. Additionally, BcPTC1 and BcPTC3 mutants exhibited increased sensitivity to osmotic and oxidative stresses, and to cell wall degrading enzymes. Both mutants exhibited dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutants with wild-type BcPTC1 and BcPTC3 respectively. Different from what is known in Saccharomyces cerevisiae, BcPtc3, but not BcPtc1, negatively regulates phosphorylation of BcSak1 (the homologue of S. cerevisiae Hog1) in B. cinerea, although both BcPTC1 and BcPTC3 were able to rescue the growth defects of a yeast PTC1 deletion mutant under various stress conditions. These results demonstrated that BcPtc1 and BcPtc3 play important roles in the regulation of multiple stress tolerance and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
7
|
Zhao Y, Feng J, Li J, Jiang L. Mithochondrial type 2C protein phosphatases CaPtc5p, CaPtc6p, and CaPtc7p play vital roles in cellular responses to antifungal drugs and cadmium inCandida albicans. FEMS Yeast Res 2012; 12:897-906. [DOI: 10.1111/j.1567-1364.2012.00840.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yunying Zhao
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin; China
| | - Jinrong Feng
- Department of Pathogen Biology; School of Medicine; Nantong University; Nantong; China
| | - Jing Li
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin; China
| | | |
Collapse
|
8
|
Jiang J, Yun Y, Yang Q, Shim WB, Wang Z, Ma Z. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLoS One 2011; 6:e25311. [PMID: 21980420 PMCID: PMC3182220 DOI: 10.1371/journal.pone.0025311] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/31/2011] [Indexed: 01/11/2023] Open
Abstract
Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.
Collapse
Affiliation(s)
- Jinhua Jiang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yingzi Yun
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Qianqian Yang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhengyi Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Feng J, Zhao J, Li J, Zhang L, Jiang L. Functional characterization of the PP2C phosphatase CaPtc2p in the human fungal pathogen Candida albicans. Yeast 2010; 27:753-64. [PMID: 20641018 DOI: 10.1002/yea.1778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ion. There are seven PP2C-like genes in Candida albicans. In this study, we demonstrate that CaPtc2p is a PP2C phosphatase. Surprisingly, in addition to the cytoplasmic localization, CaPtc2p is partially associated with mitochondria in yeast-form and filamentous cells of C. albicans. Expression of CaPTC2 is developmentally regulated during the serum-induced filamentation. Deletion of CaPTC2 renders C. albicans cells sensitive to SDS and azole antifungals, as well as the DNA methylation agent methylmethane sulphonate and the DNA synthesis inhibitor hydroxyurea. Therefore, CaPtc2p might fulfil multiple functions, including the regulation of mitochondrial physiology and checkpoint recovery from DNA damage in C. albicans cells.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Yu L, Zhao J, Feng J, Fang J, Feng C, Jiang Y, Cao Y, Jiang L. Candida albicans CaPTC6 is a functional homologue for Saccharomyces cerevisiae ScPTC6 and encodes a type 2C protein phosphatase. Yeast 2009; 27:197-206. [PMID: 20033882 DOI: 10.1002/yea.1743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2C protein phosphatases (PP2C) are monomeric enzymes and their activities require the presence of magnesium or manganese ions. There are seven PP2C genes, ScPTC1, ScPTC2, ScPTC3, ScPTC4, ScPTC5, ScPTC6 and ScPTC7, in Saccharomyces cerevisiae. PTC6 is highly conserved in pathogenic and nonpathogenic yeasts. In the current study we have demonstrated that the Candida albicans CaPTC6 gene could complement the functions of ScPTC6 in the rapamycin and caffeine sensitivities of S. cerevisiae cells, indicating that they are functional homologues. We have also demonstrated that the CaPTC6-encoded protein is a typical PP2C enzyme and that CaPtc6p is localized in the mitochondrion of yeast-form and hyphal cells. However, deletion of CaPTC6 neither affects cell and hyphal growth nor renders Candida cells sensitive to rapamycin and caffeine. Therefore, possibly with a functional redundancy to other mitochondrial phosphatases, CaPtc6p is likely to be involved in the regulation of a mitochondrial physiology.
Collapse
Affiliation(s)
- Liquan Yu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang J, Yan Z, Shen SH, Whiteway M, Jiang L. Expression ofCaPTC7is developmentally regulated during serum-induced morphogenesis in the human fungal pathogen Candida albicans. Can J Microbiol 2007; 53:237-44. [PMID: 17496972 DOI: 10.1139/w06-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2C protein phosphatases (PP2C) represent a diversified protein phosphatase family and play various roles in cells. We previously identified and characterized a novel PP2C phosphatase encoded by the CaPTC7 gene in the human fungal pathogen Candida albicans . The CaPtc7p has 365 amino acids with a PP2C core domain at the C terminus and an additional 116-residue N-terminal sequence containing a mitochondrion-targeting sequence. Here, we show that CaPtc7p is indeed localized in the mitochondrion, the only eukaryotic PP2C phosphatase that has been directly shown to reside in the mitochondrion, suggesting its potential role in the regulation of mitochondrial physiology. Furthermore, we show that the expression of CaPTC7 at both transcriptional and protein levels is developmentally regulated during the serum-induced morphogenesis of C. albicans cells. However, disruption of the two alleles of CaPTC7 does not affect cell viability or filamentous development in C. albicans.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Molecular and Cellular Pharmacology, College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
12
|
Ruiz A, González A, García-Salcedo R, Ramos J, Ariño J. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol Microbiol 2006; 62:263-77. [PMID: 16956380 DOI: 10.1111/j.1365-2958.2006.05370.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatases 2C are a family of conserved enzymes involved in many aspects of the cell biology. We reported that, in the yeast Saccharomyces cerevisiae, overexpression of the Ptc3p isoform resulted in increased lithium tolerance in the hypersensitive hal3 background. We have found that the tolerance induced by PTC3 overexpression is also observed in wild-type cells and that this is most probably the result of increased expression of the ENA1 Na(+)-ATPase mediated by the Hog1 MAP kinase pathway. This effect does not require a catalytically active protein. Surprisingly, deletion of PTC3 (similarly to that of PTC2, PTC4 or PTC5) does not confer a lithium-sensitive phenotype, but mutation of PTC1 does. Lack of PTC1 in an ena1-4 background did not result in additive lithium sensitivity and the ptc1 mutant showed a decreased expression of the ENA1 gene in cells stressed with LiCl. In agreement, under these conditions, the ptc1 mutant was less effective in extruding Li(+) and accumulated higher concentrations of this cation. Deletion of PTC1 in a hal3 background did not exacerbate the halosensitive phenotype of the hal3 strain. In addition, induction from the ENA1 promoter under LiCl stress decreased similarly (50%) in hal3, ptc1 and ptc1 hal3 mutants. Finally, mutation of PTC1 virtually abolishes the increased tolerance to toxic cations provided by overexpression of Hal3p. These results indicate that Ptc1p modulates the function of Ena1p by regulating the Hal3/Ppz1,2 pathway. In conclusion, overexpression of PTC3 and lack of PTC1 affect lithium tolerance in yeast, although through different mechanisms.
Collapse
Affiliation(s)
- Amparo Ruiz
- Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Rajagopal L, Clancy A, Rubens CE. A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 2003; 278:14429-41. [PMID: 12562757 DOI: 10.1074/jbc.m212747200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is essential for the regulation of cell growth, division, and differentiation in both prokaryotes and eukaryotes. Signal transduction in prokaryotes was previously thought to occur primarily by histidine kinases, involved in two-component signaling pathways. Lately, bacterial homologues of eukaryotic-type serine/threonine kinases and phosphatases have been found to be necessary for cellular functions such as growth, differentiation, pathogenicity, and secondary metabolism. The Gram-positive bacteria Streptococcus agalactiae (group B streptococci, GBS) is an important human pathogen. We have identified and characterized a eukaryotic-type serine/threonine protein kinase (Stk1) and its cognate phosphatase (Stp1) in GBS. Biochemical assays revealed that Stk1 has kinase activity and localizes to the membrane and that Stp1 is a soluble protein with manganese-dependent phosphatase activity on Stk1. Mutations in these genes exhibited pleiotropic effects on growth, virulence, and cell segregation of GBS. Complementation of these mutations restored the wild type phenotype linking these genes to the regulation of various cellular processes in GBS. In vitro phosphorylation of cell extracts from wild type and mutant strains revealed that Stk1 is essential for phosphorylation of six GBS proteins. We have identified the predominant endogenous substrate of both Stk1 and Stp1 as a manganese-dependent inorganic pyrophosphatase (PpaC) by liquid chromatography/tandem mass spectrometry. These results suggest that these eukaryotic-type enzymes regulate pyrophosphatase activity and other cellular functions of S. agalactiae.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Division of Infectious Disease, Childrens Hospital and Regional Medical Center, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
14
|
Weinzierl G, Leveleki L, Hassel A, Kost G, Wanner G, Bölker M. Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol 2002; 45:219-31. [PMID: 12100561 DOI: 10.1046/j.1365-2958.2002.03010.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During its haploid phase the dimorphic fungus Ustilago maydis grows vegetatively by budding. We have identified two genes, don1 and don3, which control the separation of mother and daughter cells. Mutant cells form tree-like clusters in liquid culture and grow as ring-like (donut-shaped) colonies on solid medium. In wild-type U. maydis cells, two distinct septa are formed during cytokinesis and delimit a fragmentation zone. Cells defective for either don1 or don3 display only a single septum and fail to complete cell separation. don1 encodes a guanine nucleotide exchange factor (GEF) of the Dbl family specific for Rho/Rac GTPases. Don3 belongs to the germinal-centre-kinase (GC) subfamily of Ste20-like protein kinases. We have isolated the U. maydis homologues of the small GTP binding proteins Rho2, Rho3, Rac1 and Cdc42. Out of these, only Cdc42 interacts specifically with Don1 and Don3 in the yeast two-hybrid system. We propose that Don1 and Don3 regulate the initiation of the secondary septum, which is required for proper cell separation.
Collapse
|
15
|
Kim M, Hwang K, Lim CJ, Kim D. A potential membrane protein involved in pre-tRNA splicing of Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:210-4. [PMID: 11955632 DOI: 10.1016/s0167-4781(01)00353-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We had previously isolated six pre-tRNA splicing mutants of Schizosaccharomyces pombe named ptp1 to ptp6. To investigate the molecular mechanism of tRNA splicing, we cloned the ptp4(+) gene by complementation of the temperature-sensitive growth defect. The ptp4(+) gene consists of three exons and encodes a putative protein of 218 amino acids with a molecular mass of 24.4 kDa. Analysis of the amino acid sequence reveals that the protein is a potential membrane protein with four membrane-spanning regions. The ptp4(+) shows significant similarity to the Saccharomyces cerevisiae putative protein YOR311C. Expression of the ptp4(+) gene in the ptp4(-) mutant restores the ability to splice tRNA. Northern blot analysis showed that the ptp4(+) gene is expressed in both mating-type cells of S. pombe. These results suggest that the Ptp4(+) could be a component involved in tRNA splicing.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Genetic Engineering, Chongju University, Chongju, South Korea
| | | | | | | |
Collapse
|
16
|
Treuner-Lange A, Ward MJ, Zusman DR. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol Microbiol 2001; 40:126-40. [PMID: 11298281 DOI: 10.1046/j.1365-2958.2001.02362.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.
Collapse
Affiliation(s)
- A Treuner-Lange
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
17
|
Marsolier MC, Roussel P, Leroy C, Mann C. Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae. Genetics 2000; 154:1523-32. [PMID: 10747050 PMCID: PMC1461036 DOI: 10.1093/genetics/154.4.1523] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RAD53 encodes a conserved protein kinase that acts as a central transducer in the DNA damage and the DNA replication checkpoint pathways in Saccharomyces cerevisiae. To identify new elements of these pathways acting with or downstream of RAD53, we searched for genes whose overexpression suppressed the toxicity of a dominant-lethal form of RAD53 and identified PTC2, which encodes a protein phosphatase of the PP2C family. PTC2 overexpression induces hypersensitivity to genotoxic agents in wild-type cells and is lethal to rad53, mec1, and dun1 mutants with low ribonucleotide reductase activity. Deleting PTC2 specifically suppresses the hydroxyurea hypersensitivity of mec1 mutants and the lethality of mec1Delta. PTC2 is thus implicated in one or several functions related to RAD53, MEC1, and the DNA checkpoint pathways.
Collapse
Affiliation(s)
- M C Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif-Sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
18
|
Ohnishi M, Chida N, Kobayashi T, Wang H, Ikeda S, Hanada M, Yanagawa Y, Katsura K, Hiraga A, Tamura S. Alternative promoters direct tissue-specific expression of the mouse protein phosphatase 2Cbeta gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:736-45. [PMID: 10469137 DOI: 10.1046/j.1432-1327.1999.00580.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 2C protein phosphatases (PP2Cs), a class of ubiquitous and evolutionally conserved serine/threonine protein phosphatases, are encoded in at least four distinct genes and implicated in the regulation of various cellular functions. Of these four PP2C genes, the expression of the PP2Cbeta gene has been reported to be tissue-specific and development-dependent. To understand more precisely the regulatory mechanism of this expression, we have isolated and characterized overlapping mouse genomic lambda clones. A comparison of genomic sequences with PP2Cbeta cDNA sequences provided information on the structure and localization of intron/exon boundaries and indicated that PP2Cbeta isoforms with different 5' termini were generated by alternative splicing of its pre-mRNA. The 5'-flanking region of exon 1 had features characteristic of a housekeeping gene: it was GC-rich, lacked TATA boxes and CAAT boxes in the standard positions, and contained potential binding sites for the transcription factor SP1. In the 5'-flanking region of exon 2, several consensus sequences were found, such as a TATA-like sequence and negative regulatory element box-1, -2 and -3. Subsequent analysis by transient transfection assay with a reporter gene showed that these regions act as distinct promoters. Analysis of PP2Cbeta transcripts by reverse transcriptase-PCR showed that exon-1 transcripts were expressed ubiquitously in all of the tissues examined, whereas exon-2 transcripts were predominantly expressed in the testis, intestine and liver. These results suggest that the alternative usage of two promoters within the PP2Cbeta gene regulates tissue-specific expression of PP2Cbeta mRNA.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Biochemistry, Institute of Development, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaits F, Russell P. Vacuole fusion regulated by protein phosphatase 2C in fission yeast. Mol Biol Cell 1999; 10:2647-54. [PMID: 10436019 PMCID: PMC25496 DOI: 10.1091/mbc.10.8.2647] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The gene ptc4+ encodes one of four type 2C protein phosphatases (PP2C) in the fission yeast Schizosaccharomyces pombe. Deletion of ptc4+ is not lethal; however, Deltaptc4 cells grow slowly in defined minimal medium and undergo premature growth arrest in response to nitrogen starvation. Interestingly, Deltaptc4 cells are unable to fuse vacuoles in response to hypotonic stress or nutrient starvation. Conversely, Ptc4 overexpression appears to induce vacuole fusion. These findings reveal a hitherto unrecognized function of type 2C protein phosphatases: regulation of vacuole fusion. Ptc4 localizes in vacuole membranes, which suggests that Ptc4 regulates vacuole fusion by dephosphorylation of one or more proteins in the vacuole membrane. Vacuole function is required for the process of autophagy that is induced by nutrient starvation; thus, the vacuole defect of Deltaptc4 cells might explain why these cells undergo premature growth arrest in response to nitrogen starvation.
Collapse
Affiliation(s)
- F Gaits
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Kobayashi T, Sadaie M, Ohnishi M, Wang H, Ikeda S, Hanada M, Yanagawa Y, Nakajima T, Tamura S. Isoform-specific phosphorylation of fission yeast type 2C protein phosphatase. Biochem Biophys Res Commun 1998; 251:296-300. [PMID: 9790950 DOI: 10.1006/bbrc.1998.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2C (PP2C) is one of the four major protein serine/threonine phosphatases of eukaryotes and is implicated in the regulation of various cellular functions. With the goal of elucidating the mechanism responsible for regulating PP2C functions, we investigated the significance of phosphorylation of fission yeast Ptc1, Ptc2, and Ptc3, the yeast orthologs of mammalian PP2C. Both Ptc2 and Ptc3 but not Ptc1 were phosphorylated stoichiometrically by casein kinase II on serine residues at their carboxy-terminal regions. Mutational analysis of Ptc2 and Ptc3 revealed that serine residues of the conserved sequence (Ser-X-Ser-X-X-Glu/Asp) of these proteins were the phosphorylation sites. Interestingly, the activities of Ptc2 and Ptc3 were decreased 25 +/- 7.5% and increased 55 +/- 3.7%, respectively, by phosphorylation. In addition, the same site(s) of Ptc2 was phosphorylated when the protein was expressed in fission yeast cells. These results suggest that phosphorylation of PP2C plays important physiological roles in fission yeast cells.
Collapse
Affiliation(s)
- T Kobayashi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Grothe K, Hanke C, Momayezi M, Kissmehl R, Plattner H, Schultz JE. Functional characterization and localization of protein phosphatase type 2C from Paramecium. J Biol Chem 1998; 273:19167-72. [PMID: 9668103 DOI: 10.1074/jbc.273.30.19167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We cloned a protein phosphatase 2C gene from Paramecium (PtPP2C), which codes for one of the smallest PP2C isoforms (Klumpp, S., Hanke, C., Donella-Deana, A., Beyer, A., Kellner, R., Pinna, L. A., and Schultz, J. E. (1994) J. Biol. Chem. 269, 32774-32780). After mutation of 9 ciliate Q codons (TAA) to CAA PtPP2C was expressed as an active protein in Escherichia coli. The catalytic core region contains 284 amino acids as defined by C- and N-terminal deletions. The C terminus from amino acid 200-300 of PP2C isoforms has only about 20% similarity. To demonstrate that the carboxy end is in fact needed for activity, we generated an enzymatically active PtPP2C containing a C-terminally located tobacco etch virus-protease site. Upon proteolytic truncation enzyme activity was lost, i.e. the C terminus of PP2C is indispensable for enzyme activity. During these experiments isoleucine 214 was fortuitously identified to be essential for PP2C catalysis. Mutation of the hydrophobic amino acid to glycine in the ciliate or bovine isoforms resulted in inactive protein. Because Ile214 is in a loop region without defined secondary structure, our data clearly go beyond the x-ray structure. The functional equivalence of the 180 amino acid long C terminus from the bovine PP2C with the 100 amino acid long carboxy end of the PtPP2C was demonstrated by producing an active chimera, i.e. the PP2C from Paramecium has no obvious regions which may be specifically involved in subcellular localization or substrate recognition. Using antibodies against recombinant PtPP2C we localized the enzyme by immunogold labeling in the cytosol and nucleus and very distinctly on the ciliary microtubule/dynein complex. The data suggest a role for PtPP2C in the regulation of dyneins, i.e. in cellular cargo transport and ciliary motility.
Collapse
Affiliation(s)
- K Grothe
- Pharmazeutisches Institut der Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Hansen D, Pilgrim D. Molecular evolution of a sex determination protein. FEM-2 (pp2c) in Caenorhabditis. Genetics 1998; 149:1353-62. [PMID: 9649525 PMCID: PMC1460243 DOI: 10.1093/genetics/149.3.1353] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic sex determination in Caenorhabditis elegans involves a signal transduction pathway linking a membrane receptor to a transcription factor. The fem-2 gene is central to this pathway, producing a protein phosphatase (FEM-2) of the type 2C (PP2C). FEM-2 contains a long amino terminus that is absent in canonical PP2C enzymes. The function of this domain is difficult to predict, since it shows no sequence similarity to any other known proteins or motifs. Here we report the cloning of the fem-2 homologue from Caenorhabditis briggsae (Cb-fem-2). The sequence identity is much higher than that observed for other C. briggsae homologues of C. elegans sex determination proteins. However, this level is not uniform across the entire lengths of the proteins; it is much lower in the amino termini. Thus, the two domains of the same protein are evolving at different rates, suggesting that they have different functional constraints. Consistent with this, Cb-FEM-2 is able to replace some, but not all, of the Ce-FEM-2 in vivo function. We show that removal of the amino terminus from Ce-FEM-2 has no effect on its in vitro phosphatase activity, or its ability to replace the in vivo function of a yeast PP2C enzyme, but that it is necessary for proper FEM-2 function in worms. This demonstrates that the amino terminus is not an extended catalytic domain or a direct negative regulator of phosphatase activity.
Collapse
Affiliation(s)
- D Hansen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
23
|
Mamoun CB, Sullivan DJ, Banerjee R, Goldberg DE. Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum. J Biol Chem 1998; 273:11241-7. [PMID: 9556615 DOI: 10.1074/jbc.273.18.11241] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned a gene from Plasmodium falciparum with homology to the Mg2+-dependent serine/threonine protein phosphatase 2C (PP2C) family. The predicted coding region is 920 amino acids long, twice the size of other members of this family. We show that this protein can be divided into two halves (Pf2C-1 and Pf2C-2), each a complete phosphatase unit with homology to other phosphatases of this class. To study the function of this PP2C, we have tested the ability of different constructs to complement conditional null mutants of yeast. Our results show that expression of the full-length protein, the first half alone, the second half alone, or a hybrid with the N terminus of the first half and the C terminus of the second half was able to complement the heat shock response defect of a Schizosaccharomyces pombe strain with a PP2C (PTC1) deletion. Recombinant P. falciparum PP2C expressed in Escherichia coli was active in dephosphorylating 32P-labeled casein in an Mg2+- or Mn2+-dependent reaction. Each half alone was also active in recombinant form. Using the two-hybrid system, we have shown that the two halves can interact. Gel filtration assay of P. falciparum protein extracts suggests that full-length PfPP2C is a dimer, and phosphatase activity competition experiments indicate that dimerization of PfPP2C is required for its optimal activity. This unusual phosphatase molecule appears to be composed of four catalytic units on two polypeptide chains.
Collapse
Affiliation(s)
- C B Mamoun
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
24
|
Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM. Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell 1998; 9:917-30. [PMID: 9529388 PMCID: PMC25318 DOI: 10.1091/mbc.9.4.917] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1998] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1delta and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.
Collapse
Affiliation(s)
- A D Roeder
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
We report the molecular cloning, chromosome mapping and developmental transcription pattern of a putative serine/threonine protein phosphatase 2C (PP2C), DPP2C1, from Drosophila melanogaster. The 6-kb transcript of this first Drosophila PP2C gene encodes a 1428-aa deduced protein. The DPP2C1 protein contains a approximately 330-aa PP2C-like catalytic domain flanked by extensive N- and C-terminal sequences showing no similarities to other PP2Cs. The dpp2c1 gene maps to 4E1-2 on the X chromosome, 1.5 kb upstream of the ddlc1 gene. Northern blot analyses showed that dpp2c1 transcription is developmentally regulated, accumulating maximally during early (0-6 h) and late (12-24 h) embryogensis. The presented molecular characterisation provides the basis for a genetic dissection of DPP2C1 function.
Collapse
Affiliation(s)
- T Dick
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | | | |
Collapse
|
26
|
Culver GM, McCraith SM, Consaul SA, Stanford DR, Phizicky EM. A 2'-phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae. J Biol Chem 1997; 272:13203-10. [PMID: 9148937 DOI: 10.1074/jbc.272.20.13203] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The last step of tRNA splicing in the yeast Saccharomyces cerevisiae is catalyzed by an NAD-dependent 2'-phosphotransferase, which transfers the splice junction 2'-phosphate from ligated tRNA to NAD to produce ADP-ribose 1"-2" cyclic phosphate. We have purified the phosphotransferase about 28,000-fold from yeast extracts and cloned its structural gene by reverse genetics. Expression of this gene (TPT1) in yeast or in Escherichia coli results in overproduction of 2'-phosphotransferase activity in extracts. Tpt1 protein is essential for vegetative growth in yeast, as demonstrated by gene disruption experiments. No obvious binding motifs are found within the protein. Several candidate homologs in other organisms are identified by searches of the data base, the strongest of which is in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- G M Culver
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
28
|
Das AK, Helps NR, Cohen PT, Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 1996; 15:6798-809. [PMID: 9003755 PMCID: PMC452505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.
Collapse
Affiliation(s)
- A K Das
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | | | | | |
Collapse
|
29
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
30
|
Bertauche N, Leung J, Giraudat J. Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:193-200. [PMID: 8898906 DOI: 10.1111/j.1432-1033.1996.0193t.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations at the ABI1 (abscisic acid insensitive 1) locus of the plant Arabidopsis thaliana cause a reduction in sensitivity to the plant hormone abscisic acid. The sequence of ABI1 predicts a protein composed of an N-terminal domain that contains motifs for an EF-hand Ca(2+)-binding site, and a C-terminal domain with similarities to protein serine/threonine phosphatases 2C. We report here two sets of experimental evidence that indicate that ABI1 has typical protein phosphatase 2C activity. First, expression of the ABI1 C-terminal domain partially complemented the temperature-sensitive growth defect of a Saccharomyces cerevisiae protein phosphatase 2C mutant. Second, recombinant proteins that contained the ABI1 C-terminal domain displayed in vitro phosphatase activity towards 32P-labelled casein, and this activity displayed Mg2+ or Mn2+ dependence and okadaic acid insensitivity typical of protein phosphatases 2C. Characterisation of recombinant proteins that contained various portions of ABI1 indicated that the putative EF-hand motif is unlikely to mediate Ca2+ regulation of the ABI1 phosphatase activity at physiological Ca2+ concentrations, and may represent in EF-hand analogue rather than an EF-hand homologue. The abil-l mutation appeared to cause significant reduction in the phosphatase activity of ABI1. These results are discussed in relation to the dominant phenotype of abil-l over the wild-type allele in plants, and to the possible role of ABI1 in abscisic acid signalling.
Collapse
Affiliation(s)
- N Bertauche
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique (Unité Propre de Recherche 40), Gif-sur-Yvette, France
| | | | | |
Collapse
|
31
|
Bork P, Brown NP, Hegyi H, Schultz J. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci 1996; 5:1421-5. [PMID: 8819174 PMCID: PMC2143460 DOI: 10.1002/pro.5560050720] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A thorough sequence analysis of the various members of the eukaryotic protein serine/threonine phosphatase 2C (PP2C) family revealed the conservation of 11 motifs. These motifs could be identified in numerous other sequences, including fungal adenylate cyclases that are predicted to contain a functionally active PP2C domain, and a family of prokaryotic serine/threonine phosphatases including SpoIIE. Phylogenetic analysis of all the proteins indicates a widespread sequence family for which a considerable number of isoenzymes can be inferred.
Collapse
Affiliation(s)
- P Bork
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | |
Collapse
|
32
|
Shen WC, Stanford DR, Hopper AK. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family. Genetics 1996; 143:699-712. [PMID: 8725220 PMCID: PMC1207330 DOI: 10.1093/genetics/143.2.699] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Ga14p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that las1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases. As the similarities are restricted to areas separate from the catalytic domain, these G6PDs may have more than one function. The SOL family appears to be unessential since cells with a triple disruption of all three SOL genes are viable. SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/ function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing.
Collapse
Affiliation(s)
- W C Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | |
Collapse
|
33
|
Huang KN, Symington LS. Suppressors of a Saccharomyces cerevisiae pkc1 mutation identify alleles of the phosphatase gene PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 1995; 141:1275-85. [PMID: 8601473 PMCID: PMC1206866 DOI: 10.1093/genetics/141.4.1275] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The PKC1 gene product, protein kinase C, regulates a mitogen-activated protein kinase (MAPK) cascade, which is implicated in cell wall metabolism. Previously, we identified the pkc1-4 allele in a screen for mutants with increased rates of recombination, indicating that PKC1 may also regulate DNA metabolism. The pkc1-4 allele also conferred a temperature-sensitive (ts) growth defect. Extragenic suppressors were isolated that suppress both the ts and hyperrecombination phenotypes conferred by the pkc1-4 mutation. Eight of these suppressors for into two complementation groups, designated KCS1 and KCS2. KCS1 was cloned and found to encode a novel protein with homology to the basic leucine zipper family of transcription factors. KCS2 is allelic with PTC1, a previously identified type 2C serine/threonine protein phosphatase. Although mutation of either KCS1 or PTC1 causes little apparent phenotype, the kcs1 delta ptc1 delta double mutant fails to grow at 30 degrees. Furthermore, the ptc1 deletion mutation is synthetically lethal in combination with a mutation in MPK1, which encodes a MAPK homologue proposed to act in the PKC1 pathway. Because PTC1 was initially isolated as a component of the Hog1p MAPK pathway, it appears that these two MAPK cascades share a common regulatory feature.
Collapse
Affiliation(s)
- K N Huang
- Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
34
|
Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 1995; 59:345-86. [PMID: 7565410 PMCID: PMC239365 DOI: 10.1128/mr.59.3.345-386.1995] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.
Collapse
Affiliation(s)
- V J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Tung KS, Hopper AK. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:48-54. [PMID: 7715603 DOI: 10.1007/bf00425820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously we reported that mutations in the Saccharomyces cerevisiae REG1 gene encoding a negative regulator of glucose-repressible genes, suppress the RNA processing defects and temperature-sensitive growth of rna1-1 and prp cells. This result and the fact that growth on non-glucose carbon sources also suppresses rna1-1 led us to propose that RNA processing and export of RNA from the nucleus are responsive to carbon source regulation. To understand how carbon source affects these processes, we used p70, an antigen regulated by REG1 and by glucose availability, as a reporter. We found that the response of p70 to glucose availability is mediated by both the SNF1-SSN6-dependent glucose repression and the RAS-cAMP pathways. These results led us to test whether the RAS-cAMP pathway interacts with RNA1. We found that suppression of rna1-1 appears to be mediated, at least in part, by the RAS-cAMP pathway.
Collapse
Affiliation(s)
- K S Tung
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | |
Collapse
|
36
|
Klumpp S, Hanke C, Donella-Deana A, Beyer A, Kellner R, Pinna LA, Schultz JE. A membrane-bound protein phosphatase type 2C from Paramecium tetraurelia. Purification, characterization, and cloning. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30058-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|