1
|
Tang S, Liu W, Yong L, Liu D, Lin X, Huang Y, Wang H, Cai F. Reduced Expression of KRT17 Predicts Poor Prognosis in HER2high Breast Cancer. Biomolecules 2022; 12:biom12091183. [PMID: 36139022 PMCID: PMC9496156 DOI: 10.3390/biom12091183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT−PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Wenjing Liu
- Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 201100, China
| | - Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Dongyang Liu
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, No.279 Zhouzhu Highway, Shanghai 201318, China
- Correspondence: (H.W.); (F.C.)
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
- Correspondence: (H.W.); (F.C.)
| |
Collapse
|
2
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
3
|
Luo M, Huang P, Pan Y, Zhu Z, Zhou R, Yang Z, Wang C. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis 2021; 12:86. [PMID: 33452236 PMCID: PMC7810847 DOI: 10.1038/s41419-020-03305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin with highly complex pathogenesis. In this study, we identified lncRNA SPRR2C (small proline-rich protein 2C) as a hub gene with a critical effect on the pathogenesis of psoriasis and response to treatment using both weighted gene coexpression network analysis (WGCNA) and differential expression analysis. SPRR2C expression was significantly upregulated in both psoriatic lesion samples and HaCaT cell lines in response to IL-22 treatment. After SPRR2C knockdown, IL-22-induced suppression of HaCaT proliferation, changes in the KRT5/14/1/10 protein levels, and suppression of the IL-1β, IL-6, and TNF-α mRNA levels were dramatically reversed. In the coexpression network with SPRR2C based on GSE114286, miR-330 was significantly negatively correlated with SPRR2C, while STAT1 and S100A7 were positively correlated with SPRR2C. By binding to miR-330, SPRR2C competed with STAT1 and S100A7 to counteract miR-330-mediated suppression of STAT1 and S100A7. MiR-330 overexpression also reversed the IL-22-induced changes in HaCaT cell lines; in response to IL-22 treatment, miR-330 inhibition significantly attenuated the effects of SPRR2C knockdown. STAT1 and S100A7 expression was significantly upregulated in psoriatic lesion samples. The expression of miR-330 had a negative correlation with the expression of SPRR2C, while the expression of SPRR2C had a positive correlation with the expression of STAT1 and S100A7. Thus, SPRR2C modulates the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. WGCNA might uncover additional biological pathways that are crucial in the pathogenesis and response to the treatment of psoriasis.
Collapse
Affiliation(s)
- Meijunzi Luo
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Pan Huang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zhu Zhu
- The Second Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Rong Zhou
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zhibo Yang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Chang Wang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China.
| |
Collapse
|
4
|
Zhang J, Fang H, Wang R, Dang E, Jiang M, Wang G. Effect of Calcipotriol on IFN-γ-Induced Keratin 17 Expression in Immortalized Human Epidermal Keratinocyte Cells. Med Sci Monit 2017; 23:6049-6056. [PMID: 29269725 PMCID: PMC5747147 DOI: 10.12659/msm.904850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Calcipotriol ointment has been demonstrated to be a very safe and effective topical drug for psoriasis. This study aims to investigate the effect of calcipotriol on IFN-γ-induced keratin 17 (K17) expression in a human keratinocyte cell line (HaCaT), which is a widely accepted as a mimic in vitro model for psoriasis. Material/Methods We used Western blot, immunofluorescence staining, and luciferase reporter system assays to evaluate the expression of K17 and the possible underlying mechanisms. Results Administration of IFN-γ (125–1000 U) increased K17 expression in a dose-dependent manner, and 250 U/ml IFN-γ significantly elevated K17 expression. The experimental results showed that calcipotriol at concentrations of 10−7 M and 10−5 M suppressed the IFN-γ-induced K17 expression by 58.10% and 70.68%, respectively. Through immunofluorescence staining and luciferase reporter assay, we found that Vitamin D Response Element (VDRE) affected IFN-activated site (Gamma-activated sequence, GAS) function at the transcriptional level and was involved in the inhibition of K17 expression. Conclusions Our data suggest that calcipotriol downregulates IFN-γ-mediated K17 expression in keratinocytes in a dose-dependent manner via VDRE effect GAS function. The inhibitory effect of calcipotriol on K17 expression may be a potential mechanism and function in the treatment psoriasis.
Collapse
Affiliation(s)
- Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Ruoyang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Man Jiang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
5
|
Moesin and stress-induced phosphoprotein-1 are possible sero-diagnostic markers of psoriasis. PLoS One 2014; 9:e101773. [PMID: 25010044 PMCID: PMC4092060 DOI: 10.1371/journal.pone.0101773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 02/08/2023] Open
Abstract
To identify diagnostic markers for psoriasis vulgaris and psoriatic arthritis, autoantibodies in sera from psoriasis vulgaris and psoriatic arthritis patients were screened by two-dimensional immunoblotting (2D-IB). Based on 2D-IB and MADLI TOF/TOF-MS analyses, eleven proteins each in psoriasis vulgaris and psoriatic arthritis were identified as autoantigens. Furthermore, serum levels of moesin, keratin 17 (K17), annexin A1 (ANXA1), and stress-induced phophoprotein-1 (STIP1), which were detected as autoantigens, were studied by dot blot analysis with psoriasis patients and healthy controls. The levels of moesin and STIP1 were significantly higher in sera from patients with psoriasis vulgaris than in the controls (moesin: P<0.05, STIP1: P<0.005). The area under the curve (AUC) for moesin and STIP1 between patients with psoraisis vulgaris and controls was 0.747 and 0.792, respectively. STIP1 and K17 levels were significantly higher in sera from patients with psoriatic arthritis than in those with psoriasis vulgaris (P<0.05 each). The AUC for STIP1 and K17 between patients with psoriatic arthritis and psoriasis vulgaris was 0.69 and 0.72, respectively. The STIP1 or moesin, CK17 serum level was not correlated with disease activity of psoriasis patients. These data suggest that STIP1 and moesin may be novel and differential sero-diagnostic markers for psoriasis vulgaris and psoriatic arthritis.
Collapse
|
6
|
Wang YF, Lang HY, Yuan J, Wang J, Wang R, Zhang XH, Zhang J, Zhao T, Li YR, Liu JY, Zeng LH, Guo GZ. Overexpression of keratin 17 is associated with poor prognosis in epithelial ovarian cancer. Tumour Biol 2013; 34:1685-9. [PMID: 23430585 DOI: 10.1007/s13277-013-0703-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/07/2013] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to investigate the association between keratin 17 (K17) expression and the clinicopathological features of patients with epithelial ovarian cancer (EOC). K17 expression was detected by real-time quantitative RT-PCR in EOC and adjacent noncancerous tissues. In addition, K17 expression was analyzed by immunohistochemistry in 104 clinicopathologically characterized EOC cases. The expression levels of K17 mRNA and protein in EOC tissues were both significantly higher than those in noncancerous tissues. In addition, positive expression of K17 correlated with the clinical stage (p=0.001). Furthermore, Kaplan-Meier survival analysis showed that a high expression level of K17 resulted in a significantly poor prognosis of EOC patients. Multivariate analysis revealed that EOC expression level was an independent prognostic parameter for the overall survival rate of EOC patients. Our data are the first to suggest that increased K17 expression in EOC is significantly associated with aggressive progression and poor prognosis. K17 may be an important molecular marker for predicting the carcinogenesis, progression, and prognosis of EOC.
Collapse
Affiliation(s)
- Ya-Feng Wang
- Department of Radiological Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 17, Changle West Road, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang W, Dang E, Shi X, Jin L, Feng Z, Hu L, Wu Y, Wang G. The pro-inflammatory cytokine IL-22 up-regulates keratin 17 expression in keratinocytes via STAT3 and ERK1/2. PLoS One 2012; 7:e40797. [PMID: 22808266 PMCID: PMC3396590 DOI: 10.1371/journal.pone.0040797] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/13/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To investigate the regulation of K17 expression by the pro-inflammatory cytokine IL-22 in keratinocytes and its important role in our previously hypothesized "K17/T cell/cytokine autoimmune loop" in psoriasis. MATERIALS AND METHODS K17 expression was examined in the IL-22-treated keratinocytes by real-time quantitative PCR, ELISA, Western blot and Immunofluorescence. In addition, the signaling pathways involved in K17 regulation were investigated with related inhibitors and siRNAs. In addition, K17 expression was examined in the epidermis of IL-22-injected mouse skin. RESULTS IL-22-induced K17 expression was confirmed in keratinocytes and the epidermis of IL-22-injected mouse skin at both mRNA and protein levels, which is an important complement to the autoimmune loop. We further investigated the regulatory mechanisms and found that both STAT3 and ERK1/2 were involved in the up-regulation of K17 expression induced by IL-22. CONCLUSION IL-22 up-regulates K17 expression in keratinocytes in a dose-dependent manner through STAT3- and ERK1/2-dependent mechanisms. These findings indicated that IL-22 was also involved in the K17/T cell/cytokine autoimmune loop and may play an important role in the progression of psoriasis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Erle Dang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Xiaowei Shi
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Liang Jin
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Zhenzhen Feng
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Lei Hu
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Yan Wu
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| | - Gang Wang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Kerns M, DePianto D, Yamamoto M, Coulombe PA. Differential modulation of keratin expression by sulforaphane occurs via Nrf2-dependent and -independent pathways in skin epithelia. Mol Biol Cell 2010; 21:4068-75. [PMID: 20926689 PMCID: PMC2993737 DOI: 10.1091/mbc.e10-02-0153] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Treatment with the natural chemical sulforaphane (SF) ameliorates skin blistering in keratin 14 (K14)-deficient mice, correlating with the induction of K16 and K17 in the basal layer of epidermis (Kerns et al., PNAS 104:14460, 2007). Here we address the basis for the SF-mediated K16 and K17 induction in mouse epidermis in vivo. As expected, induction of K16 partly depends on the transcription factor Nrf2, which is activated by SF exposure. Strikingly, K17 induction occurs independently of Nrf2 activity and parallels the decrease in glutathione occurring shortly after epidermal exposure to SF. Pharmacological manipulation of glutathione levels in mouse epidermis in vivo alters K17 and K16 expression in the expected manner. We present findings suggesting that select MAP kinases participate in mediating the Nrf2- and glutathione-dependent alterations in K16 and K17 levels in SF-treated epidermis. These findings advance our understanding of the effect of SF on gene expression in epidermis, point to a role for glutathione in mediating some of these effects, and establish that SF induces the expression of two contiguous and highly related genes, K16 and K17, via distinct mechanisms.
Collapse
Affiliation(s)
- Michelle Kerns
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
9
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|
10
|
Radoja N, Stojadinovic O, Waseem A, Tomic-Canic M, Milisavljevic V, Teebor S, Blumenberg M. Thyroid hormones and gamma interferon specifically increase K15 keratin gene transcription. Mol Cell Biol 2004; 24:3168-79. [PMID: 15060141 PMCID: PMC381600 DOI: 10.1128/mcb.24.8.3168-3179.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 08/22/2003] [Accepted: 01/12/2004] [Indexed: 11/20/2022] Open
Abstract
Basal layers of stratified epithelia express keratins K5, K14, and K15, which assemble into intermediate filament networks. Mutations in K5 or K14 genes cause epidermolysis bullosa simplex (EBS), a disorder with blistering in the basal layer due to cell fragility. Nonkeratinizing stratified epithelia, e.g., in the esophagus, produce more keratin K15 than epidermis, which alleviates the esophageal symptoms in patients with K14 mutations. Hypothesizing that increasing the cellular content of K15 could compensate for the mutant K14 and thus ease skin blistering in K14 EBS patients, we cloned the promoter of the K15 gene and examined its transcriptional regulation. Using cotransfection, gel mobility shifts, and DNase I footprinting, we have identified the regulators of K15 promoter activity and their binding sites. We focused on those that can be manipulated with extracellular agents, transcription factors C/EBP, AP-1, and NF-kappaB, nuclear receptors for thyroid hormone, retinoic acid, and glucocorticoids, and the cytokine gamma interferon (IFN-gamma). We found that C/EBP-beta and AP-1 induced, while retinoic acid, glucocorticoid receptors, and NF-kappaB suppressed, the K15 promoter, along with other keratin gene promoters. However, the thyroid hormone and IFN-gamma uniquely and potently activated the K15 promoter. Using these agents, we could boost the amounts of K15 in human epidermis. Our findings suggest that treatments based on thyroid hormone and IFN-gamma could become effective agents in therapy for patients with EBS.
Collapse
Affiliation(s)
- Nada Radoja
- Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McGowan KM, Tong X, Colucci-Guyon E, Langa F, Babinet C, Coulombe PA. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev 2002; 16:1412-22. [PMID: 12050118 PMCID: PMC186322 DOI: 10.1101/gad.979502] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.
Collapse
Affiliation(s)
- Kevin M McGowan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Radoja N, Komine M, Jho SH, Blumenberg M, Tomic-Canic M. Novel mechanism of steroid action in skin through glucocorticoid receptor monomers. Mol Cell Biol 2000; 20:4328-39. [PMID: 10825196 PMCID: PMC85800 DOI: 10.1128/mcb.20.12.4328-4339.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1999] [Accepted: 03/20/2000] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids (GCs), important regulators of epidermal growth, differentiation, and homeostasis, are used extensively in the treatment of skin diseases. Using keratin gene expression as a paradigm of epidermal physiology and pathology, we have developed a model system to study the molecular mechanism of GCs action in skin. Here we describe a novel mechanism of suppression of transcription by the glucocorticoid receptor (GR) that represents an example of customizing a device for transcriptional regulation to target a specific group of genes within the target tissue, in our case, epidermis. We have shown that GCs repress the expression of the basal-cell-specific keratins K5 and K14 and disease-associated keratins K6, K16, and K17 but not the differentiation-specific keratins K3 and K10 or the simple epithelium-specific keratins K8, K18, and K19. We have identified the negative recognition elements (nGREs) in all five regulated keratin gene promoters. Detailed footprinting revealed that the function of nGREs is to instruct the GR to bind as four monomers. Furthermore, using cotransfection and antisense technology we have found that, unlike SRC-1 and GRIP-1, which are not involved in the GR complex that suppresses keratin genes, histone acetyltransferase and CBP are. In addition, we have found that GR, independently from GREs, blocks the induction of keratin gene expression by AP1. We conclude that GR suppresses keratin gene expression through two independent mechanisms: directly, through interactions of keratin nGREs with four GR monomers, as well as indirectly, by blocking the AP1 induction of keratin gene expression.
Collapse
Affiliation(s)
- N Radoja
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
13
|
McGowan KM, Coulombe PA. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol 1998; 143:469-86. [PMID: 9786956 PMCID: PMC2132846 DOI: 10.1083/jcb.143.2.469] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Revised: 09/04/1998] [Indexed: 11/22/2022] Open
Abstract
The type I keratin 17 (K17) shows a peculiar localization in human epithelial appendages including hair follicles, which undergo a growth cycle throughout adult life. Additionally K17 is induced, along with K6 and K16, early after acute injury to human skin. To gain further insights into its potential function(s), we cloned the mouse K17 gene and investigated its expression during skin development. Synthesis of K17 protein first occurs in a subset of epithelial cells within the single-layered, undifferentiated ectoderm of embryonic day 10.5 mouse fetuses. In the ensuing 48 h, K17-expressing cells give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, and tooth), and to periderm. During early development, there is a spatial correspondence in the distribution of K17 and that of lymphoid-enhancer factor (lef-1), a DNA-bending protein involved in inductive epithelial-mesenchymal interactions. We demonstrate that ectopic lef-1 expression induces K17 protein in the skin of adult transgenic mice. The pattern of K17 gene expression during development has direct implications for the morphogenesis of skin epithelia, and points to the existence of a molecular relationship between development and wound repair.
Collapse
Affiliation(s)
- K M McGowan
- Department of Biological Chemistry and Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
14
|
Eckert RL, Welter JF. Transcription factor regulation of epidermal keratinocyte gene expression. Mol Biol Rep 1996; 23:59-70. [PMID: 8983019 DOI: 10.1007/bf00357073] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The epidermis is a tissue that undergoes a very complex and tightly controlled differentiation program. The elaboration of this program is generally flawless, resulting in the production of an effective protective barrier for the organism. Many of the genes expressed during keratinocyte differentiation are expressed in a coordinate manner; this suggests that common regulatory models may emerge. The simplest model envisions a 'common regulatory element' that is possessed by all genes that are regulated together (e.g., involucrin and transglutaminase type 1). Studies to date, however, have not identified any such elements and, if anything, the available studies suggest that appropriate expression of each gene is achieved using sometime subtly and sometime grossly different mechanisms. Recent studies indicate that a variety of transcription factors (AP1, AP2, POU domain. Sp1, STAT factors) are expressed in the epidermis and, in many cases, multiple members of several families are present (e.g., AP1 and POU domain factors). The simultaneous expression of multiple members of a single transcription factor family provides numerous opportunities for complex regulation. Some studies suggest that specific members of these families interact with specific keratinocyte genes. The best studied of these families in epidermis is the AP1 family of factors. All of the known AP1 factors are expressed in epidermis [52] and each is expressed in a specific spatial pattern that suggests the potential to regulate multiple genes. It will be important to determine the role of each of these members in regulating keratinocyte gene expression. Finally, information is beginning to emerge regarding signal transduction in keratinocytes. Some of the early events in signal transduction have been identified (e.g., PLC and PKC activation, etc.) and some of the molecular targets of these pathways (e.g., AP1 transcription factors) are beginning to be identified. Eventually we can expect to elucidation of all of the steps between the interaction of the stimulating agent with its receptor and the activation of target gene expression.
Collapse
Affiliation(s)
- R L Eckert
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
15
|
Wang F, Sengupta TK, Zhong Z, Ivashkiv LB. Regulation of the balance of cytokine production and the signal transducer and activator of transcription (STAT) transcription factor activity by cytokines and inflammatory synovial fluids. J Exp Med 1995; 182:1825-31. [PMID: 7500028 PMCID: PMC2192267 DOI: 10.1084/jem.182.6.1825] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The balance between type 1 and 2 T helper cell cytokine production plays an important role in several animal models of autoimmunity, and skewed patterns of cytokine expression have been described in human inflammatory diseases. Many cytokines activate signal transducer and activation of transcription (STAT) transcription factors, which, in turn, activate transcription of inflammatory effector genes. We used mononuclear cell priming cultures and inflammatory synovial fluids (SFs) derived from arthritis patients to examine the regulation of cytokine production and STAT activity by an inflammatory synovial microenvironment. Exposure to SFs during priming resulted in an 81% inhibition of interferon (IFN)-gamma, but not interleukin (IL) 4, production by effector cells generated in priming cultures. SF suppression was mediated by IL-4 and IL-10 and inhibition of IL-12 expression, and it was reversed in a dominant fashion by exogenous IL-12. SFs blocked the sustained activity of transcription factor Stat1, but not Stat3, during the priming period, and Stat1 activity was differentially regulated by cytokines in parallel with their positive or negative regulation of IFN-gamma production. Active Stat3, but not Stat1, was detected in cells from inflamed joints. These results suggest a role for altered balance of Stat1 and Stat3 transcriptional activity in the regulation of T cell differentiation and in the pathogenesis of inflammatory synovitis.
Collapse
Affiliation(s)
- F Wang
- Department of Medicine, Hospital for Special Surgery, New York, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- D A Jans
- Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|