1
|
Sun D, Gokhale V. Role of Human DNA Ligases in Mediating Pharmacological Activities of Flavonoids. Int J Mol Sci 2025; 26:1456. [PMID: 40003922 PMCID: PMC11855144 DOI: 10.3390/ijms26041456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Dietary flavonoids are a group of polyphenol compounds originating from plants that have drawn much attention in the last few decades. Flavonoid-rich foods and dietary supplements are used worldwide due to their health benefits, including antioxidative, anti-inflammatory, immunity-enhancing, anticarcinogenic, estrogenic, and favorable cardiovascular effects. The main objective of our study was to explore the molecular targets of flavonoids to gain insight into the mechanism of action behind their biological effects. In this study, a novel class of resorcinol-based flavonoid compounds was identified as a potent inhibitor of human DNA ligase activity. Human DNA ligases are crucial in the maintenance of genetic integrity and cell fate determination. Thus, our results strongly suggest that this activity against human DNA ligases is responsible, at least in part, for the cellular effects of flavonoid compounds. We anticipate that the results from our studies will improve our understanding of how interactions with human DNA ligases cascade into the recognized health benefits of flavonoids, particularly their wide variety of anticancer effects.
Collapse
Affiliation(s)
- Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA;
- Reglagene, Inc., Tucson, AZ 85719, USA
| |
Collapse
|
2
|
Medina-Suárez D, Han L, O’Reilly S, Liu J, Wei C, Brenière M, Goff N, Chen C, Modesti M, Meek K, Harrington B, Yu K. Lig3-dependent rescue of mouse viability and DNA double-strand break repair by catalytically inactive Lig4. Nucleic Acids Res 2025; 53:gkae1216. [PMID: 39673806 PMCID: PMC11754673 DOI: 10.1093/nar/gkae1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Recent studies have revealed a structural role for DNA ligase 4 (Lig4) in the maintenance of a repair complex during non-homologous end joining (NHEJ) of DNA double-strand breaks. In cultured cell lines, catalytically inactive Lig4 can partially alleviate the severe DNA repair phenotypes observed in cells lacking Lig4. To study the structural role of Lig4 in vivo, a mouse strain harboring a point mutation to Lig4's catalytic site was generated. In contrast to the ablation of Lig4, catalytically inactive Lig4 mice are born alive. These mice display marked growth retardation and have clear deficits in lymphocyte development. We considered that the milder phenotype results from inactive Lig4 help to recruit another ligase to the repair complex. We next generated a mouse strain deficient for nuclear Lig3. Nuclear Lig3-deficient mice are moderately smaller and have elevated incidences of cerebral ventricle dilation but otherwise appear normal. Strikingly, in experiments crossing these two strains, mice lacking nuclear Lig3 and expressing inactive Lig4 were not obtained. Timed mating revealed that fetuses harboring both mutations underwent resorption, establishing an embryonic lethal genetic interaction. These data suggest that Lig3 is recruited to NHEJ complexes to facilitate end joining in the presence (but not activity) of Lig4.
Collapse
Affiliation(s)
- David Medina-Suárez
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Li Han
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Sandra O’Reilly
- Research Technology Support Facility, and Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Jiali Liu
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Noah J Goff
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Katheryn Meek
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Bonnie Harrington
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Kefei Yu
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. Int J Biol Macromol 2020; 148:999-1009. [DOI: 10.1016/j.ijbiomac.2020.01.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
5
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Cheng J, Wei K, Xin Y, Zhao P, Zhang J, Jia W, Zheng B. Lack of associations between LIG3 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer 2019; 10:5722-5726. [PMID: 31737108 PMCID: PMC6843871 DOI: 10.7150/jca.33605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of the DNA non-homologous end-joining (NHEJ) repair system is a causative factor in many cancers, including high-risk neuroblastoma. A number of studies have shown that polymorphisms in the DNA ligase III (LIG3) gene, one of the key genes in the error-prone alternative NHEJ (a-NHEJ) pathway for DNA double-strand break (DSB) repair, are associated with a variety of cancers. Nevertheless, whether LIG3 polymorphisms contribute to neuroblastoma risk remains unknown. We investigated the correlation between neuroblastoma susceptibility and two LIG3 polymorphisms (rs1052536 C>T and rs4796030 A>C) among 469 neuroblastoma patients and 998 healthy controls from China. Our results failed to detect any relationship between the analyzed SNPs and neuroblastoma risk in either overall analysis or stratification analysis. These results suggest that rs1052536 C>T and rs4796030 A>C are unrelated to neuroblastoma susceptibility in the Chinese population. Further studies with larger sample sizes and multiple ethnicities are necessary to verify our results.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Kongmei Wei
- Department of Clinical Laboratory, LanShi Hospital of Lanzhou, Lanzhou 730050, Gansu, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| |
Collapse
|
7
|
Roth BM, Varney KM, Yang H, Weber DJ, Tomkinson AE. 1H N, 13C, and 15N backbone resonance assignments of the human DNA ligase 3 DNA-binding domain (residues 257-477). BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:305-308. [PMID: 31093909 PMCID: PMC6715534 DOI: 10.1007/s12104-019-09896-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In mammalian cells, the process of DNA ligation is necessary during DNA replication to create an intact "lagging" strand from a series of smaller Okazaki fragments and to repair DNA strand breaks that arise either due to the direct action of a DNA damaging agent or as a consequence of DNA damage excision during DNA repair. In humans, there are three genes that encode for members of the DNA ligase family (LIG1, LIG3 and LIG4) (Ellenberger and Tomkinson in Ann Rev Biochem 77:313-338. 2008). Although these genes code for polypeptides with overlapping functions in the nucleus, the only mitochondrial DNA ligase (DNA ligase IIIα), which is essential for mitochondrial genome maintenance, is encoded by the LIG3 gene (Lakshmipathy and Campbell in Mol Cell Biol 19:3869-3876, 1999; Zong et al. in Mol Cell 61:667-676, 2016) Because mitochondria play a central and multifunctional role in malignant tumor progression, there is emerging interest in targeting key mitochondrial proteins. Notably, there is evidence in pre-clinical models that inhibitors of DNA ligase IIIα, which is frequently up-regulated in cancer, preferentially target cancer cells via their effect on mitochondria (Zong et al. 2016). Since NMR spectroscopy provides unique capabilities for identifying small molecules that bind specifically to DNA ligase IIIα versus the other DNA ligases), the backbone 1HN, 13C, and 15N NMR resonance assignments were completed for a 222 amino acid DNA-binding domain of human DNA ligase III. These NMR assignments represent a vital first step towards developing DNA ligase III-selective inhibitors.
Collapse
Affiliation(s)
- Braden M Roth
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA
| | - Hui Yang
- Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD, 21201, USA.
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
|
9
|
Hua RX, Zhuo Z, Zhu J, Zhang SD, Xue WQ, Li XZ, He J, Jia WH. LIG3 gene polymorphisms and risk of gastric cancer in a Southern Chinese population. Gene 2019; 705:90-94. [PMID: 31034940 DOI: 10.1016/j.gene.2019.04.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
DNA ligase III (LIG3) has been implicated in the etiology of cancer. However, few studies have accessed the association of LIG3 single nucleotide polymorphisms (SNPs) with gastric cancer risk, especially in Chinese population. The current study was undertaken to investigate contribution of LIG3 gene polymorphisms to gastric cancer risk. We first applied TaqMan assay to genotype three LIG3 gene SNPs (rs1052536 C > T, rs3744356 C > T, rs4796030 A > C) in 1142 patients with gastric cancer and 1173 healthy controls. And then, we adopted unconditional multivariate logistic regression analysis to estimate the association between LIG3 SNP genotypes and gastric cancer risk. In all, no positive association was found between the three LIG3 SNPs and gastric cancer risk in single locus analysis or combined risk genotypes analysis. However, compared with participants with rs4796030 AA genotype, participants with the AC/CC had a decreased risk of developing tumors from cardia at an adjusted OR of 0.68 (95% CI = 0.48-0.96, P = 0.026). In addition, we found that participants harboring 2-3 risk genotypes were at a significantly increased risk of developing tumor from cardia (adjusted OR = 1.63, 95% CI = 1.16-2.28, P = 0.005). These results suggest that genetic variations in LIG3 gene may play a weak role in modifying the risk of gastric cancer. Future functional studies should be performed to elucidate the biological role of LIG3 polymorphisms in gastric cancer carcinogenesis.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Shao-Dan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Wen-Qiong Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Xi-Zhao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Jing He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
10
|
Shi H, Huang Y, Gan Q, Rui M, Chen H, Tu C, Yang Z, Oger P, Zhang L. Biochemical characterization of a thermostable DNA ligase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Appl Microbiol Biotechnol 2019; 103:3795-3806. [DOI: 10.1007/s00253-019-09736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|
11
|
Czarny P, Kwiatkowski D, Toma M, Gałecki P, Orzechowska A, Bobińska K, Bielecka-Kowalska A, Szemraj J, Berk M, Anderson G, Śliwiński T. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder. Med Sci Monit 2016; 22:4455-4474. [PMID: 27866211 PMCID: PMC5119689 DOI: 10.12659/msm.898091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | | | - Monika Toma
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Agata Orzechowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Kinga Bobińska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Michael Berk
- IMPACT Research Center, Deakin University, Geelong, Australia
| | - George Anderson
- Clinical Research Communications Centre, CRC Scotland & London, London, United Kingdom
| | - Tomasz Śliwiński
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| |
Collapse
|
12
|
Peng Z, Liao Z, Matsumoto Y, Yang A, Tomkinson AE. Human DNA Ligase I Interacts with and Is Targeted for Degradation by the DCAF7 Specificity Factor of the Cul4-DDB1 Ubiquitin Ligase Complex. J Biol Chem 2016; 291:21893-21902. [PMID: 27573245 DOI: 10.1074/jbc.m116.746198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
The synthesis, processing, and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and coordinates the activity of several DNA replication proteins, including the enzymes flap endonuclease 1 (FEN-1) and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. Although it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Because DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins is coordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.
Collapse
Affiliation(s)
- Zhimin Peng
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Zhongping Liao
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yoshihiro Matsumoto
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Austin Yang
- the Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
13
|
Cooper DJ, Walter CA, McCarrey JR. Co-regulation of pluripotency and genetic integrity at the genomic level. Stem Cell Res 2014; 13:508-19. [PMID: 25451711 DOI: 10.1016/j.scr.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/12/2014] [Accepted: 09/20/2014] [Indexed: 12/20/2022] Open
Abstract
The Disposable Soma Theory holds that genetic integrity will be maintained at more pristine levels in germ cells than in somatic cells because of the unique role germ cells play in perpetuating the species. We tested the hypothesis that the same concept applies to pluripotent cells compared to differentiated cells. Analyses of transcriptome and cistrome databases, along with canonical pathway analysis and chromatin immunoprecipitation confirmed differential expression of DNA repair and cell death genes in embryonic stem cells and induced pluripotent stem cells relative to fibroblasts, and predicted extensive direct and indirect interactions between the pluripotency and genetic integrity gene networks in pluripotent cells. These data suggest that enhanced maintenance of genetic integrity is fundamentally linked to the epigenetic state of pluripotency at the genomic level. In addition, these findings demonstrate how a small number of key pluripotency factors can regulate large numbers of downstream genes in a pathway-specific manner.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, USA
| | - Christi A Walter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, USA.
| |
Collapse
|
14
|
Tomkinson AE, Sallmyr A. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene. Gene 2013; 531:150-7. [PMID: 24013086 DOI: 10.1016/j.gene.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
15
|
Abstract
Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.
Collapse
Affiliation(s)
- Timothy R L Howes
- Biomedical Sciences Graduate Program, University of New Mexico, Cancer Research Facility MSC08 4640, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | |
Collapse
|
16
|
Simsek D, Jasin M. DNA ligase III: a spotty presence in eukaryotes, but an essential function where tested. Cell Cycle 2011; 10:3636-44. [PMID: 22041657 DOI: 10.4161/cc.10.21.18094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA ligases are crucial for most DNA transactions, including DNA replication, repair, and recombination. Recently, DNA ligase III (Lig3) has been demonstrated to be crucial for cell survival due to its catalytic function in mitochondria. This review summarizes these recent results and reports on a hitherto unappreciated widespread phylogenetic presence of Lig3 in eukaryotes, including in some organisms before the divergence of metazoa. Analysis of these putative Lig3 homologs suggests that many of them are likely to be found in mitochondria and to be critical for mitochondrial function.
Collapse
Affiliation(s)
- Deniz Simsek
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | |
Collapse
|
17
|
Association between single nucleotide polymorphisms in the DNA repair gene LIG3 and acute adverse skin reactions following radiotherapy. Radiother Oncol 2011; 99:231-4. [DOI: 10.1016/j.radonc.2011.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 02/01/2023]
|
18
|
Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE. A plant DNA ligase is an important determinant of seed longevity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:848-60. [PMID: 20584150 DOI: 10.1111/j.1365-313x.2010.04285.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA repair is important for maintaining genome integrity. In plants, DNA damage accumulated in the embryo of seeds is repaired early in imbibition, and is important for germination performance and seed longevity. An essential step in most repair pathways is the DNA ligase-mediated rejoining of single- and double-strand breaks. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Here, we report the characterization of DNA LIGASE VI, which is only found in plant species. The primary structure of this ligase shows a unique N-terminal region that contains a β-CASP motif, which is found in a number of repair proteins, including the DNA double-strand break (DSB) repair factor Artemis. Phenotypic analysis revealed a delay in the germination of atlig6 mutants compared with wild-type lines, and this delay becomes markedly exacerbated in the presence of the genotoxin menadione. Arabidopsis atlig6 and atlig6 atlig4 mutants display significant hypersensitivity to controlled seed ageing, resulting in delayed germination and reduced seed viability relative to wild-type lines. In addition, atlig6 and atlig6 atlig4 mutants display increased sensitivity to low-temperature stress, resulting in delayed germination and reduced seedling vigour upon transfer to standard growth conditions. Seeds display a rapid transcriptional DNA DSB response, which is activated in the earliest stages of water imbibition, providing evidence for the accumulation of cytotoxic DSBs in the quiescent seed. These results implicate AtLIG6 and AtLIG4 as major determinants of Arabidopsis seed quality and longevity.
Collapse
|
19
|
Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009; 7:143. [PMID: 19961617 PMCID: PMC2800114 DOI: 10.1186/1477-7827-7-143] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/05/2009] [Indexed: 12/13/2022] Open
Abstract
Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Reda Z Mahfouz
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh K Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oli Sarkar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
- McGill University Health Center, Montreal, Canada
| | - Devna Mangrola
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Premendu P Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| |
Collapse
|
20
|
Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. Mol Cell Biol 2009; 29:2042-52. [PMID: 19223468 DOI: 10.1128/mcb.01732-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.
Collapse
|
21
|
Abstract
DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
22
|
Allen D, Herbert DC, McMahan CA, Rotrekl V, Sobol RW, Wilson SH, Walter CA. Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. Biol Reprod 2008; 79:824-31. [PMID: 18650495 DOI: 10.1095/biolreprod.108.069104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.
Collapse
Affiliation(s)
- Diwi Allen
- Departments of Cellular and Structural Biology and Pathology, and The Barshop Center for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Brunborg G, Duale N, Haaland JT, Bjørge C, Søderlund E, Dybing E, Wiger R, Olsen AK. DNA Repair Capacities in Testicular Cells of Rodents and Man. MALE-MEDIATED DEVELOPMENTAL TOXICITY 2007. [DOI: 10.1039/9781847557643-00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gunnar Brunborg
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | - Nur Duale
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | | | - Christine Bjørge
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | - Erik Søderlund
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | - Erik Dybing
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | - Richard Wiger
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| | - Ann-Karin Olsen
- Norwegian Institute of Public Health P.O.Box 4404 Nydalen Oslo N-0403 Norway
| |
Collapse
|
24
|
Rao KS. DNA repair in aging rat neurons. Neuroscience 2006; 145:1330-40. [PMID: 17156934 DOI: 10.1016/j.neuroscience.2006.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/14/2022]
Abstract
This laboratory, using post-mitotic rat brain neurons as a model system, has been testing the hypothesis that the inherited DNA repair potential would have profound influence on the aging process of the individual. It has been found that both single and double strand breaks in DNA accumulate in neurons with age. Since base excision repair (BER) is the pathway to effect repair of the type of DNA damage that is likely to occur in neurons, model oligo duplexes were used to assess the BER pathway. Both extension of a primer and one or four nucleotide gap repair are markedly reduced in aging neurons as compared with the young. The extension activity could be restored by supplementing the neuronal extracts with pure DNA polymerase beta (pol beta) while the restoration of gap repair needed the addition of both pol beta and DNA ligase. It thus appears that both pol beta and DNA ligase are deficient in aging neurons. We have also established a system to study the non-homologous end joining (NHEJ) mode of DNA repair in neurons. The end joining of cohesive but not of blunt or non-matching ends, is reduced with age and attempts to identify the limiting factor(s) in this case have been unsuccessful so far. These results are reviewed vis-à-vis the existing literature.
Collapse
Affiliation(s)
- K Subba Rao
- ICMR Advanced Center for Research on Aging and Brain, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500 046, India.
| |
Collapse
|
25
|
Sobti RC, Kaur P, Kaur S, Janmeja AK, Jindal SK, Kishan J, Raimondi S. No association of DNA ligase-I polymorphism with the risk of lung cancer in north-Indian population. DNA Cell Biol 2006; 25:484-9. [PMID: 16907646 DOI: 10.1089/dna.2006.25.484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA ligases play an essential role in repair, replication, and recombination of DNA, and catalyzes the formation of a phosphodiester bond at a nick junction on single- and double-strand breaks. We have conducted a hospital-based case-control study to examine the role of polymorphism of DNA repair gene ligase I (LIGI) in the context of lung cancer risk for north Indian population. One hundred, fifty-one primary lung cancer cases and an equal number of matching hospital controls were collected. The LIGI polymorphism was determined by using the PCR-RFLP method. The association between polymorphisms in the LIGI gene with the risk of lung cancer was estimated by computing odds ratios (ORs) and a 95% confidence interval (CI) using a Multivariate Logistic Regression Analysis. The risk for lung cancer was not associated for individuals featuring LIGI (AC) (OR -0.8, 95% CI = 0.44-1.40) and (AA) (OR -0.8, 95% CI = 0.41-1.80) genotypes. The DNA repair gene (LIGI) may not be playing an important role in modulating the risk of lung cancer in the north Indian population.
Collapse
|
26
|
Puebla-Osorio N, Lacey DB, Alt FW, Zhu C. Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol 2006; 26:3935-41. [PMID: 16648486 PMCID: PMC1489003 DOI: 10.1128/mcb.26.10.3935-3941.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 12/21/2005] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Immunology, Unit 902, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T. DNA ligases: structure, reaction mechanism, and function. Chem Rev 2006; 106:687-99. [PMID: 16464020 DOI: 10.1021/cr040498d] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alan E Tomkinson
- Radiation Oncology Research Laboratory and Marlene and Stewart Greenebaum Cancer Center, Molecular and Cellular Biology Graduate Program, University of Maryland School of Medicine, Baltimore, 21201, USA.
| | | | | | | |
Collapse
|
28
|
Chen X, Pascal J, Vijayakumar S, Wilson GM, Ellenberger T, Tomkinson AE. Human DNA ligases I, III, and IV-purification and new specific assays for these enzymes. Methods Enzymol 2006; 409:39-52. [PMID: 16793394 DOI: 10.1016/s0076-6879(05)09003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The joining of DNA strand breaks by DNA ligases is required to seal Okazaki fragments during DNA replication and to complete almost all DNA repair pathways. In human cells, there are multiple species of DNA ligase encoded by the LIG1, LIG3, and LIG4 genes. Here we describe protocols to overexpress and purify recombinant DNA ligase I, DNA ligase IIIbeta, and DNA ligase IV/XRCC4 and the assays used to purify and distinguish between these enzymes. In addition, we describe a fluorescence-based ligation assay that can be used for high throughput screening of chemical libraries.
Collapse
Affiliation(s)
- Xi Chen
- Radiation Oncology, Research Laboratory and the Marlene and Stewart Greenebaum Cancer Center, Universtiy of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sun D, Urrabaz R. Development of non-electrophoretic assay method for DNA ligases and its application to screening of chemical inhibitors of DNA ligase I. ACTA ACUST UNITED AC 2005; 59:49-59. [PMID: 15134906 DOI: 10.1016/s0165-022x(02)00071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2002] [Revised: 05/13/2002] [Accepted: 08/02/2002] [Indexed: 11/24/2022]
Abstract
A new rapid assay method for DNA ligases has been developed, which allows direct quantification of enzyme activity without using the traditional polyacrylamide gel electrophoretic technique. In this method, the 5'-biotinylated nicked duplex was used as a substrate for the ligase reaction, in which the 5'-end of the first oligonucleotide (19-mer) on the nicked strand is biotinylated and the second oligonucleotide (20-mer) on the same strand is labeled with radioactive 32P at the 5'-end. After ligation of the biotinylated 19-mer oligonucleotide into the second oligonucleotide with the reaction of DNA ligases, the biotinylated 19-mer oligonucleotide is converted into the radioactive 39-mer oligonucleotide. The ligase reaction products were heat-denatured to release both ligated and unligated biotinylated oligonucleotides. The biotinylated oligonucleotides were then captured on a streptavidin-coated microtiter plate and counted. The results obtained using this method correlated very well with those from the standard assay method using electrophoresis. Using this assay method, we were able to screen a chemical library and identify new DNA ligase inhibitors structurally related to resorcinol, which has growth inhibitory effects on the human breast cancer cell, MCF-7. The method described here is anticipated to be very useful for screening DNA ligase inhibitors from chemical libraries.
Collapse
Affiliation(s)
- Daekyu Sun
- Institute for Drug Development, Cancer Therapy and Research Center, 14960 Omicron Drive, San Antonio, TX 78245-3217, USA.
| | | |
Collapse
|
30
|
Huamani J, McMahan CA, Herbert DC, Reddick R, McCarrey JR, MacInnes MI, Chen DJ, Walter CA. Spontaneous mutagenesis is enhanced in Apex heterozygous mice. Mol Cell Biol 2004; 24:8145-53. [PMID: 15340075 PMCID: PMC515041 DOI: 10.1128/mcb.24.18.8145-8153.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germ line DNA directs the development of the next generation and, as such, is profoundly different from somatic cell DNA. Spermatogenic cells obtained from young adult lacI transgenic mice display a lower spontaneous mutant frequency and greater in vitro base excision repair activity than somatic cells and tissues obtained from the same mice. However, spermatogenic cells from old lacI mice display a 10-fold higher mutant frequency. This increased spontaneous mutant frequency occurs coincidentally with decreased in vitro base excision repair activity for germ cell and testicular extracts that in turn corresponds to a decreased abundance of AP endonuclease. To directly test whether a genetic diminution of AP endonuclease results in increased spontaneous mutant frequencies in spermatogenic cell types, AP endonuclease heterozygous (Apex(+/-)) knockout mice were crossed with lacI transgenic mice. Spontaneous mutant frequencies were significantly elevated (approximately twofold) for liver and spleen obtained from 3-month-old Apex(+/-) lacI(+) mice compared to frequencies from Apex(+/+) lacI(+) littermates and were additionally elevated for somatic tissues from 9-month-old mice. Spermatogenic cells from 9-month-old Apex(+/-) lacI(+) mice were significantly elevated twofold compared to levels for 9-month-old Apex(+/+) lacI(+) control mice. These data indicate that diminution of AP endonuclease has a significant effect on spontaneous mutagenesis in somatic and germ line cells.
Collapse
Affiliation(s)
- Jessica Huamani
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Raghavan SC, Raman MJ. Nonhomologous end joining of complementary and noncomplementary DNA termini in mouse testicular extracts. DNA Repair (Amst) 2004; 3:1297-310. [PMID: 15336625 DOI: 10.1016/j.dnarep.2004.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/24/2022]
Abstract
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
32
|
Wang XF, Cui JZ, Nie W, Prasad SS, Matsubara JA. Differential gene expression of early and late passage retinal pigment epithelial cells. Exp Eye Res 2004; 79:209-21. [PMID: 15325568 DOI: 10.1016/j.exer.2004.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Accepted: 03/29/2004] [Indexed: 01/16/2023]
Abstract
We examined the gene expression profiles of retinal pigment epithelial (RPE) cells which were aged in vitro by repeated passage. RPE cells from human eyes were cultured to passage 3-5 (early passage) or 19-21 (late passage) and used to study gene expression profiles by cDNA microarray. Results from microarray analysis were further confirmed by real-time PCR. Microarray analysis showed gene expression changes among 588 known genes. The expression levels of 15 genes (2.6%) increased in late passage RPE cells, while 43 genes (7.3%) decreased using a two-fold criterion. These differentially expressed genes encompassed many functional classes. A small number of stress genes, such as clusterin, replication protein A and Ku80, were up-regulated. The down-regulated genes included many enzymes of energy and biomolecule metabolism as well as cell cycle proteins and cell adhesion proteins. Results from real-time PCR were generally consistent with microarray findings. The expression levels of the examined angiogenic factors were either unchanged or down-regulated. Comparing early (p=3-5) and late (p=9-12) passage RPE cells, several categories of differentially expressed genes were identified. However, there was no enhanced expression of known angiogenic factors.
Collapse
Affiliation(s)
- Xue-Feng Wang
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9, Canada
| | | | | | | | | |
Collapse
|
33
|
Ho ELY, Satoh MS. Repair of single-strand DNA interruptions by redundant pathways and its implication in cellular sensitivity to DNA-damaging agents. Nucleic Acids Res 2004; 31:7032-40. [PMID: 14627836 PMCID: PMC290260 DOI: 10.1093/nar/gkg892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-strand DNA interruptions (SSIs) are produced during the process of base excision repair (BER). Through biochemical studies, two SSI repair subpathways have been identified: a pathway mediated by DNA polymerase beta (Pol beta) and DNA ligase III (Lig III), and a pathway mediated by DNA polymerase delta/epsilon (Pol delta/epsilon) and DNA ligase I (Lig I). In addition, the existence of another pathway, mediated by Pol beta and DNA Lig I, has been suggested. Although each pathway may play a unique role in cellular DNA damage response, the functional implications of SSI repair by these three pathways are not clearly understood. To obtain a better understanding of the functional relevance of SSI repair by these pathways, we investigated the involvement of each pathway by monitoring the utilization of DNA ligases in cell-free extracts. Our results suggest that the majority of SSIs produced during the repair of alkylated DNA bases are repaired by the pathway mediated by Pol beta and either Lig I or Lig III, although some SSIs are repaired by Pol delta/epsilon and Lig I. At a cellular level, we found that Lig III over-expression increased the resistance of cells to DNA-damaging agents, while Lig I over-expression had little effect. Thus, repair pathways mediated by Lig III may have a role in the regulation of cellular sensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- Erick L Y Ho
- Laboratory of DNA Repair, Health and Environment Unit, Laval University Medical Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Quebec G1V 4G2, Canada
| | | |
Collapse
|
34
|
Nagai H, Terada Y, Tajiri T, Yabe A, Onda M, Nagahata T, Ezura Y, Minegishi M, Horiguchi M, Baba M, Konishi N, Emi M. Characterization of liver-cirrhosis nodules by analysis of gene-expression profiles and patterns of allelic loss. J Hum Genet 2004; 49:246-55. [PMID: 15362568 DOI: 10.1007/s10038-004-0141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To disclose genetic mechanisms involved in development or progression of hepatocellular carcinoma (HCC), we used a genome-wide cDNA microarray consisting of 8,448 genes to compare gene-expression profiles among 12 liver-cirrhosis nodules (LCNs) and five specimens of HCC excised from a single patient and carefully prepared by laser-capture microdissection (LCM). The expression patterns enabled us to identify 72 genes that were frequently upregulated and 57 that were downregulated specifically in the LCN specimens as compared to the HCCs. We also documented upregulation of 31 genes and downregulation of seven others in both HCC and LCN tissues. Several types of intracellular kinase, including receptor-type kinase, were upregulated in LCNs. Expression patterns of HCCs and LCNs generally represented two genetically distinct groups when subjected to a hierarchical clustering analysis, although expression profiles of two of the LCNs resembled the HCC pattern. Analysis of allelic losses at microsatellite loci revealed that LCNs showed frequent loss of heterozygosity (LOH) (33%) in chromosomal regions 6q and 22q; over half of the LCNs had lost an allele for at least one of the 28 loci examined. The presence of early genetic changes among LCNs, with additional genetic changes occurring during formation of HCCs, suggests that hepatocellular carcinogenesis follows the multistep model established for colon cancers and that some LCNs may be precancerous lesions.
Collapse
Affiliation(s)
- Hisaki Nagai
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-0063, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, BN1 9RQ, Falmer Brighton, UK.
| |
Collapse
|
36
|
Leppard JB, Dong Z, Mackey ZB, Tomkinson AE. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 2003; 23:5919-27. [PMID: 12897160 PMCID: PMC166336 DOI: 10.1128/mcb.23.16.5919-5927.2003] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of DNA single-strand breaks in mammalian cells is mediated by poly(ADP-ribose) polymerase 1 (PARP-1), DNA ligase IIIalpha, and XRCC1. Since these proteins are not found in lower eukaryotes, this DNA repair pathway plays a unique role in maintaining genome stability in more complex organisms. XRCC1 not only forms a stable complex with DNA ligase IIIalpha but also interacts with several other DNA repair factors. Here we have used affinity chromatography to identify proteins that associate with DNA ligase III. PARP-1 binds directly to an N-terminal region of DNA ligase III immediately adjacent to its zinc finger. In further studies, we have shown that DNA ligase III also binds directly to poly(ADP-ribose) and preferentially associates with poly(ADP-ribosyl)ated PARP-1 in vitro and in vivo. Our biochemical studies have revealed that the zinc finger of DNA ligase III increases DNA joining in the presence of either poly(ADP-ribosyl)ated PARP-1 or poly(ADP-ribose). This provides a mechanism for the recruitment of the DNA ligase IIIalpha-XRCC1 complex to in vivo DNA single-strand breaks and suggests that the zinc finger of DNA ligase III enables this complex and associated repair factors to locate the strand break in the presence of the negatively charged poly(ADP-ribose) polymer.
Collapse
Affiliation(s)
- John B Leppard
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | |
Collapse
|
37
|
Namekawa S, Ichijima Y, Hamada F, Kasai N, Iwabata K, Nara T, Teraoka H, Sugawara F, Sakaguchi K. DNA ligase IV from a basidiomycete, Coprinus cinereus, and its expression during meiosis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2119-2128. [PMID: 12904551 DOI: 10.1099/mic.0.26311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA ligase IV is thought to be involved in DNA double-strand break repair and DNA non-homologous end-joining pathways, but these mechanisms are still unclear. To investigate the roles of DNA ligase IV from a biologically functional viewpoint, the authors studied its relationship to meiosis in a basidiomycete, Coprinus cinereus, which shows a highly synchronous meiotic cell cycle. The C. cinereus cDNA homologue of DNA ligase IV (CcLIG4) was successfully cloned. The 3.2 kb clone including the ORF encoded a predicted product of 1025 amino acid residues with a molecular mass of 117 kDa. A specific inserted sequence composed of 95 amino acids rich in aspartic acid and glutamic acid could be detected between tandem BRCT domains. The inserted sequence had no sequence identity with other eukaryotic counterparts of DNA ligase IV or with another aspartic acid and glutamic acid rich sequence inserted in C. cinereus proliferating cell nuclear antigen (CcPCNA), although the length and the percentages of aspartic and glutamic acids were similar. In addition, the recombinant CcLIG4 protein not only showed ATP-dependent ligase activity, but also used (dT)(16)/poly(dA) and (dT)(16)/poly(rA) as substrates, and had double-strand ligation activity, like human DNA ligase IV. Northern hybridization analysis and in situ hybridization indicated that CcLIG4 was expressed not only at the pre-meiotic S phase but also at meiotic prophase I. Intense signals were observed in leptotene and zygotene. Based on these observations, the possible role(s) of C. cinereus DNA ligase IV during meiosis are discussed.
Collapse
Affiliation(s)
- Satoshi Namekawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Yosuke Ichijima
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Fumika Hamada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Nobuyuki Kasai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Kazuki Iwabata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Takayuki Nara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Hirobumi Teraoka
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| |
Collapse
|
38
|
Hsia KT, Millar MR, King S, Selfridge J, Redhead NJ, Melton DW, Saunders PTK. DNA repair gene Ercc1 is essential for normal spermatogenesis and oogenesis and for functional integrity of germ cell DNA in the mouse. Development 2003; 130:369-78. [PMID: 12466203 DOI: 10.1242/dev.00221] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ercc1 is essential for nucleotide excision repair (NER) but, unlike other NER proteins, Ercc1 and Xpf are also involved in recombination repair pathways. Ercc1 knockout mice have profound cell cycle abnormalities in the liver and die before weaning. Subsequently Xpa and Xpc knockouts have proved to be good models for the human NER deficiency disease, xeroderma pigmentosum, leading to speculation that the recombination, rather than the NER deficit is the key to the Ercc1 knockout phenotype. To investigate the importance of the recombination repair functions of Ercc1 we studied spermatogenesis and oogenesis in Ercc1-deficient mice. Male and female Ercc1-deficient mice were both infertile. Ercc1 was expressed at a high level in the testis and the highest levels of Ercc1 protein occurred in germ cells following meiotic crossing over. However, in Ercc1 null males some germ cell loss occurred prior to meiotic entry and there was no evidence that Ercc1 was essential for meiotic crossing over. An increased level of DNA strand breaks and oxidative DNA damage was found in Ercc1-deficient testis and increased apoptosis was noted in male germ cells. We conclude that the repair functions of Ercc1 are required in both male and female germ cells at all stages of their maturation. The role of endogenous oxidative DNA damage and the reason for the sensitivity of the germ cells to Ercc1 deficiency are discussed.
Collapse
Affiliation(s)
- Kan-Tai Hsia
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Cherepanov AV, de Vries S. Dynamic mechanism of nick recognition by DNA ligase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5993-9. [PMID: 12473094 DOI: 10.1046/j.1432-1033.2002.03309.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA ligases are the enzymes responsible for the repair of single-stranded and double-stranded nicks in dsDNA. DNA ligases are structurally similar, possibly sharing a common molecular mechanism of nick recognition and ligation catalysis. This mechanism remains unclear, in part because the structure of ligase in complex with dsDNA has yet to be solved. DNA ligases share common structural elements with DNA polymerases, which have been cocrystallized with dsDNA. Based on the observed DNA polymerase-dsDNA interactions, we propose a mechanism for recognition of a single-stranded nick by DNA ligase. According to this mechanism, ligase induces a B-to-A DNA helix transition of the enzyme-bound dsDNA motif, which results in DNA contraction, bending and unwinding. For non-nicked dsDNA, this transition is reversible, leading to dissociation of the enzyme. For a nicked dsDNA substrate, the contraction of the enzyme-bound DNA motif (a) triggers an opened-closed conformational change of the enzyme, and (b) forces the motif to accommodate the strained A/B-form hybrid conformation, in which the nicked strand tends to retain a B-type helix, while the non-nicked strand tends to form a shortened A-type helix. We propose that this conformation is the catalytically competent transition state, which leads to the formation of the DNA-AMP intermediate and to the subsequent sealing of the nick.
Collapse
Affiliation(s)
- Alexei V Cherepanov
- Kluyver Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
40
|
Sun D, Urrabaz R, Buzello C, Nguyen M. Effects of cisplatin on expression of DNA ligases in MiaPaCa human pancreatic cancer cells. Biochem Biophys Res Commun 2002; 298:537-44. [PMID: 12408985 DOI: 10.1016/s0006-291x(02)02493-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the broad-spectrum anticancer agent, cisplatin, on the expression of DNA ligase I in human pancreatic carcinoma MiaPaCa cells was examined in this study, since DNA ligase I is known to be involved in various DNA repair pathways. Upon exposure of MiaPaCa cells to cisplatin at near IC(50) value (2.5-5 microM), about 2-3-fold increase of DNA ligase I levels was observed within 24h, while levels of other DNA ligases (III and IV) remained unchanged or slightly decreased. The same fold-increase in DNA ligase I levels was also observed in MiaPaCa cells exposed to cytostatic concentrations, but not cytotoxic concentrations of cisplatin, which significantly reduced the number of cells. Flow cytometric analysis revealed that normal cell cycle progression was disrupted in the cells treated with cisplatin, resulting in an initial arrest of the cells in the S-phase, concomitant with a decrease of cells in G0/G1-phase. With time elapsing, the transition from S- to G2 + M-phase was observed, but further progression into G0/G1-phase was blocked. Overall, the increase of DNA ligase I expression seems to correlate well with the arrest of the cell cycle between the S- and G2-phases in response to cisplatin treatment. Interestingly, the cisplatin-induced DNA ligase I increase was abrogated by caffeine treatment in MiaPaCa cells, suggesting that caffeine sensitive kinases might be important mediators in the pathway, leading to the increase of DNA ligase I levels in response to cisplatin. We propose that the increase of DNA ligase I expression after exposure to cisplatin might be required for aiding the cells to recover from the damage by facilitating the repair process.
Collapse
Affiliation(s)
- Daekyu Sun
- Institute for Drug Development, Cancer Therapy and Research Center, 14960 Omicron Drive, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
41
|
Sun D, Urrabaz R, Buzello C, Nguyen M. Induction of DNA ligase I by 1-beta-D-arabinosylcytosine and aphidicolin in MiaPaCa human pancreatic cancer cells. Exp Cell Res 2002; 280:90-6. [PMID: 12372342 DOI: 10.1006/excr.2002.5625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of MiaPaCa cells to 1-beta-D-arabinosylcytosine (ara-C) resulted in an increase in DNA ligase levels up to threefold compared to that in the untreated control cells, despite significant growth inhibition. Increased levels of DNA ligase I protein appear to correlate with the appearance of increased mRNA levels. The [(3)H]thymidine incorporation experiment and the biochemical assay of total polymerase activity revealed that an increase in DNA ligase I levels after treatment with ara-C was not accompanied by an increase of DNA synthesis or an increased presence of DNA polymerase activity inside cells. When cells resumed DNA synthesis after drug treatment, DNA ligase I levels began to drop, indicating that increased DNA ligase I is not required for DNA synthesis. An increase in DNA ligase I was also observed in cells treated with aphidicolin, another inhibitor of DNA synthesis that inhibits DNA polymerases without incorporating itself into DNA, indicating that an increase in DNA ligase I levels could be caused by the arrest of DNA replication by these agents. Interestingly, caffeine, which is a well-known inhibitor of DNA damage checkpoint kinases, abrogated the increase in DNA ligase I in MiaPaCa cells treated with ara-C and aphidicolin, suggesting that caffeine-sensitive kinases might be important mediators in the pathway leading to the increase in DNA ligase I levels in response to anticancer drugs, including ara-C and aphidicolin. We propose that ara-C and aphidicolin induce damage to the DNA strand by arresting DNA replication forks and subsequently increase DNA ligase I levels to facilitate repair of DNA damage.
Collapse
Affiliation(s)
- Daekyu Sun
- Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, Texas 78245, USA.
| | | | | | | |
Collapse
|
42
|
Intano GW, McMahan CA, McCarrey JR, Walter RB, McKenna AE, Matsumoto Y, MacInnes MA, Chen DJ, Walter CA. Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice. Mol Cell Biol 2002; 22:2410-8. [PMID: 11884623 PMCID: PMC133670 DOI: 10.1128/mcb.22.7.2410-2418.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combined observations of elevated DNA repair gene expression, high uracil-DNA glycosylase-initiated base excision repair, and a low spontaneous mutant frequency for a lacI transgene in spermatogenic cells from young mice suggest that base excision repair activity is high in spermatogenic cell types. Notably, the spontaneous mutant frequency of the lacI transgene is greater in spermatogenic cells obtained from old mice, suggesting that germ line DNA repair activity may decline with age. A paternal age effect in spermatogenic cells is recognized for the human population as well. To determine if male germ cell base excision repair activity changes with age, uracil-DNA glycosylase-initiated base excision repair activity was measured in mixed germ cell (i.e., all spermatogenic cell types in adult testis) nuclear extracts prepared from young, middle-aged, and old mice. Base excision repair activity was also assessed in nuclear extracts from premeiotic, meiotic, and postmeiotic spermatogenic cell types obtained from young mice. Mixed germ cell nuclear extracts exhibited an age-related decrease in base excision repair activity that was restored by addition of apurinic/apyrimidinic (AP) endonuclease. Uracil-DNA glycosylase and DNA ligase were determined to be limiting in mixed germ cell nuclear extracts prepared from young animals. Base excision repair activity was only modestly elevated in pachytene spermatocytes and round spermatids relative to other spermatogenic cells. Thus, germ line short-patch base excision repair activity appears to be relatively constant throughout spermatogenesis in young animals, limited by uracil-DNA glycosylase and DNA ligase in young animals, and limited by AP endonuclease in old animals.
Collapse
Affiliation(s)
- Gabriel W Intano
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fredriksson E, Liliemark E, Polischouk A, Soderhall S, Albertioni F, Ljungquist S. Reduced DNA ligase activity in etoposide resistant human lymphatic leukaemia CEM cells. Biochem Pharmacol 2002; 63:259-64. [PMID: 11841801 DOI: 10.1016/s0006-2952(01)00842-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug resistance is an obstacle preventing success of cancer chemotherapy. Resistance of vaccinia virus towards the topoisomerase II (topo II) targeting anti-cancer drug etoposide has been mapped to the viral DNA ligase gene. The present study was performed to elucidate if the DNA ligase activity, besides topo II levels, was altered in human lymphatic leukaemia cell strains with different levels of etoposide resistance. At measurements of DNA ligase activity with specific substrates, to distinguish between different DNA ligases, a reduced DNA ligase activity was observed in the resistant substrains. In contrast, the initial step of the ligation process, formation of DNA ligase--AMP complex, did not decrease in the resistant cell strains, suggesting an alteration in a later reaction leading to a deteriorated DNA ligation. The results suggest that decreased DNA ligase activity, besides topo II alterations, may contribute to etoposide resistance of the investigated CEM cells. The relevance of this finding will be further investigated.
Collapse
Affiliation(s)
- Eva Fredriksson
- Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Bogenhagen DF, Pinz KG, Perez-Jannotti RM. Enzymology of mitochondrial base excision repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:257-71. [PMID: 11554302 DOI: 10.1016/s0079-6603(01)68105-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A number of laboratories have shown that those types of DNA damage that are generally reparable by base excision repair are efficiently repaired in mtDNA. In contrast, most types of damage that require other sorts of repair machinery are not effectively repaired in mtDNA. We have shown that a set of highly purified mitochondrial proteins, including AP endonuclease (APE), DNA polymerase gamma, and mtDNA ligase, is capable of efficiently repairing abasic (AP) sites in mtDNA. These three enzymes appear to conduct all four steps in a conventional BER mechanism: incision, removal of the 5'-deoxyribosephosphate by dRP lyase, polymerization, and ligation. Both DNA polymerase gamma and mtDNA ligase possess some dRP lyase activity. DNA polymerase gamma is a member of the family A of DNA polymerases, with clear homology to DNA pol I of E. coli, while mtDNA ligase is an alternatively expressed form of DNA ligase III. The dRP lyase activities discovered in these mitochondrial enzymes are not unique, but are found in all representatives tested of the family-A DNA polymerases and of the ATP-dependent DNA ligases. These dRP lyase activities have low turnover rates that may have important implications for the overall process of BER. All proteins involved in maintenance of mtDNA are encoded in the nuclear genome and must be directed to mitochondria in order to act on mtDNA. Thus, it is evident that the scope of DNA repair activities undertaken within mitochondria is determined by the set of nucleus-encoded DNA repair enzymes that are capable of being imported into the organelle. A review of DNA repair proteins that may be imported into mitochondria in various organisms will be presented.
Collapse
Affiliation(s)
- D F Bogenhagen
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
45
|
Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA. Completion of base excision repair by mammalian DNA ligases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:151-64. [PMID: 11554294 DOI: 10.1016/s0079-6603(01)68097-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three mammalian genes encoding DNA ligases--LIG1, LIG3, and LIG4--have been identified. Genetic, biochemical, and cell biology studies indicate that the products of each of these genes play a unique role in mammalian DNA metabolism. Interestingly, cell lines deficient in either DNA ligase I (46BR.1G1) or DNA ligase III (EM9) are sensitive to simple alkylating agents. One interpretation of these observations is that DNA ligases I and III participate in functionally distinct base excision repair (BER) subpathways. In support of this idea, extracts from both DNA ligase-deficient cell lines are defective in catalyzing BER in vitro and both DNA ligases interact with other BER proteins. DNA ligase I interacts directly with proliferating cell nuclear antigen (PCNA) and DNA polymerase beta (Pol beta), linking this enzyme with both short-patch and long-patch BER. In somatic cells, DNA ligase III alpha forms a stable complex with the DNA repair protein Xrcc1. Although Xrcc1 has no catalytic activity, it also interacts with Pol beta and poly(ADP-ribose) polymerase (PARP), linking DNA ligase III alpha with BER and single-strand break repair, respectively. Biochemical studies suggest that the majority of short-patch base excision repair events are completed by the DNA ligase III alpha/Xrcc1 complex. Although there is compelling evidence for the participation of PARP in the repair of DNA single-strand breaks, the role of PARP in BER has not been established.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Perez-Jannotti RM, Klein SM, Bogenhagen DF. Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes. J Biol Chem 2001; 276:48978-87. [PMID: 11598119 DOI: 10.1074/jbc.m107177200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length cDNAs for DNA ligase IV and the alpha and beta isoforms of DNA ligase III were cloned from Xenopus laevis to permit study of the genes encoding mitochondrial DNA ligase. DNA ligase III alpha and III beta share a common NH(2) terminus that encodes a mitochondrial localization signal capable of targeting green fluorescent protein to mitochondria while the NH(2) terminus of DNA ligase IV does not. Reverse transcriptase-polymerase chain reaction analyses with adult frog tissues demonstrate that while DNA ligase III alpha and DNA ligase IV are ubiquitously expressed, DNA ligase III beta expression is restricted to testis and ovary. Mitochondrial lysates from X. laevis oocytes contain both DNA ligase III alpha and III beta but no detectable DNA ligase IV. Gel filtration, sedimentation, native gel electrophoresis, and in vitro cross-linking experiments demonstrate that mtDNA ligase III alpha exists as a high molecular weight complex. We discuss the possibility that DNA ligase III alpha exists in mitochondria in association with novel mitochondrial protein partners or as a homodimer.
Collapse
Affiliation(s)
- R M Perez-Jannotti
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
47
|
Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R. Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 2001; 21:6984-98. [PMID: 11564881 PMCID: PMC99874 DOI: 10.1128/mcb.21.20.6984-6998.2001] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) proteins fulfill pivotal roles in chromosome dynamics. In yeast, the SMC1-SMC3 heterodimer is required for meiotic sister chromatid cohesion and DNA recombination. Little is known, however, about mammalian SMC proteins in meiotic cells. We have identified a novel SMC protein (SMC1beta), which-except for a unique, basic, DNA binding C-terminal motif-is highly homologous to SMC1 (which may now be called SMC1alpha) and is not present in the yeast genome. SMC1beta is specifically expressed in testes and coimmunoprecipitates with SMC3 from testis nuclear extracts, but not from a variety of somatic cells. This establishes for mammalian cells the concept of cell-type- and tissue-specific SMC protein isoforms. Analysis of testis sections and chromosome spreads of various stages of meiosis revealed localization of SMC1beta along the axial elements of synaptonemal complexes in prophase I. Most SMC1beta dissociates from the chromosome arms in late-pachytene-diplotene cells. However, SMC1beta, but not SMC1alpha, remains chromatin associated at the centromeres up to metaphase II. Thus, SMC1beta and not SMC1alpha is likely involved in maintaining cohesion between sister centromeres until anaphase II.
Collapse
Affiliation(s)
- E Revenkova
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
49
|
Thornton KH, Krishnan VV, West MG, Popham J, Ramirez M, Thelen MP, Cosman M. Expression, purification, and biophysical characterization of the BRCT domain of human DNA ligase IIIalpha. Protein Expr Purif 2001; 21:401-11. [PMID: 11281714 DOI: 10.1006/prep.2001.1391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The C-terminal regions of several DNA repair and cell cycle checkpoint proteins are homologous to the breast-cancer-associated BRCA-1 protein C-terminal region. These regions, known as BRCT domains, have been found to mediate important protein-protein interactions. We produced the BRCT domain of DNA ligase IIIalpha (L3[86]) for biophysical and structural characterization. A glutathione S-transferase (GST) fusion with the L3[86] domain (residues 837-922 of ligase IIIalpha) was expressed in Escherichia coli and purified by glutathione affinity chromatography. The GST fusion protein was removed by thrombin digestion and further purification steps. Using this method, (15)N-labeled and (13)C/(15)N-double-labeled L3[86] proteins were prepared to enable a full determination of structure and dynamics using heteronuclear NMR spectroscopy. To obtain evidence of binding activity to the distal BRCT of the repair protein XRCC1 (X1BRCTb), as well as to provide insight into the interaction between these two BRCT binding partners, the corresponding BRCT heterocomplexes were also prepared and studied. Changes in the secondary structures (amount of helix and sheet components) of the two constituents were not observed upon complex formation. However, the melting temperature of the complex was significantly higher relative to the values obtained for the L3[86] or X1BRCTb proteins alone. This increased thermostability imparted by the interaction between the two BRCT domains may explain why cells require XRCC1 to maintain ligase IIIalpha activity.
Collapse
Affiliation(s)
- K H Thornton
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Intano GW, McMahan CA, Walter RB, McCarrey JR, Walter CA. Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity. Nucleic Acids Res 2001; 29:1366-72. [PMID: 11239003 PMCID: PMC29752 DOI: 10.1093/nar/29.6.1366] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spermatogenic cells exhibit a lower spontaneous mutation frequency than somatic tissues in a lacI transgene and many base excision repair (BER) genes display the highest observed level of expression in the testis. In this study, uracil-DNA glycosylase-initiated BER activity was measured in nuclear extracts prepared from tissues obtained from each of three mouse strains. Extracts from mixed spermatogenic germ cells displayed the greatest activity followed by liver then brain for all three strains, and the activity for a given tissue was consistent among the three strains. Levels of various BER proteins were examined by western blot analyses and found to be consistent with activity levels. Nuclear extracts prepared from purified Sertoli cells, a somatic component of the seminiferous epithelium, exhibited significantly lower activity than mixed spermatogenic cell-type nuclear extracts, thereby suggesting that the high BER activity observed in mixed germ cell nuclear extracts was not a characteristic of all testicular cell types. Nuclear extracts from thymocytes and small intestines were assayed to assess activity in a mitotically active cell type and tissue. Overall, the order of tissues/cells exhibiting the greatest to lowest activity was mixed germ cells > Sertoli cells > thymocytes > small intestine > liver > brain.
Collapse
Affiliation(s)
- G W Intano
- Department of Cellular and Structural Biology and Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78284, USA.
| | | | | | | | | |
Collapse
|