1
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
2
|
Zhang Y, Wei J, Kong L, Song M, Zhang Y, Xiao X, Cao H, Jin Y. Network pharmacology-based research on the effect of Radix Astragali on osteosarcoma and the underlying mechanism. Sci Rep 2023; 13:22315. [PMID: 38102307 PMCID: PMC10724296 DOI: 10.1038/s41598-023-49597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
To explore the anti-tumor effects of Radix Astragali on osteosarcoma and its mechanism. We analyzed the PPI network of Radix Astragali's potential targets for treating osteosarcoma and got the hub targets. We used KM curves to screen hub targets that could prolong sarcoma patients' survival time. We performed GO and KEGG enrichment analysis of Radix Astragali's potential targets and predicted Radix Astragali's molecular mechanism and function in treating osteosarcoma. The binding process between the hub targets, which could prolong sarcoma patients' survival time, and Radix Astragali was simulated through molecular docking. PPI network analysis of potential therapeutic targets discriminated 25 hub targets. The KM curves of the hub targets showed there were 13 hub targets that were effective in improving the 5-year survival rate of sarcoma patients. GO and KEGG enrichment demonstrated that Radix Astragali regulates multiple signaling pathways of osteosarcoma. Molecular docking results indicated that Radix Astragali could bind freely to the hub target, which could prolong the sarcoma patient's survival time. Radix Astragali act on osteosarcoma by regulating a signaling network formed by hub targets connecting multiple signaling pathways. Radix Astragali has the potential to become a drug for treating osteosarcoma and prolonging the sarcoma patient's survival time.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Junqiang Wei
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mingze Song
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
3
|
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 2023; 69:289-300. [PMID: 37947853 PMCID: PMC10716077 DOI: 10.1007/s00294-023-01277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal β-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.
Collapse
Affiliation(s)
- Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Stefan Hintze
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Munich, Germany
| | - Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
4
|
Baek I, Friedman LJ, Gelles J, Buratowski S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol Cell 2021; 81:3576-3588.e6. [PMID: 34384542 DOI: 10.1016/j.molcel.2021.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023]
Abstract
RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.
Collapse
Affiliation(s)
- Inwha Baek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Wang J, Shi K, Wu Z, Zhang C, Li Y, Deng H, Zhao S, Deng W. Disruption of the interaction between TFIIAαβ and TFIIA recognition element inhibits RNA polymerase II gene transcription in a promoter context-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194611. [PMID: 32745626 DOI: 10.1016/j.bbagrm.2020.194611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
General transcription factors and core promoter elements play a pivotal role in RNA polymerase II (Pol II)-mediated transcription initiation. In the previous work, we have defined a TFIIA recognition element (IIARE) that modulates Pol II-directed gene transcription in a promoter context-dependent manner. However, how TFIIA interacts with the IIARE and whether the interaction between TFIIA and the IIARE is involved in the regulation of gene transcription by Pol II are not fully understood. In the present study, we confirm that both K348 and K350 residues in TFIIAαβ are required for the interaction between TFIIAαβ and the IIARE. Disruption of the interaction between them by gene mutations dampens TFIIAαβ binding to the AdML-IIARE promoter and the transcriptional activation of the promoter containing a IIARE in vitro and in vivo. Stable expression of the TFIIAαβ mutant containing both K348A and K350A in the cell line with endogenous TFIIAαβ silence represses endogenous gene expression by reducing the occupancies of TFIIAαβ, TBP, p300, and Pol II at the promoters containing a IIARE. The findings from this study provide a novel insight into the regulatory mechanism of gene transcription mediated by TFIIA and the IIARE.
Collapse
Affiliation(s)
- Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Balkin DM, Poranki M, Forester CM, Dorsey MJ, Slavotinek A, Pomerantz JH. TASP1 mutation in a female with craniofacial anomalies, anterior segment dysgenesis, congenital immunodeficiency and macrocytic anemia. Mol Genet Genomic Med 2019; 7:e818. [PMID: 31350873 PMCID: PMC6732342 DOI: 10.1002/mgg3.818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background Threonine Aspartase 1 (Taspase 1) is a highly conserved site‐specific protease whose substrates are broad‐acting nuclear transcription factors that govern diverse biological programs, such as organogenesis, oncogenesis, and tumor progression. To date, no single base pair mutations in Taspase 1 have been implicated in human disease. Methods A female infant with a new pattern of diagnostic abnormalities was identified, including severe craniofacial anomalies, anterior and posterior segment dysgenesis, immunodeficiency, and macrocytic anemia. Trio‐based whole exome sequencing was performed to identify disease‐causing variants. Results Whole exome sequencing revealed a normal female karyotype (46,XX) without increased regions of homozygosity. The proband was heterozygous for a de novo missense variant, c.1027G>A predicting p.(Val343Met), in the TASP1 gene (NM_017714.2). This variant has not been observed in population databases and is predicted to be deleterious. Conclusion One human patient has been reported previously with a large TASP1 deletion and substantial evidence exists regarding the role of several known Taspase 1 substrates in human craniofacial and hematopoietic disorders. Moreover, Taspase 1 deficiency in mice results in craniofacial, ophthalmological and structural brain defects. Taken together, there exists substantial evidence to conclude that the TASP1 variant, p.(Val343Met), is pathogenic in this patient.
Collapse
Affiliation(s)
- Daniel M Balkin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California.,Craniofacial Center, University of California San Francisco, San Francisco, California
| | - Menitha Poranki
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Craig M Forester
- Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Jason H Pomerantz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California.,Craniofacial Center, University of California San Francisco, San Francisco, California.,Department of Orofacial Sciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
8
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
9
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
10
|
Malecová B, Caputo VS, Lee DF, Hsieh JJ, Oelgeschläger T. Taspase1 processing alters TFIIA cofactor properties in the regulation of TFIID. Transcription 2015; 6:21-32. [PMID: 25996597 DOI: 10.1080/21541264.2015.1052178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TFIIA is an important positive regulator of TFIID, the primary promoter recognition factor of the basal RNA polymerase II transcription machinery. TFIIA antagonises negative TFIID regulators such as negative cofactor 2 (NC2), promotes specific binding of the TBP subunit of TFIID to TATA core promoter sequence elements and stimulates the interaction of TBP-associated factors (TAFs) in the TFIID complex with core promoter elements located downstream of TATA, such as the initiator element (INR). Metazoan TFIIA consists of 3 subunits, TFIIAα (35 kDa), β (19 kDa) and γ (12 kDa). TFIIAα and β subunits are encoded by a single gene and result from site-specific cleavage of a 55 kDa TFIIA(α/β) precursor protein by the protease Taspase1. Metazoan cells have been shown to contain variable amounts of TFIIA (55/12 kDa) and Taspase1-processed TFIIA (35/19/12 kDa) depending on cell type, suggesting distinct gene-specific roles of unprocessed and Taspase1-processed TFIIA. How precisely Taspase1 processing affects TFIIA functions is not understood. Here we report that Taspase1 processing alters TFIIA interactions with TFIID and the conformation of TFIID/TFIIA promoter complexes. We further show that Taspase1 processing induces increased sensitivity of TFIID/TFIIA complexes to the repressor NC2, which is counteracted by the presence of an INR core promoter element. Our results provide first evidence that Taspase1 processing affects TFIIA regulation of TFIID and suggest that Taspase1 processing of TFIIA is required to establish INR-selective core promoter activity in the presence of NC2.
Collapse
Affiliation(s)
- Barbora Malecová
- a Marie Curie Research Institute; The Chart , Oxted , Surrey , United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Stauber RH, Hahlbrock A, Knauer SK, Wünsch D. Cleaving for growth: threonine aspartase 1--a protease relevant for development and disease. FASEB J 2015; 30:1012-22. [PMID: 26578689 DOI: 10.1096/fj.15-270611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
From the beginning of life, proteases are key to organismal development comprising morphogenesis, cellular differentiation, and cell growth. Regulated proteolytic activity is essential for the orchestration of multiple developmental pathways, and defects in protease activity can account for multiple disease patterns. The highly conserved protease threonine aspartase 1 is a member of such developmental proteases and critically involved in the regulation of complex processes, including segmental identity, head morphogenesis, spermatogenesis, and proliferation. Additionally, threonine aspartase 1 is overexpressed in numerous liquid as well as in solid malignancies. Although threonine aspartase 1 is able to cleave the master regulator mixed lineage leukemia protein as well as other regulatory proteins in humans, our knowledge of its detailed pathobiological function and the underlying molecular mechanisms contributing to development and disease is still incomplete. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far precluding the detailed dissection of the pathobiological functions of threonine aspartase 1. Here, we review the current knowledge of the structure-function relationship of threonine aspartase 1 and its mechanistic impact on substrate-mediated coordination of the cell cycle and development. We discuss threonine aspartase 1-mediated effects on cellular transformation and conclude by presenting a short overview of recent interference strategies.
Collapse
Affiliation(s)
- Roland H Stauber
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Angelina Hahlbrock
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Shirley K Knauer
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Désirée Wünsch
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
13
|
Ren S, Jiang Y, Yoon HR, Hong SW, Shin D, Lee S, Lee DK, Jin MM, Min IM, Kim S. Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Layer JH, Weil PA. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. J Biol Chem 2013; 288:23273-94. [PMID: 23814059 DOI: 10.1074/jbc.m113.486829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo.
Collapse
Affiliation(s)
- Justin H Layer
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
15
|
Kasahara K, Ohyama Y, Kokubo T. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region. Nucleic Acids Res 2011; 39:4136-50. [PMID: 21288884 PMCID: PMC3105432 DOI: 10.1093/nar/gkq1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5′- and 3′-boundaries of the PIC assembly zone.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan.
| | | | | |
Collapse
|
16
|
Gentile A, Da Cruz P, Tavares RG, Krug-Baldacin MG, Menossi M. Molecular characterization of ScTFIIAgamma, encoding the putative TFIIA small subunit from sugarcane. PLANT CELL REPORTS 2010; 29:857-864. [PMID: 20480367 DOI: 10.1007/s00299-010-0871-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Transcription mediated by RNA polymerase II depends on a set of different transcription factors to form the pre-initiation complex. TFIIA is involved in the construction of this complex and increases the affinity of TBP for the DNA union region in vitro. In this study, we characterized the ScTFIIAgamma gene, which encodes a homolog of the smaller subunit (gamma) of transcription factor TFIIA in sugarcane. RNA blot analysis showed that ScTFIIAgamma transcripts accumulate in all tissues evaluated, with higher levels in leaf roll and flowers. In situ hybridization showed that ScTFIIAgamma was expressed in different cells of the reproductive meristem. In sugarcane plantlets, methyl jasmonate and absicic acid treatments as well as phosphate starvation had no influence on ScTFIIAgamma transcript accumulation. The subcelullar localization assay demonstrates that ScTFIIAgamma protein is directed to the cell nucleus. The phylogenetic analysis, the expression in several tissues and under different treatments and the nuclear localization are in line with the putative role of ScTFIIAgamma as a subunit of basal transcription factor.
Collapse
Affiliation(s)
- Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875 Campinas, São Paulo 6109, Brazil
| | | | | | | | | |
Collapse
|
17
|
Kasahara K, Ki S, Aoyama K, Takahashi H, Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 2008; 36:1343-57. [PMID: 18187511 PMCID: PMC2275077 DOI: 10.1093/nar/gkm1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Δhmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Δhmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1ΔTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Δhmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Δhmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
18
|
Mabuchi T, Wakamatsu T, Nakadai T, Shimada M, Yamada K, Matsuda Y, Tamura TA. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA. Gene 2007; 397:94-100. [PMID: 17544229 DOI: 10.1016/j.gene.2007.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/14/2007] [Accepted: 04/13/2007] [Indexed: 11/18/2022]
Abstract
Transcription factor IIA (TFIIA) is one of the general transcription factors for RNA polymerase II and composed of three subunits, TFIIAalpha, TFIIAbeta and TFIIAgamma. TFIIAalpha and TFIIAbeta are encoded by a single gene (TFIIAalphabeta) and mature through internal cleavage of TFIIAalphabeta. In this study, we found that structures of TFIIAalphabeta and TFIIAgamma are highly homologous with each mammalian counterpart. Exon-intron organizations of the human and chicken TFIIA genes were also homologous. The sequence of the cleavage region of the chicken TFIIAalphabeta precursor protein was fitted to the consensus cleavage recognition site. It was thus demonstrated that TFIIA is conserved in vertebrates. TFIIA proteins are present ubiquitously in chicken tissues. Fluorescent in situ hybridization revealed that TFIIAalphabeta and TFIIAgamma genes are located in chromosome 5 and a mini-chromosome, respectively. We generated semi-knockout chicken DT40 cells for TFIIAalphabeta and TFIIAgamma genes with high homologous recombination efficiencies, whereas we failed to establish double-knockout cells for each gene. It is thought that both genes for TFIIA are required in vertebrates. TFIIA siRNA resulted in deceleration of cell growth rate, suggesting that, consistent with those of knockout assays, TFIIA is associated with cell growth regulation.
Collapse
Affiliation(s)
- Tomoko Mabuchi
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Iyer-Pascuzzi AS, McCouch SR. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:731-9. [PMID: 17601161 DOI: 10.1094/mpmi-20-7-0731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Though recessive resistance is well-studied in viral systems, little is understood regarding the phenomenon in plant-bacterial interactions. The Oryza sativa-Xanthomonas oryzae pv. orzyae pathosystem provides an excellent opportunity to examine recessive resistance in plant-bacterial interactions, in which nine of 30 documented resistance (R) genes are recessively inherited. Infestations of X. oryzae pv. oryzae, the causal agent of bacterial blight, result in significant crop loss and damage throughout South and Southeast Asia. Two recently cloned novel recessive R genes, xa5 and xa13, have yielded insights to this system. Like their viral counterparts, these bacterial recessive R gene products do not conform to the five commonly described classes of R proteins. New findings suggest that such genes may more aptly be viewed as mutations in dominant susceptibility alleles and may also function in a gene-for-gene manner. In this review, we discuss recent accomplishments in the understanding of recessively inherited R genes in the rice-bacterial blight pathosystem and suggest a new model for the function of recessive resistance in plant-bacterial interactions.
Collapse
|
20
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Kraemer SM, Goldstrohm DA, Berger A, Hankey S, Rovinsky SA, Scott Moye-Rowley W, Stargell LA. TFIIA plays a role in the response to oxidative stress. EUKARYOTIC CELL 2006; 5:1081-90. [PMID: 16835452 PMCID: PMC1489289 DOI: 10.1128/ec.00071-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.
Collapse
Affiliation(s)
- Susan M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
23
|
Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS. Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. J Biol Chem 2005; 280:40524-33. [PMID: 16219769 DOI: 10.1074/jbc.m504716200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H(2)O(2) exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H(2)O(2) tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H(2)O(2) in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H(2)O(2) is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
24
|
Schimanski B, Nguyen TN, Günzl A. Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. Mol Cell Biol 2005; 25:7303-13. [PMID: 16055738 PMCID: PMC1190248 DOI: 10.1128/mcb.25.16.7303-7313.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the unicellular human parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., the spliced-leader (SL) RNA is a key molecule in gene expression donating its 5'-terminal region in SL addition trans splicing of nuclear pre-mRNA. While there is no evidence that this process exists in mammals, it is obligatory in mRNA maturation of trypanosomatid parasites. Hence, throughout their life cycle, these organisms crucially depend on high levels of SL RNA synthesis. As putative SL RNA gene transcription factors, a partially characterized small nuclear RNA-activating protein complex (SNAP(c)) and the TATA-binding protein related factor 4 (TRF4) have been identified thus far. Here, by tagging TRF4 with a novel epitope combination termed PTP, we tandem affinity purified from crude T. brucei extracts a stable and transcriptionally active complex of six proteins. Besides TRF4 these were identified as extremely divergent subunits of SNAP(c) and of transcription factor IIA (TFIIA). The latter finding was unexpected since genome databases of trypanosomatid parasites appeared to lack general class II transcription factors. As we demonstrate, the TRF4/SNAP(c)/TFIIA complex binds specifically to the SL RNA gene promoter upstream sequence element and is absolutely essential for SL RNA gene transcription in vitro.
Collapse
Affiliation(s)
- Bernd Schimanski
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, 06030-3710, USA
| | | | | |
Collapse
|
25
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Robinson MM, Yatherajam G, Ranallo RT, Bric A, Paule MR, Stargell LA. Mapping and functional characterization of the TAF11 interaction with TFIIA. Mol Cell Biol 2005; 25:945-57. [PMID: 15657423 PMCID: PMC543996 DOI: 10.1128/mcb.25.3.945-957.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- M M Robinson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ranish JA, Hahn S, Lu Y, Yi EC, Li XJ, Eng J, Aebersold R. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat Genet 2004; 36:707-13. [PMID: 15220919 DOI: 10.1038/ng1385] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/25/2004] [Indexed: 11/09/2022]
Abstract
We previously described the use of quantitative proteomics to study macromolecular complexes. Applying the method to analyze a yeast RNA polymerase II preinitiation complex, we identified a new 8-kDa protein, encoded by the uncharacterized open reading frame YDR079c-a, as a potential new component of the preinitiation complex. Here we show that YDR079c-a is a bona fide component of polymerase II preinitiation complexes and investigate its role in transcription. YDR079c-a is recruited to promoters both in vivo and in vitro and is required for efficient transcription in vitro and for normal induction of GAL genes. In addition, YDR079c-a is a core component of general transcription and DNA repair factor IIH and is required for efficient recruitment of TFIIH to a promoter. Yeast lacking YDR079c-a grow slowly, and, like strains carrying mutations in core TFIIH subunits, are sensitive to ultraviolet radiation. YDR079c-a is conserved throughout evolution, and mutations in the human ortholog account for a DNA repair-deficient form of the tricothiodystrophy disorder called TTD-A(2). The identification of a new, evolutionarily conserved, core TFIIH subunit is essential for our understanding of TFIIH function in transcription, DNA repair and human disease.
Collapse
Affiliation(s)
- Jeffrey A Ranish
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Warfield L, Ranish JA, Hahn S. Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA. Genes Dev 2004; 18:1022-34. [PMID: 15132995 PMCID: PMC406292 DOI: 10.1101/gad.1192204] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A surface that is required for rapid formation of preinitiation complexes (PICs) was identified on the N-terminal domain (NTD) of the RNA Pol II general transcription factor TFIIA. Site-specific photocross-linkers and tethered protein cleavage reagents positioned on the NTD of TFIIA and assembled in PICs identified the SAGA subunit Spt8 and the TFIID subunit Taf4 as located near this surface. In agreement with these findings, mutations in Spt8 and the TFIIA NTD interact genetically. Using purified proteins, it was found that TFIIA and Spt8 do not stably bind to each other, but rather both compete for binding to TBP. Consistent with this competition, Spt8 inhibits the binding of SAGA to PICs in the absence of activator. In the presence of activator, Spt8 enhances transcription in vitro, and the positive function of the TFIIA NTD is largely mediated through Spt8. Our results suggest a mechanism for the previously observed positive and negative effects of Spt8 on transcription observed in vivo.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Research Center, and Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | | | | |
Collapse
|
29
|
Geisberg JV, Struhl K. Cellular Stress Alters the Transcriptional Properties of Promoter-Bound Mot1-TBP Complexes. Mol Cell 2004; 14:479-89. [PMID: 15149597 DOI: 10.1016/j.molcel.2004.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 03/16/2004] [Accepted: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Mot1 associates with transcriptionally active promoters, and it directly affects transcriptional activity in a positive or negative manner, depending on the gene. As determined by sequential chromatin immunoprecipitation, Mot1 co-occupies promoters with TBP, but not with TFIIB, TFIIA, or Pol II when cells are grown in normal conditions. This strongly suggests that the Mot1-TBP complex is transcriptionally inactive, and hence is in dynamic equilibrium with transcriptionally active forms of TBP. Surprisingly, in response to heat shock and other forms of environmental stress, Mot1 co-occupies promoters with TFIIB and elongation-competent Pol II, but not with TFIIA. This suggests that functional preinitiation complexes can contain Mot1 instead of TFIIA in vivo. Thus, Mot1-TBP complexes can exist in active and inactive forms that are regulated by environmental stress.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Nakadai T, Shimada M, Shima D, Handa H, Tamura TA. Specific interaction with transcription factor IIA and localization of the mammalian TATA-binding protein-like protein (TLP/TRF2/TLF). J Biol Chem 2003; 279:7447-55. [PMID: 14570910 DOI: 10.1074/jbc.m305412200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBP-like protein (TLP) is structurally similar to the TATA-binding protein (TBP) and is thought to have a transcriptional regulation function. Although TLP has been found to form a complex with transcription factor IIA (TFIIA), the in vivo functions of TFIIA for TLP are not clear. In this study, we analyzed the interaction between TLP and TFIIA. We determined the biophysical properties for the interaction of TLP with TFIIA. Dissociation constants of TFIIA versus TLP and TFIIA versus TBP were 1.5 and 10 nm, respectively. Moreover, the dissociation rate constant of TLP and TFIIA (1.2 x 10(-4)/m.s was significantly lower than that of TBP (2.1 x 10(-3)/m.s). These results indicate that TLP has a higher affinity to TFIIA than does TBP and that the TLP-TFIIA complex is much more stable than is the TBP-TFIIA complex. We found that TLP forms a dimer and a trimer and that these multimerizations are inhibited by TFIIA. Moreover, TLP mutimers were more stable than a TBP dimer. We determined the amounts of TLPs in the nucleus and cytoplasm of NIH3T3 cells and found that the molecular number of TLP in the nucleus was only 4% of that in the cytoplasm. Immunostaining of cells also revealed cytoplasmic localization of TLP. We established cells that stably express mutant TLP lacking TFIIA binding ability and identified the amino acids of TLP required for TFIIA binding (Ala-32, Leu-33, Asn-37, Arg-52, Lys-53, Lys-78, and Arg-86). Interestingly, the level of TFIIA binding defective mutant TLPs in the nucleus was much higher than that of the wild-type TLP and TFIIA-interactable mutant TLPs. Immunostaining analyses showed consistent results. These results suggest that the TFIIA binding ability of TLP is required for characteristic cytoplasmic localization of TLP. TFIIA may regulate the intracellular molecular state and the function of TLP through its property of binding to TLP.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
31
|
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 2003; 332:783-93. [PMID: 12972251 DOI: 10.1016/s0022-2836(03)00887-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA polymerase II-dependent transcription requires the assembly of a multi-protein, preinitiation complex on core promoter elements. Transcription factor IID (TFIID) comprising the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) is responsible for promoter recognition in this complex. Subsequent association of TFIIA and TFIIB provides enhanced complex stability. TFIIA is required for transcriptional stimulation by certain viral and cellular activators, and favors formation of the preinitiation complex in the presence of repressor NC2. The X-ray structures of human and yeast TBP/TFIIA/DNA complexes at 2.1A and 1.9A resolution, respectively, are presented here and seen to resemble each other closely. The interactions made by human TFIIA with TBP and DNA within and upstream of the TATA box, including those involving water molecules, are described and compared to the yeast structure. Of particular interest is a previously unobserved region of TFIIA that extends the binding interface with TBP in the yeast, but not in the human complex, and that further elucidates biochemical and genetic results.
Collapse
Affiliation(s)
- Michael Bleichenbacher
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Dasgupta A, Scovell WM. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:101-10. [PMID: 12818428 DOI: 10.1016/s0167-4781(03)00080-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful assembly of the transcriptional preinitiation complex (PIC) is prerequisite to transcriptional initiation. At each stage of PIC assembly, regulation may occur as repressors and activators compete with and influence the incorporation of general transcription factors (GTFs). Both TFIIA and HMGB1 bind individually to the TATA-binding protein (TBP) to increase the rate of binding and to stabilize TBP binding to the TATA element. The competitive binding between these two cofactors for TBP/TATA was examined to show that TFIIA binds preferentially to TBP and inhibits HMGB1 binding. TFIIA can also readily dissociate HMGB1 from the preestablished HMGB1/TBP/TATA complex. This suggests that TFIIA and HMGB1 may bind to the same or overlapping sites on TBP and/or compete for similar DNA sites that are 5' to the TATA element. In addition, EMSA studies show that adenovirus E1A(13S) oncoprotein is unable to disrupt either the preestablished TFIIA/TBP/TATA or TFIIA/TFIIB/TBP/TATA complexes, but does inhibit complex formation when all transcription factors were simultaneously added. The inhibitory effect of E1A(13S) on the assembly of the PIC is overcome when excess TBP is added back in the reaction, while addition of either excess TFIIA or TFIIB were ineffective. This shows that the main target for E1A(13S) is free TBP and emphasizes the primary competition between E1A and the TATA-element for unbound TBP. This may be the principal point, if not the only point, at which E1A can target TBP to exert its inhibitory effect. This work, coupled with previous findings in our laboratory, indicates that TFIIA is much more effective than TFIIB in reversing the inhibitory effect of HMGB1 binding in the early stages of PIC assembly, which is consistent with the in vitro transcription results.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0213, USA
| | | |
Collapse
|
33
|
Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R. The study of macromolecular complexes by quantitative proteomics. Nat Genet 2003; 33:349-55. [PMID: 12590263 DOI: 10.1038/ng1101] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/19/2003] [Indexed: 11/08/2022]
Abstract
We describe a generic strategy for determining the specific composition, changes in the composition, and changes in the abundance of protein complexes. It is based on the use of isotope-coded affinity tag (ICAT) reagents and mass spectrometry to compare the relative abundances of tryptic peptides derived from suitable pairs of purified or partially purified protein complexes. In a first application, the genuine protein components of a large RNA polymerase II (Pol II) preinitiation complex (PIC) were distinguished from a background of co-purifying proteins by comparing the relative abundances of peptides derived from a control sample and the specific complex that was purified from nuclear extracts by a single-step promoter DNA affinity procedure. In a second application, peptides derived from immunopurified STE12 protein complexes isolated from yeast cells in different states were used to detect quantitative changes in the abundance of the complexes, and to detect dynamic changes in the composition of the samples. The use of quantitative mass spectrometry to guide identification of specific complex components in partially purified samples, and to detect quantitative changes in the abundance and composition of protein complexes, provides the researcher with powerful new tools for the comprehensive analysis of macromolecular complexes.
Collapse
Affiliation(s)
- Jeffrey A Ranish
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Upadhyaya AB, DeJong J. Expression of human TFIIA subunits in Saccharomyces cerevisiae identifies regions with conserved and species-specific functions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:88-97. [PMID: 12527429 DOI: 10.1016/s0167-4781(02)00541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcription factor TFIIA stabilizes the interaction between the TATA-binding protein (TBP) and promoter DNA and facilitates activator function. In yeast, TFIIA is composed of large (TOA1) and small (TOA2) subunits that interact to form a beta-barrel domain and a helix bundle domain. Here we report plasmid shuffle experiments showing that the human subunits (TFIIAalpha/beta, ALF, and TFIIAgamma) are not able to support growth in yeast and that the failure is associated with morphological abnormalities related to cell division. To determine the regions responsible for species specificity, we examined a series of chimeric yeast-human subunits. The results showed that yeast-human hybrids that contained the N-termini of TFIIAgamma or TFIIAalpha/beta were viable, presumably because they could form a functional interspecies alpha-helical bundle. Likewise, a TOA1 hybrid that contained the nonconserved internal region from TFIIAalpha/beta also had no effect on TFIIA function. However, hybrids that contained the acidic region III or C-terminal region IV from TFIIAalpha/beta grew more slowly than the wild-type TOA1 subunit, and if both regions were exchanged, this effect was far more severe. Although these hybrids exchanged sequences which are involved in beta-barrel formation and interactions with TBP, they were all active in a TBP-dependent mobility shift assay. The results suggest that the growth phenotypes of these hybrids might be due to a failure to interact with components of the yeast transcription machinery other than TBP. Finally, we show that sequences from region III of TFIIA large subunits fall into classes that are either highly acidic or that are divergent and nonacidic, and provide the first evidence to suggest that, at least in yeast, this region is important for TFIIA function.
Collapse
Affiliation(s)
- Ashok B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
35
|
Martinez E. Multi-protein complexes in eukaryotic gene transcription. PLANT MOLECULAR BIOLOGY 2002; 50:925-47. [PMID: 12516863 DOI: 10.1023/a:1021258713850] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins--with a total mass of over 2 MDa--including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multi-functional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.
Collapse
Affiliation(s)
- Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
36
|
Upadhyaya AB, Khan M, Mou TC, Junker M, Gray DM, DeJong J. The germ cell-specific transcription factor ALF. Structural properties and stabilization of the TATA-binding protein (TBP)-DNA complex. J Biol Chem 2002; 277:34208-16. [PMID: 12107178 DOI: 10.1074/jbc.m204808200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and stability of the RNA polymerase II transcription preinitiation complex on a eukaryotic core promoter involves the effects of TFIIA on the interaction between TATA-binding protein (TBP) and DNA. To extend our understanding of these interactions, we characterized properties of ALF, a germ cell-specific TFIIA-like factor. ALF was able to stabilize the binding of TBP to DNA, but it could not stabilize TBP mutants A184E, N189E, E191R, and R205E nor could it facilitate binding of the TBP-like factor TRF2/TLF to a consensus TATA element. However, phosphorylation of ALF with casein kinase II resulted in the partial restoration of complex formation using mutant TBPs. Studies of ALF-TBP complexes formed on the Adenovirus Major Late (AdML) promoter revealed protection of the TATA box and upstream sequences from -38 to -20 (top strand) and -40 to -22 (bottom strand). The half-life and apparent K(D) of this complex was determined to be 650 min and 4.8 +/- 2.7 nm, respectively. The presence of ALF or TFIIA did not significantly alter the ability of TBP to bind TATA elements from several testis-specific genes. Finally, analysis of the distinct, nonhomologous internal regions of ALF and TFIIAalpha/beta using circular dichroism spectroscopy provided the first evidence to suggest that these domains are unordered, a result consistent with other genetic and biochemical properties. Overall, the results show that while the sequence and regulation of the ALF gene are distinct from its somatic cell counterpart TFIIAalpha/beta, the TFIIAgamma-dependent interactions of these factors with TBP are nearly indistinguishable in vitro. Thus, a role for ALF in the assembly and stabilization of initiation complexes in germ cells is likely to be similar or identical to the role of TFIIA in somatic cells.
Collapse
Affiliation(s)
- Ashok B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kumar R, Eastwood AL, Brown ML, Laurie GW. Human genome search in celiac disease: mutated gliadin T-cell-like epitope in two human proteins promotes T-cell activation. J Mol Biol 2002; 319:593-602. [PMID: 12054857 DOI: 10.1016/s0022-2836(02)00366-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Discovery of a number of novel and known human genes whose protein products bear striking similarity to two or more wheat gliadin domains raised the possibility that human intestinal non-HLA peptides homologous to celiac T-cell epitopes could play a role in non-HLA gene specification in celiac disease. Database searching of the entire human genome identified only 11 gut-expressed proteins with high T-cell epitope homology, particularly to the DQ2-gamma-I-gliadin epitope (i.e. TFIIA, FOXJ2 and IgD; mean BestFit quality score=40 versus random value of 24). Others were similar to DQ2-alpha-I-gliadin (i.e. PAX9; BestFit quality 46 versus 20 for random), or DQ2-alpha-II-gliadin (PHLDA1, known in mice as the T-cell death-associated gene; BestFit quality 43 versus 30 for random) epitopes. Among proteins previously screened for gliadin homology, noteworthy was achaete scute homologous protein (DQ2-alpha-I-gliadin; BestFit quality 41 versus 22 for random). With the exception of IgD, all are nuclear factors. Paying particular attention to the position of potential major histocompatibility complex (MHC) anchor residues, several were selected for testing in a DQ2-gamma-I-gliadin-restricted T-cell system. All native 10-mer peptides were inactive, even when deamidated, but V96F substitution of deamidated TFIIA amino acid residues 91-100 stimulated IL-2 release at levels exceeding the wheat gliadin positive control. Also active, but only slightly, was L1009F substitution of AIB3 amino acid residues 1004-1013. PlotSimilarity alignment of TFIIAs from eight species revealed subthreshold similarity score in the peptide region, in contrast to the highly conserved amino and carboxy termini. Molecular modeling of TFIIA[V96F] peptide points to an important juxtaposition of an upwardly projecting phenylalanine residue at peptide position 6 that likely contacts a receptor complementarity-determining region, and a downwardly projecting glutamic acid residue that fits into the shallow MHC P7 pocket. These observations tentatively point to a new multi-gene hypothesis for the initiation of celiac disease in which deamidated free human peptides with T-cell epitope homology (particularly those made more homologous by mutation) escape negative selection, as per deamidation of the HEL(48-62) peptide in the hen egg lysozyme model of autoimmunity. Deamidation following peptide release due to injury triggers inflammation, thereafter repeatedly provoked by dietary gliadin immunodominant peptides concentrated in the proximal small intestine.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA
| | | | | | | |
Collapse
|
38
|
Dasgupta A, Darst RP, Martin KJ, Afshari CA, Auble DT. Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proc Natl Acad Sci U S A 2002; 99:2666-71. [PMID: 11880621 PMCID: PMC122405 DOI: 10.1073/pnas.052397899] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mot1 is an essential yeast Snf2/Swi2-related ATPase that exerts both positive and negative effects on gene expression. In vitro, Mot1 can disrupt TATA-binding protein-DNA complexes in an ATP-dependent reaction. This activity can explain Mot1-mediated transcriptional repression, but how Mot1 activates transcription is unknown. We demonstrate that, remarkably, Mot1 is localized in vivo to promoters for both Mot1-repressed and Mot1-activated genes. Moreover, Mot1 ATPase activity is required for both activation and repression of gene activity. These findings suggest a novel function for the Mot1 ATPase at activated genes, perhaps involving ATP-driven reorganization of the preinitiation complex. Mot1 regulates the expression of approximately 3% of yeast genes in cells grown in rich medium. Most of these genes are repressed by Mot1, consistent with Mot1's ATP-dependent TATA-binding protein-DNA dissociating activity. Additionally, approximately 77% of the Mot1-repressed genes are involved in the diauxic shift, stress response, mating, or sporulation. The gene sets controlled by NC2 and Srb10 are strongly correlated with the Mot1-controlled set, suggesting that these factors cooperate in transcriptional control on a global scale.
Collapse
Affiliation(s)
- Arindam Dasgupta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, 1300 Jefferson Park Avenue, Room 6213, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
39
|
Pereira LA, van der Knaap JA, van den Boom V, van den Heuvel FA, Timmers HT. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol Cell Biol 2001; 21:7523-34. [PMID: 11585931 PMCID: PMC99923 DOI: 10.1128/mcb.21.21.7523-7534.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.
Collapse
Affiliation(s)
- L A Pereira
- Department of Physiological Chemistry, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Langelier MF, Forget D, Rojas A, Porlier Y, Burton ZF, Coulombe B. Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J Biol Chem 2001; 276:38652-7. [PMID: 11509574 PMCID: PMC4492724 DOI: 10.1074/jbc.m106422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A topological model for transcription initiation by RNA polymerase II (RNAPII) has recently been proposed. This model stipulates that wrapping of the promoter DNA around RNAPII and the general initiation factors TBP, TFIIB, TFIIE, TFIIF and TFIIH induces a torsional strain in the DNA double helix that facilitates strand separation and open complex formation. In this report, we show that TFIIA, a factor previously shown to both stimulate basal transcription and have co-activator functions, is located near the cross-point of the DNA loop where it can interact with TBP, TFIIE56, TFIIE34, and the RNAPII-associated protein (RAP) 74. In addition, we demonstrate that TFIIA can stimulate basal transcription by stimulating the functions of both TFIIE34 and RAP74 during the initiation step of the transcription reaction. These results provide novel insights into mechanisms of TFIIA function.
Collapse
Affiliation(s)
- M F Langelier
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Stewart JJ, Stargell LA. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J Biol Chem 2001; 276:30078-84. [PMID: 11402056 DOI: 10.1074/jbc.m105276200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanistic differences between canonical and noncanonical TATA elements, we compared the functional activity of two sequences: TATAAA (canonical) and CATAAA (noncanonical). The TATAAA element can support high levels of transcription in vivo, whereas the CATAAA element is severely defective for this function. This dramatic functional difference is not likely to be due to a difference in TBP (TATA-binding protein) binding efficiency because protein-DNA complex studies in vitro indicate little difference between the two DNA sequences in the formation and stability of the TBP-DNA complex. In addition, the binding and stability of the TFIIB-TBP-DNA complex is similar for the two elements. In striking contrast, the TFIIA-TBP-DNA complex is significantly less stable on the CATAAA element when compared with the TATAAA element. A role for TFIIA in distinguishing between TATAAA and CATAAA in vivo was tested by fusing a subunit of TFIIA to TBP. We found that fusion of TFIIA to TBP dramatically increases transcription from CATAAA in yeast cells. Taken together, these results indicate that the stability of the TFIIA-TBP complex depends strongly on the sequence of the core promoter element and that the TFIIA-TBP complex plays an important function in recognizing optimal promoters in vivo.
Collapse
Affiliation(s)
- J J Stewart
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
42
|
Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 2001; 276:15886-92. [PMID: 11278496 DOI: 10.1074/jbc.m009385200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
Collapse
Affiliation(s)
- S Solow
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
43
|
Abstract
TFIIA contributes to transcription initiation by stabilizing the TBP-TATA interaction and by mediating the response to transcriptional activators and inhibitors. TFIIA contains a six-stranded beta-sheet domain and a four-helix bundle. The beta-domain makes functional contacts with DNA and TBP. The role of the four-helix bundle was investigated using a structure-based model of this domain (called 4HB). 4HB adopts a highly stable, helical fold, consistent with its structure in the context of TFIIA. Like TBP and other intact transcription factors, 4HB is able to activate transcription in vivo when artificially recruited to a promoter via a heterologous DNA-binding domain. Thus, in addition to making important contacts with TBP and DNA via the beta-domain, TFIIA makes other specific, functional contacts with the transcriptional machinery via the four-helix bundle. Proteins 2001;43:227-232.
Collapse
Affiliation(s)
- L A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | | | | | |
Collapse
|
44
|
Kraemer SM, Ranallo RT, Ogg RC, Stargell LA. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol Cell Biol 2001; 21:1737-46. [PMID: 11238911 PMCID: PMC86722 DOI: 10.1128/mcb.21.5.1737-1746.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.
Collapse
Affiliation(s)
- S M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
45
|
Han SY, Zhou L, Upadhyaya A, Lee SH, Parker KL, DeJong J. TFIIAalpha/beta-like factor is encoded by a germ cell-specific gene whose expression is up-regulated with other general transcription factors during spermatogenesis in the mouse. Biol Reprod 2001; 64:507-17. [PMID: 11159353 DOI: 10.1095/biolreprod64.2.507] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
TFIIAalpha/beta-like factor (ALF) is a testis-specific counterpart of the large subunit of human general transcription factor TFIIA. Northern analysis shows that ALF mRNA first appears in mouse testis at Postnatal Day 14. Similarly, expression of the general transcription factors TBP, TRF2, TFIIAalpha/beta, TFIIAgamma, and TFIIIB(90) is also increased beginning at Postnatal Day 14, suggesting that there is a coordinated induction of many general transcription factors during male germ cell differentiation. Analysis of male germ cells separated by Staput sedimentation shows that ALF is present in pachytene spermatocytes and haploid spermatids. In addition, in situ hybridization experiments with adult mouse testis shows that ALF is present in haploid spermatids. Searches of the human genome sequence database using the basic local alignment search tool reveal that the ALF and TFIIAalpha/beta(GTF2A1) genes are both composed of nine exons, whereas the TFIIAgamma (GTF2A2) gene is composed of five exons. Furthermore, nucleotide and amino acid comparisons among human and mouse ALF, TFIIAalpha/beta, and TFIIAgamma cDNA sequences show that ALF has diverged more rapidly than either TFIIAalpha/beta or TFIIAgamma. Finally, the ALF and SBLF (Stoned B-Like Factor) sequences present in the chimeric SALF cDNA are both present on human chromosome 2, and an analysis of the corresponding genes suggests a model for the formation of SALF.
Collapse
Affiliation(s)
- S Y Han
- The University of Texas at Dallas, Department of Molecular and Cell Biology, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225-9. [PMID: 11089979 DOI: 10.1038/35041603] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High levels of gene transcription by RNA polymerase II depend on high rates of transcription initiation and reinitiation. Initiation requires recruitment of the complete transcription machinery to a promoter, a process facilitated by activators and chromatin remodelling factors. Reinitiation probably occurs through a different pathway. After initiation, a subset of the transcription machinery remains at the promoter, forming a platform for assembly of a second transcription complex. Here we describe the isolation of a reinitiation intermediate that includes transcription factors TFIID, TFIIA, TFIIH, TFIIE and Mediator. This intermediate can act as a scaffold for formation of a functional reinitiation complex. Formation of this scaffold is dependent on ATP and TFIIH. The scaffold is stabilized in the presence of the activator Gal4-VP16, but not Gal4-AH, suggesting a new role for some activators and Mediator in promoting high levels of transcription.
Collapse
Affiliation(s)
- N Yudkovsky
- Division of Basic Sciences, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle 98109, USA
| | | | | |
Collapse
|
47
|
Stargell LA, Moqtaderi Z, Dorris DR, Ogg RC, Struhl K. TFIIA has activator-dependent and core promoter functions in vivo. J Biol Chem 2000; 275:12374-80. [PMID: 10777519 DOI: 10.1074/jbc.275.17.12374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The physiological role of TFIIA was investigated by analyzing transcription in a yeast strain that contains a TATA-binding protein (TBP) mutant (N2-1) defective for interacting with TFIIA. In cells containing N2-1, transcription from a set of artificial his3 promoters dependent on different activators is generally reduced by a similar extent, indicating that TFIIA function is largely nonselective for activators. In addition, TATA element utilization, a core promoter function, is altered at his3 promoters dependent on weak activators. Genomic expression analysis reveals that 3% of the genes are preferentially affected by a factor of 4 or more. Chimeras of affected promoters indicate that the sensitivity to the TFIIA-TBP interaction can map either to the upstream or core promoter region. Unlike wild-type TBP or TFIIA, the N2-1 derivative does not activate transcription when artificially recruited to the promoter via a heterologous DNA binding domain, indicating that TFIIA is important for transcription even in the absence of an activation domain. Taken together, these results suggest that TFIIA plays an important role in both activator-dependent and core promoter functions in vivo. Further, they suggest that TFIIA function may not be strictly related to the recruitment of TBP to promoters but may also involve a step after TBP recruitment.
Collapse
Affiliation(s)
- L A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
49
|
Bagby S, Mal TK, Liu D, Raddatz E, Nakatani Y, Ikura M. TFIIA-TAF regulatory interplay: NMR evidence for overlapping binding sites on TBP. FEBS Lett 2000; 468:149-54. [PMID: 10692576 DOI: 10.1016/s0014-5793(00)01213-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TATA box binding protein (TBP)-promoter interaction nucleates assembly of the RNA polymerase II transcription initiation complex. Transcription factor IIA (TFIIA) stabilizes the TBP-promoter complex whereas the N-terminal domain of the largest TAF(II) inhibits TBP-promoter interaction. We have mapped the interaction sites on TBP of Drosophila TAF(II)230 and yeast TFIIA (comprising two subunits, TOA1 and TOA2), using nuclear magnetic resonance (NMR), and also report structural evidence that subdomain II of the TAF(II)230 N-terminal inhibitory domain and TFIIA have overlapping binding sites on the convex surface of TBP. Together with previous mutational and biochemical data, our NMR results indicate that subdomain II augments subdomain I-mediated inhibition of TBP function by blocking TBP-TFIIA interaction.
Collapse
Affiliation(s)
- S Bagby
- Division of Molecular Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
50
|
Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M. A single point mutation in TFIIA suppresses NC2 requirement in vivo. EMBO J 2000; 19:672-82. [PMID: 10675336 PMCID: PMC305605 DOI: 10.1093/emboj/19.4.672] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Negative cofactor 2 (NC2) is a dimeric histone-fold complex that represses RNA polymerase II transcription through binding to TATA-box-binding protein (TBP) and inhibition of the general transcription factors TFIIA and TFIIB. Here we study molecular mechanisms of repression by human NC2 in vivo in yeast. Yeast NC2 genes are essential and can be exchanged with human NC2. The physiologically relevant regions of NC2 have been determined and shown to match the histone-fold dimerization motif. A suppressor screen based upon limiting concentrations of NC2beta yielded a cold-sensitive mutant in the yeast TFIIA subunit Toa1. The single point mutation in Toa1 alleviates the requirement for both subunits of NC2. Biochemical characterization indicated that mutant (mt)-Toa1 dimerizes well with Toa2; it supports specific recognition of the TATA box by TBP but forms less stable TBP-TFIIA-DNA complexes. Wild-type but not the mt-Toa1 can relieve NC2 effects in purified transcription systems. These data provide evidence for a dimeric NC2 complex that is in an equilibrium with TFIIA after the initial binding of TBP to promoter TATA boxes.
Collapse
Affiliation(s)
- J Xie
- Laboratorium für Molekulare Biologie-Genzentrum, der Ludwig-Maximilians-Universität, München, Feodor-Lynen-Strasse 25, D-81377 München, Germany
| | | | | | | | | |
Collapse
|