1
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Aboushady IM, Salem ZA, Sabry D, Mohamed A. Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent 2018; 10:e7-e13. [PMID: 29670709 PMCID: PMC5899816 DOI: 10.4317/jced.53957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regenerate missing tissues and treat diseases. Hence, the current work aimed to compare the proliferation rate and the osteogenic differentiation potential of bone marrow MSCs (BMSCs), gingival MSCs (GMSCs) and submandibular MSCs (SMSCs). Material and Methods MSCs derived from bone marrow, gingiva and submandibular salivary gland were isolated and cultured from rats. The proliferation capacity was judged by MTT proliferation Assay. Osteogenic differentiation was assessed by Alzarin red stain and quantitative RT-PCR was performed for Runx-2 and MMP-13. Results The highest significant proliferation was estimated in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). All studied cell types formed mineralized nodules as stained with Alizarin Red stain at the 3rd passage of differentiation. However, BMSCs seemed to generate the highest level of mineralization compared to GMSCs and SMSCs. RT-PCR revealed that the expression of Runx-2 and MMP-13 mRNAs was significantly increased in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). Conclusions BMSCs displayed maximum osteogenesis results followed by the GMSCs and lastly by the SGSCs. Thus, it could be recommended that GMSCs can be used as a second choice after BMSCs when bone tissue reconstruction is needed. Key words:Mesenchymal stem cells, osteogenic differentiation, Runx-2, MMP-13.
Collapse
Affiliation(s)
- Iman M Aboushady
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Zeinab A Salem
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Dina Sabry
- MD, MS, Professor of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| | - Abbas Mohamed
- MD, MS, Lecturer of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| |
Collapse
|
3
|
Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Otero M, Goldring MB, Oreffo ROC. DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep 2017; 7:7771. [PMID: 28798419 PMCID: PMC5552713 DOI: 10.1038/s41598-017-08418-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Runt-related transcription factor 2 (RUNX2) is critical for bone formation as well as chondrocyte maturation. Matrix metalloproteinase (MMP)-13 is a major contributor to cartilage degradation in osteoarthritis (OA). We and others have shown that the abnormal MMP13 gene expression in OA chondrocytes is controlled by changes in the DNA methylation status of specific CpG sites of the proximal promoter, as well as by the actions of different transactivators, including RUNX2. The present study aimed to determine the influence of the methylation status of specific CpG sites in the RUNX2 promoter on RUNX2-driven MMP13 gene expression in OA chondrocytes. We observed a significant correlation between MMP13 mRNA levels and RUNX2 gene expression in human OA chondrocytes. RUNX2 overexpression enhanced MMP13 promoter activity, independent of the MMP13 promoter methylation status. A significant negative correlation was observed between RUNX2 mRNA levels in OA chondrocytes and the percentage methylation of the CpG sites in the RUNX2 P1 promoter. Accordingly, the activity of the wild type RUNX2 promoter was decreased upon methylation treatment in vitro. We conclude that RUNX2 gene transcription is regulated by the methylation status of specific CpG sites in the promoter and may determine RUNX2 availability in OA cartilage for transactivation of genes such as MMP13.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.,Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
4
|
Hsueh SJ, Lee NC, Yang SH, Lin HI, Lin CH. A limb-girdle myopathy phenotype of RUNX2 mutation in a patient with cleidocranial dysplasia: a case study and literature review. BMC Neurol 2017; 17:2. [PMID: 28056872 PMCID: PMC5216594 DOI: 10.1186/s12883-016-0781-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Background Cleidocranial dysplasia (CCD) is a rare hereditary disorder that arises from heterozygous loss of function mutations in the runt-related transcription factor 2 (RUNX2) gene. As RUNX2 is mainly expressed in osteoblasts, CCD typically affects the skeletal and dental systems. Few studies have investigated RUNX2 mutation effects on non-skeletal systems. Here, we describe limb-girdle myopathy, an uncommon phenotype of CCD, in a patient with a heterozygous missense mutation (p.R225Q) in the RUNX2 gene. Case presentation A 58 year-old man presented with progressive back pain and six months of weakness in the proximal parts of all four limbs. Physical examinations showed that he was short in stature (height, 164.4 cm; weight, 79.1 kg) with a dysmorphic face, including hypertelorism, midface hypoplasia, and chin protrusion. At a young age, he had received orthodontic surgery, due to dental abnormalities. Neurological examinations revealed sloping shoulders, weakness, and atrophy in the proximal areas of the arms, shoulder girdle muscles, and legs. The deep tendon reflex and sensory system were normal. Radiological examinations revealed mild scoliosis, shortened clavicles, and a depressed skull bone, which were consistent with a clinical diagnosis of CCD. Electromyography (EMG) studies showed myogenic polyphasic waves in the deltoid, biceps brachii, and rectus femoris muscles. Instead, the EMG findings were normal in the first dorsal interosseous, tibialis anterior and facial muscles. The EMG findings were compatible with a limb-girdle pattern with facial sparing. The patient’s family history showed his father and eldest daughter with similar dysmorphic faces, skeletal disorders and proximal upper extremity weakness. We sequenced the RUNX2 gene and discovered a heterozygous missense mutation (c.G674A, p.R225Q), which altered the C-terminal end of the RUNX2 protein. This mutation was predicted to inactivate the protein and might affect its interactions with other proteins. This mutation co-segregated with the disease phenotypes in the family. Conclusions We described limb-girdle myopathy in a patient with CCD that carried a heterozygous RUNX2 missense mutation. This uncommon phenotype expanded the phenotypic spectrum of the RUNX2 p.R225Q mutation. The role of RUNX2 in myogenic development merits future studies. Our findings remind clinicians that myopathic patients with myopathies combined with facial dysmorphism and shortened clavicles should consider the diagnosis of CCD.
Collapse
Affiliation(s)
- Sung-Ju Hsueh
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shu-Hua Yang
- Department of Orthopedics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Han-I Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
5
|
Kanto S, Grynberg M, Kaneko Y, Fujita J, Satake M. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in spermatogenic cells. PeerJ 2016; 4:e1862. [PMID: 27069802 PMCID: PMC4824880 DOI: 10.7717/peerj.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Members of the Runx gene family encode transcription factors that bind to DNA in a sequence-specific manner. Among the three Runx proteins, Runx2 comprises 607 amino acid (aa) residues, is expressed in bone, and plays crucial roles in osteoblast differentiation and bone development. We examined whether the Runx2 gene is also expressed in testes. Methods. Murine testes from 1-, 2-, 3-, 4-, and 10-week-old male mice of the C57BL/6J strain and W∕Wv strain were used throughout the study. Northern Blot Analyses were performed using extracts form the murine testes. Sequencing of cDNA clones and 5′-rapid amplification of cDNA ends were performed to determine the full length of the transcripts, which revealed that the testicular Runx2 comprises 106 aa residues coding novel protein. Generating an antiserum using the amino-terminal 15 aa of Runx2 (Met1 to Gly15) as an antigen, immunoblot analyses were performed to detect the predicted polypeptide of 106 aa residues with the initiating Met1. With the affinity-purified anti-Runx2 antibody, immunohistochemical analyses were performed to elucidate the localization of the protein. Furthermore, bioinformatic analyses were performed to predict the function of the protein. Results. A Runx2 transcript was detected in testes and was specifically expressed in germ cells. Determination of the transcript structure indicated that the testicular Runx2 is a splice isoform. The predicted testicular Runx2 polypeptide is composed of only 106 aa residues, lacks a Runt domain, and appears to be a basic protein with a predominantly alpha-helical conformation. Immunoblot analyses with an anti-Runx2 antibody revealed that Met1 in the deduced open reading frame of Runx2 is used as the initiation codon to express an 11 kDa protein. Furthermore, immunohistochemical analyses revealed that the Runx2 polypeptide was located in the nuclei, and was detected in spermatocytes at the stages of late pachytene, diplotene and second meiotic cells as well as in round spermatids. Bioinformatic analyses suggested that the testicular Runx2 is a histone-like protein. Discussion. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in pachytene spermatocytes and round spermatids in testes, and encodes a histone-like, nuclear protein of 106 aa residues. Considering its nuclear localization and differentiation stage-dependent expression, Runx2 may function as a chromatin-remodeling factor during spermatogenesis. We thus conclude that a single Runx2 gene can encode two different types of nuclear proteins, a previously defined transcription factor in bone and cartilage and a short testicular variant that lacks a Runt domain.
Collapse
Affiliation(s)
- Satoru Kanto
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Urology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Program in Bioinformatics and Systems Biology, Stanford Burnham Medical Research Institute, La Jolla, CA, United States of America
| | - Yoshiyuki Kaneko
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University , Kyoto , Japan
| | - Jun Fujita
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University , Kyoto , Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
6
|
Ricarte F, Nakatani T, Partridge N. PTH Signaling and Epigenetic Control of Bone Remodeling. ACTA ACUST UNITED AC 2016; 2:55-61. [PMID: 27152252 DOI: 10.1007/s40610-016-0033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As our understanding of the mechanisms that govern bone development advance, the role of epigenetic modifications in these processes become increasingly evident. Interestingly, in parathyroid hormone (PTH)-induced bone metabolism and remodeling, recent evidence shows that PTH signaling employs a particular facet of the epigenetic machinery to elicit its desired effects. In this review, we briefly discuss the known epigenetic events occurring in cells of the osteoblast lineage. More specifically, we elaborate on current findings that reveal the utilization of histone deacetylating enzymes (HDACs) in PTH-regulated modulation of gene expression in bone.
Collapse
Affiliation(s)
- Florante Ricarte
- New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016
| | - Teruyo Nakatani
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, NY 10010
| | - Nicola Partridge
- New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016; New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, NY 10010
| |
Collapse
|
7
|
Voon DCC, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology 2015; 146:523-36. [PMID: 26399680 DOI: 10.1111/imm.12535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Yoshiaki Ito
- Cancer Biology Programme, Cancer Science Institute of Singapore, Singapore
| |
Collapse
|
8
|
Ning Y, Huang J, Kalionis B, Bian Q, Dong J, Wu J, Tai X, Xia S, Shen Z. Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5. Stem Cells Int 2015; 2015:672312. [PMID: 26240574 PMCID: PMC4512619 DOI: 10.1155/2015/672312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2'-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism.
Collapse
Affiliation(s)
- You Ning
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianhua Huang
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bill Kalionis
- Department of Obstetrics and Gynaecology and Department of Perinatal Medicine Pregnancy Research Centre, Royal Women's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Qin Bian
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingcheng Dong
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junzhen Wu
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiantao Tai
- School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Ziyin Shen
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
9
|
Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, Satake M, Kohu K. T-cell receptor signaling inducesproximal Runx1transactivation via a calcineurin-NFAT pathway. Eur J Immunol 2014; 44:894-904. [DOI: 10.1002/eji.201343496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 10/11/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Won Fen Wong
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Chung Yeng Looi
- Faculty of Medicine; Department of Pharmacology; University of Malaya; Kuala Lumpur Malaysia
| | - Shunsuke Kon
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Elaheh Movahed
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Tomo Funaki
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Li Yen Chang
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Masanobu Satake
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
- Network Medicine; Global COE Program; Tohoku University; Sendai Japan
| | - Kazuyoshi Kohu
- Cancer Science Institute; National University of Singapore; Singapore
| |
Collapse
|
10
|
Faienza MF, Ventura A, Piacente L, Ciccarelli M, Gigante M, Gesualdo L, Colucci S, Cavallo L, Grano M, Brunetti G. Osteoclastogenic potential of peripheral blood mononuclear cells in cleidocranial dysplasia. Int J Med Sci 2014; 11:356-64. [PMID: 24578613 PMCID: PMC3936030 DOI: 10.7150/ijms.7793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/10/2014] [Indexed: 12/29/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia characterized by hypoplastic or aplastic clavicles, dental abnormalities, and delayed closure of the cranial sutures. In addition, mid-face hypoplasia, short stature, skeletal anomalies and osteoporosis are common. We aimed to evaluate osteoclastogenesis in a child (4 years old), who presented with clinical signs of CCD and who have been diagnosed as affected by deletion of RUNX2, master gene in osteoblast differentiation, but also affecting T cell development and indirectly osteoclastogenesis. The results of this study may help to understand whether in this disease is present an alteration in the bone-resorptive cells, the osteoclasts (OCs). Unfractionated and T cell-depleted Peripheral Blood Mononuclear Cells (PBMCs) from patient were cultured in presence/absence of recombinant human M-CSF and RANKL. At the end of the culture period, OCs only developed following the addition of M-CSF and RANKL. Moreover, real-time PCR experiment showed that freshly isolated T cells expressed the osteoclastogenic cytokines (RANKL and TNFα) at very low level, as in controls. This is in accordance with results arising from flow cytometry experiments demonstrating an high percentage of circulating CD4(+)CD28(+) and CD4(+)CD27(+) T cells, not able to produce osteoclastogenic cytokines. Also RANKL, OPG and CTX serum levels in CCD patient are similar to controls, whereas QUS measurements showed an osteoporotic status (BTT-Z score -3.09) in the patient. In conclusions, our findings suggest that the heterozygous deletion of RUNX2 in this CCD patient did not alter the osteoclastogenic potential of PBMCs in vitro.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Annamaria Ventura
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Laura Piacente
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Maria Ciccarelli
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Margherita Gigante
- 2. Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- 2. Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciano Cavallo
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Maria Grano
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
11
|
He N, Xiao Z, Yin T, Stubbs J, Li L, Quarles LD. Inducible expression of Runx2 results in multiorgan abnormalities in mice. J Cell Biochem 2011; 112:653-65. [PMID: 21268087 DOI: 10.1002/jcb.22968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Runx2 is a transcription factor controlling skeletal development, and is also expressed in extraskeletal tissues where its function is not well understood. Existing Runx2 mutant and transgenic mouse models do not allow the necessary control of Runx2 expression to understand its functions in different tissues. We generated conditional, doxycyline-inducible, triple transgenic mice (CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2) to investigate the effects of wide spread overexpression of Runx2. Osteoblasts isolated from CMV-Cre;ROSA26-neo(flox/+)-rtTA; Tet-O-Runx2 mice demonstrated a dose-dependent effect of doxycycline to stimulate Runx2 transgene expression. Doxycycline administration to CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2 mice induced Runx2 transgene expression in all tissues tested, with the highest levels observed in kidney, ovary, and bone. Runx2 overexpression resulted in deceased body size and reduced viability. With regard to bone, Runx2 overexpressing mice paradoxically displayed profound osteopenia and diminished osteogenesis. Induced expression of Runx2 in extraskeletal tissues resulted in ectopic calcification and induction of the osteogenic program in a limited number of tissues, including lung and muscle. In addition, the triple transgenic mice showed evidence of a myeloproliferative disorder and an apparent inhibition of lymphocyte development. Thus, overexpression of Runx2 both within and outside of the skeleton can have diverse biological effects. Use of tissue specific Cre mice will allow this model to be used to conditionally and inducibly overexpress Runx2 in different tissues and provide a means to study the post-natal tissue- and cell context-dependent functions of Runx2.
Collapse
Affiliation(s)
- Nan He
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wong WF, Kurokawa M, Satake M, Kohu K. Down-regulation of Runx1 expression by TCR signal involves an autoregulatory mechanism and contributes to IL-2 production. J Biol Chem 2011; 286:11110-8. [PMID: 21292764 DOI: 10.1074/jbc.m110.166694] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx1 transcription factor plays multiple roles in T cell development, differentiation, and function. However, the regulatory mechanisms and functional significance of high Runx1 protein expression in resting peripheral CD4+ T cells is not well understood. Here, we demonstrate that T-cell receptor (TCR) activation down-regulates distal Runx1 transcription, resulting in a significant reduction of Runx1 protein. Interestingly, this down-regulation of distal Runx1 transcription appears to be mediated through a negative auto-regulatory mechanism, whereby Runx1 protein binds to a Runx consensus site in the distal promoter. Through the use of Runx1-overexpressing cells from transgenic mice, we demonstrate that interference with TCR-mediated Runx1 down-regulation inhibits IL-2 production and proliferation in activated CD4+ T cells. In contrast, using Runx1-deficient cells prepared from targeted mice, we show that the absence of Runx1 in unstimulated CD4+ T cells results in IL-2 derepression. In summary, we propose that high levels of Runx1 in resting CD4+ T cells functions negatively in the regulation of IL-2 transcription, and that TCR activation-mediated down-regulation of Runx1 involves negative auto-regulation of the distal Runx1 promoter and contributes to IL-2 production.
Collapse
Affiliation(s)
- Won Fen Wong
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
13
|
Shapiro MJ, Shapiro VS. Transcriptional repressors, corepressors and chromatin modifying enzymes in T cell development. Cytokine 2010; 53:271-81. [PMID: 21163671 DOI: 10.1016/j.cyto.2010.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 01/13/2023]
Abstract
Gene expression is regulated by the combined action of transcriptional activators and transcriptional repressors. Transcriptional repressors function by recruiting corepressor complexes containing histone-modifying enzymes to specific sites within DNA. Chromatin modifying complexes are subsequently recruited, either directly by transcriptional repressors, or indirectly via corepressor complexes and/or histone modifications, to remodel chromatin into either a transcription-friendly 'open' form or an inhibitory 'closed' form. Transcriptional repressors, corepressors and chromatin modifying complexes play critical roles throughout T cell development. Here, we highlight those genes that function to repress transcription and that have been shown to be required for T cell development.
Collapse
|
14
|
Abstract
Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 "platform protein" in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.
Collapse
|
15
|
Transactivation by Runt related factor-2 of matrix metalloproteinase-13 in astrocytes. Neurosci Lett 2009; 451:99-104. [DOI: 10.1016/j.neulet.2008.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 01/12/2023]
|
16
|
Vladimirova V, Waha A, Lückerath K, Pesheva P, Probstmeier R. Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 2008; 86:2450-61. [PMID: 18438928 DOI: 10.1002/jnr.21686] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Runx2 is a member of the Runx family of transcription factors (Runx1-3) with a restricted expression pattern. It has so far been detected predominantly in skeletal tissues where, inter alia, it regulates the expression of the beta-galactoside-specific lectin galectin-3. Here we show that, in contrast to Runx3, Runx1 and Runx2 are expressed in a variety of human glioma cells. Runx2 expression pattern in these cells correlated completely with that of galectin-3, but not with that of other galectins. A similar correlation in the expression pattern of galectin-3 and Runx2 transcripts was detected in distinct types of 70 primary neural tumors, such as glioblastoma multiforme, but not in others, such as gangliocytomas. In glioma cells, Runx2 is directly involved in the regulation of galectin-3 expression, as shown by RNAi and transcription factor binding assays demonstrating that Runx2 interacts with a Runx2-binding motif present in the human galectin-3 promoter. Knockdown of Runx2 was thus accompanied by a reduction of both galectin-3 mRNA and protein levels by at least 50%, dependent on the glial tumor cell line tested. Reverse transcriptase-polymerase chain reaction analyses, aimed at finding other potential target genes of Runx2 in glial tumor cells, revealed the presence of bone sialoprotein, osteocalcin, osteopontin, and osteoprotegerin. However, their expression patterns only partially overlap with that of Runx2. These data suggest a functional contribution of Runx-2-regulated galectin-3 expression to glial tumor malignancy.
Collapse
Affiliation(s)
- Valentina Vladimirova
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | |
Collapse
|
17
|
Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S, Stein JL, van Wijnen AJ, Lian JB, Stein GS, Choi JY. Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J Cell Physiol 2008; 217:511-7. [PMID: 18636555 DOI: 10.1002/jcp.21524] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Runx2 is a master transcription factor for chondrocyte and osteoblast differentiation and bone formation. However expression of Runx2 (by RT-PCR), has been reported in non-skeletal tissues such as breast, T cells and testis. To better define Runx2 activity in non-skeletal tissues, we examined transgenic (Tg) mice expressing LacZ gene under control of 3.0 kb (3 kb Tg) or 1.0 kb (1 kb Tg) of the Runx2 distal (P1) promoter, Runx2 LacZ knock-in (Runx2(+/LacZ)) and Runx2/P1 LacZ knock-in (Runx2/P1(+/LacZ)). In the Runx2 3 kb Tg mouse, beta-galactosidase (beta-gal) expression appeared in various non-skeletal tissues including testis, skin, adrenal gland and brain. beta-gal expression from both 3 kb and 1 kb Tg, reflecting activity of the Runx2 promoter, was readily detectable in seminiferous tubules of the testis and the epididymis. At the single cell level, beta-gal was detected in spermatids and mature sperms not in sertoli or Leydig cells. We also detected a positive signal from the Runx2(+/LacZ) and Runx2/P1(+/LacZ) mice. Indeed, Runx2 expression was observed in isolated mature sperms, which was confirmed by RT-PCR and Western blot analysis. Runx2, however, was not related to sex determination and sperm motility. Runx2 mediated beta-gal activity is also found robustly in the hippocampus and frontal lobe of the brain in Runx2(+/LacZ). Collectively, these results indicate that Runx2 is expressed in several non-skeletal tissues particularly sperms of testis and hippocampus of brain. It suggests that Runx2 may play an important role in male reproductive organ testis and brain.
Collapse
Affiliation(s)
- Jae-Hwan Jeong
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Endo T, Ohta K, Kobayashi T. Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J Clin Endocrinol Metab 2008; 93:2409-12. [PMID: 18381576 DOI: 10.1210/jc.2007-2805] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Development of calcifying foci is a common finding in human thyroid papillary carcinoma, but its mechanisms remain unknown. OBJECTIVE We therefore investigated whether osteocalcin and/or Cbfa-1 genes are expressed in malignant thyroid epithelial cells. We also studied the effects of Cbfa-1 on the expression of osteoblast-specific and thyrotropin receptor genes in thyrocytes. RESULTS The human thyroid papillary carcinoma cell line BHP18-21 expresses bone-type osteocalcin mRNA at higher levels than in MG63 osteosarcoma cells. Northern blot analysis and EMSA using nuclear extracts from BHP18-21 cells and FRTL-5 cells demonstrated that cells of thyroid epithelial origin expressed Cbfa-1/Runx2, the main transcription factor for the expression of osteocalcin. When we transfected pcDNA3.1-human Cbfa-1 into FRTL-5 cells, Cbfa-1 increased the gene expression of alkaline phosphatase, type I collagen, and osteocalcin but suppressed the expression of thyrotropin receptor. We then stained the calcified regions of human papillary thyroid carcinoma tissues with antiosteocalcin antibody and found that malignant cells, as well as follicular epithelial cells, were immunopositive for osteocalcin. Northern blot analysis revealed that the Cbfa-1/Runx2 gene was strongly expressed in tissues from four cases of surgically resected papillary carcinoma. CONCLUSIONS Thyrocytes share characteristics with osteoblasts. Cbfa-1 may play a role in calcification processes in human thyroid papillary carcinoma tissues.
Collapse
Affiliation(s)
- Toyoshi Endo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo City, Yamanashi, Japan.
| | | | | |
Collapse
|
19
|
Okumura AJ, Peterson LF, Lo MC, Zhang DE. Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells. Exp Hematol 2007; 35:978-88. [PMID: 17533052 DOI: 10.1016/j.exphem.2007.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Runx1/AML1 plays important roles in hematopoiesis, including the commitment of cells to hematopoiesis during embryonic development, and in the maintenance of hematopoietic cell populations. It is also one of the most common genes involved in chromosomal translocations related to leukemia. One such translocation is t(8;21), which fuses the Runx1 gene to the MTG8/ETO gene and generates the Runx1-MTG8 (AML1-ETO) fusion gene. Both Runx1 and MTG8 have two additional family members that are much less studied in hematopoiesis. Here we report the expression of every member of the Runx and MTG families as well as the Runx heterodimerization partner CBFbeta during hematopoietic differentiation of murine embryonic stem cells. We observed substantially increased expression of Runx1, Runx2, and MTG16 during hematopoietic differentiation. Furthermore, the increase in Runx2 expression is delayed relative to Runx1 expression, suggesting their possible sequential contribution to hematopoiesis.
Collapse
Affiliation(s)
- Akiko Joo Okumura
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2007; 25:589-600. [PMID: 17165130 DOI: 10.1007/s10555-006-9032-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The three mammalian Runt homology domain transcription factors (Runx1, Runx2, Runx3) support biological control by functioning as master regulatory genes for the differentiation of distinct tissues. Runx proteins also function as cell context-dependent tumor suppressors or oncogenes. Abnormalities in Runx mediated gene expression are linked to cell transformation and tumor progression. Runx2 is expressed in mesenchymal linage cells committed to the osteoblast phenotype and is essential for bone formation. This skeletal transcription factor is aberrantly expressed at high levels in breast and prostate tumors and cells that aggressively metastasize to the bone environment. In cancer cells, Runx2 activates expression of bone matrix and adhesion proteins, matrix metalloproteinases and angiogenic factors that have long been associated with metastasis. In addition, Runx2 mediates the responses of cells to signaling pathways hyperactive in tumors, including BMP/TGFbeta and other growth factor signals. Runx2 forms co-regulatory complexes with Smads and other co-activator and co-repressor proteins that are organized in subnuclear domains to regulate gene transcription. These activities of Runx2 contribute to tumor growth in bone and the accompanying osteolytic disease, established by interfering with Runx2 functions in metastatic breast cancer cells. Inhibition of Runx2 in MDA-MB-231 cells transplanted to bone decreased tumorigenesis and prevented osteolysis. This review evaluates evidence that Runx2 regulates early metastatic events in breast and prostate cancers, tumor growth, and osteolytic bone disease. Consideration is given to the potential for inhibition of this transcription factor as a therapeutic strategy upstream of the regulatory events contributing to the complexity of metastasis to bone.
Collapse
Affiliation(s)
- J Pratap
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu X, Liu Y, Huang S, Liu G, Xie C, Zhou J, Fan W, Li Q, Wang Q, Zhong D, Miao X. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. ACTA ACUST UNITED AC 2006; 171:31-8. [PMID: 17074588 DOI: 10.1016/j.cancergencyto.2006.06.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 05/31/2006] [Accepted: 06/08/2006] [Indexed: 01/14/2023]
Abstract
CB1 and CB2 are multifunctional cannabinoid-specific receptors considered to be involved in inhibition of tumor development. To elucidate their roles in hepatocarcinogenesis, we analyzed the expression of these receptors in tumor and matched nontumorous tissues of human hepatocellular carcinoma (HCC) samples. In situ hybridization analysis showed overexpression of CB1 mRNAs in 8 of 13 (62%) HCC samples, and of CB2 mRNAs in 7 of 13 (54%). Immunohistochemical analysis of 64 HCC samples showed the expression of CB1 and CB2 receptors to increase from normal liver to chronic hepatitis to cirrhosis. Marked expression of CB1 and CB2 receptors was noted in the majority of cirrhotic liver samples (86 and 78%, respectively). In HCC, high expression of CB1 and CB2 receptors was observed in 29 (45%) and 33 (52%) cases, respectively. Clinicopathological evaluation indicated a significant correlation between CB1 and CB2 expression and two clinicopathological parameters such as the histopathological differentiation (P = 0.021 and 0.001, respectively), portal vein invasion (P = 0.015 and 0.004, respectively). Univariate analysis indicated that disease-free survival was significantly better in HCC patients with high versus those with low CB1 and CB2 expression levels (P = 0.010 and 0.037, respectively). Our results indicate that CB1 and CB2 have potential as prognostic indicators and suggest possible beneficial effects of cannabinoids on prognosis of patients with HCC.
Collapse
MESH Headings
- Adult
- Aged
- Antibody Specificity/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Kaplan-Meier Estimate
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/immunology
- Receptor, Cannabinoid, CB2/analysis
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/immunology
Collapse
Affiliation(s)
- Xundi Xu
- Department of Surgery, Xiangya 2nd Hospital, Central South University, Renming Zhong Road 139, Changsha City, Hunan Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vaes BLT, Ducy P, Sijbers AM, Hendriks JMA, van Someren EP, de Jong NG, van den Heuvel ER, Olijve W, van Zoelen EJJ, Dechering KJ. Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation. Bone 2006; 39:724-38. [PMID: 16774856 DOI: 10.1016/j.bone.2006.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.
Collapse
Affiliation(s)
- Bart L T Vaes
- Department of Applied Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kusafuka K, Sasaguri K, Sato S, Takemura T, Kameya T. Runx2 expression is associated with pathologic new bone formation around radicular cysts: an immunohistochemical demonstration. J Oral Pathol Med 2006; 35:492-9. [PMID: 16918601 DOI: 10.1111/j.1600-0714.2006.00426.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Radicular cysts are the most common cysts in human jaw bones. These lesions induce bone remodeling of the surrounding alveolar bones, which was termed 'condensing osteitis', and was suggested to be related to cells of the osteoblastic lineage. The Runx2 (core-binding protein [cbfa]1/polyoma enhancer-binding protein [pebp]2alphaA) was shown to be a DNA-binding transcriptional molecule expressed in osteoprogenitor cells. METHODS We confirmed the specificity of anti-Runx2 antiserum, using Western blotting analysis. We investigated the expression and localization of Runx2 in 32 radicular cyst cases with bone tissue fragments, immunohistochemically. RESULTS Signals for Runx2 were seen in 18 cases (56.3%) of radicular cysts with bone formation. These signals were immunolocalized in the nuclei of the spindle-shaped osteoprogenitor cells in the cyst walls, whereas only a few signals were seen in the cuboidal osteoblastic cells near the fibrous bones. Signals for type I collagen were immunolocalized in the dense collagen fibers in the cyst walls and in the matrix of the fibrous bone around the radicular cysts, whereas no signals were seen on the inner portions with inflammatory cell infiltration of the cyst walls. Very weak signals for transforming growth factor (TGF)-beta1 were infrequently seen in the osteoblasts of the fibrous bone, whereas signals for TGF-beta2 were observed in young osteocytes in the fibrous bones, in B-cell lymphocytes infiltrating into the inner portions, and on the cellular membranes of the lining epithelium. CONCLUSIONS The nuclear expression of Runx2 in spindle-shaped cells in the outer portions may play an essential role in the induction of fibrous bone tissue around radicular cysts. TGF-beta2 may play a role in the production of type I collagen, which acts as a template for pathologic new bone formation, in radicular cysts.
Collapse
Affiliation(s)
- Kimihide Kusafuka
- Pathology Division, Shizuoka Cancer Center, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
24
|
Jo M, Curry TE. Luteinizing hormone-induced RUNX1 regulates the expression of genes in granulosa cells of rat periovulatory follicles. Mol Endocrinol 2006; 20:2156-72. [PMID: 16675540 PMCID: PMC1783681 DOI: 10.1210/me.2005-0512] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge induces specific transcription factors that regulate the expression of a myriad of genes in periovulatory follicles to bring about ovulation and luteinization. The present study determined 1) the localization of RUNX1, a nuclear transcription factor, 2) regulation of Runx1 mRNA expression, and 3) its potential function in rat ovaries. Up-regulation of mRNA and protein for RUNX1 is detected in preovulatory follicles after human chorionic gonadotropin (hCG) injection in gonadotropin-treated immature rats as well as after the LH surge in cycling animals by in situ hybridization and immunohistochemical and Western blot analyses. The regulation of Runx1 mRNA expression was investigated in vitro using granulosa cells from rat preovulatory ovaries. Treatments with hCG, forskolin, or phorbol 12 myristate 13-acetate stimulated Runx1 mRNA expression. The effects of hCG were reduced by inhibitors of protein kinase A, MAPK kinase, or p38 kinase, indicating that Runx1 expression is regulated by the LH-initiated activation of these signaling mediators. In addition, hCG-induced Runx1 mRNA expression was inhibited by a progesterone receptor antagonist and an epidermal growth factor receptor tyrosine kinase inhibitor, whereas amphiregulin stimulated Runx1 mRNA expression, demonstrating that the expression is mediated by the activation of the progesterone receptor and epidermal growth factor receptor. Finally, knockdown of Runx1 mRNA by small interfering RNA decreased progesterone secretion and reduced levels of mRNA for Cyp11a1, Hapln1, Mt1a, and Rgc32. The hormonally regulated expression of Runx1 in periovulatory follicles, its involvement in progesterone production, and regulation of preovulatory gene expression suggest important roles of RUNX1 in the periovulatory process.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
25
|
Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005; 25:8581-91. [PMID: 16166639 PMCID: PMC1265732 DOI: 10.1128/mcb.25.19.8581-8591.2005] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Runx2 (Cbfa1/AML3) transcription factor and matrix metalloproteinase 9 (MMP9) are key regulators of growth plate maturation and bone formation. The genes for both proteins are characteristic markers of breast and prostate cancer cells that metastasize to bone. Here we experimentally addressed the compelling question of whether Runx2 and MMP are functionally linked. By cDNA expression array analysis, we identified MMP9 as a novel downstream target of Runx2. Like that of MMP13, MMP9 expression is nearly depleted in Runx2 mutant mice. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed the recruitment of Runx2 to the MMP9 promoter. We show by mutational analysis that the Runx2 site mediates transactivation of the MMP9 promoter in osteoblasts (MC3T3-E1) and nonosseous (HeLa) cells. The overexpression of Runx2 by adenovirus delivery in nonmetastatic (MCF-7) and metastatic breast (MDA-MB-231) and prostate (PC3) cancer cell lines significantly increases the endogenous levels of MMP9. The knockdown of Runx2 by RNA interference decreases MMP9 expression, as well as that of other Runx2 target genes, including the genes for MMP13 and vascular endothelial growth factor. Importantly, we have demonstrated using a cell invasion assay that Runx2-regulated MMP9 levels are functionally related to the invasion properties of cancer cells. These results are consistent with Runx2 control of multiple genes that contribute to the metastatic properties of cancer cells and their activity in the bone microenvironment.
Collapse
MESH Headings
- 3T3 Cells
- Adenoviridae/genetics
- Animals
- Blotting, Western
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/secondary
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin Immunoprecipitation
- Core Binding Factor Alpha 1 Subunit/physiology
- DNA, Complementary/metabolism
- Gene Expression Regulation, Enzymologic
- HeLa Cells
- Humans
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Mice
- Mice, Mutant Strains
- Models, Biological
- Models, Genetic
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Osteoblasts/metabolism
- Promoter Regions, Genetic
- RNA/chemistry
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcriptional Activation
Collapse
Affiliation(s)
- Jitesh Pratap
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kawagoe H, Grosveld GC. MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice. Blood 2005; 106:4278-86. [PMID: 16081688 PMCID: PMC1895241 DOI: 10.1182/blood-2005-04-1674] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MN1-TEL (meningioma 1-translocation-ETS-leukemia) fusion oncoprotein is the product of the t(12;22)(p13;q11) in human myeloid leukemia consisting of N-terminal MN1 sequences, a transcriptional coactivator, fused to C-terminal TEL sequences, an E26-transformation-specific (ETS) transcription factor. To analyze the role of MN1-TEL in leukemogenesis, we created a site-directed transgenic (knock-in) mouse model carrying a conditional MN1-TEL transgene under the control of the Aml1 regulatory sequences. After induction, MN1-TEL expression was detected in both myeloid and lymphoid cells. Activation of MN1-TEL expression enhanced the repopulation ability of myeloid progenitors in vitro as well as partially inhibited their differentiation in vivo. MN1-TEL also promoted the proliferation of thymocytes while it blocked their differentiation from CD4-/CD8- to CD4+/CD8+ in vivo. After long latency, 30% of the MN1-TEL-positive mice developed T-lymphoid tumors. This process was accelerated by N-ethyl-N-nitrosourea-induced mutations. MN1-TEL-positive T-lymphoid tumors showed elevated expression of the Notch-1, Hes-1, c-Myc, and Lmo-2 genes while their Ink4a/pRB and Arf/p53 pathways were impaired, suggesting that these alterations cooperatively transform T progenitors. We conclude that MN1-TEL exerts its nonlineage-specific leukemogenic effects by promoting the growth of primitive progenitors and blocking their differentiation, but cooperative mutations are necessary to fully induce leukemic transformation.
Collapse
Affiliation(s)
- Hiroyuki Kawagoe
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
27
|
Kawazu M, Asai T, Ichikawa M, Yamamoto G, Saito T, Goyama S, Mitani K, Miyazono K, Chiba S, Ogawa S, Kurokawa M, Hirai H. Functional domains of Runx1 are differentially required for CD4 repression, TCRbeta expression, and CD4/8 double-negative to CD4/8 double-positive transition in thymocyte development. THE JOURNAL OF IMMUNOLOGY 2005; 174:3526-33. [PMID: 15749889 DOI: 10.4049/jimmunol.174.6.3526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Runx1 (AML1) has multiple functions in thymocyte development, including CD4 repression in immature thymocytes, expression of TCRbeta, and efficient beta-selection. To determine the functional domains of Runx1 important for thymocyte development, we cultured Runx1-deficient murine fetal liver (FL) cells on OP9-Delta-like 1 murine stromal cells, which express Delta-like 1 and support thymocyte development in vitro, and introduced Runx1 or C-terminal-deletion mutants of Runx1 into the FL cells by retrovirus infection. In this system, Runx1-deficient FL cells failed to follow normal thymocyte development, whereas the introduction of Runx1 into the cells was sufficient to produce thymocyte development that was indistinguishable from that in wild-type FL cells. In contrast, Runx1 mutants that lacked the activation domain necessary for initiating gene transcription did not fully restore thymocyte differentiation, in that it neither repressed CD4 expression nor promoted the CD4/8 double-negative to CD4/8 double-positive transition. Although the C-terminal VWRPY motif-deficient mutant of Runx1, which cannot interact with the transcriptional corepressor Transducin-like enhancer of split (TLE), promoted the double-negative to double-positive transition, it did not efficiently repress CD4 expression. These results suggest that the activation domain is essential for Runx1 to establish thymocyte development and that Runx1 has both TLE-dependent and TLE-independent functions in thymocyte development.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4 Antigens/metabolism
- CD8 Antigens/metabolism
- Cell Differentiation
- Cells, Cultured
- Coculture Techniques
- Core Binding Factor Alpha 2 Subunit
- DNA, Complementary/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fetus/cytology
- Hepatocytes/cytology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Pregnancy
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Masahito Kawazu
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flores MV, Tsang VWK, Hu W, Kalev-Zylinska M, Postlethwait J, Crosier P, Crosier K, Fisher S. Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expr Patterns 2005; 4:573-81. [PMID: 15261836 DOI: 10.1016/j.modgep.2004.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/18/2022]
Abstract
The differentiation of cells in the vertebrate skeleton is controlled by a precise genetic program. One crucial regulatory gene in the pathway encodes the transcription factor Runx2, which in mouse is required for differentiation of all osteoblasts and the proper development of a subset of hypertrophic chondrocytes. To explore the differentiation of skeletogenic cells in the model organism zebrafish (Danio rerio), we have identified two orthologues of the mammalian gene, runx2a and runx2b. Both genes share sequence homology and gene structure with the mammalian genes, and map to regions of the zebrafish genome displaying conserved synteny with the region where the human gene is localized. While both genes are expressed in developing skeletal elements, they show evidence of partial divergence in expression pattern, possibly explaining why both orthologues have been retained through teleost evolution.
Collapse
Affiliation(s)
- Maria Vega Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
30
|
Nakase Y, Sakakura C, Miyagawa K, Kin S, Fukuda K, Yanagisawa A, Koide K, Morofuji N, Hosokawa Y, Shimomura K, Katsura K, Hagiwara A, Yamagishi H, Ito K, Ito Y. Frequent loss of RUNX3 gene expression in remnant stomach cancer and adjacent mucosa with special reference to topography. Br J Cancer 2005; 92:562-9. [PMID: 15685235 PMCID: PMC2362072 DOI: 10.1038/sj.bjc.6602372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/02/2004] [Accepted: 12/09/2004] [Indexed: 02/08/2023] Open
Abstract
Our previous studies suggest that a lack of RUNX3 function is causally related to the genesis and progression of human gastric cancer. This study was conducted to determine whether alteration of RUNX3 gene expression could be detected in the normal-looking gastric remnant mucosa, and to ascertain any difference in the potential of gastric carcinogenesis between the anastomotic site and other areas in the remnant stomach after distal gastrectomy for peptic ulcer (RB group) or gastric cancer (RM group), by analysing RUNX3 expression with special reference to topography. A total of 89 patients underwent distal gastrectomy for gastric cancer from the intact stomach (GCI group) and 58 patients underwent resection of the remnant stomach for gastric cancer (RB group: 34 cases, RM group: 24 cases). We detected RUNX3 and gene promoter methylation by in situ hybridisation, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and methylation-specific PCR. The interval between the initial surgery and surgery for remnant gastric cancer (interval time) was 10.4 years in the RM group, and 27.5 years in the RB group. Cancers in the RB group were significantly more predominant in the anastomosis area (P<0.05). Within the tumour, downregulation of RUNX3 expression ranged from 74.7 to 85.7% in the three groups. The rate of downregulation of RUNX3 of adjacent mucosa was 39.2% (11 in 28 cases) in RB and 47.6% (10 in 21 cases) in RM, which are significantly higher than that of the GCI group (19.5%, 17 in 87 cases). In noncancerous mucosa of the remnant stomach in the RB group, RUNX3 expression decreased more near the anastomosis area. In the RM group, however, there were no significant differences in RUNX3 expression by sampling location. Based on RUNX3 downregulation and clinical features, residual stomach mucosa of the RM group would have a higher potential of gastric carcinogenesis compared to the RB or GCI group. Gastric stump mucosa of the RB group has higher potential especially than other areas of residual stomach mucosa. Measurement of RUNX3 expression and detection of RUNX3 methylation in remnant gastric mucosa may estimate the forward risk of carcinogenesis in the remnant stomach.
Collapse
Affiliation(s)
- Y Nakase
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - C Sakakura
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - K Miyagawa
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - S Kin
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - K Fukuda
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - A Yanagisawa
- Department of Pathology, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - K Koide
- Department of Surgery , Kyoto First Red Cross Hospital, Kyoto, Japan
| | - N Morofuji
- Department of Surgery , Kyoto First Red Cross Hospital, Kyoto, Japan
| | - Y Hosokawa
- Department of Pathology, Kyoto First Red Cross Hospital, Kyoto, Japan
| | - K Shimomura
- Department of Surgery, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - K Katsura
- Department of Pathology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - A Hagiwara
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - H Yamagishi
- Department of Surgery and Physiology of Digestive System, Graduate School of Medical Science, Surgery and Regenerative Medicine, Kyoto, Japan
| | - K Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore
| | - Y Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore
| |
Collapse
|
31
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
32
|
North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MFTR. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. ACTA ACUST UNITED AC 2004; 22:158-68. [PMID: 14990855 DOI: 10.1634/stemcells.22-2-158] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor Runx1 marks all functional hematopoietic stem cells (HSCs) in the embryo and is required for their generation. Mutations in Runx1 are found in approximately 25% of acute leukemias and in familial platelet disorder, suggesting a role for Runx1 in adult hematopoiesis as well. A comprehensive analysis of Runx1 expression in adult hematopoiesis is lacking. Here we show that Runx1 is expressed in functional HSCs in the adult mouse, as well as in cells with spleen colony-forming unit (CFU) and culture CFU capacities. Additionally, we document Runx1 expression in all hematopoietic lineages at the single cell level. Runx1 is expressed in the majority of myeloid cells and in a smaller proportion of lymphoid cells. Runx1 expression substantially decreases during erythroid differentiation. We also document effects of reduced Runx1 levels on adult hematopoiesis.
Collapse
Affiliation(s)
- Trista E North
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA. (Current address for Dr. de Bruijn) MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Qiao M, Shapiro P, Kumar R, Passaniti A. Insulin-like Growth Factor-1 Regulates Endogenous RUNX2 Activity in Endothelial Cells through a Phosphatidylinositol 3-Kinase/ERK-dependent and Akt-independent Signaling Pathway. J Biol Chem 2004; 279:42709-18. [PMID: 15304489 DOI: 10.1074/jbc.m404480200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an angiogenic and oncogenic factor that activates signal transduction pathways involved in the expression of transcriptional regulators of tumorigenesis. RUNX2, a member of the Ig-loop family of transcription factors is expressed in vascular endothelial cells (EC) and regulates EC migration, invasion, and proliferation. Here we show that IGF-1 and its receptor regulate post-translational changes in RUNX2 to activate DNA binding in proliferating EC. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduced both basal and IGF-1-stimulated RUNX2 DNA binding activity in the absence of changes in RUNX2 protein as did the overexpression of the phosphatidylinositol 3-phosphate phosphatase, confirming that PI3K signaling mediates RUNX2 activation. IGF-1 increased ERK1/2 activation, which was abrogated by the inhibition of PI3K, thus linking these two pathways in EC. Treatment with U0126, which inhibits ERK1/2 activation, reduced IGF-1-stimulated RUNX2 DNA binding without affecting RUNX2 protein levels. Overexpression of constitutively active MKK1 increased RUNX2 DNA binding and phosphorylation. No additive effects of PI3K or ERK inhibitors on DNA binding were evident. Surprisingly, these IGF-1-mediated effects on RUNX2 were not regulated by Akt phosphorylation, a common downstream target of PI3K, as determined by pharmacological or genetic inhibition. However, an inhibitor of the p21-activated protein kinase-1, glutathione S-transferase-Pak1-(83-149), inhibited both basal and IGF-1-stimulated RUNX2 DNA binding, suggesting that Pak1 mediates IGF-1 signaling to increase RUNX2 activity. These results indicate that the angiogenic growth factor, IGF-1, can regulate RUNX2 DNA binding through sequential activation of the PI3K/Pak1 and ERK1/2 signaling cascade.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
34
|
Telfer JC, Hedblom EE, Anderson MK, Laurent MN, Rothenberg EV. Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes. THE JOURNAL OF IMMUNOLOGY 2004; 172:4359-70. [PMID: 15034051 DOI: 10.4049/jimmunol.172.7.4359] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The runt family transcription factors Runx1 and Runx3 are expressed in developing murine thymocytes. We show that enforced expression of full-length Runx1 in CD4(-)CD8(-) thymocytes results in a profound suppression of immature CD4/CD8 double-positive thymocytes and mature CD4 single-positive thymocytes compared with controls. This effect arises from Runx1- or Runx3-mediated repression of CD4 expression, and is independent of positively selecting signals. Runx1 is able to repress CD4 in CD4/CD8 double-positive thymocytes, but not in mature splenic T cells. Runx-mediated CD4 repression is independent of association with the corepressors Groucho/TLE or Sin3. Two domains are required for complete Runx-mediated CD4 repression. These are contained within Runx1 aa 212-262 and 263-360. The latter region contains the nuclear matrix targeting sequence, which is highly conserved among runt family transcription factors across species. The presence of the nuclear matrix targeting sequence is required for Runx-mediated CD4 repression, suggesting that Runx transcription factors are stabilized on the CD4 silencer via association with the nuclear matrix.
Collapse
Affiliation(s)
- Janice C Telfer
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Runx family proteins have the potential for either activating or suppressing gene expression in a context-dependent manner. There are several mechanisms by which transcriptional repression can occur. A wide range of locus inactivation, that is often called gene silencing, is thought to be achieved by chromatin modifications. Recently, Runx family proteins were found to have an essential role in either temporal transcriptional repression or irreversible epigenetic silencing at the CD4 locus through binding to a CD4 silencer at different stages of development. These findings link Runx function to epigenetic gene regulation, and shed new light on the mechanisms by which Runx represses target gene expression.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.
| | | |
Collapse
|
36
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004; 23:4315-29. [PMID: 15156188 DOI: 10.1038/sj.onc.1207676] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center University of Massachusetts Medical School, Worcester, M 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
38
|
Marigo V, Nigro A, Pecci A, Montanaro D, Di Stazio M, Balduini CL, Savoia A. Correlation between the clinical phenotype of MYH9 -related disease and tissue distribution of class II nonmuscle myosin heavy chains. Genomics 2004; 83:1125-33. [PMID: 15177565 DOI: 10.1016/j.ygeno.2003.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 12/24/2003] [Indexed: 11/28/2022]
Abstract
Nonmuscle myosin heavy chain II-A is responsible for MYH9-related disease, which is characterized by macrothrombocytopenia, granulocyte inclusions, deafness, cataracts, and renal failure. Since another two highly conserved nonmuscle myosins, II-B and II-C, are known, an analysis of their tissue distribution is fundamental for the understanding of their biological roles. In mouse, we found that all forms are ubiquitously expressed. However, megakaryocytic and granulocytic lineages express only II-A, suggesting that congenital features, macrothrombocytopenia, and leukocyte inclusions correlate with its exclusive presence. In kidney, eye, and ear, where clinical manifestations have a late onset, as well as in other tissues apparently not affected in patients, II-A and at least one of the other two isoforms are expressed, suggesting that II-B and II-C can partially compensate for each other. We hypothesize that cells expressing only II-A manifest the congenital defects, while tissues expressing additional myosin II isoforms show either late onset of abnormalities or no pathological sign.
Collapse
Affiliation(s)
- Valeria Marigo
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Core binding factors are heterodimeric transcription factors containing a DNA binding Runx1, Runx2, or Runx3 subunit, along with a non DNA binding CBF beta subunit. All four subunits are required at one or more stages of hematopoiesis. This review describes the role of Runx1 and CBF beta in the initiation of hematopoiesis in the embryo, and in the emergence of hematopoietic stem cells. We also discuss the later stages of hematopoiesis for which members of the core binding factor family are required, as well as the recently described roles for these proteins in autoimmunity.
Collapse
Affiliation(s)
- Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
40
|
Xiao ZS, Hjelmeland AB, Quarles LD. Selective Deficiency of the “Bone-related” Runx2-II Unexpectedly Preserves Osteoblast-mediated Skeletogenesis. J Biol Chem 2004; 279:20307-13. [PMID: 15007057 DOI: 10.1074/jbc.m401109200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2 (runt-related transcription factor 2) is a master regulator of skeletogenesis. Distinct promoters in the Runx2 gene transcribe the "bone-related" Runx2-II and non-osseous Runx2-I isoforms that differ only in their respective N termini. Existing mutant mouse models with both isoforms deleted exhibit an arrest of osteoblast and chondrocyte maturation and the complete absence of mineralized bone, but they do not distinguish the separate functions of the two N-terminal isoforms. To elucidate the function of the bone-related isoform, we generated selective Runx2-II-deficient mice by the targeted deletion of the distal promoter and exon 1. Homozygous Runx2-II-deficient (Runx2-II(-/-)) mice unexpectedly formed axial, appendicular, and craniofacial bones derived from either intramembranous ossification or mesenchymal cells of the bone collar, but they failed to form the posterior cranium and other bones derived from endochondral ossification. Heterozygous Runx2-II-deficient mice had grossly normal skeletons, but were osteopenic. The commitment of mesenchymal cells ex vivo to the osteoblast lineage occurred in Runx2-II(-/-) mice, but osteoblastic gene expression was impaired. Chondrocyte maturation appeared normal, but the zone of hypertrophic chondrocytes was not transformed into metaphyseal bone, leading to widened growth plates in Runx2-II(-/-) mice. Compensatory increments in Runx2-I expression occurred in Runx2-II(-/-) mice but were not sufficient to normalize osteoblastic maturation or transcriptional activity. Our findings support distinct functions of Runx2-II and -I in the control of skeletogenesis. Runx2-I is sufficient for early osteoblastogenesis and intramembranous bone formation, whereas Runx2-II is necessary for complete osteoblastic maturation and endochondral bone formation.
Collapse
Affiliation(s)
- Zhou-Sheng Xiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
41
|
Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S, Flanegan J, Heilman S, Garrett L, Dutra A, Anderson S, Pihan GA, Wolff L, Liu PP. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 2004; 101:4924-9. [PMID: 15044690 PMCID: PMC387350 DOI: 10.1073/pnas.0400930101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia subtype M4 with eosinophilia is associated with a chromosome 16 inversion that creates a fusion gene CBFB-MYH11. We have previously shown that CBFB-MYH11 is necessary but not sufficient for leukemogenesis. Here, we report the identification of genes that specifically cooperate with CBFB-MYH11 in leukemogenesis. Neonatal injection of Cbfb-MYH11 knock-in chimeric mice with retrovirus 4070A led to the development of acute myeloid leukemia in 2-5 months. Each leukemia sample contained one or a few viral insertions, suggesting that alteration of one gene could be sufficient to synergize with Cbfb-MYH11. The chromosomal position of 67 independent retroviral insertion sites (RISs) was determined, and 90% of the RISs mapped within 10 kb of a flanking gene. In total, 54 candidate genes were identified; six of them were common insertion sites (CISs). CIS genes included members of a zinc finger transcription factors family, Plag1 and Plagl2, with eight and two independent insertions, respectively. CIS genes also included Runx2, Myb, H2T24, and D6Mm5e. Comparison of the remaining 48 genes with single insertion sites with known leukemia-associated RISs indicated that 18 coincide with known RISs. To our knowledge, this retroviral genetic screen is the first to identify genes that cooperate with a fusion gene important for human myeloid leukemia.
Collapse
Affiliation(s)
- L H Castilla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Ian Anglin
- University of Maryland at Baltimore, Greenebaum Cancer Center, USA
| | | |
Collapse
|
43
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Javed A, Montecino M, Zaidi SK, Young D, Choi JY, Gutierrez S, Pockwinse S. Nuclear microenvironments support assembly and organization of the transcriptional regulatory machinery for cell proliferation and differentiation. J Cell Biochem 2004; 91:287-302. [PMID: 14743389 DOI: 10.1002/jcb.10777] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The temporal and spatial organization of transcriptional regulatory machinery provides microenvironments within the nucleus where threshold concentrations of genes and cognate factors facilitate functional interactions. Conventional biochemical, molecular, and in vivo genetic approaches, together with high throughput genomic and proteomic analysis are rapidly expanding our database of regulatory macromolecules and signaling pathways that are requisite for control of genes that govern proliferation and differentiation. There is accruing insight into the architectural organization of regulatory machinery for gene expression that suggests signatures for biological control. Localized scaffolding of regulatory macromolecules at strategic promoter sites and focal compartmentalization of genes, transcripts, and regulatory factors within intranuclear microenvironments provides an infrastructure for combinatorial control of transcription that is operative within the three dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. N., Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 2003; 103:2522-9. [PMID: 14630789 DOI: 10.1182/blood-2003-07-2439] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Runx1/core binding factor-beta (CBFbeta) transcriptional complex is required for the establishment of hematopoiesis during development. Despite its critical role during development, a detailed analysis of Runx1 expression within specific lineages and developmental stages of the adult hematopoietic system is lacking. To address this, we have developed a Runx1-green fluorescent protein (GFP) knock-in mouse. We show that Runx1 is expressed in several hematopoietic lineages, including myeloid, B-lymphoid, and T-lymphoid cells. By contrast, Runx1 is weakly expressed in early erythroid cells, and its expression is rapidly extinguished during later stages of erythropoiesis. Runx1 expression is induced during early B-cell development and is expressed at a uniform level during all subsequent stages of B-cell development. Within the thymus, Runx1 is expressed at the highest level in CD4-CD8- double-negative thymocytes. In peripheral T cells, Runx1 is differentially expressed, with CD4+ T cells expressing 2- to 3-fold higher levels of Runx1 than CD8+ cells. Taken together, these findings indicate that although widely expressed in the hematopoietic system, the expression of Runx1 is regulated in a cell type- and maturation stage-specific manner. In addition, the Runx1-IRES-GFP knock-in mouse strain should prove valuable for investigation of Runx1 function in adult hematopoiesis.
Collapse
Affiliation(s)
- Robert B Lorsbach
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Sato T, Ito R, Nunomura S, Ohno SI, Hayashi K, Satake M, Habu S. Requirement of transcription factor AML1 in proliferation of developing thymocytes. Immunol Lett 2003; 89:39-46. [PMID: 12946863 DOI: 10.1016/s0165-2478(03)00103-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although the transcription factor AML1/Runx1 is known to be essential for definitive hematopoiesis, its role in T cell differentiation is not well understood. In this study, we investigated the functions of AML1 in the early stage of thymocyte differentiation. For this, we crossed AML1 dominant interfering form (Runt)-transgenic mice with TCR-transgenic mice, and demonstrated the decrease of CD4+8+ (DP) thymocyte cell number although their proportion was not reduced. Reaggregation culture system for thymocytes of (RuntxTCR) double transgenic mice, in which the rate of de novo transition from DN cells to the DP stage can be estimated, showed that the cell division during the DN-to-DP transition is impaired without significant cell death. These results indicate that AML1 is involved in thymocyte differentiation by controlling cell proliferation.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Sowa H, Kaji H, Iu MF, Tsukamoto T, Sugimoto T, Chihara K. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. J Biol Chem 2003; 278:52240-52. [PMID: 14517210 DOI: 10.1074/jbc.m302566200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although several studies indicated that parathyroid hormone (PTH) exerted anabolic action on bone, its precise mechanisms have been unknown. On the other hand, transforming growth factor beta (TGF-beta), abundantly stored in bone matrix, stimulates bone formation with a local injection in rodents. Although our previous study suggested that Smad3 is an important molecule for the stimulation of bone formation, no reports have been available about the effects of PTH on Smad3. In this present study, we examined the effects of PTH on Smad3 and the physiological significance in mouse osteoblastic cells. PTH promoted the expression of Smad3 mRNA within 10 min and the protein level in a dose-dependent manner in MC3T3-E1 and rat osteoblastic UMR-106 cells. Protein kinase A (PKA) activator as well as protein kinase C (PKC) activators increased Smad3 protein level, and both PKA and PKC inhibitors antagonized PTH-induced Smad3, indicating that PTH promotes the production of Smad3 through both PKA and PKC pathways. Next, we examined anti-apoptotic effects of PTH and Smad3 in these cells, employing trypan blue, transferase-mediated nick end labeling, and Hoechst staining. Pretreatment with PTH or overexpression of Smad3 decreased the number of apoptotic cells induced by dexamethasone and etoposide. Moreover, a dominant negative mutant, Smad3DeltaC, abrogated PTH-induced anti-apoptotic effects. On the other hand, PTH augmented TGF-beta-induced transcriptional activity. Furthermore, PTH enhanced TGF-beta-induced production of type I collagen, whereas it did not affect TGF-beta-reduced proliferation in MC3T3-E1 cells. These observations indicated that PTH amplified the anabolic effects of TGF-beta by accelerating the transcriptional activity of Smad3. In conclusion, we first demonstrated that PTH-Smad3 axis exerts anti-apoptotic effects in osteoblasts and reinforces the anabolic action by TGF-beta in osteoblasts. Hence, PTH-Smad3 axis might be involved in the bone anabolic action of PTH.
Collapse
Affiliation(s)
- Hideaki Sowa
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Lian JB, Balint E, Javed A, Drissi H, Vitti R, Quinlan EJ, Zhang L, Van Wijnen AJ, Stein JL, Speck N, Stein GS. Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. J Cell Physiol 2003; 196:301-11. [PMID: 12811823 DOI: 10.1002/jcp.10316] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The requirement of Runx2 (Cbfal/AML3), a runt homology domain transcription factor essential for bone formation and osteoblast differentiation, is well established. Although Runx2 is expressed in the developing embryo prior to ossification, yet in the absence of Runx2 initial formation of the skeleton is normal, suggesting a potential redundancy in function of Runx family members. Here we addressed expression of the hematopoietic family member Runx1 (AML1/Cbfa2) in relation to skeletal development using a LacZ knock-in mouse model (Runx1(lz/+)). The resulting fusion protein reflects Runx1 promoter activity in its native context. Our studies show that Runx1 is expressed by prechondrocytic tissue forming the cartilaginous anlagen in the embryo, resting zone chondrocytes, suture lines of the calvarium, and in periosteal and perichondral membranes of all bone. Runx1 continues to be expressed in these tissues in adult mice, but is absent in mature cartilage or mineralized bone. However, hyaline cartilage outside the bone environment (trachea, xiphoid tissues), and epithelium of many soft tissues (trachea, thyroid, lung, skin) also express Runx1. The robust expression of Runx1 in vivo in chondroblasts at sites of cartilage growth and in osteoblasts at sites of new bone formation, suggests that Runx1 expression may be related to osteochondroprogenitor cell differentiation. This observation is further supported by high expression of Runx1 in ex vivo cultures of marrow stromal cells and calvarial derived osteoblasts from Runx1(lz/+) mice. These data indicate that Runx1 may contribute to the early stages of skeletogenesis and continues to function in the progenitor cells of tissues that support bone formation in the adult.
Collapse
Affiliation(s)
- Jane B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0106, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roper RJ, McAllister RD, Biggins JE, Michael SD, Min SH, Tung KSK, Call SB, Gao J, Teuscher C. Aod1 controlling day 3 thymectomy-induced autoimmune ovarian dysgenesis in mice encompasses two linked quantitative trait loci with opposing allelic effects on disease susceptibility. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5886-91. [PMID: 12794114 DOI: 10.4049/jimmunol.170.12.5886] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Day 3 thymectomy (D3Tx) leads to a paucity of CD4(+)CD25(+) suppressor T cells, a loss of peripheral tolerance, and the development of organ-specific autoimmune disease in adult mice. Importantly, D3Tx does not lead to autoimmune disease in all mouse strains, indicating that this process is genetically controlled. Previously, we reported linkage of D3Tx-induced autoimmune ovarian dysgenesis (AOD) and its intermediate phenotypes, antiovarian autoantibody responsiveness, oophoritis, and atrophy, to five quantitative trait loci (QTL), designated Aod1 through Aod5. We also showed interaction between these QTL and H2 as well as Gasa2, a QTL controlling susceptibility to D3Tx-induced autoimmune gastritis. To physically map Aod1, interval-specific bidirectional recombinant congenic strains of mice were generated and studied for susceptibility to D3Tx-induced AOD. Congenic mapping studies revealed that Aod1 controls susceptibility to oophoritis and comprises two linked QTL with opposing allelic effects. Aod1a resides between D16Mit211 (23.3 cM) and D16Mit51 (66.75 cM) on chromosome 16. Aod1b maps proximal of Aod1a between D16Mit89 (20.9 cM) and D16Mit211 (23.3 cM) and includes the candidate genes stefin A1, A2, and A3 (Stfa1-Stfa3), inhibitors of cathepsin S, a cysteine protease required for autoantigen presentation, and the development of autoimmune disease of the salivary and lacrimal glands following D3Tx. cDNA sequencing revealed the existence of structural polymorphisms for both Stfa1 and Stfa2. Given the roles of cathepsins in Ag processing and presentation, Stfa1 and Stfa2 alleles have the potential to control susceptibility to autoimmune disease at the level of both CD4(+)CD25(+) suppressor and CD4(+)CD25(-) effector T cells.
Collapse
Affiliation(s)
- Randall J Roper
- Department of Veterinary Pathobiology, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M, Pratap J, Choi J, Zaidi SK, Javed A, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear organization of RUNX transcriptional regulatory machinery in biological control of skeletogenesis and cancer. Blood Cells Mol Dis 2003; 30:170-6. [PMID: 12732180 DOI: 10.1016/s1079-9796(03)00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RUNX (AML/CBFA/PEBP2) transcription factors serve as paradigms for obligatory relationships between nuclear structure and physiological control of phenotypic gene expression. The RUNX proteins contribute to tissue restricted transcription by sequence-specific binding to promoter elements of target genes and serving as scaffolds for the assembly of coregulatory complexes that mediate biochemical and architectural control of activity. We will present an overview of approaches we are pursuing to address: (1) the involvement of RUNX proteins in governing competency for protein/DNA and protein/protein interactions at promoter regulatory sequences; (2) the recruitment of RUNX factors to subnuclear sites where the machinery for expression or repression of target genes is organized; and (3) the trafficking and integration of regulatory signals that control RUNX-mediated transcription.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiao ZS, Simpson LG, Quarles LD. IRES-dependent translational control of Cbfa1/Runx2 expression. J Cell Biochem 2003; 88:493-505. [PMID: 12532326 DOI: 10.1002/jcb.10375] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The P1 and P2 promoters of the Cbfa1/Runx2 gene produce Type I and II mRNAs with distinct complex 5'-untranslated regions, respectively designated UTR1 and UTR2. To evaluate whether the 5'-UTRs impart different translational efficiencies to the two isoforms, we created SV40 promoter-UTR-luciferase reporter (luc) constructs in which the translational potential of the 5'-UTR regions was assessed indirectly by measurement of luciferase activity in transfected cell lines in vitro. In MC3T3-E1 pre-osteoblasts, UTR2 was translated approximately twice as efficiently as the splice variants of UTR1, whereas translation of unspliced UTR1 was repressed. To determine if the UTRs conferred internal ribosome entry site (IRES)-dependent translation, we tested bicistronic SV40 promoter-Rluc-UTR-Fluc constructs in which Fluc is expressed only if the intercistronic UTR permits IRES-mediated translation. Transfection of bicistronic constructs into MC3T3-E1 osteoblasts demonstrated that both UTR2 and the spliced forms of UTR1 possess IRES activity. Similar to other cellular IRESs, activity increased with genotoxic stress induced by mitomycin C. In addition, we observed an osteoblastic maturation-dependent increase in IRES-mediated translation of both UTR2 and the spliced forms of UTR1. These findings suggest that Cbfa1 UTRs have IRES-dependent translational activities that may permit continued Cbfa1 expression under conditions that are not optimal for cap-dependent translation.
Collapse
Affiliation(s)
- Zhou-Sheng Xiao
- Department of Medicine, Center for Bone and Mineral Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|