1
|
Du L, Ma W, Peng W, Zhao H, Zhao J, Wang J, Wang W, Lyu S, Zhang Z, Qi X, Wang E, Lei C, Huang Y. Impact of STAT5A-CNVs on growth traits in Chinese beef cattle breeds. Gene 2024; 896:148073. [PMID: 38086453 DOI: 10.1016/j.gene.2023.148073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
CNVs, which are a type of structural variation, make a substantial impact on diverse characteristics in multiple species. Q-PCR and data association analysis were used for STAT5A gene copy in this study. This study aimed to investigate the copy number variation (CNV) of the STAT5A gene in seven Chinese cattle breeds, namely Qinchuan cattle, Xianan cattle, Yunling cattle, Ji'an cattle, Jiaxian Red cattle, Qaidam cattle, and Guyuan yellow cattle. Blood samples were collected for CNV typing, and the correlation between CNV type and growth traits was analyzed using SPSS 23.0 software and ANOVA. The findings revealed variations in the distribution of different copy number types among the different cattle breeds. Furthermore, association analysis demonstrated a positive impact of CNV in the STAT5A gene on cattle growth: in the JX, individuals with duplication types exhibited superior performance in terms of rump length (P < 0.05). Conversely, normal GY cattle demonstrated better body height and abdomen circumference (P < 0.05), while QD cattle exhibited a significant correlation between weight and body length with normal individuals (P < 0.05). Moreover, QC bovine duplication individuals outperformed other types, with copy number variation significantly associated with chest depth, chest width, and body length (P < 0.05). The results validate the correlation between copy number variation (CNV) of the STAT5A gene and growth characteristics in five different cattle breeds, providing a reliable benchmark for the purpose of cattle breeding.
Collapse
Affiliation(s)
- Lei Du
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| | - Weidong Ma
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi, Fufeng 722203, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, People's Republic of China
| | - Huangqing Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| | - Jiahao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| | - Jiamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| | - Wusheng Wang
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi, Fufeng 722203, People's Republic of China
| | - Shijie Lyu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zijing Zhang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Xingshan Qi
- Biyang County Xiananniu Technology Development Co., Ltd, 463700, People's Republic of China
| | - Eryao Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
| |
Collapse
|
2
|
Morato A, Accornero P, Hovey RC. ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author. J Mammary Gland Biol Neoplasia 2023; 28:10. [PMID: 37219601 DOI: 10.1007/s10911-023-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
Cheng R, Gao S, Hu W, Liu Y, Cao Y. Nuclear factor I/B mediates epithelial-mesenchymal transition in human melanoma cells through ZEB1. Oncol Lett 2020; 21:81. [PMID: 33363618 PMCID: PMC7723069 DOI: 10.3892/ol.2020.12342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between nuclear factor I/B (NFIB) and cancer attracts growing research interest. NFIB has diverse and specific roles in tumor progression and invasion. However, the potential effects and functions of this transcription factor in melanoma remain unclear. The present study sought to determine the distinguishing properties of NFIB in melanoma cells. Immunohistochemical examination of the tissues of 15 patients with melanoma indicated that the expression of NFIB was high in melanoma specimens, compared with the benign nevus and normal skin specimens. In addition, the relationship between high NFIB expression and low overall survival rate was assessed. Functional studies demonstrated that NFIB enhanced the malignancy of melanoma, including proliferation, migration and invasion. In addition, NFIB silencing in A375 and A875 cell lines inhibited the process of epithelial-mesenchymal transition (EMT), upregulated E-cadherin and zona occludens-1, but suppressed N-cadherin and vimentin expression. These findings may suggest a new function of NFIB in promoting the migration and invasion of melanoma cells. Therefore, the present study further evaluated the association between NFIB and zinc finger protein E-box binding homeobox-1 (ZEB1) in melanoma. Mechanistic experiments revealed that NFIB exerted its roles during EMT by regulating ZEB1. Overall, the present data indicates that NFIB promotes the malignancy of melanoma, particularly EMT, by modulating the ZEB1 axis, such as ZEB2, ATM and CHK1, which may represent a potential molecular therapeutic target in melanoma.
Collapse
Affiliation(s)
- Ruimin Cheng
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Gao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Hu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yamei Liu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
5
|
Khan MZ, Khan A, Xiao J, Ma Y, Ma J, Gao J, Cao Z. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals (Basel) 2020; 10:ani10112107. [PMID: 33202860 PMCID: PMC7697124 DOI: 10.3390/ani10112107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway has an important role in the regulation of immunity and inflammation. In addition, the signaling of this pathway has been reported to be associated with mammary gland development and milk production. Because of such important functions, the JAK-STAT pathway has been widely targeted in both human and animal diseases as a therapeutic agent. Recently, the JAK2, STATs, and inhibitors of the JAK-STAT pathway, especially cytokine signaling suppressors (SOCSs), have been reported to be associated with milk production and mastitis-resistance phenotypic traits in dairy cattle. Thus, in the current review, we attempt to overview the development of the JAK-STAT pathway role in bovine mastitis and milk production. Abstract The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway is a sequence of communications between proteins in a cell, and it is associated with various processes such as cell division, apoptosis, mammary gland development, lactation, anti-inflammation, and immunity. The pathway is involved in transferring information from receptors on the cell surface to the cell nucleus, resulting in the regulation of genes through transcription. The Janus kinase 2 (JAK2), signal transducer and activator of transcription A and B (STAT5 A & B), STAT1, and cytokine signaling suppressor 3 (SOCS3) are the key members of the JAK-STAT pathway. Interestingly, prolactin (Prl) also uses the JAK-STAT pathway to regulate milk production traits in dairy cattle. The activation of JAK2 and STATs genes has a critical role in milk production and mastitis resistance. The upregulation of SOCS3 in bovine mammary epithelial cells inhibits the activation of JAK2 and STATs genes, which promotes mastitis development and reduces the lactational performance of dairy cattle. In the current review, we highlight the recent development in the knowledge of JAK-STAT, which will enhance our ability to devise therapeutic strategies for bovine mastitis control. Furthermore, the review also explores the role of the JAK-STAT pathway in the regulation of milk production in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
- Correspondence: ; Tel.: +86-10-62733746
| |
Collapse
|
6
|
Landua JD, Moraes R, Carpenter EM, Lewis MT. Hoxd10 Is Required Systemically for Secretory Activation in Lactation and Interacts Genetically with Hoxd9. J Mammary Gland Biol Neoplasia 2020; 25:145-162. [PMID: 32705545 PMCID: PMC7392944 DOI: 10.1007/s10911-020-09454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Targeted disruption of the murine Hoxd10 gene (ΔHoxd10) leads to a high frequency of localized (gland-to-gland or regionally within a gland) lactation impairment in homozygous mutant mice as a single gene mutation. The effect of Hoxd10 disruption was enhanced by simultaneous disruption of Hoxd9 (ΔHoxd9/d10), a mutation shown previously to have no effect on mammary function as a single gene alteration. Mammary glands of homozygous ΔHoxd10 and ΔHoxd9/d10 females were indistinguishable from those of wild type littermate and age-matched control mice in late pregnancy. However, in lactation, 47% of homozygous ΔHoxd10 females, and 100% of homozygous ΔHoxd9/d10 females, showed localized or complete failure of two or more glands to undergo lactation-associated morphological changes and to secrete milk. Affected regions of ΔHoxd10 and ΔHoxd9/d10 mutants showed reduced prolactin receptor expression, reduced signal transducer and activator transcription protein 5 (STAT5) phosphorylation, reduced expression of downstream milk proteins, mislocalized glucose transporter 1 (GLUT1), increased STAT3 expression and phosphorylation, recruitment of leukocytes, altered cell cycle status, and increased apoptosis relative to unaffected regions and wild type control glands. Despite these local effects on alveolar function, transplantation results and hormone analysis indicate that Hoxd10 primarily has systemic functions that confer attenuated STAT5 phosphorylation on both wild type and ΔHoxd10 transplants when placed in ΔHoxd10 hosts, thereby exacerbating an underlying propensity for lactation failure in C57Bl/6 mice.
Collapse
Affiliation(s)
- John D Landua
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Room N1210; BCM600, Houston, TX, 77030, USA
| | - Ricardo Moraes
- Center for Cell and Gene Therapy, Texas Children's Feigin Center, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Ellen M Carpenter
- Division of Undergraduate Education, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA, 22314, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Room N1210; BCM600, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Li D, Ji Y, Zhao C, Yao Y, Yang A, Jin H, Chen Y, San M, Zhang J, Zhang M, Zhang L, Feng X, Zheng Y. OXTR overexpression leads to abnormal mammary gland development in mice. J Endocrinol 2018; 239:121-136. [PMID: 30089682 DOI: 10.1530/joe-18-0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
Oxytocin receptor (OXTR) is a G-protein-coupled receptor and known for regulation of maternal and social behaviors. Null mutation (Oxtr-/-) leads to defects in lactation due to impaired milk ejection and maternal nurturing. Overexpression of OXTR has never been studied. To define the functions of OXTR overexpression, a transgenic mouse model that overexpresses mouse Oxtr under β-actin promoter was developed ( ++ Oxtr). ++ Oxtr mice displayed advanced development and maturation of mammary gland, including ductal distention, enhanced secretory differentiation and early milk production at non-pregnancy and early pregnancy. However, ++ Oxtr dams failed to produce adequate amount of milk and led to lethality of newborns due to early involution of mammary gland in lactation. Mammary gland transplantation results indicated the abnormal mammary gland development was mainly from hormonal changes in ++Oxtr mice but not from OXTR overexpression in mammary gland. Elevated OXTR expression increased prolactin-induced phosphorylation and nuclear localization of STAT5 (p-STAT5), and decreased progesterone level, leading to early milk production in non-pregnant and early pregnant females, whereas low prolactin and STAT5 activation in lactation led to insufficient milk production. Progesterone treatment reversed the OXTR-induced accelerated mammary gland development by inhibition of prolactin/p-STAT5 pathway. Prolactin administration rescued lactation deficiency through STAT5 activation. Progesterone plays a negative role in OXTR-regulated prolactin/p-STAT5 pathways. The study provides evidence that OXTR overexpression induces abnormal mammary gland development through progesterone and prolactin-regulated p-STAT5 pathway.
Collapse
Affiliation(s)
- Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yan Ji
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunlan Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Anlan Yang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Jing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjiao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
8
|
The convergent roles of the nuclear factor I transcription factors in development and cancer. Cancer Lett 2017; 410:124-138. [PMID: 28962832 DOI: 10.1016/j.canlet.2017.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.
Collapse
|
9
|
Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, Bagchi IC, Bagchi MK. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet 2017; 13:e1006654. [PMID: 28278176 PMCID: PMC5363987 DOI: 10.1371/journal.pgen.1006654] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/23/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023] Open
Abstract
In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development. In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. We have identified CUZD1 as a novel mediator of prolactin signaling in the steroid hormone-primed mouse mammary gland during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Administration of prolactin failed to induce proliferation of the mammary epithelium in Cuzd1-null mice. Protein binding studies revealed that CUZD1 interacts with downstream transducers of prolactin signaling, JAK1/JAK2 and STAT5. Additionally, elevated expression of Cuzd1 in mammary epithelial cells stimulated phosphorylation and nuclear translocation of STAT5. CUZD1, therefore, is a critical mediator of prolactin that controls mammary alveolar development.
Collapse
Affiliation(s)
- Janelle Mapes
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Lavanya Anandan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| |
Collapse
|
10
|
Willi M, Yoo KH, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res 2016; 44:10277-10291. [PMID: 27694626 PMCID: PMC5137441 DOI: 10.1093/nar/gkw844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022] Open
Abstract
Cytokines utilize the transcription factor STAT5 to control cell-specific genes at a larger scale than universal genes, with a mechanistic explanation yet to be supplied. Genome-wide studies have identified putative STAT5-based mammary-specific and universal enhancers, an opportunity to investigate mechanisms underlying their differential response to cytokines. We have now interrogated the integrity and function of both categories of regulatory elements using biological and genetic approaches. During lactation, STAT5 occupies mammary-specific and universal cytokine-responsive elements. Following lactation, prolactin levels decline and mammary-specific STAT5-dependent enhancers are decommissioned within 24 h, while universal regulatory complexes remain intact. These differential sensitivities are linked to STAT5 concentrations and the mammary-specific Stat5 autoregulatory enhancer. In its absence, mammary-specific enhancers, but not universal elements, fail to be fully established. Upon termination of lactation STAT5 binding to a subset of mammary enhancers is substituted by STAT3. No STAT3 binding was observed at the most sensitive STAT5 enhancers suggesting that upon hormone withdrawal their chromatin becomes inaccessible. Lastly, we demonstrate that the mammary-enriched transcription factors GR, ELF5 and NFIB associate with STAT5 at sites lacking bona fide binding motifs. This study provides, for the first time, molecular insight into the differential sensitivities of mammary-specific and universal cytokine-sensing enhancers.
Collapse
Affiliation(s)
- Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet 2016; 48:904-911. [PMID: 27376239 PMCID: PMC4963296 DOI: 10.1038/ng.3606] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes.
Collapse
|
12
|
Tian Q, Wang HR, Wang MZ, Wang C, Liu SM. Lactogenic hormones regulate mammary protein synthesis in bovine mammary epithelial cells via the mTOR and JAK–STAT signal pathways. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The expression of CSN3, hormone receptor, the expression of genes regulating the mTOR, JAK–STAT signal pathways, and the relative content of к-casein as well as total casein were determined in the present study to explore the mechanism of the effect of lactogenic hormones on milk-protein synthesis in bovine mammary epithelial cells. The results showed that apoptosis of the cells was increased by inhibitor LY294002, while the expressions of genes encoding PKB, Rheb, PRAS40 and S6K1 in the mTOR signal pathway, JAK2, STAT5A in the JAK–STAT signal pathway, and genes encoding INSR, PRLR, NR3C1 and CSN3 were all downregulated, and the relative contents of κ-casein and total casein were decreased in the mammary epithelial cells compared with those in the control group. Comparatively, the inhibitory effects of AG-490 were more profound than those of LY294002, and the double block using both inhibitors had a greater effect than the single block. The CSN3 gene expression was downregulated and the content of milk casein was decreased by the inhibitors. In addition, the expression of the hormone receptor genes was downregulated. Our results suggest that lactogenic hormones, via their receptors in the membrane, regulated the JAK–STAT and m-TOR signal pathways, and affected cell proliferation and apoptosis, leading to changes in milk-protein synthesis.
Collapse
|
13
|
Ji MR, Lee SI, Jang YJ, Jeon MH, Kim JS, Kim KW, Park JK, Yoo JG, Jeon IS, Kwon DJ, Park CK, Byun SJ. STAT5 plays a critical role in regulating the 5'-flanking region of the porcine whey acidic protein gene in transgenic mice. Mol Reprod Dev 2015; 82:957-66. [PMID: 26256125 DOI: 10.1002/mrd.22535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022]
Abstract
The mammary gland serves as a valuable bioreactor system for the production of recombinant proteins in lactating animals. Pharmaceutical-grade recombinant protein can be harvested from the milk of transgenic animals that carry a protein of interest under the control of promoter regions genes encoding milk proteins. Whey acidic protein (WAP), for example, is predominantly expressed in the mammary gland and is regulated by lactating hormones during pregnancy. We cloned the 5'-flanking region of the porcine WAP gene (pWAP) to confirm the sequence elements in its promoter that are required for gene-expression activity. In the present study, we investigated how lactogenic hormones--including prolactin, hydrocortisone, and insulin--contribute to the transcriptional activation of the pWAP promoter region in mammalian cells, finding that these hormones activate STAT5 signaling, which in turn induce gene expression via STAT5 binding sites in its 5'-flanking region. To confirm the expression and hormonal regulation of the 5'-flanking region of pWAP in vivo, we generated transgenic mice expressing human recombinant granulocyte colony stimulating factor (hCSF2) in the mammary gland under the control of the pWAP promoter. These mice secreted hCSF2 protein in their milk at levels ranging from 242 to 1,274.8 ng/ml. Collectively, our findings show that the pWAP promoter may be useful for confining the expression of foreign proteins to the mammary gland, where they can be secreted along with milk.
Collapse
Affiliation(s)
- Mi-Ran Ji
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang In Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.,Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, Republic of Korea
| | - Ye-Jin Jang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Mi-Hyang Jeon
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jeom Sun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jin-Ki Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jae Gyu Yoo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ik-Soo Jeon
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dae-Jin Kwon
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
14
|
Signal transducer and activator of transcription 5a inhibited by pimozide may regulate survival of goat mammary gland epithelial cells by regulating parathyroid hormone-related protein. Gene 2014; 551:279-89. [DOI: 10.1016/j.gene.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/17/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022]
|
15
|
Wu AML, Yang M, Dalvi P, Turinsky AL, Wang W, Butcher D, Egan SE, Weksberg R, Harper PA, Ito S. Role of STAT5 and epigenetics in lactation-associated upregulation of multidrug transporter ABCG2 in the mammary gland. Am J Physiol Endocrinol Metab 2014; 307:E596-610. [PMID: 25117410 DOI: 10.1152/ajpendo.00323.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The multidrug resistance efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) is not only overexpressed in certain drug-resistant cancers but is also highly expressed in the mammary gland during lactation, carrying xenobiotics and nutrients into milk. We sought to investigate the molecular mechanisms involved in the upregulation of ABCG2 during lactation. Expression profiling of different mouse Abcg2 mRNA isoforms (E1a, E1b, and E1c) revealed that E1b is predominantly expressed and induced in the lactating mouse mammary gland. Despite this induction, analyses of CpG methylation status and published ChIP-seq datasets reveal that E1b promoter sequences in the virgin gland are already hypomethylated and marked with the open chromatin histone mark H3K4me2. Using a forced-weaning model to shut down lactation, we found that within 24 h there was a significant reduction in Abcg2 mRNA expression and a loss of signal transducer and activator of transcription-5 (STAT5) occupancy at the mouse Abcg2 gene. Luciferase reporter assays further showed that some of these STAT5-binding regions that contained interferon-γ-activated sequence (GAS) motifs function as an enhancer after prolactin treatment. We conclude that Abcg2 is already poised for expression in the virgin mammary gland and that STAT5 plays an important role in Abcg2 expression during lactation.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mingdong Yang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pooja Dalvi
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darci Butcher
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sean E Egan
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Patricia A Harper
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Shinya Ito
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
16
|
Hughes K, Watson CJ. The spectrum of STAT functions in mammary gland development. JAKSTAT 2014; 1:151-8. [PMID: 24058764 PMCID: PMC3670238 DOI: 10.4161/jkst.19691] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/21/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) family of transcription factors have a spectrum of functions in mammary gland development. In some cases these roles parallel those of STATs in other organ systems, while in other instances the function of individual STATs in the mammary gland is specific to this tissue. In the immune system, STAT6 is associated with differentiation of T helper cells, while in the mammary gland, it has a fundamental role in the commitment of luminal epithelial cells to the alveolar lineage. STAT5A is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. By contrast, the initiation of regression following weaning heralds a dramatic and specific activation of STAT3, reflecting its pivotal role in the regulation of cell death and tissue remodeling during mammary involution. Although it has been demonstrated that STAT1 is regulated during a mammary developmental cycle, it is not yet determined whether it has a specific, non-redundant function. Thus, the mammary gland constitutes an unusual example of an adult organ in which different STATs are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodeling.
Collapse
|
17
|
Robinson GW, Kang K, Yoo KH, Tang Y, Zhu BM, Yamaji D, Colditz V, Jang SJ, Gronostajski RM, Hennighausen L. Coregulation of genetic programs by the transcription factors NFIB and STAT5. Mol Endocrinol 2014; 28:758-67. [PMID: 24678731 DOI: 10.1210/me.2012-1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mammary-specific genetic programs are activated during pregnancy by the common transcription factor signal transducer and activator of transcription (STAT) 5. More than one third of these genes carry nuclear factor I/B (NFIB) binding motifs that coincide with STAT5 in vivo binding, suggesting functional synergy between these two transcription factors. The role of NFIB in this governance was investigated in mice from which Nfib had been inactivated in mammary stem cells or in differentiating alveolar epithelium. Although NFIB was not required for alveolar expansion, the combined absence of NFIB and STAT5 prevented the formation of functional alveoli. NFIB controlled the expression of mammary-specific and STAT5-regulated genes and chromatin immunoprecipitation-sequencing established STAT5 and NFIB binding at composite regulatory elements containing histone H3 lysine dimethylation enhancer marks and progesterone receptor binding. By integrating previously published chromatin immunoprecipitation-sequencing data sets, the presence of NFIB-STAT5 modules in other cell types was investigated. Notably, genomic sites bound by NFIB in hair follicle stem cells were also occupied by STAT5 in mammary epithelium and coincided with enhancer marks. Many of these genes were under NFIB control in both hair follicle stem cells and mammary alveolar epithelium. We propose that NFIB-STAT5 modules, possibly in conjunction with other transcription factors, control cell-specific genetic programs.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology (G.W.R., K.K., K.H.Y., Y.T., D.Y., V.C., S.J.J., L.H.), National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Microbiology (K.K.), Dankook University, Cheonan 330-714, Republic of Korea; Chengdu University of Traditional Chinese Medicine (Y.T.), Chengdu 610072, Republic of China; Key Laboratory of Acupuncture and Medicine (B.-M.Z.), Nanjing University of Traditional Chinese Medicine, Nanjing 210046, Republic of China; and New York State Center of Excellence in Bioinformatics and Life Sciences (R.M.G.), Department of Biochemistry, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Transcriptomic analysis reveals key regulators of mammogenesis and the pregnancy-lactation cycle. SCIENCE CHINA-LIFE SCIENCES 2014; 57:340-355. [PMID: 24554470 DOI: 10.1007/s11427-013-4579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
An organ unique to mammals, the mammary gland develops 90% of its mass after birth and experiences the pregnancylactation-involution cycle (PL cycle) during reproduction. To understand mammogenesis at the transcriptomic level and using a ribo-minus RNA-seq protocol, we acquired greater than 50 million reads each for the mouse mammary gland during pregnancy (day 12 of pregnancy), lactation (day 14 of lactation), and involution (day 7 of involution). The pregnancy-, lactation- and involution-related sequencing reads were assembled into 17344, 10160, and 13739 protein-coding transcripts and 1803, 828, and 1288 non-coding RNAs (ncRNAs), respectively. Differentially expressed genes (DEGs) were defined in the three samples, which comprised 4843 DEGs (749 up-regulated and 4094 down-regulated) from pregnancy to lactation and 4926 DEGs (4706 up-regulated and 220 down-regulated) from lactation to involution. Besides the obvious and substantive up- and down-regulation of the DEGs, we observe that lysosomal enzymes were highly expressed and that their expression coincided with milk secretion. Further analysis of transcription factors such as Trps1, Gtf2i, Tcf7l2, Nupr1, Vdr, Rb1, and Aebp1, and ncRNAs such as mir-125b, Let7, mir-146a, and mir-15 has enabled us to identify key regulators in mammary gland development and the PL cycle.
Collapse
|
19
|
Farmer C, Palin MF, Martel-Kennes Y. Impact of diet deprivation and subsequent overallowance during gestation on mammary gland development and lactation performance. J Anim Sci 2013; 92:141-51. [PMID: 24352961 DOI: 10.2527/jas.2013-6558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impacts of diet deprivation and subsequent overallowance during gestation on mammary gene expression and development and lactation performance were determined. Gilts were reared under a conventional (control, CTL; n = 59) or an experimental (treatment, TRT; n = 56) dietary regimen during gestation. The experimental regimen provided 70% (restriction diet, RES) and 115% (overallowance diet, OVER) of the protein and DE contents provided by the CTL diet. The RES diet was given during the first 10 wk of gestation followed by the OVER diet until farrowing. Some gilts (14 CTL and 14 TRT) were slaughtered on d 110 of gestation, and the others were allowed to farrow. Of these remaining sows, 28 (14 CTL and 14 TRT) were slaughtered on d 21 of lactation, and the rest underwent a second lactation. At each slaughter, mammary tissue was collected for compositional analyses and assessment of gene expression. Milk samples were collected on d 17 of the first lactation. Litter size was standardized to 11 ± 1, and piglets were weighed weekly until d 18 in both parities. The BW and back fat thickness of TRT first-parity sows were less than those of CTL sows in gestation (P < 0.05), and their BW was also less in lactation (P < 0.05). The BW of TRT second-parity sows was still less at mating (P < 0.05) and tended to be less on d 1 of lactation (P < 0.10) compared with CTL sows. There were no differences in piglet growth between CTL and TRT litters in either parity, yet mammary development and mammary gene expression were affected by treatment. There was less parenchymal tissue (P < 0.01) at the end of the first gestation in TRT than in CTL sows, but parenchymal tissue composition was not altered by treatment. Relative abundance of IGF-1 (P < 0.05), ornithine decarboxylase (P < 0.05), signal transducer and activator of transcription 5B (P < 0.05), and whey acidic protein (WAP, P < 0.01) genes in parenchyma at the end of the first gestation was lower in TRT than in CTL sows, and the effect on WAP genes was still present at the end of the first lactation (P < 0.01). Mammary composition at the end of the first lactation and milk composition were unaffected by treatment. In conclusion, feed deprivation and subsequent overallowance in gestation had unfavorable effects on sow BW, back fat, mammary development, and mammary gene expression at the end of gestation, but piglet growth rate over the 2 parities was not affected.
Collapse
Affiliation(s)
- C Farmer
- Agriculture and Agri-Food Canada, Dairy and Swine R and D Centre, Sherbrooke, QC J1M 1C8, Canada
| | | | | |
Collapse
|
20
|
Mammary-specific gene activation is defined by progressive recruitment of STAT5 during pregnancy and the establishment of H3K4me3 marks. Mol Cell Biol 2013; 34:464-73. [PMID: 24277936 DOI: 10.1128/mcb.00988-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Differentiation of mammary secretory epithelium during pregnancy is characterized by sequential activation of genes over several orders of magnitude. Although the transcription factor STAT5 is key to alveolar development, it is not clear to what extent it controls temporal activation of genetic programs in secretory epithelium. To uncover molecular mechanisms effecting progressive differentiation, we explored genome-wide STAT5 binding and H3K4me3 (i.e., trimethylated histone H3 at K4) marks in mammary tissues at early and midpregnancy and at parturition. STAT5 binding to genes induced during pregnancy was low in immature mammary tissue but increased with epithelial differentiation. Increased STAT5 binding was associated with the establishment of H3K4me3 marks and transcriptional activation. STAT5 binding preceded the formation of H3K4me3 marks in some mammary-specific genes. De novo STAT5 binding was also found at distal sites, indicating enhancers. Furthermore, we established an exhaustive mammary transcriptome. Through integration of RNA-seq and STAT5 and H3K4me4 ChIP-seq data, we discovered novel mammary-specific alternative promoters and genes, including noncoding RNAs. Our findings suggest that STAT5 is an early step in establishing transcription complexes on genes specifically expressed in mammary epithelium. This is the first study in an organ that links progressive chromatin occupancy of STAT5 to the acquisition of H3K4me3 marks and transcription during hormone-induced differentiation.
Collapse
|
21
|
Patel AK, Singh M, Suryanarayana VVS. Buffalo alpha S1-casein gene 5'-flanking region and its interspecies comparison. J Appl Genet 2013; 55:75-87. [PMID: 24142689 DOI: 10.1007/s13353-013-0176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/04/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Abstract
The expression of milk protein genes is tightly regulated in a spatio-temporal manner through the combinatorial interaction of lactogenic hormones and a set of transcription factors mediating developmental and tissue-specific gene expression. The recruitment of a unique set of transcription factors is determined by the cis-regulatory motifs present in the gene promoter region. Here, we report the isolation, sequencing, structural analysis and interspecies comparison of the 5'cis-regulatory region of the buffalo alpha S1 (αS1)-casein gene. The proximal promoter region of the buffalo αS1-casein gene harbored the insertion of a 72-bp fragment of long interspersed nuclear element of the L1_BT retrotransposon family. Among the core and vertebrate-specific promoter elements, the motifs for the binding of Brn POU domain factors (BRNF), Lim homeodomain factors (LHXF), NK6 homeobox transcription factors (NKX6), nuclear factor kappa B/c-rel (NFKB), AT-rich interactive domain factor (ARID), Brn POU domain factor 5 (BRN5), pancreatic and intestinal homeodomain transcription factor (PDX1), Distal-less homeodomain transcription factors (DLXF), T-cell factor/lymphoid enhancer-binding factor-1 (LEFF) and GHF-1 pituitary-specific POU domain transcription factor (PIT1) were over-represented in the αS1-casein gene regulatory region (Z score >4.0). The Multiple EM for Motif elicitation predicted three motifs which consisted of the sequences known to bind mammary gland factor/signal transducer and activator of transcription 5 (MGF/STAT5), estrogen receptor-related alpha (ERα), steroidogenic factor 1 (SF1) and glucocorticoid receptor (GR), indicating their potential role in the mammary gland-specific gene expression. The interspecies comparison of the proximal promoter region revealed conserved sequences for TATA boxes and MGF/STAT5 in all species, whereas activator protein 1 (AP1), pregnancy-specific mammary nuclear factor (PMF), CCAAT/enhancer binding protein (C/EBP), double-stranded and single-stranded DNA-binding protein 1 (DS1 and SS), ying and yang factor 1 (YY1), and GR half-sites were among ruminants. The functional significance of the L1_BT retrotransposon insertion on the buffalo αS1-casein gene expression needs to be experimentally validated.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | | | | |
Collapse
|
22
|
Oliver CH, Watson CJ. Making milk: A new link between STAT5 and Akt1. JAKSTAT 2013; 2:e23228. [PMID: 24058804 PMCID: PMC3710317 DOI: 10.4161/jkst.23228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
The transcription factor STAT5A is essential for two processes during mammary gland development. First, it controls the development of luminal progenitor cells from stem cells(1) and second, it has a role during pregnancy where it is required for alveologenesis(2) (,) (3) the production of clusters of luminal cells that synthesize and secrete milk during lactation. Thus, deletion of STAT5A in late pregnancy results in lactation failure. Alveologenesis requires the proliferation of a different lineage of luminal epithelial cells in response to the pregnancy hormones progesterone and prolactin, the latter of which activates STAT5. Prolactin is required additionally during lactation to ensure adequate milk production and the transcription of several milk protein genes has been shown to be regulated by STAT5.(4) (,) (5) On the other hand, the PI3K/Akt pathway is essential for the synthesis of other milk components such as lipids and lactose.(6) In recent elegant work from Lewis Chodosh's laboratory, published in Genes and Development, these two pathways are now shown to be directly linked.(7) More specifically, it is shown that the PI3K/Akt pathway induces autocrine prolactin production and that this is required for the initiation of lactation.
Collapse
Affiliation(s)
- Carrie H Oliver
- Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
23
|
Kim MK, Shin JS, Patel RA, Min YS, Song HJ, Sohn UD, Kim DK, Nam JY, Kim DS. The Effects of Pigs' Feet Consumption on Lactation. Ecol Food Nutr 2013; 52:223-38. [DOI: 10.1080/03670244.2012.706157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Wu AML, Dalvi P, Lu X, Yang M, Riddick DS, Matthews J, Clevenger CV, Ross DD, Harper PA, Ito S. Induction of multidrug resistance transporter ABCG2 by prolactin in human breast cancer cells. Mol Pharmacol 2013; 83:377-88. [PMID: 23150485 DOI: 10.1124/mol.112.082362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The multidrug transporter, breast cancer resistance protein, ABCG2, is up-regulated in certain chemoresistant cancer cells and in the mammary gland during lactation. We investigated the role of the lactogenic hormone prolactin (PRL) in the regulation of ABCG2. PRL dose-dependently induced ABCG2 expression in T-47D human breast cancer cells. This induction was significantly reduced by short-interfering RNA-mediated knockdown of Janus kinase 2 (JAK2). Knockdown or pharmacologic inhibition of the down-stream signal transducer and activator of transcription-5 (STAT5) also blunted the induction of ABCG2 by PRL, suggesting a role for the JAK2/STAT5 pathway in PRL-induced ABCG2 expression. Corroborating these findings, we observed PRL-stimulated STAT5 recruitment to a region containing a putative γ-interferon activation sequence (GAS) element at -434 base pairs upstream of the ABCG2 transcription start site. Introduction of a single mutation to the -434 GAS element significantly attenuated PRL-stimulated activity of a luciferase reporter driven by the ABCG2 gene promoter and 5'-flanking region containing the -434 GAS motif. In addition, this GAS element showed strong copy number dependency in its response to PRL treatment. Interestingly, inhibitors against the mitogen-activated protein kinase and phosphoinositide-3-kinase signaling pathways significantly decreased the induction of ABCG2 by PRL without altering STAT5 recruitment to the GAS element. We conclude that the JAK2/STAT5 pathway is required but not sufficient for the induction of ABCG2 by PRL.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Drug Resistance, Multiple
- Female
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- MCF-7 Cells
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Mutation/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Prolactin/pharmacology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/genetics
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation. PLoS One 2013; 8:e53270. [PMID: 23301053 PMCID: PMC3534698 DOI: 10.1371/journal.pone.0053270] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. METHODOLOGY/PRINCIPAL FINDINGS Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. CONCLUSIONS/SIGNIFICANCE A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the full functional capacity of the mammary gland.
Collapse
|
26
|
Xiang S, Mao L, Yuan L, Duplessis T, Jones F, Hoyle GW, Frasch T, Dauchy R, Blask DE, Chakravarty G, Hill SM. Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1G protein-coupled receptor via repression of ERα, Akt1, and Stat5. J Pineal Res 2012; 53:307-18. [PMID: 22582905 PMCID: PMC3422609 DOI: 10.1111/j.1600-079x.2012.01000.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine whether melatonin, via its MT(1) G protein-coupled receptor, impacts mouse mammary gland development, we generated a mouse mammary tumor virus (MMTV)-MT1-Flag-mammary gland over-expressing (MT1-mOE) transgenic mouse. Increased expression of the MT(1) -Flag transgene was observed in the mammary glands of pubescent MT1-mOE transgenic female mice, with further significant increases during pregnancy and lactation. Mammary gland whole mounts from MT1-mOE mice showed significant reductions in ductal growth, ductal branching, and terminal end bud formation. Elevated MT(1) receptor expression in pregnant and lactating female MT1-mOE mice was associated with reduced lobulo-alveolar development, inhibition of mammary epithelial cell proliferation, and significant reductions in body weights of suckling pups. Elevated MT(1) expression in pregnant and lactating MT1-mOE mice correlated with reduced mammary gland expression of Akt1, phospho-Stat5, Wnt4, estrogen receptor alpha, progesterone receptors A and B, and milk proteins β-casein and whey acidic protein. Estrogen- and progesterone-stimulated mammary gland development was repressed by elevated MT(1) receptor expression and exogenous melatonin administration. These studies demonstrate that the MT(1) melatonin receptor and its ligand melatonin play an important regulatory role in mammary gland development and lactation in mice through both growth suppression and alteration of developmental paradigms.
Collapse
Affiliation(s)
- Shulin Xiang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tamika Duplessis
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Frank Jones
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Gary W. Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| | - Tripp Frasch
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Robert Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E. Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
27
|
Prolactin-releasing peptide is a potent mediator of the innate immune response in leukocytes from Salmo salar. Vet Immunol Immunopathol 2012; 147:170-9. [PMID: 22578983 DOI: 10.1016/j.vetimm.2012.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/23/2022]
Abstract
Prolactin (PRL)-releasing peptide (PrRP) is a strong candidate stimulator of pituitary PRL transcription and secretion in teleosts. However, the role in control of extrapituitary PRL expression or its effects on innate immunity are unclear even in mammals. To study the possible presence of PrRP in peripheral organs, PrRP expression patterns and their effect on innate immunity were characterised in SHK-1 cells and head kidney (HK) leukocytes purified from the salmonid, Salmo salar. We detected immunoreactive cells in leukocytes from blood and HK of S. salar and found that PrRP mRNA was abundantly expressed in these cells. We have recently reported that physiological concentrations of native PRL, downstream of neuropeptide PrRP were able to induce expression of pro-inflammatory cytokines and the production of reactive oxygen species (ROS) in HK leukocytes and macrophages from S. salar and Sparus aurata. It is of interest to note that in this work we have revealed that synthetic PrRP was able to induce expression of pro-inflammatory cytokines (interleukins) IL-1β, IL-6, IL-8, IL-12 and PRL. We also show here that PrRP increased both (ROS) production and phagocytosis. Taken together, our results demonstrate for the first time that PrRP may be a local modulator of innate immune responses in leukocytes from S. salar.
Collapse
|
28
|
Caffarel MM, Zaragoza R, Pensa S, Li J, Green AR, Watson CJ. Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis. Cell Death Differ 2011; 19:511-22. [PMID: 21941370 DOI: 10.1038/cdd.2011.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signalling through the janus kinase (JAK)/signal transducer and activator of transcription (Stat) pathway is required at different stages of mammary gland development, and this pathway is frequently hyper-activated in cancer, including tumours of the breast. Stats 3, 5 and 6 have important roles in the differentiation and survival of mammary alveolar cells, but somewhat paradoxically, both Stat3 and 5 can have oncogenic activity in the mammary gland. Constitutive activation of JAK2 could be anticipated to result in hyper-activation of Stats 1, 3, 5 and 6 with concomitant cell transformation, although the outcome is difficult to envisage, particularly since Stats 3 and 5 play opposing roles in normal mammary gland development. Here, we show that expression of a constitutively active JAK2 mutant, JAK2 V617F, leads to hyper-activation of Stat5 in mammary epithelial cells (MECs), and transgenic mice expressing JAK2 V617F specifically in the mammary gland exhibit accelerated alveologenesis during pregnancy and delayed post-lactational regression. Overexpressing JAK2 V617F in MECs in vitro results in elevated proliferation and resistance to cell death. Furthermore, constitutively active JAK2 enhances anchorage-independent cell growth in the presence of a co-operating oncogene and accelerates tumourigenesis in a xenograft model. Taken together, our results provide insights into signalling downstream of constitutively active JAK2 and could be important for understanding the molecular mechanisms of breast tumourigenesis.
Collapse
Affiliation(s)
- M M Caffarel
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Immunotherapy of prostate cancer: identification of new treatments and targets for therapy, and role of WAP domain-containing proteins. Biochem Soc Trans 2011; 39:1433-6. [DOI: 10.1042/bst0391433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate adenocarcinoma is present in over 80% of men over the age of 80 and is by far the most common cancer of men. Although radical prostatectomy is curative in early disease, the risks of incontinence and impotence can affect the quality of life of patients. Early intervention with localized immunotherapy represents a potential solution as lymphocyte infiltration does occur in prostate cancer lesions, and immunotherapy with dendritic cell vaccines can significantly increase survival in late stage disease. However, lymphocytic infiltrates in the cancerous prostates have an anergic character arising from the suppressive effects of the microenvironment resulting from a conversion of effector cells into regulatory T-cells. Although TGFβ (transforming growth factor β) and IL-10 (interleukin-10) are known to be strong suppressor molecules associated with prostate cancer, they are among many possible suppressive factors. We discuss the possible role of alternative suppressor molecules, including the WAP (whey acidic protein) homologue ps20 that is expressed on prostate stroma and other WAP domain-containing proteins in the immunosuppressive prostate cancer milieu and discuss novel immunotherapeutic strategies to combat this disease.
Collapse
|
30
|
Sardina MT, Rosa AJM, Davoli R, Braglia S, Portolano B. Polymorphisms of beta-lactoglobulin promoter region in three Sicilian goat breeds. Mol Biol Rep 2011; 39:3203-10. [PMID: 21701825 DOI: 10.1007/s11033-011-1087-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 06/11/2011] [Indexed: 11/29/2022]
Abstract
Several beta-lactoglobulin (BLG) polymorphisms have been described within the proximal promoter region and coding region of the caprine gene, although no genetic variants affecting the protein amino acid composition and/or expression level have been characterized so far. Binding sites for several transcription factors (TFs) are present in the BLG promoter region. The aims of this work were to sequence the full-length promoter region of three Sicilian goat breeds in order to identify polymorphisms, analyze the identified haplotypes, search for differences between breeds for the presence of polymorphisms in this gene region, search for putative TFs binding sites, and check if polymorphisms lay within the identified TFs binding sites. The promoter region of BLG gene in Sicilian goat breeds showed high level of polymorphism due to the presence of 36 single nucleotide polymorphisms (SNPs). Association between polymorphic sites was computed within the whole sample analyzed and 18 haplotypes were inferred. Binding sites for three milk protein binding factors (MPBFs) and four nuclear factor-I (NF-I) were found within BLG promoter region based on the ovine sequence. The identification of some SNPs within TFs binding sites allowed hypothesizing the loss of TFs. Further studies are in progress to evaluate the effect of these mutations on binding affinity of TFs, the functional interaction of the TFs with the goat BLG promoter, and the relationship of the polymorphisms with BLG gene expression and milk production and composition.
Collapse
Affiliation(s)
- M T Sardina
- Dipartimento DEMETRA-Sezione Produzioni Animali, University of Palermo, Viale delle Scienze-Parco d'Orleans, 90128 Palermo, Italy.
| | | | | | | | | |
Collapse
|
31
|
Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J DAIRY RES 2011; 78:242-9. [PMID: 21435309 DOI: 10.1017/s0022029911000148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CD4+ T cells play a key role in the immune response of pathogen-induced mastitis in dairy cattle. Mammary gland factor STAT5b is involved in the regulation of CD4+T cell differentiation during inflammatory response and milk production. Little is known about the genetic variation effects of bovine CD4 and STAT5b genes on somatic cell score (SCS) and milk production traits in dairy cattle. The aim of the study was to investigate the single nucleotide polymorphisms (SNPs) of bovine CD4 and STAT5b in Chinese Holsteins and to analyse their association with estimated breeding values (EBVs) for SCS and milk production traits. In the present study, SNPs of CD4 (NC_007303 g.13598C>T) and STAT5b (NC_007317 g.31562 T>C) were identified and genotyped in Chinese Holstein population. The results showed that both SNPs were significantly associated with the EBVs for milk yield and protein yield in Chinese Holstein cows, and the SNP in CD4 was associated with the EBV for SCS (P<0.01). The additive effect of CD4 SNP on protein yield was significant (P<0.05), and the dominant effect of STAT5b SNP was significant on milk yield and protein yield (P<0.01). Cows with combination genotype C7 (CCTT: CD4 g.13598C>T and STAT5b g.31562 T>C) had the highest SCS EBV but lower milk yield, while cows with C2 (TTTC) produced more milk, fat and protein than the other eight combination genotypes. These results suggested that the SNPs in CD4 and STAT5b may be potential genetic markers for SCS and milk/protein yields selecting and warrant further functional research.
Collapse
|
32
|
Olavarría VH, Sepulcre MP, Figueroa JE, Mulero V. Prolactin-Induced Production of Reactive Oxygen Species and IL-1β in Leukocytes from the Bony Fish Gilthead Seabream Involves Jak/Stat and NF-κB Signaling Pathways. THE JOURNAL OF IMMUNOLOGY 2010; 185:3873-83. [DOI: 10.4049/jimmunol.0902306] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Stat5 promotes survival of mammary epithelial cells through transcriptional activation of a distinct promoter in Akt1. Mol Cell Biol 2010; 30:2957-70. [PMID: 20385773 DOI: 10.1128/mcb.00851-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal transducer and activator of transcription 5 (Stat5) plays a pivotal role in the proliferation, secretory differentiation, and survival of mammary epithelial cells. However, there is little information about Stat5 target genes that facilitate these biological processes. We provide here experimental evidence that the prolactin-mediated phosphorylation of Stat5 regulates the transcriptional activation of the Akt1 gene. Stat5 binds to consensus sequences within the Akt1 locus in a growth factor-dependent manner to initiate transcription of a unique Akt1 mRNA from a distinct promoter, which is only active in the mammary gland. Elevating the levels of active Akt1 restores the expression of cyclin D1 and proliferation of Jak2-deficient mammary epithelial cells, which provides evidence that Akt1 acts downstream of Jak/Stat signaling. The ligand-inducible expression of Stat5 in transgenic females mediates a sustained upregulation of Akt1 in mammary epithelial cells during the onset of postlactational involution. Stat5-expressing mammary glands exhibit a delay in involution despite induction of proapoptotic signaling events. Collectively, the results of the present study elucidate an underlying mechanism by which active Stat5 mediates evasion from apoptosis and self-sufficiency in growth signals.
Collapse
|
34
|
Wellberg E, Metz RP, Parker C, Porter WW. The bHLH/PAS transcription factor singleminded 2s promotes mammary gland lactogenic differentiation. Development 2010; 137:945-52. [PMID: 20150276 DOI: 10.1242/dev.041657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that the bHLH/PAS transcription factor, singleminded 2s (Sim2s), is required for proper mammary ductal morphogenesis and luminal epithelial differentiation. Furthermore, loss of Sim2s in breast cancer cells resulted in downregulation of epithelial markers and acquisition of a basal-like phenotype. The objective of this study was to further define the role of Sim2s in mammary differentiation. We found that Sim2s is developmentally regulated throughout mammary gland development with highest expression during lactation. Mammary glands from nulliparous mice expressing Sim2s driven by the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) promoter were morphologically indistinguishable from wild-type mice but displayed hallmarks of precocious lactogenic differentiation. These included elevated expression of the milk protein genes Wap and Csn2, and apical localization of the lactation marker Npt2b. Consistent with the in vivo results, Sim2s enhanced prolactin-mediated Csn2 expression in HC11 and CIT3 mouse mammary epithelial cells, and downregulation of Sim2s by shRNA in HC11 cells inhibited Csn2 expression. Chromatin immunoprecipitation (ChIP) analyses of the Csn2 gene found that Sim2s associates with the Csn2 promoter and re-ChIP experiments showed that Sim2s interacted with the RNA II polymerase (RNAPII) complex. Together, these data demonstrate, for the first time, that Sim2s is required for establishing and maintaining mammary gland differentiation.
Collapse
Affiliation(s)
- Elizabeth Wellberg
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
35
|
Qian L, Lopez V, Seo YA, Kelleher SL. Prolactin regulates ZNT2 expression through the JAK2/STAT5 signaling pathway in mammary cells. Am J Physiol Cell Physiol 2009; 297:C369-77. [PMID: 19494234 DOI: 10.1152/ajpcell.00589.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zinc transporter ZnT2 (SLC30A2) plays an important role in zinc secretion into milk during lactation. The physiological process of mammary gland secretion is regulated through complex integration of multiple lactogenic hormones. Prolactin plays a primary role in this regulation through the activation of various signaling cascades including Jak2/STAT5, mitogen-activated protein kinase (MAPK), p38, and phosphatidylinositol 3-kinase (PI3K). The precise mechanisms that regulate the transfer of specific nutrients such as zinc into milk are not well understood. Herein we report that prolactin increased ZnT2 abundance transcriptionally in cultured mammary epithelial (HC11) cells. To delineate the responsible mechanisms, we first determined that prolactin-mediated ZnT2 induction was inhibited by pretreatment with the Jak2 inhibitor AG490 but not by the MAPK inhibitor PD-98059. Using a luciferase reporter assay, we demonstrated that ZnT2 promoter activity was increased by prolactin treatment, which was subsequently abolished by expression of a dominant-negative STAT5 construct, implicating the Jak2/STAT5 signaling pathway in the transcriptional regulation of ZnT2. Two putative consensus STAT5 binding sequences in the ZnT2 promoter were identified (GAS1:-674 to -665 and GAS2:-377 to -368). Mutagenesis of the proximal GAS2 element resulted in complete abrogation of PRL-induced ZnT2 promoter activity. The promoter incorporating the distal GAS1 mutation was only able to respond to very high PRL concentrations. Results from both the mutagenesis and gel shift assays indicated that a cooperative relationship exists between GAS1 and GAS2 for PRL-induced activation; however, the proximal GAS2 plays a more critical role in STAT5-mediated signal transduction compared with the GAS1 element. Finally, chromosome immunoprecipition assay further confirmed that prolactin activates STAT5 binding to the ZnT2 promoter in vivo. Taken together, these results illustrate that prolactin regulates the transcription of ZnT2 through activation of the Jak2/STAT5 signaling pathway to assist in providing optimal zinc for secretion into milk during lactation.
Collapse
Affiliation(s)
- Linxi Qian
- Department of Nutritional Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
36
|
Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, Frank DA. Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 2009; 7:966-76. [PMID: 19491198 DOI: 10.1158/1541-7786.mcr-08-0238] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is often associated with inappropriate activation of transcription factors involved in normal mammary development. Two related transcription factors, signal transducer and activator of transcription (STAT) 5 and STAT3, play important and distinct roles in mammary development and both can be activated in breast cancer. However, the relative contribution of these STATs to mammary tumorigenesis is unknown. We have found that primary human breast tumors displaying activation of both STATs are more differentiated than those with STAT3 activation alone and display more favorable prognostic characteristics. To understand this difference, we have analyzed the effect of these STATs on gene regulation and phenotype of mammary carcinoma cells. STAT5 and STAT3 mediate opposing effects on several key target genes, with STAT5 exerting a dominant role. Using a model system of paired breast cancer cell lines, we found that coactivation of STAT5 and STAT3 leads to decreased proliferation and increased sensitivity to the chemotherapeutic drugs paclitaxel and vinorelbine compared with cells that have only STAT3 activation. Thus, STAT5 can modify the effects of STAT3 from the level of gene expression to cellular phenotype and analysis of the activation state of both STAT5 and STAT3 may provide important diagnostic and prognostic information in breast cancer.
Collapse
Affiliation(s)
- Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Collins LL, Lew BJ, Lawrence BP. TCDD exposure disrupts mammary epithelial cell differentiation and function. Reprod Toxicol 2009; 28:11-7. [PMID: 19490989 DOI: 10.1016/j.reprotox.2009.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/13/2009] [Accepted: 02/27/2009] [Indexed: 12/24/2022]
Abstract
Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced beta-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less alveolar-like structure formation. SCp2 cells express transcriptionally active AhR, and exposure to TCDD induces expression of the AhR target gene CYP1B1. Exposure to TCDD during pregnancy reduced expression of the cell adhesion molecule E-cadherin in the mammary gland and decreased phosphorylation of STAT5, a known regulator of beta-casein gene expression. These data provide morphological and molecular evidence that TCDD-mediated AhR activation disrupts structural and functional differentiation of the mammary gland, and present an in vitro model for studying the effects of TCDD on mammary epithelial cell function.
Collapse
Affiliation(s)
- Loretta L Collins
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, USA
| | | | | |
Collapse
|
38
|
Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E. The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem 2008; 105:262-70. [PMID: 18500724 DOI: 10.1002/jcb.21823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Whey acidic protein (WAP) and casein (CSN) genes are among the most highly expressed milk protein genes in the mammary gland of the lactating mouse. Their tissue-specific regulation depends on the activation and recruitment of transcription factors, and chromatin modifications in response to hormonal stimulation. We have investigated if another mechanism, such as specific positioning of the genes in the nucleus, could be involved in their functional regulation. Fluorescent in situ hybridization was used to study the nuclear localization of WAP and CSN genes in mouse mammary epithelial cells (HC11) cultured in the absence and presence of lactogenic hormones. Automatic 3D image processing and analysis tools were developed to score gene positions. In the absence of lactogenic hormones, both genes are distributed non-uniformly within the nucleus: the CSN locus was located close to the nuclear periphery and the WAP gene tended to be central. Stimulation by lactogenic hormones induced a statistically significant change to their distance from the periphery, which has been described as a repressive compartment. The detection of genes in combination with the corresponding chromosome-specific probe revealed that the CSN locus is relocated outside its chromosome territory following hormonal stimulation, whereas the WAP gene, which is already sited more frequently outside its chromosome territory in the absence of hormones, is not affected. We conclude that milk protein genes are subject to nuclear repositioning when activated, in agreement with a role for nuclear architecture in gene regulation, but that they behave differently as a function of their chromosomal context.
Collapse
Affiliation(s)
- Maria Ballester
- UR1196-Génomique et Physiologie de la Lactation, INRA, Jouy en Josas Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RWE. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol 2008; 22:2677-88. [PMID: 18927239 DOI: 10.1210/me.2008-0097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes beta-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed beta-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.
Collapse
Affiliation(s)
- Paul G Tiffen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Watson CJ, Neoh K. The Stat family of transcription factors have diverse roles in mammary gland development. Semin Cell Dev Biol 2008; 19:401-6. [PMID: 18723104 DOI: 10.1016/j.semcdb.2008.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
The Stat family of transcription factors have diverse roles in mammary gland development. Genetic studies in mice have revealed an essential requirement for Stat5a in development of secretory alveolar cells during pregnancy while Stat6, which is normally associated with differentiation of T helper cells, is important in the commitment of luminal cells to this alveolar lineage. In contrast, Stat3 is specifically activated at the initiation of post-lactational regression when it has an essential function in the regulation of cell death and tissue remodelling. Stat1 and Stat4 have been shown to be regulated during a mammary developmental cycle although whether they have specific, non-redundant roles is not clear. Thus, the adult mammary gland is somewhat unusual in that it is a tissue where different Stats are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodelling.
Collapse
Affiliation(s)
- C J Watson
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | | |
Collapse
|
41
|
Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH, Wagner KU. Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis 2008; 43:1-11. [PMID: 16106354 DOI: 10.1002/gene.20149] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whey acidic protein (WAP) is the principal whey protein found in rodent milk, which contains a cysteine-rich motif identified in some protease inhibitors and proteins involved in tissue modeling. The expression of the Wap gene, which is principally restricted to the mammary gland, increases more than 1,000-fold around mid-pregnancy. To determine whether the expression of this major milk protein gene is a prerequisite for functional differentiation of mammary epithelial cells, we generated conventional knockout mice lacking two alleles of the Wap gene. Wap-deficient females gave birth to normal litter sizes and, initially, produced enough milk to sustain the offspring. The histological analysis of postpartum mammary glands from knockout dams does not reveal striking phenotypic abnormalities. This suggests that the expression of the Wap gene is not required for alveolar specification and functional differentiation. In addition, we found that Wap is dispensable as a protease inhibitor to maintain the stability of secretory proteins in the milk. Nevertheless, a significant number of litters thrived poorly on Wap-deficient dams, in particular during the second half of lactation. This observation suggests that Wap may be essential for the adequate nourishment of the growing young, which triple in size within the first 10 days of lactation. Important implications of these findings for the use of Wap as a marker for advanced differentiation of mammary epithelial cells and the biology of pluripotent progenitors are discussed in the final section.
Collapse
Affiliation(s)
- Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases and the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
42
|
Mukhopadhyay SS, Rosen JM. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells. Biochem Biophys Res Commun 2007; 358:770-6. [PMID: 17511965 PMCID: PMC1942171 DOI: 10.1016/j.bbrc.2007.04.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/30/2007] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5.
Collapse
Affiliation(s)
- Sudit S Mukhopadhyay
- Department of Molecular and Cancer Genetics, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Nanashima N, Asano J, Hayakari M, Nakamura T, Nakano H, Yamada T, Shimizu T, Akita M, Fan Y, Tsuchida S. Nuclear localization of STAT5A modified with O-linked N-acetylglucosamine and early involution in the mammary gland of Hirosaki hairless rat. J Biol Chem 2005; 280:43010-6. [PMID: 16227201 DOI: 10.1074/jbc.m509481200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hirosaki hairless rat (HHR) is a mutant strain spontaneously derived from Sprague-Dawley rats (SDR), and its inheritance is autosomal recessive. In addition to hair loss, female HHRs show involution of the mammary gland at an early stage of lactation. In the present study we investigated the mammary gland development in HHR. Morphological examinations revealed that HHR mammary glands are underdeveloped in virgins and exhibit distended alveoli on day 1 of lactation (L1), followed by involution. Milk secretion was observed on L1 in HHR. Whey acidic protein and other proteins were increased in milk of HHR and heterozygous rats on SDS-polyacrylamide gel electrophoresis. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed apoptosis induction in HHRs at an early stage of lactation. By Western blotting, signal transducer and activator of transcription (STAT) 5A levels in cytoplasmic and nuclear fractions of the mammary glands were not different between HHR and SDR on L1 and L7. Nuclear localization of STAT5A in HHR and SDR was confirmed by immunohistochemistry. Tyr-phosphorylated STAT5A was not detected in HHR but was detected in SDR nuclear fractions. Several proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) were detected in HHR nuclear extract on L1, although not in SDR or heterozygous rats by Western blotting. When HHR nuclear extract was applied to wheat germ agglutinin-agarose, a part of STAT5A was recovered in bound fractions. STAT5A of SDR or heterozygous rat nuclei were not bound to the lectin. Electrophoretic mobility shift assay revealed that STAT5A modified with O-GlcNAc is bound to the STAT5-responsive element. These results indicate that the mammary glands of HHR showed terminal differentiation for a short period, followed immediately by involution. In HHR, STAT5A is modified with O-GlcNAc but is not Tyr-phosphorylated. This type of glycosylation is suggested to be involved in the transient activation of STAT5A in HHR.
Collapse
Affiliation(s)
- Naoki Nanashima
- Second Department of Biochemistry, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lipnik K, Petznek H, Renner-Müller I, Egerbacher M, Url A, Salmons B, Günzburg WH, Hohenadl C. A 470 bp WAP-promoter fragment confers lactation independent, progesterone regulated mammary-specific gene expression in transgenic mice. Transgenic Res 2005; 14:145-58. [PMID: 16022386 DOI: 10.1007/s11248-004-7434-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of a 470 bp sub-fragment of the murine whey acidic protein (WAP) promoter in the context of a retroviral expression plasmid to direct gene expression to mammary epithelial cells was analysed in a number of independent transgenic mouse lines. In contrast to previous findings with the genuine 2.5 kb promoter fragment, our studies revealed a highly mammary gland-specific expression detectable only in non-lactating animals. This suggested a mainly progesterone-regulated activity of the short fragment. Therefore, transgene expression was examined in the progesterone-determined estrous cycle and during pregnancy. In accordance with in vitro data from stably transfected cell lines, in both situations expression was upregulated at stages associated with high progesterone levels. Taken together these data provide deeper insight into WAP-promoter regulation and stress the usefulness of the shortened fragment for a lactation independent mammary-targeted expression.
Collapse
Affiliation(s)
- Karoline Lipnik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Astolfi A, Rolla S, Nanni P, Quaglino E, De Giovanni C, Iezzi M, Musiani P, Forni G, Lollini PL, Cavallo F, Calogero RA. Immune prevention of mammary carcinogenesis in HER-2/neu transgenic mice: a microarray scenario. Cancer Immunol Immunother 2005; 54:599-610. [PMID: 15690207 PMCID: PMC11034326 DOI: 10.1007/s00262-004-0635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 10/01/2004] [Indexed: 12/22/2022]
Abstract
Neoplastic transformation is a multistep process in which gene products of specific regulatory pathways are involved at each stage. Identification of these overexpressed or mutated gene products provides an unprecedented opportunity to address the immune system against defined antigens and eliminate transformed cells. Mice transgenic for these oncogenes (e.g. HER-2/neu, a prototype of deregulated oncogenic protein kinase membrane receptors) are ideal experimental models for assessing the potential of active immunization. The demonstration that vaccines can cure HER-2/neu transplantable tumors, prevent their onset and delay the progression of preneoplastic lesions in mice at risk suggests that efficient immunological inhibition of HER-2/neu carcinogenesis can be achieved by specific vaccination. To further explore this issue, halting of tumor progression in the mammary glands of BALB-neuT mice with two immunization protocols in two laboratories has been studied independently by DNA microarray analysis. Combination of the two sets of results revealed a clear correlation between them when the tumor mass was titrated by transcription profiling. It was also clear that both protocols induced a strong, polyclonal antibody response and halted tumor growth at a condition very similar to that at which the vaccination began. Differences in the expression profiles were mainly related to the expression levels of a few chemokines and T-cell-specific genes that may be in some way correlated with the efficacy of the vaccination. Last, combination of the expression data with the protection results indicated that chronic vaccination is needed to maintain an active IFN-gamma-mediated response in the mammary gland.
Collapse
Affiliation(s)
- Annalisa Astolfi
- Cancer Research Section, Department of Experimental Pathology, University of Bologna, Bologna, 40126 Italy
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Italy
| | - Patrizia Nanni
- Cancer Research Section, Department of Experimental Pathology, University of Bologna, Bologna, 40126 Italy
| | - Elena Quaglino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Italy
| | - Carla De Giovanni
- Cancer Research Section, Department of Experimental Pathology, University of Bologna, Bologna, 40126 Italy
| | - Manuela Iezzi
- Aging Research Center, CeSi, G. D’Annunzio University Foundation, Chieti, 66013 Italy
| | - Piero Musiani
- Aging Research Center, CeSi, G. D’Annunzio University Foundation, Chieti, 66013 Italy
| | - Guido Forni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Italy
| | - Pier-Luigi Lollini
- Cancer Research Section, Department of Experimental Pathology, University of Bologna, Bologna, 40126 Italy
| | - Federica Cavallo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Italy
| | - Raffaele A. Calogero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Italy
| |
Collapse
|
46
|
Jura J, Jura J, Murzyn K, Wegrzyn P, Zarebski A. Cloning and characterization of 5' upstream promoter region of rat WAP gene. ACTA ACUST UNITED AC 2004; 1727:58-64. [PMID: 15652158 DOI: 10.1016/j.bbaexp.2004.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 11/25/2022]
Abstract
Regulatory regions of genes encoding milk proteins are frequently used to produce in the mammary gland of transgenic animals a variety of pharmaceutically and medically important human proteins. One such example is the whey acidic protein (WAP) promoter region, identified so far in the genome of mouse, rat, rabbit, camel, pig, brushtail possum and Tammar wallaby. The aim of the present study was cloning and characterization of the 5' upstream promoter region of rat WAP gene. Using Genome Walking procedure, we cloned the region extending from -849 to -3671 bp. We have shown that there are two conserved regions highly similar to hypersensitive sites present in mouse and rabbit upstream region of WAP gene with binding sites for STAT5 transcription factor, essential for expression of WAP gene in mammary glands during lactation. We characterized dispersed and tandem repeats in the upstream region of rat WAP gen localized not far away from the translation initiation site.
Collapse
Affiliation(s)
- Jacek Jura
- Department of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice/Kraków, Poland.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Prolactin (PRL) is one of a family of related hormones including growth hormone (GH) and placental lactogen (PL) that are hypothesized to have arisen from a common ancestral gene about 500 million years ago. Over 300 different functions of PRL have been reported, highlighting the importance of this pituitary hormone. PRL is also synthesized by a number of extra-pituitary tissues including the mammary gland and the uterus. Most of PRL's actions are mediated by the unmodified 23 kDa peptide, however, PRL may be modified post-translation, thereby altering its biological effects. PRL exerts these effects by binding to its receptor, a member of the class I cytokine receptor super-family. This activates a number of signaling pathways resulting in the transcription of genes necessary for the tissue specific changes induced by PRL. Mouse knockout models of the major forms of the PRL receptor have confirmed the importance of PRLs role in reproduction. Further knockout models have provided insight into the importance of PRL signaling intermediates and the advent of transcript profiling has allowed the elucidation of a number of PRL target genes.
Collapse
Affiliation(s)
- Jessica Harris
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
48
|
Litterst CM, Kliem S, Marilley D, Pfitzner E. NCoA-1/SRC-1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical region of the STAT5 transactivation domain. J Biol Chem 2003; 278:45340-51. [PMID: 12954634 DOI: 10.1074/jbc.m303644200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a transcription factor that activates prolactin (PRL)-dependent gene expression in the mammary gland. For the activation of its target genes, STAT5 recruits coactivators like p300 and the CREB-binding protein (CBP). In this study we analyzed the function of p300/CBP-associated members of the p160/SRC/NCoA-family in STAT5-mediated transactivation of beta-casein expression. We found that only one of them, NCoA-1, acts as a coactivator for both STAT5a and STAT5b. The two coactivators p300/CBP and NCoA-1 cooperatively enhance STAT5a-mediated transactivation. For NCoA-1-dependent coactivation of STAT5, both the activation domain 1 and the amino-terminal bHLH/PAS domain are required. The amino-terminal region mediates the interaction with STAT5a in cells. A motif of three amino acids in an alpha-helical region of the STAT5a-transactivation domain is essential for the binding of NCoA-1 and for the transcriptional activity of STAT5a. Moreover we observed that NCoA-1 is involved in the synergistic action of the glucocorticoid receptor and STAT5a on the beta-casein promoter. These findings support a model in which STAT5, in concert with the glucocorticoid receptor, recruits a multifunctional coactivator complex to initiate the PRL-dependent transcription.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
49
|
Sadate-Ngatchou PI, Pouchnik DJ, Griswold MD. Identification of testosterone-regulated genes in testes of hypogonadal mice using oligonucleotide microarray. Mol Endocrinol 2003; 18:422-33. [PMID: 14605096 DOI: 10.1210/me.2003-0188] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
FSH and testosterone (T) are required for normal spermatogenesis in mammalian males. These hormones regulate the function of Sertoli cells, which in turn support the differentiation of germ cells in the seminiferous tubules. The molecular targets for these hormones in the testis remain elusive. In this study, we have used hypogonadal (hpg) mice as an in vivo model to examine the actions of T on gene expression in murine testis. This expression pattern was analyzed using Affymetrix Murine GeneChip U74v.2 A, B, C (36,899 transcripts) along with Microarray Suite version 5.0, GeneSpring software, and real-time PCR. hpg mice aged 35-45 d were injected sc with 25 mg testosterone proprionate (TP) in 100 ml of sesame oil, and the animals were killed 4, 8, 12, or 24 h after TP treatments. Untreated hpg mice were used as controls. Gene expression from testes of hpg mice treated with TP was compared with that of testes of untreated hpg mice. At all experimental time points earlier than 24 h, there were more mRNAs with reduced than increased abundance in testes of hpg mice after TP treatment. This study suggests that in murine testis, the primary action of T might be to repress gene expression.
Collapse
|
50
|
Paukku K, Yang J, Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5. Mol Endocrinol 2003; 17:1805-14. [PMID: 12819296 DOI: 10.1210/me.2002-0256] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signal transducer and activator of transcription 5 (Stat5) plays a critical role in prolactin (PRL)-induced transcription of several milk protein genes. Stat5-mediated gene regulation is modulated by cooperation of Stat5 with cell type- and promoter-specific transcription factors as well as by interaction with transcriptional coregulators. Recently, the expression of a tudor and staphylococcal nuclease-like domains containing protein p100 was found to be increased in mammary epithelial cells during lactation in response to lactogenic hormones. p100 was initially identified as a transcriptional coactivator of the Epstein-Barr virus nuclear antigen 2. In this study we investigated the potential role of p100 in PRL-induced Stat5-mediated transcriptional activation. PRL stimulation increased the p100 protein levels in HC11 mouse mammary epithelial cells. p100 did not affect the early activation events of Stat5, but p100 enhanced the Stat5-dependent transcriptional activation in HC11 cells. p100 associated with Stat5 both in vivo and in vitro, and the interaction was mediated by both the tudor and staphylococcal nuclease-like domains of p100. Together these results suggest that p100 functions as a transcriptional coactivator for Stat5-dependent gene regulation and the existence of a positive regulatory loop in PRL-induced transcription, in which PRL stabilizes p100 protein, which in turn can cooperate with Stat5 in transcriptional activation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|