1
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
2
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Dopkins N, Neameh WH, Hall A, Lai Y, Rutkovsky A, Gandy AO, Lu K, Nagarkatti PS, Nagarkatti M. Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. Int J Mol Sci 2021; 22:11801. [PMID: 34769237 PMCID: PMC8583798 DOI: 10.3390/ijms222111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Wurood Hantoosh Neameh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alex Rutkovsky
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
4
|
Jiang J, Zhu J, Liu Q, Zhang T, Wen J, Xia J, Deng Y. Role of DNA methylation-related chromatin remodeling in aryl hydrocarbon receptor-dependent regulation of T-2 toxin highly inducible Cytochrome P450 1A4 gene. FASEB J 2021; 35:e21469. [PMID: 33788981 DOI: 10.1096/fj.202002570rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by food-contaminating fungi, which lead to global epigenetic changes and cause toxicity to both farm animals and humans. However, whether mycotoxins induce gene-specific epigenetic alterations associated with inducible downstream gene expression is unclear as are the underlying regulatory mechanisms. Here, we found that T-2 toxin and its deacetylated metabolites but not deoxynivalenol (DON) or other representative mycotoxins highly induced the expression of cytochrome P450 1A4 (CYP1A4) in both Leghorn male hepatoma (LMH) cells and chicken primary hepatocytes, and this effect was related to the regulation of both aryl hydrocarbon receptor (AhR) and DNA methylation. We used methylation-sensitive restriction enzyme digestion-qPCR (MSRE-qPCR) and chromatin immunoprecipitation (ChIP) assays and found that the binding of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) to highly methylated CpG island 3-2 at the enhancer of CYP1A4 was accompanied by the recruitment of the repressive histone modification marker H3K27me3, inducing a silent state. In turn, T-2 toxin stimulation enriched the binding of AhR to demethylated CpG island 3-2, which facilitated p300 and H3K9ac recruitment and ultimately generated an activated chromatin structure at the enhancer by increasing the active histone modification markers, including H3K4me3, H3K27ac, and H3K14ac. Interestingly, T-2 toxin-induced AhR activation also facilitated RNA polymerase II binding to CpG island 2, which may form a transcriptionally active chromatin structure at the promoter and ultimately transactivate CYP1A4. Our findings provide novel insights into the epigenetic regulation of T-2 toxin-induced gene expression.
Collapse
Affiliation(s)
- Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Qian Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jianhong Xia
- Key Laboratory of Regenerative Biology of Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
5
|
Kuzmina NS, Luong TM, Rubanovich AV. Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Viluksela M, Pohjanvirta R. Multigenerational and Transgenerational Effects of Dioxins. Int J Mol Sci 2019; 20:E2947. [PMID: 31212893 PMCID: PMC6627869 DOI: 10.3390/ijms20122947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Dioxins are ubiquitous and persistent environmental contaminants whose background levels are still reason for concern. There is mounting evidence from both epidemiological and experimental studies that paternal exposure to the most potent congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover, in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result in reduced reproductive performance along with other adverse effects in subsequent generations, foremost through the paternal but also via the maternal germline. These impacts have been accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide an up-to-date picture of the present state of knowledge to the reader. These studies provide biological plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in mediating these effects. Currently available data do not allow to accurately estimate the human health implications of these findings, although epidemiological evidence on lowered male/female ratio suggests that this effect may take place at realistic human exposure levels.
Collapse
Affiliation(s)
- Matti Viluksela
- School of Pharmacy and Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Environmental Health Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Giuliani C, Biggs D, Nguyen TT, Marasco E, De Fanti S, Garagnani P, Le Phan MT, Nguyen VN, Luiselli D, Romeo G. First evidence of association between past environmental exposure to dioxin and DNA methylation of CYP1A1 and IGF2 genes in present day Vietnamese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:976-985. [PMID: 30373043 DOI: 10.1016/j.envpol.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
During the Vietnam War, the United States military sprayed over 74 million litres of Agent Orange (AO) to destroy forest cover as a counterinsurgency tactic in Vietnam, Laos and Cambodia. The main ingredient was contaminated by 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD). DNA methylation (DNAm) differences are potential biomarker of environmental toxicants exposure. The aim of this study was to perform a preliminary investigation of the DNAm levels from peripheral blood of the present-day Vietnamese population, including individuals whose parents, according to historical data, were exposed to AO/TCDD during the war. 94 individuals from heavily sprayed areas (cases) and 94 individuals from non-sprayed areas (controls) were studied, and historical data on alleged exposure of parents collected. 94 cases were analysed considering those whose father/parents participated in the war (N = 29) and considering the place of residence of both parents (64 living in sprayed areas versus 30 in non-contaminated areas). DNAm levels in CYP1A1 and IGF2 genes were measured (MALDI-TOF technology). The analyses showed that: 1) one CpG site in the CYP1A1 and one in the IGF2 gene showed significant differences in DNAm levels between cases and controls; 2) the CYP1A1 region resulted to be hypomethylated (in 9 out of 16 sites/units; p-val<0.01) in 29 individuals whose father/parents participated in the war in the spray zones; 3) we showed that the place of residence of both parents influenced methylation levels of the CYP1A1 and IGF2 genes (p-val<0.05). In conclusion this study indicates that past environmental exposure to dioxin (AO/TCDD) shapes the DNAm profile of CYP1A1 and that the place of living for parents in former spray zones influences DNAm of CYP1A1 and IGF2 genes. These results open the way to new applications of DNAm as potential biomarker(s) of past human exposure to dioxin.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy; School of Anthropology and Museum Ethnography, University of Oxford, UK.
| | - David Biggs
- Department of History and School of Public Policy, University of California, Riverside, USA
| | | | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Sara De Fanti
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86 Stockholm, Sweden
| | | | | | - Donata Luiselli
- Department for the Cultural Heritage (DBC), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, S. Orsola Hospital, University of Bologna, Italy and European School of Genetic Medicine, Italy
| |
Collapse
|
8
|
Kumar MB, Perdew GH. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr 2018; 8:273-86. [PMID: 10947077 PMCID: PMC6157383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aryl hydrocarbon receptor (AhR), a soluble cytosolic protein, mediates many of the toxic effects of TCDD and related chemicals. The toxic effects are largely cell, tissue, and promoter context dependent. Although many details of the overall dioxin signal transduction have been elucidated, the transcriptional regulation of dioxin-induced genes like cyp1A1 is not yet completely understood. Previously, we have shown that the co-regulator RIP140 is a potential AhR coactivator. In this report, the role of coactivator, SRC-1, in AhR-mediated transcriptional regulation was examined. SRC-1 increased AhR-mediated, TCDD-dependent reporter gene activity three-fold in Hepa-1 and COS-1 cells. In in vitro interaction assays, SRC-1 was found to interact with AhR but not with ARNT. SRC-1 interacted weakly with AhR in the absence of TCDD and the addition of ligand further increased SRC-1 binding to AhR. Deletional mapping studies of the AhR revealed that SRC-1 binds to the AhR transactivation domain. Finer mapping of the SRC-1-interacting subdomains in the AhR transactivation domain suggested that the Q-rich subdomain was necessary and sufficient for interaction, similar to that seen with RIP140. Using GFP-tagged constructs, SRC-1 was shown to interact with AhR in cells. Unlike RIP140, LXXLL motifs in SRC-1 were necessary for interaction with AhR in vitro and for coactivation in Hepa-1 cells. The recruitment of certain coactivators by a variety of receptors suggests possible common coactivator pools and competition among receptors for limiting coactivators. Examination of the role of SRC-1 in AhR/ARNT transactivation in ARNT-deficient mutant Hepa-1 c4 cells demonstrates that the AhR transactivation domain is sufficient for enhanced coactivation mediated by SRC-1 in the presence of a transactivation domain deleted ARNT protein.
Collapse
Affiliation(s)
- Mohan B. Kumar
- *Graduate Program in Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Gary H. Perdew
- *Graduate Program in Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- †Center for Molecular Toxicology and the Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to Gary H. Perdew, Department of Veterinary Science, 115 Henning Building, University Park, PA 16802. Tel: (814) 865-0400; (814) 863-6140; E-mail:
| |
Collapse
|
9
|
Fiorito F, Santamaria R, Irace C, De Martino L, Iovane G. 2,3,7,8-tetrachlorodibenzo-p-dioxin and the viral infection. ENVIRONMENTAL RESEARCH 2017; 153:27-34. [PMID: 27883971 DOI: 10.1016/j.envres.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/13/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a widespread highly toxic environmental contaminant, suppresses immune response and leads to an increased susceptibility to infectious agents. In particular, several studies have provided evidence that TCDD decreases resistance to numerous viruses. Indeed, in vivo and in vitro investigations showed that the presence of TCDD is able to interfere with the replication of both human and animal viruses, such as influenza A viruses, coxsackie virus B3, immunodeficiency virus type-1 (HIV-1), cytomegalovirus (CMV), herpes simplex II, and bovine herpesvirus 1. Moreover, TCDD could induce an exacerbation of latent infection produced by HIV-1, CMV or Epstein-Barr virus. In this review, we first describe the general effects of TCDD exposure on mammalian cells, then we focus on its influence on the viral infections. Overall, the available data support the concept that TCDD exposure may act as an additional risk factor in promoting of viral diseases.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
10
|
Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development. Stem Cells Int 2016; 2016:2574152. [PMID: 27148368 PMCID: PMC4842384 DOI: 10.1155/2016/2574152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.
Collapse
|
11
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 686] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
12
|
Abstract
The packaging of eukaryotic DNA into nucleosomes, the fundamental unit of chromatin, creates a barrier to nuclear processes, such as transcription, DNA replication, recombination, and repair. This obstructive nature of chromatin can be overcome by the enzymatic activity of chromatin remodeling complexes, which create a more favorable environment for the association of essential factors and regulators to sequences within target genes. Here, we describe a detailed approach for analyzing chromatin architecture and remodeling by restriction endonuclease hypersensitivity assay. This procedure uses restriction endonucleases to characterize changes in chromatin that accompany nucleosome remodeling. The specific experimental example described in this article is the BRG1 complex-dependent chromatin remodeling of the steroid hormone-responsive mouse mammary tumor virus promoter. Through the use of these methodologies one is able to quantify changes at specific nucleosomes in response to regulatory signals.
Collapse
|
13
|
Di Meo GP, Perucatti A, Genualdo V, Caputi-Jambrenghi A, Rasero R, Nebbia C, Iannuzzi L. Chromosome fragility in dairy cows exposed to dioxins and dioxin-like PCBs. Mutagenesis 2010; 26:269-72. [DOI: 10.1093/mutage/geq082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Differential regulation of the dioxin-induced Cyp1a1 and Cyp1b1 genes in mouse hepatoma and fibroblast cell lines. Toxicol Lett 2010; 194:26-33. [PMID: 20116417 DOI: 10.1016/j.toxlet.2010.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/20/2022]
Abstract
The xenobiotic metabolizing enzymes Cyp1a1 and Cyp1b1 can be induced by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-rho-dioxin (dioxin) via the aryl hydrocarbon receptor (AhR). These genes are differentially induced by dioxin in different mouse cell lines. In the mouse hepatoma cell line Hepa1c1c7 (Hepa-1), the Cyp1a1 gene is induced to very high levels by dioxin, but the levels of Cyp1b1 mRNA are extremely low and are not inducible by dioxin. The reverse is the case for the mouse embryonic fibroblast cell line C3H10T1/2, in which Cyp1b1 is induced to very high levels by dioxin, but the levels of Cyp1a1 mRNA are extremely low and not inducible by dioxin. However, dioxin treatment leads to the recruitment of AhR to the enhancer regions of both genes in both cell lines. Somatic cell hybrid clones generated between the two cell lines display high levels of induction of both genes in response to dioxin. Strong reactivation of the Cyp1a1 gene was also observed in C3H10T1/2 cell line after treatment with the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (5-AzadC) and the histone deacetylase inhibitor, trichostatin-A (TSA). However, only modest reactivation of Cyp1b1 was observed in Hepa-1 cells after 5-AzadC or TSA treatment. These data demonstrate that the presence or absence of binding of AhR to regulatory regions is not responsible for determining the differences in levels of induction of the two genes in these cell lines and indicate that DNA methylation plays a major role in silencing of Cyp1a1 gene expression in C3H10T1/2 cells, but appears to play only a minor role in silencing Cyp1b1 gene expression in Hepa-1 cells, which likely occurs principally because Hepa-1 cells lack a factor required for high levels of induction of this gene.
Collapse
|
15
|
Taylor RT, Wang F, Hsu EL, Hankinson O. Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicol Sci 2008; 107:1-8. [PMID: 18842620 DOI: 10.1093/toxsci/kfn217] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 (CYP) 1A1 and CYP1B1 are inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) in the human breast cancer cell line, MCF-7. Since CYP1A1 was inducible to a much greater degree than CYP1B1, we hypothesized that there may be differences in coactivator recruitment to the promoter and/or enhancer regions of these genes. Dioxin treatment leads to recruitment of the aryl hydrocarbon receptor to the enhancer regions but not to the proximal promoter regions of both the CYP1A1 and CYP1B1 genes. On the other hand, dioxin treatment facilitated recruitment of RNA polymerase II to the promoters but not the enhancer regions. Dioxin treatment also elicited recruitment of the transcriptional coactivators, steroid receptor coactivator 1 (SRC-1) and steroid receptor coactivator 2 (SRC-2) and p300, which possess intrinsic histone acetyltranferase activities, to both genes, whereas Brahma (BRM)/Switch 2-related gene 1 (BRG-1), a subunit of nucleosomal remodeling factors, was recruited more robustly to CYP1A1 relative to CYP1B1. Small inhibitory RNA-mediated knockdown of p300 and SRC-2 adversely affected dioxin induction of both genes, whereas knockdown of BRM/BRG-1 reduced CYP1A1 induction but had little, if any, effect on CYP1B1 induction. These results suggest that nucleosomal remodeling is less significant for dioxin-mediated induction of CYP1B1 than that of CYP1A1 and may be related to the more modest inducibility of the former. Interestingly, simultaneous knockdown of SRC-2 and BRM/BRG-1 had no greater effect on CYP1A1 induction than knockdown of each coactivator individually, while simultaneous knockdown of p300 and BRM/BRG-1 had a much greater effect than knockdown of each individual gene, suggesting that the recruitment of SRC-2 to CYP1A1 depends upon BRM/BRG-1, while the recruitments of p300 and BRM/BRG-1 are independent of each other. These observations provide novel insights into the functional roles of the endogenous coactivators in dioxin induction of the human CYP1A1 and CYP1B1 genes in their natural chromosomal configurations.
Collapse
Affiliation(s)
- Robert T Taylor
- Molecular Toxicology Program, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
16
|
Oduro AK, Fritsch MK, Murdoch FE. Chromatin context dominates estrogen regulation of pS2 gene expression. Exp Cell Res 2008; 314:2796-810. [PMID: 18662686 PMCID: PMC2646615 DOI: 10.1016/j.yexcr.2008.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 12/29/2022]
Abstract
Chromatin structure and transcription factor activity collaborate to set the transcription level of a gene. Our understanding of the relative contributions of each of these factors at a specific gene is limited. We studied the effects of an altered chromatin environment on the activity of the estrogen-responsive pS2 promoter. We created stable cell lines with the pS2 promoter situated in an alternative chromatin site in addition to it being in its native site. Both promoters were estrogen-responsive for estrogen receptor alpha (ERalpha) recruitment, but transcription was inducible only at the native site. At the recombinant site, transcription was high and constitutive. Higher histone H3 and H4 acetylation (acH3 and acH4), as well as trimethylated lysine 4 on histone H3 levels, was observed at the recombinant site compared to the native site in vehicle treated cells. Inhibition of histone deacetylases (HDACs) resulted in increased acH4, but only modest increases in acH3, ERalpha binding and basal transcription at the native pS2 site. Inhibiting HDACs had no effect on transcription from the recombinant site. These data suggest that highly active chromatin is not only permissive for transcription, but can override the requirement for the transcription factor at an inducible promoter.
Collapse
Affiliation(s)
- Akua K Oduro
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, MSC 5250, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
17
|
Burgoon LD, Zacharewski TR. Automated Quantitative Dose-Response Modeling and Point of Departure Determination for Large Toxicogenomic and High-Throughput Screening Data Sets. Toxicol Sci 2008; 104:412-8. [DOI: 10.1093/toxsci/kfn083] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Okino ST, Quattrochi LC, Pookot D, Iwahashi M, Dahiya R. A dioxin-responsive enhancer 3' of the human CYP1A2 gene. Mol Pharmacol 2007; 72:1457-65. [PMID: 17785579 DOI: 10.1124/mol.107.039826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human CYP1A genes CYP1A1 and CYP1A2 are in a head-to-head orientation on chromosome 15. Both CYP1A genes and CYP1B1 are transcriptionally induced by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that binds 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin). Although the TCDD-responsive enhancers for CYP1A1 and CYP1B1 are well characterized, a similar CYP1A2 enhancer has not been identified. In the human prostate cell line RWPE-1, CYP1A2 mRNA expression is dramatically induced by TCDD. Therefore, analysis of the native CYP1A2 gene in these cells can provide insight into its induction mechanism. To identify sites that may bind AhR on the CYP1A locus, we scanned 75 kilobases of chromosome 15 sequence for high-affinity AhR binding sites. We then analyzed most of the sites for TCDD-inducible AhR interaction by chromatin immunoprecipitation. As expected, the CYP1A1 and CYP1B1 enhancers bind AhR in TCDD-treated cells. It is noteworthy that we identify a region 3' of CYP1A2 that also binds AhR in response to TCDD. We cannot detect AhR binding at other sites on the CYP1A locus. In vivo footprinting demonstrates that two AhR binding sites in the CYP1A2 3' region are occupied in TCDD-treated cells. Reporter-gene studies show that these sites confer TCDD-responsiveness to a heterologous promoter. AhR also binds to the CYP1A2 3' region in TCDD-treated LS180 cells but not in HepG2 and ND-1 cells. In the latter cell lines, the CYP1A2 3' region is extensively methylated. In summary, we identify a novel TCDD-responsive enhancer for CYP1A2. We were surprised to find that this enhancer is not conserved across species and is primarily human-specific.
Collapse
Affiliation(s)
- Steven T Okino
- Department of Urology, San Francisco Veterans Affairs Medical Center and UCSF, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
19
|
Okino ST, Pookot D, Majid S, Zhao H, Li LC, Place RF, Dahiya R. Chromatin changes on the GSTP1 promoter associated with its inactivation in prostate cancer. Mol Carcinog 2007; 46:839-46. [PMID: 17415778 DOI: 10.1002/mc.20313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutathione-S-transferases (GSTs) are metabolic enzymes that help detoxify and eliminate harmful chemicals. In prostate tumors, expression of GST pi (encoded by GSTP1) is frequently lost because of promoter hypermethylation. Here we analyze the native GSTP1 promoter in cancerous and noncancerous human prostate cells to identify structural features associated with its cancer-related transcriptional silencing. We find that in noncancerous prostate cells (RWPE-1 and PWR-1E) GSTP1 is constitutively expressed, not methylated, highly accessible, bound by transcription factors and associated with histones with activating modifications (histone H3 methylated at lysine 4 and acetylated histones H3 and H4). In contrast, in cancerous prostate cells (LNCaP) GSTP1 is not expressed, extensively methylated, inaccessible, lacks bound transcription factors and is not associated with histones with activating modifications. We do not detect significant levels of histones with repressive modifications (histone H3 methylated at lysine 9 or 27) on GSTP1 in any cell line indicating that they are not associated with cancer-related GSTP1 silencing. Treatment of LNCaP cells with 5-azacytidine restores activating histone modifications on GSTP1 and reactivates transcription. We conclude that, in the process of prostate carcinogenesis, activating histone modifications on GSTP1 are lost and the DNA becomes methylated and inaccessible resulting in transcriptional silencing.
Collapse
Affiliation(s)
- Steven T Okino
- Department of Urology, San Francisco Veterans Affairs Medical Center and the University of California San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Niimi S, Kim EY, Iwata H, Watanabe MX, Yasunaga G, Fujise Y, Tanabe S. Identification and hepatic expression profiles of cytochrome P450 1–4 isozymes in common minke whales (Balaenoptera acutorostrata). Comp Biochem Physiol B Biochem Mol Biol 2007; 147:667-81. [PMID: 17526421 DOI: 10.1016/j.cbpb.2007.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/27/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Full-length cDNA sequences of cytochrome P450 (CYP) 2C78, 2E1, 3A72, 4A35 and 4V6 isozymes were isolated from a hepatic cDNA library of common minke whale (Balaenoptera acutorostrata). The deduced amino acid sequences of minke whale CYP2C78, 2E1, 3A72, 4A35 and 4V6 showed high identities with cattle CYP2C86 (83%), pig CYP2E1 (85%), sheep CYP3A24 (82%), pig CYP4A21 (80%), and human CYP4V2 (76%), respectively. To investigate whether or not these CYP expression levels are altered by contamination of organochlorine contaminants (OCs), mRNA levels of these CYPs in the liver of common minke whale were measured using a quantitative real-time RT-PCR method, and the quantified mRNA levels were employed for the statistical analysis with the residue levels of OCs including PCBs, DDTs (p,p'-DDT, p,p'-DDD and p,p'-DDE), chlordanes (cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor and oxychlordane), HCHs (alpha-, beta- and gamma-isomers) and hexachlorobenzene that have already been reported elsewhere. Spearman's rank correlation analyses showed no significant correlation between CYP expression levels and each OC level in the common minke whale liver, implying that these environmental chemicals have no potential to alter the expression levels of these CYPs or the residue levels encountered in the whale livers may not reach their transcriptional regulation levels. This suggests that the expression of individual CYPs in the whale liver may be at basal level. Relationships among hepatic mRNA expression levels of these CYP2-4 isozymes together with CYP1A1 and CYP1A2 were also examined. Significant positive correlations were detected among mRNA expression levels of individual CYP isozymes in most cases. These associations indicate that the transcriptional regulation of these CYPs examined in this study may be reciprocally related. CYP1A1 levels showed a positive correlation with CYP1A2 levels (r=0.64, p<0.01) indicating that both CYP isozymes were regulated by aryl hydrocarbon receptor activated by endogenous ligands. A strong positive correlation between CYP2C78 and 3A72 (r=0.90, p<0.001) suggests that expression of these CYP isozymes may be under a regulation mechanism of cross-talk in which specific nuclear receptors such as constitutive androstane receptor and pregnane X receptor are involved. The present study indicates that minke whale from the North Pacific may be a model species to investigate the mechanism of basal regulation of these CYPs.
Collapse
Affiliation(s)
- Satoko Niimi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Zeruth G, Pollenz RS. Functional analysis of cis-regulatory regions within the dioxin-inducible CYP1A promoter/enhancer region from zebrafish (Danio rerio). Chem Biol Interact 2007; 170:100-13. [PMID: 17720151 DOI: 10.1016/j.cbi.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/26/2007] [Accepted: 07/12/2007] [Indexed: 11/23/2022]
Abstract
In vitro mutagenesis was utilized to render the various xenobiotic response elements (XREs) within the zebrafish CYP1A promoter/enhancer region non-functional either independently or in combination. Reporter gene assays revealed that only XRE4, XRE7, and XRE8 contributed to maximal TCDD-mediated induction of luciferase and that the contribution of each XRE to maximal induction was not equal. XRE4 and XRE7 were capable of functioning independently, while XRE8 alone could not support TCDD-mediated induction but was required for the ability of XRE4 and XRE7 to support maximal induction. These results were observed in cell lines derived from human, mouse and zebrafish. Mutagenesis of 3' nucleotides flanking the non-functional XRE5, and functional XRE4 did not alter the function of these XREs in cell culture. In silico analyses revealed the presence of putative Sp1, AP2, CREB, and two HNF-3 transcription factor binding sites that were localized to common positions within the enhancer region of both the mouse and zebrafish CYP1A genes. In vitro mutagenesis of the binding sites showed that loss of the Sp1 or AP2 sites had minimal impact on TCDD-mediated gene induction while loss of the putative CREB site resulted in a modest decrease in basal and inducible activity and mutation of the HNF-3 reduced inducible activity by >90% of controls. Collectively, these findings suggest that the presence of XREs is not the sole determinant for regulation of aryl hydrocarbon receptor (AHR)-mediated gene and do not function in an additive manner.
Collapse
Affiliation(s)
- Gary Zeruth
- Division of Cell Biology, Microbiology and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620, United States
| | | |
Collapse
|
22
|
Operaña TN, Nguyen N, Chen S, Beaton D, Tukey RH. Human CYP1A1GFP Expression in Transgenic Mice Serves as a Biomarker for Environmental Toxicant Exposure. Toxicol Sci 2006; 95:98-107. [PMID: 17065433 DOI: 10.1093/toxsci/kfl144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human CYP1A1 gene is regulated by the aryl hydrocarbon receptor (AhR), and induction of CYP1A1 is known to play an important role in xenobiotic metabolism. To examine the regulation of human CYP1A1 in vivo, we created a transgenic mouse strain (Tg-CYP1A1(GFP)) expressing a chimeric gene consisting of the entire human CYP1A1 gene (15 kb) fused with a GFP reporter gene. The treatment of Tg-CYP1A1(GFP) mice with a single intraperitoneal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or benzo[a]pyrene (B[a]P) led to the induction of CYP1A1(GFP) in both the liver and the lung as determined by fluorescence and Western blot analysis. The localization of induced fluorescence in liver also demonstrated the usefulness of cultured hepatocytes in examining the actions of AhR agonists toward induction of CYP1A1(GFP). Other routes of B[a]P administration, such as by oral exposure at 100 mg/kg for 3 days, led to reduced induction of CYP1A1(GFP) in liver and lung. In liver, expression of CYP1A1(GFP) was a sensitive marker for oral exposure, while mouse CYP1A1 was not induced at these doses. While first pass metabolism of B[a]P in the gastrointestinal tract reduces the potential of the AhR to induce CYP1A1(GFP) in the liver, adequate concentrations reach the hepatic circulation as demonstrated by induction of human UGT1A proteins in transgenic mice that express the human UGT1 locus. The capability to identify fluorescently labeled CYP1A1 in vivo provides a sensitive measurement of gene response and links exposure to potential environmental toxicants and activation of the AhR.
Collapse
Affiliation(s)
- Theresa N Operaña
- Laboratory of Environmental Toxicology, Departments of Chemistry and Biochemistry and Pharmacology, University of California, San Diego, La Jolla, California 92093-0722, USA
| | | | | | | | | |
Collapse
|
23
|
Okino ST, Pookot D, Li LC, Zhao H, Urakami S, Shiina H, Igawa M, Dahiya R. Epigenetic inactivation of the dioxin-responsive cytochrome P4501A1 gene in human prostate cancer. Cancer Res 2006; 66:7420-8. [PMID: 16885337 DOI: 10.1158/0008-5472.can-06-0504] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; dioxin) is a toxic environmental contaminant that works through dioxin response elements (DRE) to activate gene expression. We tested the hypothesis that cancer-related epigenetic changes suppress dioxin activation of the cytochrome P4501A1 (CYP1A1) gene. 5-Aza-2'-deoxycytidine (5-aza-CdR), an inhibitor of DNA methylation, increases TCDD-inducible CYP1A1 mRNA expression in cancerous LNCaP cells but not in noncancerous PWR-1E and RWPE-1 cells (all human prostate cell lines). Bisulfite DNA sequencing shows that the TCDD-responsive CYP1A1 enhancer is highly methylated in LNCaP cells but not in RWPE-1 cells. In vivo footprinting experiments reveal that unmethylated DRE sites do not bind protein in response to TCDD in LNCaP cells, whereas inducible DRE occupancy occurs in RWPE-1 cells. Pretreatment of LNCaP cells with 5-aza-CdR partially restores TCDD-inducible DRE occupancy, showing that DNA methylation indirectly suppresses DRE occupancy. Chromatin immunoprecipitation experiments reveal that LNCaP cells lack trimethyl histone H3 lysine 4, a mark of active genes, on the CYP1A1 regulatory region, whereas this histone modification is prevalent in PWR-1E and RWPE-1 cells. We also analyzed CYP1A1 enhancer methylation in human prostate tissue DNA. We do not detect CYP1A1 enhancer methylation in 30 DNA samples isolated from noncancerous prostate tissue. In contrast, 11 of 30 prostate tumor DNA samples have detectable CYP1A1 enhancer methylation, indicating that it is hypermethylated in prostate tumors. This is the first report that shows that CYP1A1 is aberrantly hypermethylated in human prostate cancer and has an altered, inaccessible chromatin structure that suppresses its dioxin responsiveness.
Collapse
Affiliation(s)
- Steven T Okino
- Department of Urology, San Francisco Veterans Affairs Medical Center 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang Q, Bae Y, Kemper JK, Kemper B. Analysis of multiple nuclear receptor binding sites for CAR/RXR in the phenobarbital responsive unit of CYP2B2. Arch Biochem Biophys 2006; 451:119-27. [PMID: 16725103 DOI: 10.1016/j.abb.2006.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The phenobarbital (PB) responsive enhancers in CYP2B genes contain a core of two direct repeat-4 nuclear receptor binding sites, NR-1 and NR-2, which flank an NF-1 site and appear to be most important for PB responsiveness. Additional sequences outside the core are required for maximal PB responsiveness, including a third direct repeat-4 site, NR-3. The PB response is mediated by constitutive androstane receptor (CAR) which binds as a CAR/RXR heterodimer to the NR sites. To determine the relative importance of the third NR site, each of the NR sites was mutated individually and in all combinations in the rat PB responsive unit (PBRU). Mutation of NR-3 resulted in similar effects on transactivation of the PBRU by CAR in HepG2 cells as did mutations of NR-1 and NR-2. The recruitment of GRIP1/SRC-2 by CAR/RXR to the PBRU assessed by gel shift assays was cooperatively enhanced if more than one NR site in the PBRU was occupied by CAR/RXR. NR-3 in combination with NR-1 or NR-2 was equal to NR-1 and NR-2 in mediating this cooperative recruitment. Recruitment of SRC-1 and GRIP1/SRC-2 was similar for all NR sites, while some selectivity of NR-1 for SRC-3 was observed. SRC-3 also exhibited CAR-independent activation of the PBRU in HepG2 cells. Micrococcal nuclease mapping of nucleosomes revealed that the NR-1/NR-2 core of the PBRU is present in a nucleosome while NR-3 is present in the linker adjacent to the nucleosome. In the linear sequence NR-3 is further from NR-1 than NR-2 is, but in a nucleosomal structure, NR-3 is well positioned for cooperative recruitment of GRIP1/SRC-2 by CAR/RXR that is bound to NR-3 and either NR-1 or NR-2, while NR-1 and NR-2 are on opposite sides of the nucleosome separated by the histone core. These results demonstrate that NR-3 is functionally similar to NR-1 and NR-2 in CAR transactivation of the PBRU in vitro and suggest that NR-3 may have a greater role in a chromatin context in vivo than is apparent from transient transfection studies.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B1/chemistry
- Cytochrome P-450 CYP2B1/metabolism
- Dimerization
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleosomes/chemistry
- Phenobarbital/pharmacology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Retinoid X Receptors/chemistry
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Sequence Analysis, DNA
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Quanyuan Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
25
|
Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF. The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 2006; 66:2224-32. [PMID: 16489025 DOI: 10.1158/0008-5472.can-05-1619] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In sporadic breast cancers, BRCA-1 expression is down-regulated in the absence of mutations in the BRCA-1 gene. This suggests that disruption of BRCA-1 expression may contribute to the onset of mammary tumors. Environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo(a)pyrene [B(a)P] and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been shown to act as endocrine disruptors and tumor promoters. In previous studies, we documented that estrogen (E2) induced BRCA-1 transcription through the recruitment of an activator protein-1/estrogen receptor-alpha (ER alpha) complex to the proximal BRCA-1 promoter. Here, we report that activation of BRCA-1 transcription by E2 requires occupancy of the BRCA-1 promoter by the unliganded aromatic hydrocarbon receptor (AhR). The stimulatory effects of E2 on BRCA-1 transcription are counteracted by (a) cotreatment with the AhR antagonist 3'-methoxy-4'-nitroflavone; (b) transient expression in ER alpha-negative HeLa cells of ER alpha lacking the protein-binding domain for the AhR; and (c) mutation of two consensus xenobiotic-responsive elements (XRE, 5'-GCGTG-3') located upstream of the ER alpha-binding region. These results suggest that the physical interaction between the unliganded AhR and the liganded ER alpha plays a positive role in E2-dependent activation of BRCA-1 transcription. Conversely, we show that the AhR ligands B(a)P and TCDD abrogate E2-induced BRCA-1 promoter activity. The repressive effects of TCDD are paralleled by increased recruitment of the liganded AhR and HDAC1, reduced occupancy by p300, SRC-1, and diminished acetylation of H4 at the BRCA-1 promoter region flanking the XREs. We propose that the ligand status of the AhR modulates activation of the BRCA-1 promoter by estrogen.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|
26
|
Perucatti A, Di Meo GP, Albarella S, Ciotola F, Incarnato D, Jambrenghi AC, Peretti V, Vonghia G, Iannuzzi L. Increased frequencies of both chromosome abnormalities and SCEs in two sheep flocks exposed to high dioxin levels during pasturage. Mutagenesis 2006; 21:67-75. [PMID: 16434450 DOI: 10.1093/mutage/gei076] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During the past four years several livestock farms (sheep, cattle and river buffalo) in the provinces of Naples and Caserta (southern Italy) have been unable to sell their milk and other dairy products due to the levels of dioxins (17 different types) present in the milk mass exceeding the value permitted [3 pg/g of fat, as human WHO 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) equivalent]. While some farms, especially those showing relatively low levels of dioxins, have managed to reduce the dioxins in the milk below the permitted threshold by changing the diet, many, especially sheep farms, have failed to do so. Indeed, about 12,000 head of cattle, river buffaloes and sheep have so far been culled. In the present study, 34 and 42 sheep from two herds raised in the province of Naples (Acerra municipality) and where high levels of dioxins (50.65 and 39.51 pg/g of fat, respectively) were found in the milk mass, were cytogenetically investigated and compared with 20 sheep (control) raised 80 km away from the exposed area. Increases of both chromosome abnormalities (gap, chromosome and chromatid breaks) (17 and 8 times higher in the two exposed herds, respectively) and sister chromatid exchanges (SCEs) were found in both herds when compared with the control, and the differences were highly significant (P<0.001). No statistical differences were found when comparing the frequencies of aneuploid cells of exposed animals (16.4 and 17.8%) and control (17.9%). Furthermore, high levels of mortality and abnormal foetuses were recorded in one of the two farms when compared with the control.
Collapse
Affiliation(s)
- A Perucatti
- Laboratory of Animal Cytogenetics and Gene Mapping, National Research Council (CNR), ISPAAM, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Majora M, Frericks M, Temchura V, Reichmann G, Esser C. Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRγδ+ T cell fate after dioxin exposure. Int Immunopharmacol 2005; 5:1659-74. [PMID: 16102516 DOI: 10.1016/j.intimp.2005.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/02/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
T cell maturation into TCRalphabeta(+) or TCRgammadelta(+) cells from common immature CD4(-)CD8(-)(DN) precursors occurs in the thymus, and is controlled through ordered regulation of genes. The aryl hydrocarbon receptor (AHR), a latent cytoplasmic transcription factor, affects thymocyte maturation and differentiation at several stages, also including DN cells. We analyzed in murine fetal thymus organ cultures (FTOC) the outcome of AHR-signaling and found a higher frequency of DN TCRgammadelta(+) cells in the presence of the AHR-activating ligand TCDD. We detected a novel population of CD25(int/lo)CD44(hi) cells associated with preferential emigration and a TCRgammadelta(+) T cell fate of thymocytes. Sorted DN TCRgammadelta(+) emigrants could proliferate if IL-2 was available. Moreover, they suppressed the proliferation of co-cultivated, activated CD4(+) T cells. Gene expression profiles of purified DN emigrants from TCDD*FTOC revealed 295 modulated genes, 10% of which are genes of the immune system. For instance, RAG-1, TdT, and Gfi-1 were downregulated, yet genes indicative of mature thymocytes were upregulated. In conclusion, we have detected changes in the differentiation programme of fetal DN thymocytes after ligand-activation of the AHR. In particular, we observed a higher frequency of DN TCRgammadelta(+) cells with high emigration potential, and possible regulatory functions.
Collapse
Affiliation(s)
- Marc Majora
- Institute for Environmental Medical Research (IUF) at the Heinrich-Heine University of Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
28
|
Broccardo CJ, Billings RE, Andersen ME, Hanneman WH. Probing the Control Elements of the CYP1A1 Switching Module in H4IIE Hepatoma Cells. Toxicol Sci 2005; 88:82-94. [PMID: 16081525 DOI: 10.1093/toxsci/kfi271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous research from our laboratory has shown a switch-like response to PCB 126 mediated CYP1A1 induction in primary rat hepatocytes and in H4IIE rat hepatoma cells. On a single cell level, cells appear to be either "on" or "off" for CYP1A1 induction at a given dose; some cells never respond to PCB 126. These cells represent a non-responding population. Cells that are switched "on" by PCB 126 display varying levels of induction, much like the dimmer on a light switch. The goal of the present research is to begin to uncover the mechanism for this switch-like response to CYP1A1 induction in H4IIE rat hepatoma cells. The AhR pathway is modulated by multiple co-activators and by phosphorylation. This research focuses on the phosphorylation cascades initiated by PCB 126 and the role they play in CYP1A1 induction. Our research reveals a likely role for protein kinase C (PKC) in this switch response. Inhibition of PKC by H-7 dramatically reduced the percent of cells that express CYP1A1 in response to PCB 126 treatment, as determined by flow cytometry. The effect of H-7 was concentration dependent, decreasing the number of cells expressing CYP1A1 rather than decreasing the level of CYP1A1 in all cells. This finding provides further evidence for the switch-like behavior of CYP1A1 induction and implicates PKC in this response to PCB126. The protein kinase inhibitor, HA-1004, had only a minor effect on CYP1A1 induction. A high-throughput immunoblot screen for 40 proteins revealed the regulation of several proteins/phosphoproteins by PCB 126. Most importantly, two proteins containing phosphoserine/phoshothreonine residues were increased by PCB126 treatment. However, PKC translocation studies and activity studies failed to verify that PCB126 activates PKC. It is possible that constitutive PKC activity is sufficient to maintain phosphorylation of critical components of the AhR pathway. Immunoblotting studies showed that MAP kinases ERK and JNK are not activated by PCB 126 in H4IIE cells and the ERK inhibitor U0126 did not impair CYP1A1 induction. Additional studies are planned to further investigate the role of PKC in the switch-like response to PCB 126.
Collapse
Affiliation(s)
- Carolyn J Broccardo
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | |
Collapse
|
29
|
Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 2005; 433:379-86. [PMID: 15581594 DOI: 10.1016/j.abb.2004.09.031] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/24/2004] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the carcinogenic and other toxic effects of a variety of environmental pollutants, including 2,37,8-tetrachlorodibenzo-p-dioxin (TCDD), and some polycyclic aromatic hydrocarbons (PAHs). In most if not all cases, these deleterious effects depend upon modulation of gene transcription effected by the ligand-bound AHR. The responsive genes required for toxicity of TCDD have yet to be defined. However, induction of Cyp1a1 is known to represent a significant event in the toxicity of PAHs. Furthermore, the Cyp1a1 gene provides a model system for studying the mechanism of gene transcription by AHR. This review discusses the roles of transcriptional coactivator proteins in induction of Cyp1a1 by AHR ligands. Coactivators physically associate with the gene upon induction, and provide a bridge between AHR molecules, located at 5'enhancer elements, and general transcription factors, located at the promoter of the gene. Studies on the endogenous Cyp1a1 gene in its natural chromosomal setting are emphasized. The recent development of several new experimental techniques including the chromatin immunoprecipitation (ChIP) assay, RNA interference, and real-time PCR has provided a major boost to such studies. Future directions for research are also discussed. Since variations in coactivator expression or activity may result in inter-individual differences in response to AHR ligands, and may also underlie tissue-specific differences in sensitivity to such ligands during development, and in adulthood, the role of coactivators in transcriptional activation by AHR constitutes a very important area of research.
Collapse
|
30
|
Niimi S, Watanabe MX, Kim EY, Iwata H, Yasunaga G, Fujise Y, Tanabe S. Molecular cloning and mRNA expression of cytochrome P4501A1 and 1A2 in the liver of common minke whales (Balaenoptera acutorostrata). MARINE POLLUTION BULLETIN 2005; 51:784-93. [PMID: 16154599 DOI: 10.1016/j.marpolbul.2005.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents full-length cDNA sequences of CYP1A1 and 1A2, in common minke whale (Balaenoptera acutorostrata) from the North Pacific. Both CYP1A1 and CYP1A2 cDNAs had an open reading frame of 516 amino acid residues, and predicted molecular masses were 58.3 kDa and 58.1 kDa, respectively. The deduced full-length amino acid sequence of CYP1A1 revealed higher identities with those of sheep (86%) and pig (87%), and that of CYP1A2 was most closely related to human (82%) and monkey CYP1A2 (82%) among species from which CYP1A2 has been isolated so far. Differences in certain conserved and functional amino acid residues of CYP1A1 and 1A2 between common minke whale and other mammalian species indicate the possibility of their specific metabolic function. Concentrations of organochlorine compounds (OCs) including PCBs and DDTs analyzed in common minke whale liver showed no significant correlation with hepatic mRNA expression levels of CYP1A1 and CYP1A2, indicating no induction of these enzymes by such OCs.
Collapse
Affiliation(s)
- Satoko Niimi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Tian Y, Ke S, Chen M, Sheng T. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter. J Biol Chem 2003; 278:44041-8. [PMID: 12917420 DOI: 10.1074/jbc.m306443200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the cytochrome P450 1A1 gene (cyp1a1) is regulated by the aryl hydrocarbon receptor (AhR), which is a ligand-activated transcription factor that mediates most toxic responses induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the nucleus, ligand-activated AhR binds to the xenobiotic response elements, initiating chromatin remodeling and recruitment of coregulators, leading to the formation of preinitiation complex followed by elongation. Here, we report that ligand-activated AhR recruits the positive transcription elongation factor (P-TEFb) and RNA polymerase II (RNA PII) to the cyp1a1 promoter with concomitant phosphorylation of the RNA PII carboxyl domain (CTD). Interestingly, the serine 2 and serine 5 of the heptapeptide repeats (YSPTSPS) were sequentially phosphorylated upon TCDD treatment. Inhibition of P-TEFb kinase activity by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) suppressed CTD phosphorylation (especially serine 2 phosphorylation) and abolished processive elongation without disrupting the assembly of the preinitiation complex at the cyp1a1 promoter. Remarkably, we found that activation of NF-kappaB by TNF-alpha selectively inhibited TCDD-induced serine 2 phosphorylation in mouse liver cells, suggesting that residue-specific phosphorylation of RNA PII CTD at the cyp1a1 promoter is an important regulatory point upon which signal "cross-talk" converges. Finally, we show that ligand-activated AhR associated with P-TEFb through the C terminus of cyclin T1, suggesting that AhR recruit the P-TEFb to the cyp1a1 promoter whereupon its kinase subunit phosphorylates the RNA PII CTD.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Veterinary Physiology and Pharmacology, MS 4466, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
32
|
Riddick DS, Lee C, Bhathena A, Timsit YE. The 2001 Veylien Henderson Award of the Society of Toxicology of Canada. Positive and negative transcriptional regulation of cytochromes P450 by polycyclic aromatic hydrocarbons. Can J Physiol Pharmacol 2003; 81:59-77. [PMID: 12665258 DOI: 10.1139/y03-003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most responses to aromatic hydrocarbons such as 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by the aromatic hydrocarbon receptor (AHR). The AHR regulates induction of drug-metabolizing enzymes such as cytochrome P450 1A1. However, the expression of several genes of biological significance is decreased by these chemicals. We are examining the mechanisms by which aromatic hydrocarbons suppress constitutive hepatic cytochromes P450, especially the male-specific rat liver cytochrome P450 2C11 (CYP2C11), which is regulated by pulsatile growth hormone (GH) secretion. Aromatic hydrocarbons suppress CYP2C11 via a transcriptional mechanism both in vivo and in cultured hepatocytes, and the AHR appears to be involved; however, studies of protein-DNA interactions and reporter genes driven by the CYP2C11 5'-flanking region have not provided a definitive mechanism for this response. MC attenuates the ability of GH to stimulate hepatic CYP2C11 expression in hypophysectomized (hypx) male rats, and this prompted studies of effects of aromatic hydrocarbons on hepatic GH signaling pathways as a novel aspect of endocrine disruption. Our studies with hypx rats also suggest that the hepatic AHR protein is regulated by a pituitary factor(s). The goal of these molecular mechanistic studies is to improve our understanding of how environmental contaminants modulate the expression of genes coding for xenobiotic- and hormone-metabolizing enzymes.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology, Medical Sciences Building, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | | | | | |
Collapse
|
33
|
Reen RK, Cadwallader A, Perdew GH. The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity. Arch Biochem Biophys 2002; 408:93-102. [PMID: 12485607 DOI: 10.1016/s0003-9861(02)00518-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) activates the aryl hydrocarbon receptor (AhR) to mediate transcriptional activity of dioxin-responsive genes. The transactivation domain (TAD) of human AhR (hAhR) has potentially distinct acidic, glutamine-rich, and proline/serine/threonine-rich subdomains. Cotransfection of exogenous hAhR into BP8 cells with isolated subdomains of hAhR TAD fused to glutathione S-transferase exhibited squelching of TCDD-dependent dioxin-response element (DRE)-driven luciferase reporter-gene activity with each subdomain. To study the potential cross talk between AhR- and estrogen receptor (ER)-mediated activities, BP8 cells were cotransfected with hAhR TAD subdomain constructs and ERalpha. The three hAhR TAD subdomains inhibited the 17beta-estradiol-induced estrogen-response element-mediated reporter-gene transactivation. Cotransfection of hAhR with the ligand-binding domain (LBD) of ERalpha also squelched TCDD-dependent DRE-driven reporter-gene activity in the presence of 17beta-estradiol. Similar results were observed in T47D cells that express functional AhR and ERalpha. These results indicate that the isolated subdomains of hAhR's TAD and LBD of ERalpha are capable of squelching ligand-dependent transactivation of either the AhR or the ER, by titrating crucial proteins from an existing common pool of cofactors.
Collapse
Affiliation(s)
- Rashmeet K Reen
- Center for Molecular Toxicology and Carcinogenesis and Department of Veterinary Science, Pennsylvania State University, 226, Fenske Lab, University Park, PA 16802, USA
| | | | | |
Collapse
|
34
|
Wang S, Hankinson O. Functional involvement of the Brahma/SWI2-related gene 1 protein in cytochrome P4501A1 transcription mediated by the aryl hydrocarbon receptor complex. J Biol Chem 2002; 277:11821-7. [PMID: 11805098 DOI: 10.1074/jbc.m110122200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin remodeling is a key step in overcoming the nucleosomal repression of active transcription in eukaryotes. The mammalian SWI/SNF ATP-dependent chromatin-remodeling complexes contain multiple subunits. The ATPase activities in these complexes are attributable to either BRG-1 or the related Brahma protein. The aryl hydrocarbon receptor (AHR), after binding xenobiotic ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), associates with the AHR nuclear translocator (ARNT), and the dimer so formed activates transcription of several genes, including the cytochrome P4501A1 (CYP1A1) gene. We show that BRG-1 potentiates AHR/ARNT-mediated reporter gene activity in a TCDD-dependent fashion in Hepa1c1c7 cells. Introduction of BRG-1 into the BRG-1- and hBrm-deficient SW13 and C33A human cell lines also enhances expression from a transiently transfected AHR/ARNT-dependent reporter gene. Replenishment of BRG-1 to SW13 cells also restores endogenous cytochrome P4501A1 (CYP1A1) gene expression, whereas an ATPase-deficient mutant of BRG-1 is unable to do so. Chromatin immunoprecipitation analysis demonstrated that BRG-1 associates with the enhancer region of the mouse CYP1A1 gene in vivo in a TCDD- and ARNT-dependent fashion, suggesting the specific recruitment of BRG-1 by AHR/ARNT. Finally, we demonstrate that the glutamine-rich subdomain of the transcriptional activation domain of AHR can interact with BRG-1. Together these studies reveal a functional involvement of BRG-1 in activating CYP1A1 gene transcription and implicate the importance of ATP-dependent chromatin remodeling activity on inducible gene expression mediated by AHR/ARNT.
Collapse
Affiliation(s)
- Song Wang
- Department of Pathology and Laboratory Medicine, Center for the Health Sciences, University of California, Los Angeles, California 90095-1732, USA
| | | |
Collapse
|
35
|
Carpenter DO, Arcaro K, Spink DC. Understanding the human health effects of chemical mixtures. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110 Suppl 1:25-42. [PMID: 11834461 PMCID: PMC1241145 DOI: 10.1289/ehp.02110s125] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most research on the effects of chemicals on biologic systems is conducted on one chemical at a time. However, in the real world people are exposed to mixtures, not single chemicals. Although various substances may have totally independent actions, in many cases two substances may act at the same site in ways that can be either additive or nonadditive. Many even more complex interactions may occur if two chemicals act at different but related targets. In the extreme case there may be synergistic effects, in which case the effects of two substances together are greater than the sum of either effect alone. In reality, most persons are exposed to many chemicals, not just one or two, and therefore the effects of a chemical mixture are extremely complex and may differ for each mixture depending on the chemical composition. This complexity is a major reason why mixtures have not been well studied. In this review we attempt to illustrate some of the principles and approaches that can be used to study effects of mixtures. By the nature of the state of the science, this discussion is more a presentation of what we do not know than of what we do know about mixtures. We approach the study of mixtures at three levels, using specific examples. First, we discuss several human diseases in relation to a variety of environmental agents believed to influence the development and progression of the disease. We present results of selected cellular and animal studies in which simple mixtures have been investigated. Finally, we discuss some of the effects of mixtures at a molecular level.
Collapse
Affiliation(s)
- David O Carpenter
- School of Public Health, Department of Environmental Health and Toxiciology, University at Albany, State University of New York, Rensselaer 12144, USA.
| | | | | |
Collapse
|
36
|
Kumar MB, Ramadoss P, Reen RK, Vanden Heuvel JP, Perdew GH. The Q-rich subdomain of the human Ah receptor transactivation domain is required for dioxin-mediated transcriptional activity. J Biol Chem 2001; 276:42302-10. [PMID: 11551916 DOI: 10.1074/jbc.m104798200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a basic helix-loop-helix/Per-Arnt-Sim transcription factor, mediates many of the toxic and biological effects of the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which include the transcriptional activation of dioxin-responsive genes such as CYP1A1. Many aspects of this process are known; however, the mechanism of transcriptional activation and the proteins that are key to this process remain to be determined. The hAhR has a complex transactivation domain, composed of three potentially distinct subdomains. Deletional analysis of the hAhR transactivation domain indicates that removal of the P/S/T-rich subdomain enhances transcriptional activity, whereas the Q-rich subdomain is critical for hAhR transactivation potential, and the acidic subdomain by itself fails to activate a dioxin response element-driven reporter gene. Deletional analysis of the Q-rich subdomain identified a critical stretch of 23 amino acids between residues 666 and 688 of the hAhR, which are required for transactivation potential. Alanine scanning mutagenesis of this region identified a leucine residue (Leu-678), which is required for hAhR activity. Functional analysis of this point mutant revealed that it is capable of binding ligand, heterodimerization, and subsequent binding to dioxin response elements. Further, when hAhR/L678A and hAhR containing only the acidic subdomain were overexpressed they acted as dominant negative receptors and repressed wild-type hAhR activity. In addition, the hAhR/L678A failed to activate CYP1A1 gene transcription in transfected BP-8 cells and exhibited reduced binding to RIP140 in vitro. Thus, Leu-678 appears to be critical for efficient transactivation activity of the hAhR and appears to disrupt recruitment of co-regulators.
Collapse
Affiliation(s)
- M B Kumar
- Department of Veterinary Science and the Center for Molecular Toxicology and Carcinogenesis and the Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
37
|
Gao L, Whitlock JP. Accessibility and activity of the promoter for a dioxin-inducible ecto-ATPase gene. Arch Biochem Biophys 2001; 392:270-8. [PMID: 11488602 DOI: 10.1006/abbi.2001.2440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the core promoter for a dioxin-inducible ecto-ATPase gene in mouse hepatoma cells. The transcriptional initiation site maps to a region that contains neither a TATA sequence nor a consensus initiator sequence nor a downstream promoter element. The core promoter has constitutive activity that does not require either the aromatic hydrocarbon receptor or its heterodimerization partner Arnt. Two GC-rich regions contribute approximately equally to the constitutive activity. Proteins constitutively occupy the GC-rich regions in chromatin. The promoter assumes a non-nucleosomal configuration in its native chromosomal setting in both uninduced and dioxin-induced cells. Our findings imply that the GC-rich regions together with their cognate binding proteins carry out core promoter functions for the ecto-ATPase gene. The promoter is constitutively accessible in situ, and chromatin structure is not a limiting factor for dioxin-inducible ecto-ATPase transcription in intact cells.
Collapse
Affiliation(s)
- L Gao
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | |
Collapse
|
38
|
Abstract
Cytochrome P4501A1 is a substrate-inducible microsomal enzyme that oxygenates polycyclic aromatic hydrocarbons, such as the carcinogen benzo(a)pyrene, as the initial step in their metabolic processing to water-soluble derivatives. Enzyme induction reflects increased transcription of the cognate CYP1A1 gene. The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin is the most potent known cytochrome P4501A1 inducer. Two regulatory proteins, the aromatic (aryl) hydrocarbon receptor (AhR) and the AhR nuclear translocator (Arnt), mediate induction. AhR and Arnt are prototypical members of the basic helix-loop-helix/Per-Arnt-Sim class of transcription factors. Mechanistic analyses of cytochrome P4501A1 induction provide insights into ligand-dependent mammalian gene expression, basic helix-loop-helix/Per-Arnt-Sim protein function, and dioxin action; such studies also impact public health issues concerned with molecular epidemiology, carcinogenesis, and risk assessment.
Collapse
Affiliation(s)
- J P Whitlock
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA.
| |
Collapse
|
39
|
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates biological and toxicological actions of halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin. Although much is known about the biochemical and molecular mechanisms of AhR action, little is known about the factors and events that control expression of the AhR gene itself. The 5'-flanking region of the murine AhR gene was characterized and deletion analysis demonstrated that regulatory elements necessary for full constitutive promoter activity are contained within a fragment encompassing -184 to +380 of the AhR gene. The murine AhR gene promoter is a GC-rich, TATA-less promoter that which contains at least five putative Spl-like binding sites. Transient transfection experiments not only identified a region between -1431 and -721 that represses constitutive promoter activity by 2- to 3-fold, but also demonstrate that basal AhR promoter activity occurs in a cell- and species-specific manner. n-Butyrate, a nonspecific histone deacetylase inhibitor, increased AhR promoter activity 8-fold, suggesting a role for histone acetylation in AhR gene promoter activity. Overall, this study defines upstream regulatory regions important for constitutive AhR gene expression and identifies a novel activator of AhR gene expression.
Collapse
Affiliation(s)
- P M Garrison
- Department of Environmental Toxicology, University of California, Davis 95616, USA
| | | |
Collapse
|
40
|
Kanamura S, Watanabe J. Cell biology of cytochrome P-450 in the liver. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:109-52. [PMID: 10804462 DOI: 10.1016/s0074-7696(00)98004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes P-450 (P-450) are members of a multigene superfamily of hemoproteins consisting the microsomal monooxygenase system with NADPH P-450 reductase (reductase) and/or reducing equivalents. Expression of many P-450 isoforms in hepatocytes is shown to be regulated at the level of transcription through interaction between cis-acting elements in the genes and DNA-binding (transacting) factors. Some isoforms of the CYP1A, 2B, 2E, and 3A subfamilies are regulated at the posttranscriptional level. For the topology of P-450 and reductase molecules in ER membrane of hepatocytes, models from stopped flow analysis and electron spin resonance are proposed. The densities of total P-450 and reductase molecules are revealed to be high enough to support the cluster model, suggesting that about ten P-450 molecules form an aggregate and surround one reductase molecule, and therefore the two enzymes form large micelles. ER proliferation after PB administration, which had been correlated with increase in P-450 level, is shown to be probably independent of the increase in P-450 level. There are considerable discrepancies among results reported on sublobular expression of various P-450 isoforms. Causes of the discrepancies are likely to be differences in experimental conditions of histochemical detection carried out and/or in species, strain, and/or sex.
Collapse
Affiliation(s)
- S Kanamura
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
41
|
Okino ST, Whitlock JP. The aromatic hydrocarbon receptor, transcription, and endocrine aspects of dioxin action. VITAMINS AND HORMONES 2000; 59:241-64. [PMID: 10714242 DOI: 10.1016/s0083-6729(00)59009-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread and persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin elicits adaptive and adverse biological responses by inducing changes in gene transcription. Some of dioxin's effects reflect disruption of endocrine homeostasis. The aromatic hydrocarbon receptor protein, together with its heterodimerization partner, the aromatic hydrocarbon receptor nuclear translocator protein, mediates dioxin action. There are notable similarities between the mechanism of dioxin action and the mechanisms of steroid/retinoid/thyroid hormone action. Studies of dioxin action may provide insights into the regulation of hormone-responsive genes and endocrine physiology.
Collapse
Affiliation(s)
- S T Okino
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
42
|
Kim J, Rivera-Rivera I, Kemper B. Tissue-specific chromatin structure of the phenobarbital-responsive unit and proximal promoter of CYP2B1/2 and modulation by phenobarbital. Nucleic Acids Res 2000; 28:1126-32. [PMID: 10666453 PMCID: PMC102623 DOI: 10.1093/nar/28.5.1126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 01/14/2000] [Accepted: 01/14/2000] [Indexed: 11/14/2022] Open
Abstract
Phenobarbital induction of transcription of CYP2B genes is mediated by an enhancer, termed a phenobarbital responsive unit (PBRU), approximately 2000 bp 5' of the transcription start site. To further delineate the mechanism of phenobarbital induction, protein binding in native chromatin and the nucleosomal structure of the PBRU and proximal promoter were examined in liver and kidney, in which the CYP2B1/2 genes are expressed and not expressed, respectively. Protein binding to the PBRU in kidney chromatin was not detected even though in vitro DNase I footprints were not detectably different with nuclear extracts from liver and kidney. Likewise, protein binding to regulatory motifs was not detected in the proximal promoter region in kidney chromatin. In liver chromatin, however, DNase I hypersensitivity and partial protection of the regulatory motifs from DNase I digestion or reaction with dimethyl sulfate was observed and phenobarbital treatment increased the hypersensitivity but only modestly affected protection. Low resolution Southern analysis of micrococcal nuclease-digested chromatin from untreated rats revealed micrococcal nuclease hypersensitive regions in the proximal promoter and PBRU regions in liver, but not in kidney. Phenobarbital treatment increased hyper-sensitivity in liver in both regions. Micrococcal nuclease hypersensitivity in the PBRU was largely restricted to a linker region between phased nucleosomes while in the proximal promoter hypersensitivity extended over approximately 200 bp suggesting disruption of a nucleosome in this region. These data indicate that in liver phenobarbital treatment substantially alters protein binding to regulatory motifs in the PBRU, while not greatly affecting such binding in the proximal promoter, and substantially alters chromatin structure in both regions, presumably as a result of chromatin modifying factors recruited to the PBRU. In the kidney, chromatin is probably in a closed conformation that prevents binding of regulatory factors.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Integrative Physiology and College of Medicine at Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
43
|
Maier A, Dalton TP, Puga A. Disruption of dioxin-inducible phase I and phase II gene expression patterns by cadmium, chromium, and arsenic. Mol Carcinog 2000. [DOI: 10.1002/1098-2744(200008)28:4<225::aid-mc5>3.0.co;2-o] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Abnet CC, Tanguay RL, Heideman W, Peterson RE. Transactivation activity of human, zebrafish, and rainbow trout aryl hydrocarbon receptors expressed in COS-7 cells: greater insight into species differences in toxic potency of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners. Toxicol Appl Pharmacol 1999; 159:41-51. [PMID: 10448124 DOI: 10.1006/taap.1999.8719] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transactivation assays were used to compare the potency and efficacy of polychlorinated dibenzo-p-dioxin (PCDD), dibenzofuran (PCDF), and biphenyl (PCB) congeners in activating aryl hydrocarbon receptors (AhRs) from rainbow trout (rtAhR2alpha and rtAhR2beta), zebrafish (zfAhR2), and human (huAhR), respectively. All AhRs were expressed with their species-specific AhR nuclear translocator (ARNT) in COS-7 cells. Transactivation activity was determined for two PCDD, two PCDF, and seven PCB congeners with each of the four AhR/ARNT pairs using prt1Aluc, a luciferase reporter driven by two dioxin-responsive enhancer elements (DREs) from the rainbow trout cyp1A gene. Maximal-fold induction, EC50, and relative potency values were calculated for congeners that exhibited dose-related activity in the assay. Of the four AhR/ARNT pairs tested with PCDD, PCDF, and non-ortho PCB congeners, three exhibited high activity (rainbow trout AhR2alpha, zebrafish AhR2, and human AhR), while rainbow trout AhR2beta had very weak or no activity. Comparisons between these AhRs showed that while mono-ortho PCBs were able to activate the human AhR, they were generally ineffective in activating rainbow trout and zebrafish AhR2s. This supports the hypothesis that structural differences between mammalian and fish AhRs may account for differences in relative potencies of the mono-ortho PCBs between mammals and fish. Another important finding was a significant difference in transactivation activity between the two rainbow trout AhR2 isoforms despite the fact that they are 95% identical at the amino acid level. For all PCDD, PCDF, and PCB agonists tested, rainbow trout AhR2alpha was significantly more active than AhR2beta. However, rainbow trout AhR2beta is active as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-activated transcription factor, with enhancer elements from the mouse cyp1A gene. This suggests that AhR2beta may have evolved to serve a different physiological function than AhR2alpha in salmonid fish species.
Collapse
Affiliation(s)
- C C Abnet
- School of Pharmacy and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | | | | | | |
Collapse
|
45
|
Kumar MB, Tarpey RW, Perdew GH. Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 1999; 274:22155-64. [PMID: 10428779 DOI: 10.1074/jbc.274.32.22155] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ah receptor (AhR), a soluble cytosolic protein, mediates most of the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related environmental contaminants. The mechanism of ligand-mediated AhR activation has been, in part, elucidated. The sequence of events following the binding of the AhR/AhR nuclear translocator protein (ARNT) heterodimer to dioxin response elements has yet to be completely understood. The role of coactivator, RIP140, in the modulation of transcriptional activity of AhR/ARNT heterodimer was examined. RIP140 enhanced TCDD-mediated, dioxin response element-driven reporter gene activity in three cell lines. Co-immunoprecipitation and co-localization assays revealed that RIP140 interacted with AhR, but not with ARNT, both in vitro and in cells. Mapping of the interaction sites revealed that RIP140 was recruited by the AhR transactivation domain via the Q-rich subdomain. The RIP140 domain that interacts with the AhR was mapped to a location between amino acid residues 154 and 350, which is distinct from those involved in estrogen receptor binding. The signature motif, LXXLL, which is responsible for binding of several coactivators to nuclear receptors, is not required for RIP140 binding to AhR. These results demonstrate that the AhR recruits coactivators that are capable of enhancing transcription and, thus, the AhR may compete with steroid receptors for a common coactivator pool. In addition, the data suggest that there are distinct motif(s) for the recruitment of RIP140 to AhR and possibly other non-steroid receptors/transcription factors.
Collapse
Affiliation(s)
- M B Kumar
- Center for Molecular Toxicology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- G L Hager
- Laboratory of Receptor and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | |
Collapse
|
47
|
Dey A, Nebert DW. Markedly increased constitutive CYP1A1 mRNA levels in the fertilized ovum of the mouse. Biochem Biophys Res Commun 1998; 251:657-61. [PMID: 9792830 DOI: 10.1006/bbrc.1998.9519] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a highly sensitive RT-PCR technique that measures mRNA (cDNA)-to-DNA ratios, we are able to detect constitutive CYP1A1 mRNA in adult mouse liver as well as in the oocyte. Twelve hours after fertilization of the ovum, there is a more than 100-fold increase in constitutive CYP1A1 mRNA levels; this dramatic increase completely disappears by the 2-cell stage at gestational day 1.5 (GD1.5), as well as in the blastocyst at GD3.5. The CYP1A1 enzyme has been shown to remove an endogenous ligand for the Ah receptor (AHR), and the AHR is known to play a role in cell cycle regulation and apoptosis. We therefore postulate that this striking abundance of constitutive CYP1A1 mRNA in the fertilized ovum at GD0.5 might be important for maintaining sufficient amounts of the CYP1A1 enzyme during the transition from maternal to zygotic control (GD0.5 to GD1.5 embryo); availability of catalytically active CYP1A1 would ensure that any (exogenous or endogenous) AHR ligand be rapidly degraded, so that all undesirable AHR-mediated gene transcription would be prevented during these very critical moments of early mammalian embryogenesis.
Collapse
Affiliation(s)
- A Dey
- Center for Environmental Genetics and the Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267-0056, USA
| | | |
Collapse
|
48
|
Denison MS, Phelan D, Winter GM, Ziccardi MH. Carbaryl, a carbamate insecticide, is a ligand for the hepatic Ah (dioxin) receptor. Toxicol Appl Pharmacol 1998; 152:406-14. [PMID: 9853009 DOI: 10.1006/taap.1998.9999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of a variety of hydrophobic natural and synthetic chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin). Induction of CYP1A1 gene expression is one such response that is known to be regulated by the AhR complex. It was recently reported (Ledirac et al., Toxicol. Appl. Pharmacol. 144, 177-182, 1997) that, although carbaryl, a carbamate insecticide, can induce AhR-dependent expression of CYP1A1, it was not an AhR ligand. Since this apparent ligand-independent activation of the AhR is difficult to reconcile given what is known about the mechanism of AhR action, we have examined the ability of carbaryl to stimulate the AhR signaling pathway. Not only was dioxin responsive element-driven luciferase gene expression induced by carbaryl in stably transfected mouse, rat, guinea pig, and human cells, gel retardation analysis revealed that carbaryl stimulated AhR transformation and DNA binding in vitro and in cells in culture. Dose-response experiments revealed that carbaryl was 300,000-fold less potent that the prototypical inducer, TCDD, in both inducing luciferase gene expression and stimulating AhR transformation and DNA binding in vitro, suggesting that carbaryl itself was the inducing agent. The identification of carbaryl as an AhR ligand was demonstrated by its ability to competitively inhibit [3H]-TCDD to the guinea pig hepatic cytosolic AhR. Our results confirm that carbaryl is both a weak AhR ligand and inducer of AhR-dependent gene expression and argue against its proposed ligand-independent mechanism of AhR activation.
Collapse
Affiliation(s)
- M S Denison
- Department of Environmental Toxicology, University of California, Davis 95616-8588, USA.
| | | | | | | |
Collapse
|
49
|
Okino ST, Chichester CH, Whitlock JP. Hypoxia-inducible mammalian gene expression analyzed in vivo at a TATA-driven promoter and at an initiator-driven promoter. J Biol Chem 1998; 273:23837-43. [PMID: 9726995 DOI: 10.1074/jbc.273.37.23837] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed protein-DNA interactions in vivo at transcriptional control elements for two hypoxia-inducible genes in mouse hepatoma cells. The promoter for the phosphoglycerate kinase 1 (PGK1) gene contains an initiator element, but no TATA sequence, whereas the promoter for the glucose transporter 1 (Glut1) gene contains a TATA element but no initiator sequence. Our findings reveal hypoxia-inducible, Arnt-dependent occupancy of DNA recognition sites for hypoxia-inducible factor 1 (HIF-1) upstream of both target genes. The conserved recognition motif among the five recognition sites is 5'-CGTG-3'. The PGK1 promoter exhibits constitutive occupancy of a binding site for an unknown protein(s); however, we detect no protein-DNA interaction at the initiator element, in either uninduced or induced cells. The Glut1 promoter also exhibits constitutive protein binding; in addition, the TATA element exhibits partial occupancy in uninduced cells and increased occupancy under hypoxic conditions. We find no evidence for hypoxia-induced changes in chromatin structure of either gene. Time-course analyses of the Glut1 gene reveal a temporal relationship between occupancy of HIF-1 sites and TATA element occupancy. Our findings suggest that the promoters for both hypoxia-responsive genes constitutively maintain an accessible chromatin configuration and that HIF-1 facilitates transcription by recruiting and/or stabilizing a transcription factor(s), such as TFIID, at both promoters.
Collapse
Affiliation(s)
- S T Okino
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | |
Collapse
|
50
|
Wilson CL, Safe S. Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicol Pathol 1998; 26:657-671. [PMID: 9789953 DOI: 10.1177/019262339802600510] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a member of a broad group of halogenated aromatic hydrocarbons (HAHs) that is known to induce a wide range of toxic and biochemical responses in laboratory animals and humans. The effects of HAH exposure are mediated by binding to the cytosolic aryl hydrocarbon receptor (AhR), which is expressed in a tissue- and cell type-specific manner. The AhR is a ligand-activated transcription factor belonging to the basic helix-loop-helix/Per-AhR-Arnt-Sim (bHLH/PAS) superfamily of proteins. The mechanism of induction of gene transcription by TCDD involves ligand recognition and binding by the AhR, nuclear translocation, and dimerization with the AhR cofactor, AhR nuclear translocator (Arnt). The nuclear heterodimer interacts with cognate xenobiotic responsive elements (XREs) in promoter/enhancer regions of multiple Ah-responsive genes. Subsequent changes in chromatin structure and/or interaction of the AhR complex with the basal transcriptional machinery play a significant role in AhR-mediated gene expression. Although Arnt is a necessary component of a functional nuclear AhR complex, this protein also forms transcriptionally active heterodimers with other bHLH/PAS factors, including those involved in the transcriptional response to hypoxia. Arnt is ubiquitously expressed in mammalian systems, and results from transgenic mouse studies suggest that this protein plays a vital role in early mammalian embryonic development. Similar experiments suggest that the AhR may be involved in development of various organ systems. Thus, molecular mechanistic studies of TCDD action have contributed significantly to an improved understanding of the role of at least 2 bHLH/PAS proteins, as well as organ- and tissue-specific biochemical and toxic responses to this class of environmental toxins.
Collapse
Affiliation(s)
- C L Wilson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|