1
|
Pérez-Ocampo J, Vergara-Serpa O, Velásquez-Franco CJ, Taborda NA, Yassin LM, Hernandez JC. Assessment of the role of high-density lipoproteins and their immunomodulatory activity in systemic lupus erythematosus immunopathology. Lupus Sci Med 2024; 11:e001242. [PMID: 39059814 DOI: 10.1136/lupus-2024-001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To explore the potential associations between high-density lipoprotein (HDL) levels and inflammasome components in the context of systemic lupus erythematosus (SLE). METHODS A cross-sectional study was conducted. A group of 50 patients with SLE and 50 healthy controls matched by sex and similar age ranges were enrolled. Serum HDL cholesterol (HDL-C) and C reactive protein (CRP) levels were quantified. Serum cytokine levels, including IL-1β and IL-6, were determined by ELISA. The gene expression of inflammasome-related genes in peripheral blood mononuclear cells was measured by quantitative real-time PCR. RESULTS HDL-C levels were lower in the patients with SLE (p<0.05), and on segregation according to disease activity, those with active SLE had the lowest HDL-C levels. Patients with SLE presented higher concentrations of the serum inflammatory cytokines IL-1β and IL-6 (p<0.0001) but similar levels of CRP to those in controls. A similar scenario was observed for the gene expression of inflammasome components, where all the evaluated markers were significantly upregulated in the SLE population. These results revealed significant negative correlations between HDL levels and disease activity, serum IL-6 and IL-1β levels and the mRNA expression of NLRP3, IL-1β and IL-18. In addition, significant positive correlations were found between disease activity and serum IL-1β and between disease activity and the mRNA expression of IL-18, and interestingly, significant positive correlations were also observed between active SLE and serum IL-1β and the mRNA expression of NLRP3. CONCLUSION Our results suggest that HDL is essential for SLE beyond atherosclerosis and is related to inflammation regulation, possibly mediated by inflammasome immunomodulation.
Collapse
Affiliation(s)
- Julián Pérez-Ocampo
- Infettare, Facultad de medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| | - Oscar Vergara-Serpa
- Postgrado de Reumatología, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Carlos Jaime Velásquez-Franco
- Postgrado de Reumatología, Universidad Pontificia Bolivariana, Medellin, Colombia
- Rheumatology Department, Clínica Universitaria Bolivariana, Medellin, Colombia
| | | | - Lina M Yassin
- Corporación Universitaria Remington, Medellin, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
2
|
Single-cell analysis of skin immune cells reveals an Angptl4-ifi20b axis that regulates monocyte differentiation during wound healing. Cell Death Dis 2022; 13:180. [PMID: 35210411 PMCID: PMC8873364 DOI: 10.1038/s41419-022-04638-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023]
Abstract
AbstractThe persistent inflammatory response at the wound site is a cardinal feature of nonhealing wounds. Prolonged neutrophil presence in the wound site due to failed clearance by reduced monocyte-derived macrophages delays the transition from the inflammatory to the proliferative phase of wound healing. Angiopoietin-like 4 protein (Angptl4) is a matricellular protein that has been implicated in many inflammatory diseases. However, its precise role in the immune cell response during wound healing remains unclear. Therefore, we performed flow cytometry and single-cell RNA sequencing to examine the immune cell landscape of excisional wounds from Angptl4+/+ and Angptl4−/− mice. Chemotactic immune cell recruitment and infiltration were not compromised due to Angptl4 deficiency. However, as wound healing progresses, Angptl4−/− wounds have a prolonged neutrophil presence and fewer monocyte-derived macrophages than Angptl4+/+ and Angptl4LysM−/− wounds. The underlying mechanism involves a novel Angptl4-interferon activated gene 202B (ifi202b) axis that regulates monocyte differentiation to macrophages, coordinating neutrophil removal and inflammation resolution. An unbiased kinase inhibitor screen revealed an Angptl4-mediated kinome signaling network involving S6K, JAK, and CDK, among others, that modulates the expression of ifi202b. Silencing ifi202b in Angptl4−/− monocytes, whose endogenous expression was elevated, rescued the impaired monocyte-to-macrophage transition in the in vitro reconstituted wound microenvironment using wound exudate. GSEA and IPA functional analyses revealed that ifi202b-associated canonical pathways and functions involved in the inflammatory response and monocyte cell fate were enriched. Together, we identified ifi202b as a key gatekeeper of monocyte differentiation. By modulating ifi202b expression, Angptl4 orchestrates the inflammatory state, innate immune landscape, and wound healing process.
Collapse
|
3
|
Fan X, Jiao L, Jin T. Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Front Microbiol 2022; 12:809412. [PMID: 35145495 PMCID: PMC8822057 DOI: 10.3389/fmicb.2021.809412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The innate immune system defenses against pathogen infections via patten-recognition receptors (PRRs). PRRs initiate immune responses by recognizing pathogen-associated molecular patterns (PAMPs), including peptidoglycan, lipopolysaccharide, and nucleic acids. Several nucleic acid sensors or families have been identified, such as RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), cyclic GMP-AMP synthase (cGAS), and PYHIN family receptors. In recent years, the PYHIN family cytosolic DNA receptors have increased attention because of their important roles in initiating innate immune responses. The family members in humans include Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), interferon-inducible protein X (IFIX), and myeloid cell nuclear differentiation antigen (MNDA). The PYHIN family members are also identified in mice, including AIM2, p202, p203, p204, and p205. Herein, we summarize recent advances in understanding the activation and immune regulation mechanisms of the PYHIN family during microbial infection. Furthermore, structural characterizations of AIM2, IFI16, p202, and p204 provide more accurate insights into the signaling mechanisms of PYHIN family receptors. Overall, the molecular details will facilitate the development of reagents to defense against viral infections.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Molecular and Translational Medicine, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lianying Jiao,
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Tengchuan Jin,
| |
Collapse
|
4
|
Ghosh S, Wallerath C, Covarrubias S, Hornung V, Carpenter S, Fitzgerald KA. The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:3249-3260. [PMID: 28931603 DOI: 10.4049/jimmunol.1700823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
Members of the IFN-inducible PYHIN protein family, such as absent in melanoma-2 and IFN-γ-inducible protein (IFI)16, bind dsDNA and form caspase-1-activating inflammasomes that are important in immunity to cytosolic bacteria, DNA viruses, or HIV. IFI16 has also been shown to regulate transcription of type I IFNs during HSV infection. The role of other members of the PYHIN protein family in the regulation of immune responses is much less clear. In this study, we identified an immune-regulatory function for a member of the murine PYHIN protein family, p205 (also called Ifi205). Examination of immune responses induced by dsDNA and other microbial ligands in bone marrow-derived macrophages lacking p205 revealed that inflammasome activation by dsDNA, as well as ligands that engage the NLRP3 inflammasome, was severely compromised in these cells. Further analysis revealed that p205-knockdown cells showed reduced expression of apoptosis-associated speck-like molecule containing CARD domain (Asc) at the protein and RNA levels. p205 knockdown resulted in reduced binding of actively transcribing RNA polymerase II to the endogenous Asc gene, resulting in decreased transcription and processing of Asc pre-mRNA. Deletion of p205 in B16 melanoma cells using CRISPR/Cas9 showed a similar loss of Asc expression. Ectopic expression of p205 induced expression of an Asc promoter-luciferase reporter gene. Together, these findings suggest that p205 controls expression of Asc mRNA to regulate inflammasome responses. These findings expand on our understanding of immune-regulatory roles for the PYHIN protein family.
Collapse
Affiliation(s)
- Sreya Ghosh
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Christina Wallerath
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Veit Hornung
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
5
|
Li H, Jiao Y, Zhang L, Wang C, Zhang X, Guo H, Xu H. The interferon-inducible protein p205 acts as an activator in osteoblast differentiation of mouse BMSCs. Differentiation 2016; 92:318-325. [DOI: 10.1016/j.diff.2016.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/08/2016] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
|
6
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
7
|
Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis 2015; 2:46-56. [PMID: 25815367 PMCID: PMC4372153 DOI: 10.1016/j.gendis.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Elena Gonzalezgugel
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lei Cheng
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lin Nie
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
8
|
Abstract
My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins.
Collapse
Affiliation(s)
- Peter Lengyel
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
9
|
Liu F, Jiao Y, Zhu Z, Sun C, Li H. Interferon-inducible protein 205 (p205) plays a role in adipogenic differentiation of mouse adipose-derived stem cells. Mol Cell Endocrinol 2014; 392:80-9. [PMID: 24859602 DOI: 10.1016/j.mce.2014.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
The role of p205 in the regulation of cell growth and differentiation remains poorly understood. This study aimed to determine whether p205 is involved in adipogenesis of mouse adipose-derived stem cells (mASCs). p205 was largely induced in mASCs under adipogenesis in vitro. The mRNA and protein levels of p205 reached a maximum at day 4, and decreased at days 6 and 8. p205 localized almost exclusively in the nucleus of undifferentiated cells, but also translocated to the cytoplasm in intermediately and terminally differentiated cells. Although p205 suppression impaired mASC adipogenesis, its overexpression did not enhance the differentiation process. p205 co-localized with, and bound directly to, C/EBPβ and C/EBPα at day 4. Knockdown of p205 lowered the amount of p205 interacting with C/EBPβ or C/EBPα, further downregulating the transcription activities of C/EBPα and PPARγ. This suggests the importance of these transcription factors in the role of p205 in mASC adipogenesis.
Collapse
Affiliation(s)
- Feihan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Jiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqian Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Chaochen Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
10
|
Li H, Liu F, Guo H, Zhu Z, Jiao Y. Role of interferon-inducible protein 202 (p202) in the regulation of adipogenesis in mouse adipose-derived stem cells. Mol Cell Endocrinol 2014; 382:814-24. [PMID: 24246779 DOI: 10.1016/j.mce.2013.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
The interferon-inducible protein 202 (p202) has emerged as a key regulator of cell proliferation and differentiation. To explore the role of p202 in adipocyte differentiation, p202 mRNA and protein levels in differentiating mouse adipose-derived stem cells (mASCs) were examined, and were found to continuously increase during mASC adipogenesis. The nuclear and cytoplasmic distribution of p202 in the differentiation process was also determined. In addition, suppression and overexpression of p202 impaired and enhanced the differentiation process, respectively. Further, results of co-immunoprecipitation and co-immunofluorescence showed the interaction and intracellular co-localization of p202 with C/EBPβ, C/EBPα, and PPARγ at intermediate and/or late differentiation stages. Knockdown of p202 interfered with the elevated expression of C/EBPβ, C/EBPα, and PPARγ. In conclusion, the temporal and spatial profiles of p202 and the observed manner in which p202 affected the expression of these transcription factors provided evidence that p202 plays a role during mASC adipogenesis.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Feihan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengjun Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqian Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Jiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
11
|
Abstract
The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses.
Collapse
|
12
|
Milot E, Fotouhi-Ardakani N, Filep JG. Myeloid nuclear differentiation antigen, neutrophil apoptosis and sepsis. Front Immunol 2012; 3:397. [PMID: 23293639 PMCID: PMC3530780 DOI: 10.3389/fimmu.2012.00397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/07/2012] [Indexed: 11/23/2022] Open
Abstract
Sepsis and septic shock are characterized by prolonged inflammation and delayed resolution, which are associated with suppression of neutrophil apoptosis. The role of the intrinsic apoptotic pathway and intracellular factors in regulation of neutrophil apoptosis remain incompletely understood. We previously reported that the nuclear factor MNDA (myeloid nuclear differentiation antigen) is fundamental to execution of the constitutive neutrophil death program. During neutrophil apoptosis MNDA is cleaved by caspases and relocated to the cytoplasm. However, when challenged with known mediators of sepsis, human neutrophils of healthy donors or neutrophils from patients with sepsis exhibited impaired MNDA relocation/cleavage parallel with myeloid cell leukemia-1 (MCL-1) accumulation and suppression of apoptosis. MNDA knockdown in a model cell line indicated that upon induction of apoptosis, MNDA promotes proteasomal degradation of MCL-1, thereby aggravating mitochondrial dysfunction. Thus, MNDA is central to a novel nucleus-mitochondrion circuit that promotes progression of apoptosis. Disruption of this circuit contributes to neutrophil longevity, thereby identifying MNDA as a potential therapeutic target in sepsis and other inflammatory pathologies.
Collapse
Affiliation(s)
- Eric Milot
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal Montréal, QC, Canada
| | | | | |
Collapse
|
13
|
The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol 2012; 12:140. [PMID: 22871040 PMCID: PMC3458909 DOI: 10.1186/1471-2148-12-140] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023] Open
Abstract
Background Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses. Results No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns. Conclusions The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.
Collapse
|
14
|
Choubey D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol Lett 2012; 147:10-7. [PMID: 22841963 DOI: 10.1016/j.imlet.2012.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Both genetic and environmental factors contribute to the development and progression of systemic lupus erythematosus (SLE), a complex autoimmune disease. The disease exhibits a strong gender bias and develops predominantly in females. Additionally, most SLE patients exhibit increased serum levels of interferon-α (IFN-α) and the "IFN signature". Studies using the mouse models of lupus have identified several lupus susceptibility loci, including the New Zealand Black (NZB)-derived autoimmunity 2 (Nba2) interval on the chromosome 1. The interval, which is syntenic to the human chromosome 1q region, harbors the FcγR family, SLAM/CD2-family, and the IFN-inducible Ifi200-family genes (encoding for the p200-family proteins). Studies involving the B6.Nba2 congenic mice revealed that the development of antinuclear autoantibodies (ANAs) depends on the age, gender, and activation of type I IFN-signaling. Interestingly, recent studies involving the generation of Nba2 subcongenic mouse lines and generation of mice deficient for the Fcgr2b or Aim2 gene within the interval have provided evidence that epistatic interactions among the Nba2 genes contribute to increased lupus susceptibility. Given that the expression of some of the p200-family proteins is differentially regulated by sex hormones and these proteins differentially regulate cytosolic DNA-induced production of type I IFN and proinflammatory cytokines (IL-1β and IL-18), the major known contributors of SLE-associated inflammation, we discuss the recent advancements in our understanding of the role of p200-family proteins in lupus susceptibility modification. An improved understanding of the role of p200-family proteins in the development of autoimmunity is likely to identify new approaches to treat SLE patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267, United States.
| |
Collapse
|
15
|
Thuret S, Thallmair M, Horky LL, Gage FH. Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One 2012; 7:e30904. [PMID: 22348029 PMCID: PMC3278405 DOI: 10.1371/journal.pone.0030904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022] Open
Abstract
Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice.
Collapse
Affiliation(s)
- Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| | - Michaela Thallmair
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Laura L. Horky
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| |
Collapse
|
16
|
Choubey D, Panchanathan R, Duan X, Liu H, Liu H. Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 2011; 31:893-906. [PMID: 21902548 DOI: 10.1089/jir.2011.0073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple organs. The disease is characterized by the production of pathogenic autoantibodies to DNA and certain nuclear antigens, chronic inflammation, and immune dysregulation. Genetic studies involving SLE patients and mouse models have indicated that multiple lupus susceptible genes contribute to the disease phenotype. Notably, the development of SLE in patients and in certain mouse models exhibits a strong sex bias. In addition, several lines of evidence indicates that activation of interferon-α (IFN-α) signaling in immune cells and alterations in the expression of certain immunomodulatory cytokines contribute to lupus pathogenesis. Studies have implicated factors, such as the X chromosomal gene dosage effect and the sex hormones, in gender bias in SLE. However, the molecular mechanisms remain unclear. Additionally, it remains unclear whether these factors influence the "IFN-signature," which is associated with SLE. In this regard, a mutually positive regulatory feedback loop between IFNs and estrogen receptor-α (ERα) has been identified in immune cells. Moreover, studies indicate that the expression of certain IFN-inducible p200-family proteins that act as innate immune sensors for cytosolic DNA is differentially regulated by sex hormones. In this review, we discuss how the modulation of the expression of the p200-family proteins in immune cells by sex hormones and IFNs contributes to sex bias in SLE. An improved understanding of the regulation and roles of the p200-family proteins in immune cells is critical to understand lupus pathogenesis as well as response (or the lack of it) to various therapies.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Panchanathan R, Shen H, Duan X, Rathinam VAK, Erickson LD, Fitzgerald KA, Choubey D. Aim2 deficiency in mice suppresses the expression of the inhibitory Fcgamma receptor (FcgammaRIIB) through the induction of the IFN-inducible p202, a lupus susceptibility protein. THE JOURNAL OF IMMUNOLOGY 2011; 186:6762-70. [PMID: 21551362 DOI: 10.4049/jimmunol.1003638] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine Aim2 and Ifi202 genes (encoding for the Aim2 and p202 proteins) are members of the IFN-inducible Ifi200 gene family. The Aim2 deficiency in mice activates IFN signaling and stimulates the expression of the lupus susceptibility gene, the Ifi202, located within the NZB autoimmunity 2 (Nba2) interval. Given that the deficiency in the expression of the Fcgr2b gene (encoding for the inhibitory FcγRIIB receptor) is associated with increased lupus susceptibility in mice, we investigated whether the Aim2 protein could regulate the expression of Fcgr2b gene. In this article, we report that Aim2 deficiency in mice suppresses the expression of the FcγRIIB receptor. Interestingly, the Fcgr2b-deficient cells expressed increased levels of the IFN-β, activated IFN signaling, and expressed reduced levels of the Aim2 protein. Treatment of splenic cells with IFN-α or -γ reduced levels of the FcγRIIB mRNA and protein and also decreased the activity of the FcγRIIB p(-729/+585) Luc reporter. Moreover, levels of the FcγRIIB receptor were significantly higher in the Stat1-deficient splenic cells than in the wild-type cells. Accordingly, increased expression of IFN-β in lupus-prone B6.Nba2-ABC mice, as compared with non-lupus-prone C57BL/6 (B6) or B6.Nba2-C mice, was associated with reduced expression of the FcγRIIB receptor. Notably, overexpression of the p202 protein in cells decreased the expression of the Aim2 gene, activated the IFN response, and suppressed the expression of the Fcgr2b gene. These observations demonstrate that the expression of Aim2 protein is required to maintain the expression of the Fcgr2b gene and also predict epistatic interactions between the Ifi200 genes and the Fcgr2b gene within the Nba2 interval.
Collapse
|
19
|
Gariglio M, Mondini M, De Andrea M, Landolfo S. The multifaceted interferon-inducible p200 family proteins: from cell biology to human pathology. J Interferon Cytokine Res 2011; 31:159-72. [PMID: 21198352 DOI: 10.1089/jir.2010.0106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interferon-inducible p200 family proteins consist of a group of homologous human and mouse proteins that have an N-terminal Pyrin domain and 1 or 2 partially conserved 200 amino acid long C-terminal domains (designated the HIN domain or p200 X domain). These proteins display multifaceted activity due to their ability to bind to various target proteins (eg, transcription factors, signaling proteins, and tumor suppressor proteins) and modulate different cell functions. In addition to a role in interferon biology, increasing evidence supports a role for these proteins as regulators of various cell functions, including proliferation, differentiation, apoptosis, senescence, inflammasome assembly, and control of organ transplants. As a consequence, alterations in their expression and function may be of relevance in the pathogenesis of human diseases, such as systemic autoimmune syndromes, tumors, and degenerative diseases. This review summarizes the literature describing these data, highlights some of the important findings derived from recent studies, and speculates about future perspectives.
Collapse
Affiliation(s)
- Marisa Gariglio
- Department of Clinical and Experimental Medicine, Medical School of Novara, Novara, Italy
| | | | | | | |
Collapse
|
20
|
Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, Srivastava R. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res 2010; 30:371-80. [PMID: 20187776 DOI: 10.1089/jir.2009.0096] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deregulated innate immune responses that result in increased levels of type I interferons (IFNs) and stimulation of IFN-inducible genes are thought to contribute to chronic inflammation and autoimmunity. One family of IFN-inducible genes is the Ifi200 family, which includes the murine (eg, Ifi202a, Ifi202b, Ifi203, Ifi204, Mndal, and Aim2) and human (eg, IFI16, MNDA, IFIX, and AIM2) genes. Genes in the family encode structurally related proteins (the p200-family proteins), which share at least one partially conserved repeat of 200-amino acid (200-AA) residues. Consistent with the presence of 2 consecutive oligonucleotide/oligosaccharide-binding folds in the repeat, the p200-family proteins can bind to DNA. Additionally, these proteins (except the p202 proteins) also contain a pyrin (PYD) domain in the N-terminus. Increased expression of p202 proteins in certain strains of female mice is associated with lupus-like disease. Interestingly, only the Aim2 protein is conserved between the mouse and humans. Several recent studies have provided evidence that the Aim2 and p202 proteins can recognize DNA in cytoplasm and the Aim2 protein upon sensing DNA can form a caspase-1-activating inflammasome. In this review, we discuss how the ability of p200-family proteins to sense cytoplasmic DNA may contribute to the development of chronic inflammation and associated diseases.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ashley RL, Henkes LE, Bouma GJ, Pru JK, Hansen TR. Deletion of the Isg15 gene results in up-regulation of decidual cell survival genes and down-regulation of adhesion genes: implication for regulation by IL-1beta. Endocrinology 2010; 151:4527-36. [PMID: 20660068 DOI: 10.1210/en.2010-0166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ubiquitin homolog interferon stimulated gene 15 (ISG15) is up-regulated in the endometrium in response to pregnancy in primates, ruminants, pigs, and mice. ISG15 covalently attaches to intracellular proteins (isgylation) and regulates numerous intracellular responses. We hypothesized that ISG15 depletion (Isg15(-/-)) alters decidual tissue gene expression and that IL-1beta induces ISG15 expression and isgylation in cultured murine decidual explants and human uterine fibroblasts (HuFs). After studying the reproductive phenotype, contrary to earlier reports, up to 50% of the fetuses die between 7.5 and 12.5 d post coitum (dpc) in Isg15(-/-) mothers when mated to Isg15(-/-) fathers. Using microarray analysis, over 500 genes are differentially regulated in 7.5 dpc deciduas from Isg15(-/-) compared with Isg15(+/+) mice. The gene for interferon-inducible protein 202b, which functions in cell-survival mechanisms, was up-regulated (mRNA and protein) in deciduas from Isg15(-/-) mice. Culture of Isg15(+/+) mouse decidual explants (7.5 dpc) with IL-1beta decreased Isg15 mRNA but increased free and conjugated ISG15. In predecidual HuF cells, IL-1beta treatment increased ISG15 mRNA and isgylation. Additionally, IL-1beta up-regulated expression of enzymes (HERC5, UBCH8) that coordinate the covalent conjugation of ISG15 to target proteins, as well as the gene that encodes the deisglyation enzyme UBP43 in HuF cells. In conclusion, deletion of Isg15 gene results in 50% fetal loss after 7.5 dpc, which can be explained through differential decidual gene expression that is functionally tied to cell survival and adhesion pathways. This fetal death also might relate to impaired IL-1beta signaling, because ISG15 and isgylation are induced by IL-1beta in human and murine endometrial stromal cells.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
22
|
Xiao J, Sun B, Cai GP. Transient expression of interferon-inducible p204 in the early stage is required for adipogenesis in 3T3-L1 cells. Endocrinology 2010; 151:3141-53. [PMID: 20444940 DOI: 10.1210/en.2009-1381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A member of the interferon-inducible p200 family of proteins, p204, has recently been reported to function in the development of many mesoderm-derived tissues, such as bone, muscle, and cartilage. However, no published study has yet investigated the role of p204 in adipogenesis. Our preliminary experiments showed that p204 can be found in 3T3-L1 preadipocytes, and its expression was up-regulated in a differentiation-dependent manner. As such, we hypothesized that p204 is associated with adipogenesis and focused on the influence of p204 on adipogenesis. In the present study, we investigated the transient elevated expression and cytoplasm-to-nucleus translocation of p204 in the early stage of adipogenesis. To determine the effect of p204 on adipogenesis, p204-siRNA and expression vector were produced for p204 suppression and overexpression, respectively. The knockdown of p204 resulted in a significantly depressed adipocyte differentiation, whereas p204 overexpression promoted adipocyte differentiation. The mRNA expression of adipogenic markers, such as peroxisome-proliferator-activated receptor (PPAR)gamma, CCAAT/enhancer-binding-protein (C/EBP)alpha, lipoprotein lipase, and adipsin, was decreased by p204 suppression and increased by p204 overexpression. A coimmunoprecipitation assay coupled with an indirect immunofluorescence assay also indicated that p204 interacted and colocalized with C/EBPdelta in the nucleus. Furthermore, the knockdown of p204 disrupted the interaction between p204 and C/EBPdelta and partially suppressed the PPARgamma transcriptional activity by dissociating C/EBPdelta with the PPARgamma promoter element. Collectively, our data indicate that the transient expression of p204 in the early stage is indispensable for adipocyte differentiation. Disruption of p204 expression patterns at this stage leads to irreversible damage in fat formation.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | |
Collapse
|
23
|
Veeranki S, Choubey D. Systemic lupus erythematosus and increased risk to develop B cell malignancies: role of the p200-family proteins. Immunol Lett 2010; 133:1-5. [PMID: 20599558 DOI: 10.1016/j.imlet.2010.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/20/2010] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, develops at a female-to-male ratio of 10:1. Increased serum levels of type I interferons (IFN-alpha/beta) and induction of "IFN-signature" genes are associated with an active SLE disease in patients. Moreover, SLE patients exhibit three- to four-fold increase in the risk of developing malignancies involving B cells, including non-Hodgkin lymphoma (NHL) and Hodgkin's lymphoma (HL). Interestingly, homozygous mice expressing a deletion mutant (the proline-rich domain deleted) of the p53 develop various types of spontaneous tumors, particularly of B cell origin upon aging. The deletion is associated with defects in transcriptional activation of genes by p53 and inhibition of DNA damage-induced apoptosis. Notably, increased levels of the p202 protein, which is encoded by the p53-repressible interferon-inducible Ifi202 gene, in B cells of female mice are associated with defects in B cell apoptosis, inhibition of the p53-mediated transcription of pro-apoptotic genes, and increased lupus susceptibility. In this review we discuss how increased levels of the p202 protein (and its human functional homologue IFI16 protein) in B cells increase lupus susceptibility and are likely to increase the risk of developing certain B cell malignancies. A complete understanding of the molecular mechanisms that regulate B cell homeostasis is necessary to identify SLE patients with an increased risk to develop B cell malignancies.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, PO Box 670056, Cincinnati, OH 45267, United States
| | | |
Collapse
|
24
|
Fotouhi-Ardakani N, Kebir DE, Pierre-Charles N, Wang L, Ahern SP, Filep JG, Milot E. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. Am J Respir Crit Care Med 2010; 182:341-50. [PMID: 20395555 DOI: 10.1164/rccm.201001-0075oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Suppressed neutrophil apoptosis, a hallmark of sepsis, perpetuates inflammation and delays resolution. Myeloid nuclear differentiation antigen (MNDA) is expressed only in myeloid cells and has been implicated in cell differentiation; however, its function in mature neutrophils is not known. OBJECTIVES We studied whether MNDA could contribute to regulation of apoptosis of neutrophils from healthy subjects and patients with sepsis, and investigated the impact of MNDA knockdown on apoptosis. METHODS Human neutrophils were challenged with mediators of sepsis and neutrophils from patients with sepsis were cultured to investigate cleavage and cytoplasmic accumulation of MNDA. MNDA was knocked down in myeloid HL-60 cells to investigate development of apoptosis. MEASUREMENTS AND MAIN RESULTS During constitutive apoptosis of human neutrophils, MNDA is cleaved by caspases and accumulated in the cytoplasm, where it promotes degradation of the antiapoptotic protein Mcl-1, thereby accelerating collapse of mitochondrial transmembrane potential. Culture of neutrophils with LPS, bacterial DNA, or platelet-activating factor prevented MNDA cleavage and cytoplasmic accumulation. MNDA knockdown with short hairpin RNA markedly attenuated Mcl-1 turnover and conferred resistance to stress-induced apoptosis in HL-60 cells. Neutrophils from patients with severe sepsis exhibited markedly suppressed apoptosis that was associated with impaired cytoplasmic MNDA accumulation, preservation of Mcl-1 expression, and mitochondrial transmembrane potential. Culture of neutrophils of healthy subjects with septic plasma delayed apoptosis and cytoplasmic MNDA accumulation. CONCLUSIONS These results indicate that cytoplasmic accumulation of MNDA facilitates progression of apoptosis and suggest that impaired cytoplasmic MNDA accumulation contributes to delayed neutrophil apoptosis in patients with severe sepsis.
Collapse
|
25
|
Berry A, Matthews L, Jangani M, Plumb J, Farrow S, Buchan N, Wilson PA, Singh D, Ray DW, Donn RP. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action. FASEB J 2010; 24:1700-13. [PMID: 20086048 PMCID: PMC3000051 DOI: 10.1096/fj.09-139998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we used cDNA expression profiling to identify genes associated with glucocorticoid (Gc) sensitivity. We now identify which of these directly influence Gc action. Interferon-inducible protein 16 (IFI16), bone morphogenetic protein receptor type II (BMPRII), and regulator of G-protein signaling 14 (RGS14) increased Gc transactivation, whereas sialyltransferase 4B (SIAT4B) had a negative effect. Amyloid β (A4) precursor-protein binding, family B, member 1 (APBB1/Fe65) and neural cell expressed developmentally down-regulated 9 (NEDD9) were without effect. Only IFI16 potentiated Gc repression of NF-κB. In addition, IFI16 affected basal expression, and Gc induction of endogenous target genes. IFI16 did not affect glucocorticoid receptor (GR) expression, ligand-dependent repression of GR expression, or the ligand-dependent induction of GR phosphorylation on Ser-211 or Ser-203. Coimmunoprecipitation revealed an interaction, suggesting that IFI16 modulation of GR function is mediated by protein crosstalk. Transfection analysis with GR mutants showed that the ligand-binding domain of GR binds IFI16 and is the target domain for IFI16 regulation. Analysis of human lung sections identified colocalization of GR and IFI16, suggesting a physiologically relevant interaction. We demonstrate that IFI16 is a novel modulator of GR function and show the importance of analyzing variation in Gc sensitivity in humans, using appropriate technology, to drive discovery.—Berry, A., Matthews, L. Jangani, M., Plumb, J., Farrow, S., Buchan, N., Wilson, P. A., Singh, D., Ray, D., W., Donn, R. P. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action.
Collapse
Affiliation(s)
- A Berry
- Arthritis Research Campaign Epidemiology Unit, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lengyel P, Liu CJ. The p200 family protein p204 as a modulator of cell proliferation and differentiation: a brief survey. Cell Mol Life Sci 2009; 67:335-40. [PMID: 19921484 DOI: 10.1007/s00018-009-0195-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 12/30/2022]
Abstract
The expression of the murine p200 family protein p204 in numerous tissues can be activated by a variety of distinct, tissue-specific transcription factors. p204 modulates cell proliferation, cell cycling, and the differentiation of various tissues, including skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes, and macrophages. This protein modulates these processes in various ways, such as by (1) blocking ribosomal RNA synthesis in the nucleolus, (2) inhibiting Ras signaling in the cytoplasm, (3) promoting the activity of particular transcription factors in the nucleus by forming complexes with them, and (4) overcoming the block of the activity of other transcription factors by inhibitor of differentiation (Id) proteins. Much remains to be learned about p204, particularly with respect to its expected involvement in the differentiation of several as yet unexplored tissues.
Collapse
Affiliation(s)
- Peter Lengyel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8024, USA.
| | | |
Collapse
|
27
|
Luan Y, Lengyel P, Liu CJ. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev 2008; 19:357-69. [PMID: 19027346 DOI: 10.1016/j.cytogfr.2008.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed.
Collapse
Affiliation(s)
- Yi Luan
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, 10003, United States
| | | | | |
Collapse
|
28
|
Ludlow LE, Hii LL, Thorpe J, Newbold A, Tainton KM, Trapani JA, Clarke CJP, Johnstone RW. Cloning and characterisation of Ifi206: a new murine HIN-200 family member. J Cell Biochem 2008; 103:1270-82. [PMID: 17786933 DOI: 10.1002/jcb.21512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HIN-200 proteins are interferon-inducible proteins capable of regulating cell growth, senescence, differentiation and death. Using a combination of in silico analysis of NCBI EST databases and screening of murine C57BL/6 cDNA libraries we isolated novel murine HIN-200 cDNAs designated Ifi206S and Ifi206L encoding two putative mRNA splice variants. The p206S and p206L protein isoforms have a modular domain structure consisting of an N-terminal PAAD/DAPIN/Pyrin domain, a region rich in serine, threonine and proline residues and a C-terminal 200 B domain characteristic of other HIN-200 proteins. Ifi206 mRNA was detected only in the spleen and lung of BALB/c and C57BL/6 mice and expression was up-regulated by both types I and II IFN subtypes. p206 protein was predominantly expressed in the cytoplasm and addition of LMB, a CRM1 dependent nuclear export inhibitor, caused p206 to accumulate in the nucleus. Unlike other human and mouse HIN-200 proteins that contain only a single 200 amino acid domain, overexpression of p206 impaired the clonogenic growth of tumour cell lines. Thus, p206 represents the newest HIN-200 family member discovered. It has distinct and restricted pattern of expression however maintains many of the hallmarks of HIN-200 proteins including the presence of a characteristic 200 X domain, induction by interferon and an ability to suppress tumour cell growth.
Collapse
Affiliation(s)
- Louise E Ludlow
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lengyel P. From RNase L to the Multitalented p200 Family Proteins: An Exploration of the Modes of Interferon Action. J Interferon Cytokine Res 2008; 28:273-81. [DOI: 10.1089/jir.2008.3993.hp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Peter Lengyel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
30
|
Chen J, Panchanathan R, Choubey D. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway. Immunol Lett 2008; 118:13-20. [PMID: 18374989 DOI: 10.1016/j.imlet.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 02/04/2023]
Abstract
Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5'-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jianming Chen
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
31
|
Samuel S, Twizere JC, Beifuss KK, Bernstein LR. Nucleolin binds specifically to an AP-1 DNA sequence and represses AP1-dependent transactivation of the matrix metalloproteinase-13 gene. Mol Carcinog 2008; 47:34-46. [PMID: 17626252 DOI: 10.1002/mc.20358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcriptional regulation via activator protein-1 (AP-1) protein binding to AP-1 binding sites within gene promoter regions of AP-1 target genes plays a key role in controlling cellular invasion, proliferation, and oncogenesis, and is important to pathogenesis of arthritis and cardiovascular disease. To identify new proteins that interact with the AP-1 DNA binding site, we performed the DNA affinity chromatography-based Nucleotide Affinity Preincubation Specificity TEst of Recognition (NAPSTER) assay, and discovered a 97 kDa protein that binds in vitro to a minimal AP-1 DNA sequence element. Mass spectrometric fragmentation sequencing determined that p97 is nucleolin. Immunoblotting of DNA affinity-purified material with anti-nucleolin antibodies confirmed this identification. Nucleolin also binds the AP-1 site in gel shift assays. Nucleolin interacts in NAPSTER with the AP-1 site within the promoter sequence of the metalloproteinase-13 gene (MMP-13), and binds in vivo in chromatin immunoprecipitation assays in the vicinity of the AP-1 site in the MMP-13 promoter. Overexpression of nucleolin in human HeLa cervical carcinoma cells significantly represses AP-1 dependent gene transactivation of a minimal AP-1 reporter construct and of an MMP-13 promoter reporter sequence. This is the first report of nucleolin binding and transregulation at the AP-1 site.
Collapse
Affiliation(s)
- Shaija Samuel
- Department of Molecular and Cellular Medicine, Texas A & M University System Health Science Center, College Station, Texas, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The murine p200 family protein, p204, modulates cell proliferation and tissue differentiation. Many of its activities are exerted in the nucleus. However, in cardiac myocytes, p204 accumulated in the cytoplasm. A yeast two-hybrid assay revealed a p204-cytoplasmic Ras protein interaction. This was confirmed (i) by coimmunoprecipitation of p204 with Ras in mouse heart extract and with endogenous or ectopic H-Ras and K-Ras in cell lysates as well as (ii) by binding of purified H-Ras-GTP to purified p204 in vitro. p204 inhibited (i) the cleavage of RasGTP to RasGDP by RasGAP; (ii) the binding to RasGTP of Raf-1, phosphatidylinositol 3-kinase, and Ral-GDS, effectors of Ras signaling; and (iii) activation by the Ras pathway of the phosphorylation and thus activation of downstream targets (e.g. MEK, Akt, and p38 MAPK). Oncogenic Ras expression triggered the phosphorylation and translocation of p204 from the nucleus to the cytoplasm. This is expected to increase the interaction between the two proteins. Translocation triggered by Ras oncoprotein was blocked by the LY294002 inhibitor of phosphatidylinositol 3-kinase. Ras did not promote phosphorylation or translocation to the cytoplasm of mutated p204 in which serine 179 was replaced by alanine. p204 overexpression inhibited the anchorage-independent proliferation of cells expressing Ras(Q61L) oncoprotein. Ras oncoprotein triggered in MEF3T3 cells the rearrangement of the actin cytoskeleton and the enhancement of cell migration through a membrane. Overexpression of p204 inhibited both. Ras oncoprotein or activated, wild-type Ras was described to increase Egr-1 transcription factor expression. We report that a sequence in the gene encoding p204 bound Egr-1, and Egr-1 activated p204 expression. Ras oncoprotein or activated wild-type Ras increased the expression in 3T3 cells of p204 together with that of Egr-1. Furthermore, the activation of expression of a single copy of K-ras oncogene in cultured murine embryonic cells induced the expression of a high level of p204 as well as its distribution between the nuclei and the cytoplasm. Thus, p204 may serve as a negative feedback inhibitor of Ras activity.
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024, USA
| | | |
Collapse
|
33
|
Yamauchi M, Hashimoto M, Ichiyama K, Yoshida R, Hanada T, Muta T, Komune S, Kobayashi T, Yoshimura A. Ifi202, an IFN-inducible candidate gene for lupus susceptibility in NZB/W F1 mice, is a positive regulator for NF-kappaB activation in dendritic cells. Int Immunol 2007; 19:935-42. [PMID: 17702989 DOI: 10.1093/intimm/dxm054] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies and lupus nephritis. The [New Zealand black (NZB) x New Zealand white (NZW)]F1 (BWF1) mouse has been recognized as an important animal model of human SLE. The T(h)1-prone phenotype of BWF1 mice has been shown to contribute to the development of the lupus. However, the molecular basis for T(h)1 skewing in BWF1 mice has not been clarified. We noticed that IL-6, IL-12 and other proinflammatory cytokines as well as IkappaB-zeta induction were higher in mature bone marrow-derived dendritic cells (BMDCs) from NZB and BWF1 mice than those from NZW mice. The expression of an IFN-inducible gene Ifi202, a candidate gene for lupus, was almost undetectable in NZW BMDCs. Thus, we hypothesized that Ifi202 is involved in elevated IL-12 production from BWF1 BMDCs. Overexpression of Ifi202 enhanced the LPS-induced IkappaB-zeta, IL-12p40 and NF-kappaB promoter activities, while anti-sense (AS) RNA against Ifi202 strongly suppressed them in a monocytic cell line, RAW 264.7. Furthermore, overexpression of Ifi202 enhanced LPS-induced IL-12p40 and IkappaB-zeta mRNA induction while Ifi202 AS RNA suppressed these in RAW 264.7 cells. In addition, forced expression of Ifi202 enhanced IL-12p40 mRNA induction in NZW BMDCs. Thus, Ifi202 is an important NF-kappaB activator in DCs and involved in IL-12 production, which may account for a T(h)1-prone phenotype of BWF1 mice.
Collapse
Affiliation(s)
- Moriyasu Yamauchi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuroda E, Noguchi J, Doi T, Uematsu S, Akira S, Yamashita U. IL-3 is an important differentiation factor for the development of prostaglandin E2-producing macrophages between C57BL/6 and BALB/c mice. Eur J Immunol 2007; 37:2185-95. [PMID: 17628861 DOI: 10.1002/eji.200737041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously reported that peritoneal and splenic macrophages from Th2-dominant BALB/c mice produced higher amounts of prostaglandin (PG) E2 than cells from C57BL/6 mice. In this study, we investigated how macrophages from BALB/c mice acquire the ability of enhanced PGE2 production, using bone marrow-derived macrophages differentiated by M-CSF, GM-CSF or IL-3. There is no strain difference in PGE2 production by GM-CSF- and M-CSF-differentiated macrophages; however, IL-3-differentiated macrophages from BALB/c mice produced higher amounts of PGE2 and lower amounts of type I cytokines than cells from C57BL/6 mice. IL-3-differentiated macrophages from BALB/c mice expressed larger amounts of mRNA of membrane-bound (microsomal) PGE synthase-1 (mPGES-1). The amounts of PGE2 produced by macrophages were significantly reduced in mPGES-1-deficient mice, and these mice displayed enhanced Th1 responses after Propionibacterium acnes treatment compared with wild-type mice. Microarray analysis revealed 63 genes that are differentially expressed more than fivefold in macrophages between C57BL/6 and BALB/c mice. These results indicate that mPGES-1-mediated PGE2 produced by macrophages regulates immune responses, and IL-3 is an important factor for the differentiation of macrophages that produce higher amounts of PGE2 through mPGES-1 activity in BALB/c mice.
Collapse
Affiliation(s)
- Etsushi Kuroda
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Kyogoku C, Tsuchiya N. A compass that points to lupus: genetic studies on type I interferon pathway. Genes Immun 2007; 8:445-55. [PMID: 17581625 DOI: 10.1038/sj.gene.6364409] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was more than 20 years ago that patients with systemic lupus erythematosus (SLE) were first reported to display elevated serum levels of type I interferon (IFN). Since then, extensive studies revealed a crucial role for type I IFN in SLE pathogenesis. The current model proposes that small increase of type I IFN production by plasmacytoid dendritic cells (pDCs) is sufficient to induce unabated activation of immature peripheral DCs. IFN-matured DCs select and activate autoreactive T cells and B cells, rather than deleting them, resulting in peripheral tolerance breakdown, a characteristic feature of SLE. Furthermore, immune complexes provide an amplification loop to pDCs for further IFN production. In the past 5 years, high-throughput technologies such as expression profiling and single-nucleotide polymorphism (SNP) typing established the role of altered type I IFN system in SLE, and a detailed picture of its molecular mechanisms is beginning to emerge. In this review, we discuss two major lines of genetics studies on type I IFN pathway related to human SLE: (1) expression profiling of IFN-responsive genes and (2) disease-associated SNPs of IFN-related genes, especially IRF5 (IFN-regulatory factor 5). Lastly, we discuss how such genetic alterations in type I IFN pathway fit in the current model of SLE pathogenesis.
Collapse
Affiliation(s)
- C Kyogoku
- Department of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
36
|
Feldman I, Feldman GM, Mobarak C, Dunkelberg JC, Leslie KK. Identification of proteins within the nuclear factor-kappa B transcriptional complex including estrogen receptor-alpha. Am J Obstet Gynecol 2007; 196:394.e1-11; discussion 394.e11-3. [PMID: 17403432 PMCID: PMC2175481 DOI: 10.1016/j.ajog.2006.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/20/2006] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of the study was to determine whether cross-talk occurs between estrogen receptors (ERs) and nuclear factor-kappa-B (NF-kappaB), to assess the functional consequences of such an ER/NF-kappaB interaction, and to identify other unknown regulatory proteins that may participate in the NF-kappaB transcriptional complex. STUDY DESIGN Electromobility gel shifts, reporter gene assays, and mass spectrometry were used to identify proteins interacting with the NF-kappaB deoxyribonucleic acid (DNA) response element. RESULTS ER and the p65 subunit of NF-kappaB colocalized on DNA. This interaction was inhibitory for ER transcriptional activity. Sequencing of proteins bound to the NF-kappaB/DNA complex identified DNA-modifying enzymes, scaffolding proteins, chaperones, and elements of the nuclear matrix. CONCLUSION These studies have identified an inhibitory interaction between estrogen receptors and the p65 subunit of NF-kappaB with implications for estrogen action in pregnancy and cancer. New accessory proteins have also been identified that bind to protein complexes on the NF-kappaB DNA response element.
Collapse
Affiliation(s)
- Irv Feldman
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Denver, CO
| | | | - Charlotte Mobarak
- Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Women’s Cancer Research Program, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jeffrey C. Dunkelberg
- Division of Gastroenterology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Kimberly K. Leslie
- Reproductive Molecular Biology Laboratory, Division of Maternal-Fetal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Departments of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Women’s Cancer Research Program, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
37
|
Akahoshi M, Nakashima H, Shirakawa T. Roles of genetic variations in signalling/immunoregulatory molecules in susceptibility to systemic lupus erythematosus. Semin Immunol 2006; 18:224-9. [PMID: 16678436 DOI: 10.1016/j.smim.2006.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a complex genetic basis that includes many susceptibility genes on multiple chromosomes. As complex human diseases like SLE involve multiple, interacting genetic and environmental determinants, identifying genes for complex traits is challenging and has had limited success so far. However, recent advances in genetic resources and technology have been providing new tools to identify the novel pathways or the sequence variants that contribute to autoimmune diseases. During the past several years, several new candidate genes have been implicated in development of SLE though association studies. In this article we describe an overview of the latest findings in the genetics of SLE, especially focusing on the genetic variations in the signalling or immunoregulatory molecules including CD28 and IRF family members.
Collapse
Affiliation(s)
- Mitsuteru Akahoshi
- Laboratory for Genetics of Allergic Diseases, SNP Research Center, RIKEN Yokohama Institute, RIKEN, Yokohama, Japan.
| | | | | |
Collapse
|
38
|
Ding B, Liu CJ, Huang Y, Hickey RP, Yu J, Kong W, Lengyel P. p204 Is Required for the Differentiation of P19 Murine Embryonal Carcinoma Cells to Beating Cardiac Myocytes. J Biol Chem 2006; 281:14882-92. [PMID: 16556595 DOI: 10.1074/jbc.m511747200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among 10 adult mouse tissues tested, the p204 protein levels were highest in heart and skeletal muscle. We described previously that the MyoD-inducible p204 protein is required for the differentiation of cultured murine C2C12 skeletal muscle myoblasts to myotubes. Here we report that p204 was also required for the differentiation of cultured P19 murine embryonal carcinoma stem cells to beating cardiac myocytes. As shown by others, this process can be triggered by dimethyl sulfoxide (DMSO). We established that DMSO induced the formation of 204RNA and p204. Ectopic p204 could partially substitute for DMSO in inducing differentiation, whereas ectopic 204 antisense RNA inhibited the differentiation. Experiments with reporter constructs, including regulatory regions from the Ifi204 gene (encoding p204) in P19 cells and in cultured newborn rat cardiac myocytes, as well as chromatin coimmunoprecipitations with transcription factors, revealed that p204 expression was synergistically transactivated by the cardiac Gata4, Nkx2.5, and Tbx5 transcription factors. Furthermore, ectopic p204 triggered the expression of Gata4 and Nkx2.5 in P19 cells. p204 contains a nuclear export signal and was partially translocated to the cytoplasm during the differentiation. p204 from which the nuclear export signal was deleted was not translocated, and it did not induce differentiation. The various mechanisms by which p204 promoted the differentiation are reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14893-14906).
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Dalal K, Pio F. Thermodynamics and stability of the PAAD/DAPIN/PYRIN domain of IFI-16. FEBS Lett 2006; 580:3083-90. [PMID: 16678172 DOI: 10.1016/j.febslet.2006.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/22/2022]
Abstract
The PAAD domain is a conserved domain recently identified in more than 35 human proteins that are involved in apoptosis and inflammatory signaling pathways. Structural studies have confirmed that this domain belongs to the death domain superfamily which includes PAAD/CARD/DED/DD families. Recently, the 3D structures determined by NMR of NALP1 and ASC PAAD domain, members of the PAAD family, have shown that it is composed of a 6 helix bundle as with other death domain family members. However, helix-3 in the solved structures is unordered in solution. In this study we compare the thermodynamic, folding and stability properties of different members of the PAAD and CARD families and investigate structural conformational changes induced by the helix inducers trifluoroethanol and SDS on the PAAD domain of IFI16 and on the CARD domain of RAIDD. We show that inside the PAAD and CARD families, members have similar thermodynamic properties, however, the DeltaG of folding for PAAD and CARD members are, respectively, -1.4 and -5.5 kcal mol(-1). This difference is attributed to less alpha helical content for PAAD due to the unfolding of helix-3 that lowers bonded energy and increases disorder when compared to CARD members. Despite identical fold between PAAD and CARD families but limited sequence identity, there are striking differences in the thermodynamics of both families.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | |
Collapse
|
40
|
Noda S, Iwakawa M, Ohta T, Iwata M, Yang M, Goto M, Tanaka H, Harada Y, Imai T. Inter-strain variance in late phase of erythematous reaction or leg contracture after local irradiation among three strains of mice. ACTA ACUST UNITED AC 2006; 29:376-82. [PMID: 16164999 DOI: 10.1016/j.cdp.2005.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
AIM To gain insights into inter-strain differences in radiosensitivity. METHODS Mice of inbred strains, A/J, C57BL/6J, and C3H/HeMs, were irradiated at graded doses ranging from 20 to 60 Gy. Skin reaction and leg contraction were observed for a period of 230 days and between 175 and 350 days, respectively. Gene expressions in leg skin tissue were quantified by quantitative RT-PCR assay at 1, 12 and 72 h after 30 Gy irradiation. Mice were locally irradiated by using a Cs-137 source. RESULTS The three strains showed various degrees of susceptibility to irradiation has evaluated by skin scores. Large inter-strain differences were also detected in the lengths of contraction. Expressions of several genes such as Per3 and Rad51ap1 displayed inter-strain differences. CONCLUSIONS The continuum model of tissue injury revealed that genetic factor, which varies among strains, is one of the causes of variances in severity of damage after irradiation.
Collapse
Affiliation(s)
- Shuhei Noda
- Frontier Research Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba-ken 263-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ding B, Liu CJ, Huang Y, Yu J, Kong W, Lengyel P. p204 protein overcomes the inhibition of the differentiation of P19 murine embryonal carcinoma cells to beating cardiac myocytes by Id proteins. J Biol Chem 2006; 281:14893-906. [PMID: 16556596 DOI: 10.1074/jbc.m511748200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported in the accompanying article (Ding, B., Liu, C., Huang, Y., Hickey, R. P., Yu, J., Kong, W., and Lengyel, P. (2006) J. Biol. Chem. 281, 14882-14892) that (i) the p204 protein is required for the differentiation of murine P19 embryonal carcinoma stem cells to beating cardiac myocytes, and (ii) the expression of p204 in the differentiating P19 cells is synergistically transactivated by the cardiac transcription factors Gata4, Nkx2.5, and Tbx5. Here we report that endogenous or ectopic inhibitor of differentiation (Id) proteins inhibited the differentiation of P19 cells to myocytes. This was in consequence of the binding of Id1, Id2, or Id3 protein to the Gata4 and Nkx2.5 proteins and the resulting inhibitions (i) of the binding of these transcription factors to each other and to DNA and (ii) of their synergistic transactivation of the expression of various genes, including atrial natriuretic factor and Ifi204 (encoding p204). p204 overcame this inhibition by Id proteins in consequence of (i) binding and sequestering Id proteins, (ii) accelerating their ubiquitination and degradation by proteasomes, and (iii) decreasing the level of Id proteins in the nucleus by increasing their translocation from the nucleus to the cytoplasm. Points (ii) and (iii) depended on the presence of the nuclear export signal in p204. In the course of the differentiation, Gata4, Nkx2.5, and p204 were components of a positive feedback loop. This loop arose in consequence of it that p204 overcame the inhibition of the synergistic activity of Gata4 and Nkx2.5 by the Id proteins.
Collapse
Affiliation(s)
- Bo Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | | | | | | | | | |
Collapse
|
42
|
Liu J, Karypis G, Hippen KL, Vegoe AL, Ruiz P, Gilkeson GS, Behrens TW. Genomic view of systemic autoimmunity in MRLlpr mice. Genes Immun 2006; 7:156-68. [PMID: 16508641 DOI: 10.1038/sj.gene.6364286] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MRLlpr mice develop spontaneous systemic autoimmunity with many hallmarks of the human disease systemic lupus erythematosus. Although a variety of genes have been implicated in this model, disease pathogenesis is still poorly understood. In an effort to identify novel genes and pathways, we performed genome-wide mRNA expression analysis in the spleens and kidneys of MRLlpr mice throughout the disease course. Samples were collected from cohorts of C57BL/6, MRL+/+ and MRLlpr mice, and profiled by flow cytometry and gene expression microarrays. Serum autoantibodies and renal pathology were studied in parallel. We identified 236 genes in MRLlpr spleen that showed significant threefold or greater changes in expression between 6 and 20 weeks. Of interest, a number of interferon-responsive genes were expressed early, and remained dysregulated throughout the disease course. Many chemokines, cell surface proteins, transcription factors and cytokines, including IFN-gamma, also showed altered expression as disease progressed. Analysis of kidneys indicated the presence of severe inflammation that coincided with evidence for changes in kidney function and elevated expression of IFN-inducible genes, complement components and antigen presentation genes. These data provide a unique genomic view of the progression to fatal autoimmunity in MRLlpr mice, and provide new candidate genes and pathways to explore.
Collapse
Affiliation(s)
- J Liu
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Asefa B, Dermott JM, Kaldis P, Stefanisko K, Garfinkel DJ, Keller JR. p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Lett 2006; 580:1205-14. [PMID: 16458891 DOI: 10.1016/j.febslet.2006.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 12/28/2005] [Accepted: 01/02/2006] [Indexed: 11/18/2022]
Abstract
p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.
Collapse
Affiliation(s)
- Benyam Asefa
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute-Frederick, Building 560, Room 31-56, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
44
|
Baechler EC, Gregersen PK, Behrens TW. The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol 2005; 16:801-7. [PMID: 15511676 DOI: 10.1016/j.coi.2004.09.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies of patients with systemic lupus erythematosus, together with data from lupus-prone mice, suggest that inappropriate activation of type I interferon might have a role in disease pathogenesis. Serum levels of IFN-alpha are elevated in SLE patients, and gene expression profiling of peripheral blood cells shows that most lupus cases demonstrate an upregulation of IFN-responsive genes. Of interest, the IFN gene 'signature' correlates with more severe disease. The available data support a model whereby chromatin-containing immune complexes circulating in the blood of lupus patients stimulate leukocytes to produce IFN, which perpetuates disease. These emerging insights into the connection between IFN and lupus provide a host of new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Emily C Baechler
- Center for Lupus Research, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, USA.
| | | | | |
Collapse
|
45
|
Cresswell KS, Clarke CJP, Jackson JT, Darcy PK, Trapani JA, Johnstone RW. Biochemical and growth regulatory activities of the HIN-200 family member and putative tumor suppressor protein, AIM2. Biochem Biophys Res Commun 2005; 326:417-24. [PMID: 15582594 DOI: 10.1016/j.bbrc.2004.11.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 01/23/2023]
Abstract
The human HIN-200 family member AIM2 was originally identified in a screen for suppressors of melanoma tumorigenicity following introduction of chromosome 6 into the UACC903 human melanoma cell line. Although the AIM2 protein contained many of the conserved structural motifs common to other HIN-200 proteins, the biochemical characteristics of AIM2 and the ability of overexpressed AIM2 to phenocopy the effect of introduction of chromosome 6 in the UACC903 cells had not been assessed. Herein we demonstrated that AIM2 was localised within the nucleus of transfected or interferon-treated human cells. In addition, AIM2 could homodimerise via the amino-terminal (PAAD/DAPIN) region and heterodimerise with the related IFI 16 protein. However, overexpressed AIM2 did not significantly affect the growth or survival of UACC903 cells or another human melanoma cell line. These data indicate that AIM2 has many of the biochemical and structural characteristics of HIN-200 proteins, however, its expression is not sufficient to induce a tumor-suppressor-like phenotype.
Collapse
Affiliation(s)
- Kim S Cresswell
- The Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 3002 Vic., Australia
| | | | | | | | | | | |
Collapse
|
46
|
Virella-Lowell I, Zusman B, Foust K, Loiler S, Conlon T, Song S, Chesnut KA, Ferkol T, Flotte TR. Enhancing rAAV vector expression in the lung. J Gene Med 2005; 7:842-50. [PMID: 15838934 DOI: 10.1002/jgm.759] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite favorable DNA transfer efficiency, gene expression from recombinant adeno-associated virus (rAAV2) vectors in the lung has been variable in the context of cystic fibrosis (CF) gene therapy. This is due, in part, to the large size of the CF transmembrane regulator (CFTR)-coding sequence which necessitates the use of compact endogenous promoter elements versus stronger exogenous promoters. We evaluated the possibility that gene expression from rAAV could be improved by using AAV capsid serotypes with greater tropism for the apical surface of airway cells (i.e. rAAV5 or rAAV1) and/or using strong promoters such as the cytomegalovirus (CMV) enhancer/chicken beta-actin hybrid (Cbeta) promoter. The relative activity of the CMV immediate-early (CMVie) promoter, the Cbeta promoter, and the Cbeta promoter with a downstream woodchuck hepatitis virus post-transcriptional regulatory element (wpre) were assessed in vitro and in vivo in C57\Bl6 mice using human alpha-1 antitrypsin (hAAT) as a secreted reporter. In vivo, the Cbeta-AAT-wpre group achieved maximum serum levels of 1.5 mg/ml of hAAT. AAV capsid serotypes were then compared in vivo utilizing the transcriptionally optimized CB-wpre cassette in rAAV serotype 1, 2 or 5 capsids (rAAV1, rAAV2, and rAAV5), utilizing luciferase as a reporter to compare expression over a wide dynamic range. The pulmonary luciferase levels at 8 weeks were similar in rAAV5 and rAAV1 groups (2.9 x 10(6) relative light units (RLU)/g tissue and 2.7 x 10(6) RLU/g tissue, respectively), both of which were much higher than rAAV2. Although the advantage of rAAV5 over rAAV2 in the lung has already been described, the availability of another serotype (rAAV1) capable of efficient gene transfer in the lung could be useful.
Collapse
|
47
|
Iwakawa M, Noda S, Ohta T, Oohira C, Tanaka H, Tsuji A, Ishikawa A, Imai T. Strain dependent differences in a histological study of CD44 and collagen fibers with an expression analysis of inflammatory response-related genes in irradiated murine lung. JOURNAL OF RADIATION RESEARCH 2004; 45:423-433. [PMID: 15613788 DOI: 10.1269/jrr.45.423] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using a mouse model, we investigated the mechanisms of heterogeneity in response to ionizing radiation in this research. C57BL/6J and C3H/HeMs mice were irradiated with gamma rays at 10 and 20 Gy. The animals were sacrificed at times corresponding to the latent period, the pneumonic phase, and the start of the fibrotic phase for histological investigation. Small areas of fibrosis initially appeared in C57BL/6J mice at 4 weeks postirradiation with 20 Gy, whereas small inflammatory lesions appeared at 4 and 8 weeks after 20 and 10 Gy, respectively. The alveoli septa were thickened by an infiltration of inflammatory cells, and alveoli were obliterated in lungs from C57BL/6J mice after 20 Gy irradiation. At 24 hours and from 2 to 4 weeks postirradiation, fourfold more CD44 positive cells had accumulated in the lungs of C3H/HeMs than in C57BL/6J mice. Hyaluronan accumulated 12 hours after irradiation, and the rapid resolution was achieved within 2 weeks in the lungs in both strains of mice. C57BL/6J mice lungs accumulated dense collagen at 8 weeks. Quantitative RT-PCR assay was performed for several genes selected by cDNA microarray analysis. The expression of several genes, such as Cap1, Il18, Mmp12, Per3, Ltf, Ifi202a, and Rad51ap1 showed strain-dependent variances. In conclusion, a histological investigation suggested that C3H/HeMs mice were able to induce a more rapid clearance of matrix after irradiation than C57BL/6J mice. The expression analysis showed that the several genes are potentially involved in interstrain differences in inflammatory response causing radiation-induced lung fibrosis.
Collapse
Affiliation(s)
- Mayumi Iwakawa
- RadGenomics Project, Frontier Research Center, National Institute of Radiological Sciences, Chiba-shi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dermott JM, Gooya JM, Asefa B, Weiler SR, Smith M, Keller JR. Inhibition of Growth by p205: A Nuclear Protein and Putative Tumor Suppressor Expressed during Myeloid Cell Differentiation. Stem Cells 2004; 22:832-48. [PMID: 15342947 DOI: 10.1634/stemcells.22-5-832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p205 belongs to a family of interferon-inducible proteins called the IFI-200 family, which have been implicated in the regulation of cell growth and differentiation. While p205 is induced in hematopoietic stem cells during myeloid cell differentiation, its function is not known. Therefore, the aim of this study was to determine the role of p205 in regulating proliferation in hematopoietic progenitor cells and in nonhematopoietic cell lines. We found that p205 localizes to the nucleus in hematopoietic and nonhematopoietic cell lines. Transient expression of p205 in murine IL-3-dependent BaF3 and 32D-C123 progenitor cell lines inhibited IL-3-induced growth and proliferation. The closely related IFI-200 family members, p204 and p202, similarly inhibited IL-3-dependent progenitor cell proliferation. p205 also inhibited the proliferation and growth of normal hematopoietic progenitor cells. In nonhematopoietic cell lines, p205 and p204 expression inhibited NIH3T3 cell colony formation in vitro, and microinjection of p205 expression vectors into NIH3T3 fibroblasts inhibited serum-induced proliferation. We have determined the functional domains of p205 necessary for activity, which were identified as the N-terminal domain in apoptosis and interferon response (DAPIN)/PYRIN domain, and the C-terminal retinoblastoma protein (Rb)-binding motif. In addition, we have demonstrated that a putative ataxia telangiectasia, mutated (ATM) kinase phosphorylation site specifically regulates the activity of p205. Taken together, these data suggest that p205 is a potent cell growth regulator whose activity is mediated by its protein-binding domains. We propose that during myelomonocytic cell differentiation, induction of p205 expression contributes to cell growth arrest, thus allowing progenitor cells to differentiate.
Collapse
Affiliation(s)
- Jonathan M Dermott
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
49
|
Fujiuchi N, Aglipay JA, Ohtsuka T, Maehara N, Sahin F, Su GH, Lee SW, Ouchi T. Requirement of IFI16 for the Maximal Activation of p53 Induced by Ionizing Radiation. J Biol Chem 2004; 279:20339-44. [PMID: 14990579 DOI: 10.1074/jbc.m400344200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IFI16 is a member of the PYRIN superfamily that has been implicated in BRCA1-mediated apoptosis and inflammation signaling pathways. Here we report that most breast cancer cell lines examined expressed decreased mRNA and protein levels of IFI16, although IFI16 is expressed in human primary normal mammary epithelial cells. Significantly, immunohistochemical analysis of tissues from 25 breast cancer patients demonstrated that carcinoma cells showed negative or weaker staining of IFI16 compared with positive nuclear staining in normal mammary duct epithelium. si-RNA-mediated reduction of IFI16 resulted in perturbation of p53 activation when treated with ionizing radiation (IR). Expression of IFI16 enhanced p53 transcriptional activity in cells exposed to IR. Adenovirus expression of IFI16 in IFI16-deficient MCF7 induced apoptosis, which was enhanced by radiomimetic neocarcinostatin treatment. Tetracycline-regulated IFI16 also induced apoptosis when coexpressed with p53 in p53-deficient EJ cells subjected to IR, suggesting that IFI16 is involved in p53-mediated transmission of apoptosis signaling. Consistent with these results, expression of IFI16 enhanced activation of the known p53 target genes, including p21, Hdm2, and bax in MCF7 cells. These results suggest that loss of IFI16 results in deregulation of p53-mediated apoptosis, leading to cancer development.
Collapse
Affiliation(s)
- Nobuko Fujiuchi
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang J, Xu LG, Han KJ, Shu HB. Identification of a ZU5 and Death Domain-containing Inhibitor of NF-κB. J Biol Chem 2004; 279:17819-25. [PMID: 14769797 DOI: 10.1074/jbc.m310737200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NF-kappaB plays important roles in inflammation and cell survival. NF-kappaB is composed of homodimeric and heterodimeric complexes of Rel/NF-kappaB family members, including p65 (RelA), c-Rel (Rel), RelB, NF-kappaB1/p50, and NF-kappaB2/p52. Here we report the identification and characterization of a novel ZU5 and death domain-containing protein designated ZUD. In reporter gene assays, overexpression of ZUD inhibited NF-kappaB-dependent transcription induced by both tumor necrosis factor (TNF) and interleukin-1 and their downstream signaling proteins. Gel shift assays indicated that the overexpression of ZUD inhibited binding of NF-kappaB to its target sequence. ZUD is a cytoplasmic protein, and coimmunoprecipitation assays indicated that ZUD interacted with the NF-kappaB subunit p105 and transactivator p65. Consistent with its role in inhibition of NF-kappaB-dependent transcription, ZUD sensitized cells to apoptosis induced by TNF and the TNF-related apoptosis-inducing ligand (TRAIL). Our findings suggest that ZUD is an inhibitor of NF-kappaB activation and that this protein may provide an alternative regulatory mechanism for NF-kappaB-mediated transcription.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|