1
|
Bisom TC, Smelser H, Lanchy JM, Lodmell JS. Alternative Splicing of RIOK3 Engages the Noncanonical NFκB Pathway during Rift Valley Fever Virus Infection. Viruses 2023; 15:1566. [PMID: 37515252 PMCID: PMC10383813 DOI: 10.3390/v15071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although the noncanonical NFκB pathway was originally identified as a cellular pathway contributing to lymphoid organogenesis, in the past 20 years, its involvement in innate immunity has become more appreciated. In particular, the noncanonical NFκB pathway has been found to be activated and even exploited by some RNA viruses during infection. Intriguingly, activation of this pathway has been shown to have a role in disrupting transcription of type 1 interferon (IFN), suggesting a rationale for why this response could be co-opted by some viruses. Rift Valley fever virus (RVFV) is a trisegmented ambisense RNA virus that poses a considerable threat to domestic livestock and human health. Previously, we showed the atypical kinase RIOK3 is important for mounting an IFN response to RVFV infection of human epithelial cells, and shortly following infection with RVFV (MP12 strain), RIOK3 mRNA is alternatively spliced to its X2 isoform that encodes a truncated RIOK3 protein. Alternative splicing of RIOK3 mRNA has an inhibitory effect on the IFN response but also stimulates an NFκB-mediated inflammatory response. Here, we demonstrate alternative splicing of RIOK3 mRNA is associated with activation of the noncanonical NFκB pathway and suggest this pathway is co-opted by RVFV (MP12) to enhance viral success during infection.
Collapse
Affiliation(s)
- Thomas Charles Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Hope Smelser
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
2
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Tomuleasa C, Pikarsky E, Ciechanover A. The NF-ĸB p50 subunit generated by KPC1-mediated ubiquitination and limited proteasomal processing, suppresses tumor growth. Cancer Cell Int 2023; 23:67. [PMID: 37055826 PMCID: PMC10100387 DOI: 10.1186/s12935-023-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Nuclear factor-ĸB (NF-ĸB) is an important transcriptional regulator of key cellular processes, including cell cycle, immune response, and malignant transformation. We found that the ubiquitin ligase Kip1 ubiquitination-promoting complex subunit 1 (KPC1; also known as Ring finger protein 123 - RNF123) stimulates ubiquitination and limited proteasomal processing of the p105 NF-ĸB precursor to generate p50, the active subunit of the heterodimeric transcription factor. KPC1 binds to the ankyrin repeats' (AR) domain of NF-ĸB p105 via a short binding site of 7 amino acids-968-WILVRLW-974. Though mature NF-ĸB is overexpressed and constitutively active in different tumors, we found that overexpression of the p50 subunit, exerts a strong tumor suppressive effect. Furthermore, excess of KPC1 that stimulates generation of p50 from the p105 precursor, also results in a similar effect. Analysis of transcripts of glioblastoma and breast tumors revealed that excess of p50 stimulates expression of many NF-ĸB-regulated tumor suppressive genes. Using human xenograft tumor models in different immune compromised mice, we demonstrated that the immune system plays a significant role in the tumor suppressive activity of p50:p50 homodimer stimulating the expression of the pro-inflammatory cytokines CCL3, CCL4, and CCL5 in both cultured cells and in the xenografts. Expression of these cytokines leads to recruitment of macrophages and NK cells, which restrict tumor growth. Finally, p50 inhibits the expression of the programmed cell death-ligand 1 (PDL1), establishing an additional level of a strong tumor suppressive response mediated by the immune system.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, 9112000, Jerusalem, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| |
Collapse
|
3
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
4
|
A short binding site in the KPC1 ubiquitin ligase mediates processing of NF-κB1 p105 to p50: A potential for a tumor-suppressive PROTAC. Proc Natl Acad Sci U S A 2021; 118:2117254118. [PMID: 34873064 DOI: 10.1073/pnas.2117254118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) is an important transcriptional regulator that is involved in numerous cellular processes, including cell proliferation, immune response, cell survival, and malignant transformation. It relies on the ubiquitin-proteasome system (UPS) for several of the steps in the concerted cascade of its activation. Previously, we showed that the ubiquitin (Ub) ligase KPC1 is involved in ubiquitination and limited proteasomal processing of the NF-κB1 p105 precursor to generate the p50 active subunit of the "canonical" heterodimeric transcription factor p50-p65. Overexpression of KPC1 with the generation of an excessive amount of p50 was shown to suppress tumors, an effect which is due to multiple mechanisms. Among them are suppression of expression of programmed cell death-ligand 1 (PD-L1), overexpression of a broad array of tumor suppressors, and secretion of cytokines which results in recruitment of suppressive immune cells into the tumor. Here, we show that the site of KPC1 to which p105 binds is exceptionally short and is made up of the seven amino acids WILVRLW. Attachment of this short stretch to a small residual part (∼20%) of the ligase that also contains the essential Really Interesting New Gene (RING)-finger domain was sufficient to bind p105, conjugate to it Ub, and suppress tumor growth in an animal model. Fusion of the seven amino acids to a Von Hippel-Lindau protein (pVHL)-binding ligand (which serves as a "universal" ligase for many proteolysis-targeting chimeras; PROTACs) resulted in a compound that stimulated conjugation of Ub to p105 in a cell-free system and its processing to p50 in cells and restricted cell growth.
Collapse
|
5
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
A Homozygous AKNA Frameshift Variant Is Associated with Microcephaly in a Pakistani Family. Genes (Basel) 2021; 12:genes12101494. [PMID: 34680889 PMCID: PMC8535656 DOI: 10.3390/genes12101494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Primary microcephaly (MCPH) is a prenatal condition of small brain size with a varying degree of intellectual disability. It is a heterogeneous genetic disorder with 28 associated genes reported so far. Most of these genes encode centrosomal proteins. Recently, AKNA was recognized as a novel centrosomal protein that regulates neurogenesis via microtubule organization, making AKNA a likely candidate gene for MCPH. Using linkage analysis and whole-exome sequencing, we found a frameshift variant in exon 12 of AKNA (NM_030767.4: c.2737delG) that cosegregates with microcephaly, mild intellectual disability and speech impairment in a consanguineous family from Pakistan. This variant is predicted to result in a protein with a truncated C-terminus (p.(Glu913Argfs*42)), which has been shown to be indispensable to AKNA’s localization to the centrosome and a normal brain development. Moreover, the amino acid sequence is altered from the beginning of the second of the two PEST domains, which are rich in proline (P), glutamic acid (E), serine (S), and threonine (T) and common to rapidly degraded proteins. An impaired function of the PEST domains may affect the intracellular half-life of the protein. Our genetic findings compellingly substantiate the predicted candidacy, based on its newly ascribed functional features, of the multifaceted protein AKNA for association with MCPH.
Collapse
|
7
|
Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, Dobbs K, Loh KL, Miosge LA, Lee CE, Chand R, Chan A, Yap JY, Keller MD, Chen K, Rossjohn J, La Gruta NL, Vinuesa CG, Reid HH, Lionakis MS, Notarangelo LD, Gray DHD, Goodnow CC, Cook MC, Daley SR. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med 2021; 218:211502. [PMID: 33107914 PMCID: PMC7595743 DOI: 10.1084/jem.20200476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.
Collapse
Affiliation(s)
- Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ainsley R Davies
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Xavier Y X Sng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Khai L Loh
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Cindy Eunhee Lee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Rochna Chand
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Anna Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jin Yan Yap
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Medical Center, Washington, DC
| | - Karin Chen
- Department of Pediatrics, University of Utah, Salt Lake City, UT.,Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicole L La Gruta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Ivantsiv A, Ben Itzhak O, Kwon YT, Pikarsky E, Ciechanover A. Excess of the NF-ĸB p50 subunit generated by the ubiquitin ligase KPC1 suppresses tumors via PD-L1- and chemokines-mediated mechanisms. Proc Natl Acad Sci U S A 2020; 117:29823-29831. [PMID: 33168738 PMCID: PMC7703627 DOI: 10.1073/pnas.2019604117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor-ĸB (NF-ĸB) transcription factor is a family of essential regulators of the immune response and cell proliferation and transformation. A typical factor is a heterodimer made of either p50 or p52, which are limited processing products of either p105 or p100, respectively, and a member of the Rel family of proteins, typically p65. The transcriptional program of NF-ĸB is tightly regulated by the composition of the dimers. In our previous work, we demonstrated that the ubiquitin ligase KPC1 is involved in ubiquitination and proteasomal processing of p105 to generate p50. Its overexpression and the resulting high level of p50 stimulates transcription of a broad array of tumor suppressors. Here we demonstrate that additional mechanisms are involved in the p50-mediated tumor-suppressive effect. p50 down-regulates expression of a major immune checkpoint inhibitor, the programmed cell death-ligand 1 (PD-L1), both in cells and in tumors. Importantly, the suppression is abrogated by overexpression of p65. This highlights the importance of the cellular quantities of the two different subunits of NF-ĸB which determine the composition of the dimer. While the putative p50 homodimer is tumor-suppressive, the "canonical" p50p65 heterodimer is oncogenic. We found that an additional mechanism is involved in the tumor-suppressive phenomenon: p50 up-regulates expression of the proinflammatory chemokines CCL3, CCL4, and CCL5, which in turn recruit into the tumors active natural killer (NK) cells and macrophages. Overall, p50 acts as a strong tumor suppressor via multiple mechanisms, including overexpression of tumor suppressors and modulation of the tumor microenvironment by recruiting active immune cells.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Alexandra Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
| | - Ofer Ben Itzhak
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel
- Department of Pathology, Rambam Health Care Campus, 3109601 Haifa, Israel
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 9112000 Jerusalem, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, 3109601 Haifa, Israel;
| |
Collapse
|
9
|
Ivanova IG, Perkins ND. Hypoxia induces rapid, STAT3 and ROS dependent, mitochondrial translocation of RelA(p65) and IκBα. Biosci Rep 2019; 39:BSR20192101. [PMID: 31484794 PMCID: PMC6746997 DOI: 10.1042/bsr20192101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors can directly or indirectly regulate many important areas of biology, including immunity, inflammation and cell survival. One intriguing aspect of NF-κB crosstalk with other cell signalling pathways is its regulation of mitochondrial biology, including biogenesis, metabolism and apoptosis. In addition to regulating the expression of mitochondrial genes encoded in the nucleus, NF-κB signalling components are also found within mitochondria themselves and associated with mitochondrial DNA. However, complete biochemical analysis of mitochondrial and sub-mitochondrial localisation of all NF-κB subunits has not been undertaken. Here, we show that only the RelA NF-κB subunit and its inhibitor IκBα reside within mitochondria, whilst p50 is found in the endoplasmic reticulum (ER). Fractionation of mitochondria revealed that only RelA was found in the mitoplast, the location of the mtDNA. We demonstrate that hypoxia leads to a very rapid but transient accumulation of RelA and IκBα in mitochondria. This effect required reactive oxygen species (ROS) but was not dependent on the hypoxia sensing transcription factor subunit HIF1α or intracellular Ca2+ release. We also observed rapid mitochondrial localisation of transcription factor STAT3 following hypoxia. Inhibition of STAT3 blocked RelA and IκBα mitochondrial localisation revealing a previously unknown aspect of crosstalk between these key cellular regulators.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K
| | - Neil D Perkins
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K.
| |
Collapse
|
10
|
Yang X, Sun R, Ci L, Wang N, Yang S, Shi J, Yang H, Zhang M, Fei J. Tracing the dynamic expression of the Nfκb2 gene during inflammatory processes by in vivo bioluminescence imaging in transgenic mice. Biochem Biophys Res Commun 2018; 501:41-47. [PMID: 29680659 DOI: 10.1016/j.bbrc.2018.04.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Nfκb2(p52/p100) plays essential roles in many chronic inflammatory diseases. Tracing the dynamic expression of Nfκb2 during different biological processes in vivo can provide valuable clues to understand the biological functions of this gene and develop anti-inflammatory drugs. In this study, B6-Tg(Nfκb2-luc)Mlit transgenic mouse line, a mouse model in which the expression of firefly luciferase gene is under the control of a 14.6-kb mouse Nfκb2 promoter, was generated to monitor the expression of p52/p100 in vivo. Bioluminescence imaging was used for tracking the luciferase signal in living mice in a variety of inflammatory processes, including LPS-induced sepsis and inflammatory bowel disease (IBD). The data of in vivo bioluminescence imaging in this mouse model showed that luciferase activity coincided with the endogenous p52/p100 expression. Moreover, dexamethasone or aspirin, two routine anti-inflammatory drugs, could decrease the high-level expression of luciferase induced by LPS. Overall, our results suggest that the B6-Tg(Nfκb2-luc)Mlit mice represent a valuable reporter mouse model not only to monitor the expression of p52/p100 in physiological or pathological processes but also to evaluate the effects of various anti-inflammatory drug treatments in vivo.
Collapse
Affiliation(s)
- Xingyu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Ning Wang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Sai Yang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Jiahao Shi
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Hua Yang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Mengjie Zhang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China.
| | - Jian Fei
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China; Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China.
| |
Collapse
|
11
|
A20 inhibits both the degradation and limited processing of the NF-κB p105 precursor: A novel additional layer to its regulator role. Biochem Biophys Res Commun 2017; 493:52-57. [DOI: 10.1016/j.bbrc.2017.09.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
|
12
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
13
|
|
14
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
15
|
A dominant-negative F-box deleted mutant of E3 ubiquitin ligase, β-TrCP1/FWD1, markedly reduces myeloma cell growth and survival in mice. Oncotarget 2016; 6:21589-602. [PMID: 26009993 PMCID: PMC4673288 DOI: 10.18632/oncotarget.4120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Treatment of multiple myeloma with bortezomib can result in severe adverse effects, necessitating the development of targeted inhibitors of the proteasome. We show that stable expression of a dominant-negative F-box deleted (ΔF) mutant of the E3 ubiquitin ligase, SCFβ-TrCP/FWD1, in murine 5TGM1 myeloma cells dramatically attenuated their skeletal engraftment and survival when inoculated into immunocompetent C57BL/KaLwRij mice. Similar results were obtained in immunodeficient bg-nu-xid mice, suggesting that the observed effects were independent of host recipient immune status. Bone marrow stroma offered no protection for 5TGM1-ΔF cells in cocultures treated with tumor necrosis factor (TNF), indicating a cell-autonomous anti-myeloma effect. Levels of p100, IκBα, Mcl-1, ATF4, total and cleaved caspase-3, and phospho-β-catenin were elevated in 5TGM1-ΔF cells whereas cIAP was down-regulated. TNF also activated caspase-3 and downregulated Bcl-2, correlating with the enhanced susceptibility of 5TGM1-ΔF cells to apoptosis. Treatment of 5TGM1 tumor-bearing mice with a β-TrCP1/FWD1 inhibitor, pyrrolidine dithiocarbamate (PDTC), significantly reduced tumor burden in bone. PDTC also increased levels of cleaved Mcl-1 and caspase-3 in U266 human myeloma cells, correlating with our murine data and validating the development of specific β-TrCP inhibitors as an alternative therapy to nonspecific proteasome inhibitors for myeloma patients.
Collapse
|
16
|
The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016; 5:cells5020023. [PMID: 27187478 PMCID: PMC4931672 DOI: 10.3390/cells5020023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor (NF)-κB has evolved as a latent, inducible family of transcription factors fundamental in the control of the inflammatory response. The transcription of hundreds of genes involved in inflammation and immune homeostasis require NF-κB, necessitating the need for its strict control. The inducible ubiquitination and proteasomal degradation of the cytoplasmic inhibitor of κB (IκB) proteins promotes the nuclear translocation and transcriptional activity of NF-κB. More recently, an additional role for ubiquitination in the regulation of NF-κB activity has been identified. In this case, the ubiquitination and degradation of the NF-κB subunits themselves plays a critical role in the termination of NF-κB activity and the associated transcriptional response. While there is still much to discover, a number of NF-κB ubiquitin ligases and deubiquitinases have now been identified which coordinate to regulate the NF-κB transcriptional response. This review will focus the regulation of NF-κB subunits by ubiquitination, the key regulatory components and their impact on NF-κB directed transcription.
Collapse
|
17
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
18
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
19
|
KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth. Cell 2015; 161:333-47. [PMID: 25860612 DOI: 10.1016/j.cell.2015.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/29/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
NF-κB is a key transcriptional regulator involved in inflammation and cell proliferation, survival, and transformation. Several key steps in its activation are mediated by the ubiquitin (Ub) system. One uncharacterized step is limited proteasomal processing of the NF-κB1 precursor p105 to the p50 active subunit. Here, we identify KPC1 as the Ub ligase (E3) that binds to the ankyrin repeats domain of p105, ubiquitinates it, and mediates its processing both under basal conditions and following signaling. Overexpression of KPC1 inhibits tumor growth likely mediated via excessive generation of p50. Also, overabundance of p50 downregulates p65, suggesting that a p50-p50 homodimer may modulate transcription in place of the tumorigenic p50-p65. Transcript analysis reveals increased expression of genes associated with tumor-suppressive signals. Overall, KPC1 regulation of NF-κB1 processing appears to constitute an important balancing step among the stimulatory and inhibitory activities of the transcription factor in cell growth control.
Collapse
|
20
|
Abstract
Degradation of I kappaB (κB) inhibitors is critical to activation of dimeric transcription factors of the NF-κB family. There are two types of IκB inhibitors: the prototypical IκBs (IκBα, IκBβ, and IκBε), which form low-molecular-weight (MW) IκB:NF-κB complexes that are highly stable, and the precursor IκBs (p105/IκBγ and p100/IκBδ), which form high-MW assemblies, thereby suppressing the activity of nearly half the cellular NF-κB [Savinova OV, Hoffmann A, Ghosh G (2009) Mol Cell 34(5):591-602]. The identity of these larger assemblies and their distinct roles in NF-κB inhibition are unknown. Using the X-ray crystal structure of the C-terminal domain of p100/IκBδ and functional analysis of structure-guided mutants, we show that p100/IκBδ forms high-MW (IκBδ)4:(NF-κB)4 complexes, referred to as kappaBsomes. These IκBδ-centric "kappaBsomes" are distinct from the 2:2 complexes formed by IκBγ. The stability of the IκBδ tetramer is enhanced upon association with NF-κB, and hence the high-MW assembly is essential for NF-κB inhibition. Furthermore, weakening of the IκBδ tetramer impairs both its association with NF-κB subunits and stimulus-dependent processing into p52. The unique ability of p100/IκBδ to stably interact with all NF-κB subunits by forming kappaBsomes demonstrates its importance in sequestering NF-κB subunits and releasing them as dictated by specific stimuli for developmental programs.
Collapse
|
21
|
Espinosa L, Margalef P, Bigas A. Non-conventional functions for NF-κB members: the dark side of NF-κB. Oncogene 2014; 34:2279-87. [DOI: 10.1038/onc.2014.188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023]
|
22
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
23
|
Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT, Gao AC. Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocr Relat Cancer 2014; 21:435-42. [PMID: 24659479 PMCID: PMC4021715 DOI: 10.1530/erc-14-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer cells reprogram their metabolic pathways to facilitate fast proliferation. Previous studies have shown that overexpression of NF-κB2/p52 (p52) in prostate cancer cells promotes cell growth and leads to castration resistance through aberrant activation of androgen receptor (AR). In addition, these cells become resistant to enzalutamide. In this study, we investigated the effects of p52 activation on glucose metabolism and on response to enzalutamide therapy. Data analysis of gene expression arrays showed that genes including GLUT1 (SLC2A1), PKM2, G6PD, and ME1 involved in the regulation of glucose metabolism were altered in LNCaP cells overexpressing p52 compared with the parental LNCaP cells. We demonstrated an increased amount of glucose flux in the glycolysis pathway, as well as the pentose phosphate pathway (PPP) upon p52 activation. The p52-overexpressing cells increase glucose uptake and are capable of higher ATP and lactate production compared with the parental LNCaP cells. The growth of p52-overexpressing cells depends on glucose in the culture media and is sensitive to glucose deprivation compared with the parental LNCaP cells. Targeting glucose metabolism by the glucose analog 2-deoxy-d-glucose synergistically inhibits cell growth when combined with enzalutamide, and resensitizes p52-overexpressing cells to enzalutamide treatment. These results suggest that p52 modulates glucose metabolism, enhances glucose flux to glycolysis and PPPs, thus facilitating fast proliferation of the cells. Co-targeting glucose metabolism together with AR axis synergistically inhibits cell growth and restores enzalutamide-resistant cells to enzalutamide treatment.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Urology, University of California Davis, CA, USA
| | | | - Chengfei Liu
- Department of Urology, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urology, University of California Davis, CA, USA
| | | | - Allen C. Gao
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- To whom correspondence should be addressed: Department of Urology University of California Davis Medical Center 4645 2 Ave, Research III, Suite 1300 Sacramento, CA 95817
| |
Collapse
|
24
|
Vander Broek R, Snow GE, Chen Z, Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol 2013; 50:930-41. [PMID: 24177052 DOI: 10.1016/j.oraloncology.2013.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/04/2013] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappa B (NF-κB) transcription factors regulate cellular processes such as inflammation and cell survival. The NF-κB pathway is often activated with development and progression of head and neck squamous cell carcinoma (HNSCC). As such, NF-κB represents an attractive target for chemoprevention. HNSCC involves progression of lesions from premalignant to malignant, providing a window of opportunity for intervention with chemopreventive agents. Appropriate chemopreventive agents should be inexpensive, nontoxic, and target important pathways involved in the development of HNSCC. Several such agents that inhibit the NF-κB pathway have been investigated in HNSCC. Retinoids have been studied most extensively but have shown limited potential in human trials. Epidermal growth factor receptor inhibitors and PI3K-mTOR inhibitors may benefit a subset of patients. Other agents such as green tea extract and curcumin are appealing because they are generally regarded as safe. In contrast, there is evidence that Vitamin E supplementation may actually increase mortality of cancer patients. Repurposed drugs such as cyclooxygenase (COX) inhibitors and antidiabetic drugs are an emerging area of interest. Future research to develop agents with lower toxicity and higher specificity for the NF-κB pathway, and to target these therapies to individual patient genetic signatures should help to increase the utility of chemoprevention in HSNCC.
Collapse
Affiliation(s)
- Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Grace E Snow
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
25
|
Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54:1-14. [PMID: 22725668 DOI: 10.1111/j.1600-079x.2012.01014.x] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melatonin is a highly evolutionary conserved endogenous molecule that is mainly produced by the pineal gland, but also by other nonendocrine organs, of most mammals including man. In the recent years, a variety of anti-inflammatory and antioxidant effects have been observed when melatonin is applied exogenously under both in vivo and in vitro conditions. A number of studies suggest that this indole may exert its anti-inflammatory effects through the regulation of different molecular pathways. It has been documented that melatonin inhibits the expression of the isoforms of inducible nitric oxide synthase and cyclooxygenase and limits the production of excessive amounts of nitric oxide, prostanoids, and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines, and adhesion molecules. Melatonin's anti-inflammatory effects are related to the modulation of a number of transcription factors such as nuclear factor kappa B, hypoxia-inducible factor, nuclear factor erythroid 2-related factor 2, and others. Melatonin's effects on the DNA-binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen-activated protein kinases. This review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by melatonin and the effects on cell signaling pathways responsible for the indole's anti-inflammatory activity. Although there are a numerous published reports that have analyzed melatonin's anti-inflammatory properties, further studies are necessary to elucidate its complex regulatory mechanisms in different cellular types and tissues.
Collapse
Affiliation(s)
- José L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, León, Spain Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
26
|
Wang B, Parobchak N, Rosen T. RelB/NF-κB2 regulates corticotropin-releasing hormone in the human placenta. Mol Endocrinol 2012; 26:1356-69. [PMID: 22734038 DOI: 10.1210/me.2012-1035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Placental CRH may be part of a clock that governs the length of human gestation. The mechanism underlying differential regulation of CRH in the human placenta is poorly understood. We report here that constitutively activated RelB/nuclear factor-κB2 (NF-κB)-2 (p100/p52) acts as an endogenous stimulatory signal to regulate CRH by binding to an NF-κB enhancer of CRH gene promoter in the human placenta. Nuclear staining of NF-κB2 and RelB in villous syncytiotrophoblasts and cytotrophoblasts was coupled with cytoplasmic CRH in syncytial knots of cytotrophoblasts. Chromatin immunoprecipitation identified that CRH gene associated with both RelB and NF-κB2 (p52). Dexamethasone increased synthesis and nuclear translocation of RelB and NF-κB2 (p52) and their association with the CRH gene. In contrast, progesterone, a down-regulator of placental CRH, repressed NF-κB2 (p100) processing, nuclear translocation of RelB and NF-κB2 (p52), and their association with the CRH gene. Luciferase reporter assay determined that the NF-κB enhancer of CRH was sufficient to regulate transcriptional activity of a heterologous promoter in primary cytotrophoblasts. RNA interference-mediated repression of RelB or NF-κB2 resulted in significant inhibition of CRH at both transcriptional and translational levels and prevented the dexamethasone-mediated up-regulation of CRH transcription and translation. These results suggest that the noncanonical NF-κB pathway regulates CRH production in the human placenta and is responsible for the positive regulation of CRH by glucocorticoids.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Maternal-Fetal Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
27
|
Abstract
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Abstract
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, 7455 Fannin Street, Box 902, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Gabellini C, Castellini L, Trisciuoglio D, Kracht M, Zupi G, Del Bufalo D. Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma. J Neurochem 2008; 107:871-82. [PMID: 18786178 DOI: 10.1111/j.1471-4159.2008.05661.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported that bcl-xL regulates interleukin 8 (CXCL8) protein expression and promoter activity in glioblastoma cells. In this paper we demonstrate that CXCL8 induction by bcl-xL is mediated through a nuclear factor-kappa B (NF-kB)-dependent mechanism. Mutational studies on the CXCL8 promoter showed that NF-kB binding site was required for bcl-xL-induced promoter activity and an enhanced nuclear expression of NF-kB subunits p65 and p50 was observed after bcl-xL over-expression. Electrophoretic mobility shift assay showed an increased DNA-binding activity of NF-kB in bcl-xL over-expressing cells and the use of specific antibodies confirmed the involvement of p65 and p50 in NF-kB activity on CXCL8 promoter sequence. NF-kB activity regulation by bcl-xL involved IkBalpha and IKK complex signaling pathway. In fact, bcl-xL over-expression induced a decrease of cytoplasmic expression of the IkBalpha protein, paralleled by an increase in the phosphorylation of the same IkBalpha and IKKalpha/beta. Moreover, the down-regulation of the ectopic or endogenous bcl-xL expression through RNA interference confirmed the ability of bcl-xL to modulate NF-kB pathway, and the transient expression of a degradation-resistant form of the cytoplasmic NF-kB inhibitor IkBalpha in bcl-xL transfectants confirmed the involvement of that inhibitor in bcl-xL-induced CXCL8 expression and promoter activity. In conclusion, our results demonstrate the role of NF-kB as the mediator of bcl-xL-induced CXCL8 up-regulation in glioblastoma cells.
Collapse
Affiliation(s)
- Chiara Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl) 2008; 86:747-59. [PMID: 18246321 PMCID: PMC2480606 DOI: 10.1007/s00109-008-0308-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/23/2007] [Accepted: 12/10/2007] [Indexed: 01/01/2023]
Abstract
Muscle remodeling is an important physiological process that promotes adaptive changes in cytoarchitecture and protein composition after exercise, aging, or disease conditions. Numerous transcription factors have been reported to regulate skeletal muscle homeostasis. NF-κB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferating responses; however, its role in muscle development, physiology, and disease has just started to be elucidated. The current review article aims to summarize the literature on the role of NF-κB signaling in skeletal muscle pathophysiology, investigated over the last years using in vitro and more recently in vivo systems. Understanding the exact role of NF-κB in muscle cells will allow better therapeutic manipulations in the setting of human muscle diseases.
Collapse
|
31
|
Peñas MM, Hervás-Aguilar A, Múnera-Huertas T, Reoyo E, Peñalva MA, Arst HN, Tilburn J. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. EUKARYOTIC CELL 2007; 6:960-70. [PMID: 17416893 PMCID: PMC1951515 DOI: 10.1128/ec.00047-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Aspergillus nidulans pH-responsive transcription factor PacC is modulated by limited, two-step proteolysis. The first, pH-regulated cleavage occurs in the 24-residue highly conserved "signaling protease box" in response to the alkaline pH signal. This is transduced by the Pal signaling pathway, containing the predicted calpain-like cysteine protease and likely signaling protease, PalB. In this work, we carried out classical mutational analysis of the putative signaling protease PalB, and we describe 9 missense and 18 truncating loss-of-function (including null) mutations. Mutations in the region of and affecting directly the predicted catalytic cysteine strongly support the deduction that PalB is a cysteine protease. Truncating and missense mutations affecting the C terminus highlight the importance of this region. Analysis of three-hemagglutinin-tagged PalB in Western blots demonstrates that PalB levels are independent of pH and Pal signal transduction. We have followed the processing of MYC(3)-tagged PacC in Western blots. We show unequivocally that PalB is essential for signaling proteolysis and is definitely not the processing protease. In addition, we have replaced 15 residues of the signaling protease box of MYC(3)-tagged PacC (pacC900) with alanine. The majority of these substitutions are silent. Leu481Ala, Tyr493Ala, and Gln499Ala result in delayed PacC processing in response to shifting from acidic to alkaline medium, as determined by Western blot analysis. Leu498Ala reduces function much more markedly, as determined by plate tests and processing recalcitrance. Excepting Leu498, this demonstrates that PacC signaling proteolysis is largely independent of sequence in the cleavage region.
Collapse
Affiliation(s)
- María M Peñas
- Department of Molecular Microbiology and Infection, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cytokines represent a heterogeneous group of soluble mediators which are involved in almost any physiological and pathological process. The release of many cytokines and numerous of their biological activities are mediated by nuclear factor-kappaB (NF-kappaB). NF-kappaB is a ubiquitous transcription factor which is crucially involved in many biological processes, including tissue development and maintenance of tissue homeostasis. NF-kappaB also controls apoptotic cell death of both normal and malignant cells. Thus, it is a challenging target for anticancer and anti-inflammatory strategies. However, it has been recognized that NF-kappaB does not only influence many biological processes but also under certain conditions the activities of NF-kappaB can be altered as well, for example, by cytokines. This cross talk needs to be taken into account when developing strategies targeting NF-kappaB for anticancer therapy.
Collapse
Affiliation(s)
- Dagmar Kulms
- Department of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | | |
Collapse
|
33
|
Abstract
Members of the nuclear factor kappa B (NF-kappaB) family of dimeric transcription factors (TFs) regulate expression of a large number of genes involved in immune responses, inflammation, cell survival, and cancer. NF-kappaB TFs are rapidly activated in response to various stimuli, including cytokines, infectious agents, and radiation-induced DNA double-strand breaks. In nonstimulated cells, some NF-kappaB TFs are bound to inhibitory IkappaB proteins and are thereby sequestered in the cytoplasm. Activation leads to phosphorylation of IkappaB proteins and their subsequent recognition by ubiquitinating enzymes. The resulting proteasomal degradation of IkappaB proteins liberates IkappaB-bound NF-kappaB TFs, which translocate to the nucleus to drive expression of target genes. Two protein kinases with a high degree of sequence similarity, IKKalpha and IKKbeta, mediate phosphorylation of IkappaB proteins and represent a convergence point for most signal transduction pathways leading to NF-kappaB activation. Most of the IKKalpha and IKKbeta molecules in the cell are part of IKK complexes that also contain a regulatory subunit called IKKgamma or NEMO. Despite extensive sequence similarity, IKKalpha and IKKbeta have largely distinct functions, due to their different substrate specificities and modes of regulation. IKKbeta (and IKKgamma) are essential for rapid NF-kappaB activation by proinflammatory signaling cascades, such as those triggered by tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS). In contrast, IKKalpha functions in the activation of a specific form of NF-kappaB in response to a subset of TNF family members and may also serve to attenuate IKKbeta-driven NF-kappaB activation. Moreover, IKKalpha is involved in keratinocyte differentiation, but this function is independent of its kinase activity. Several years ago, two protein kinases, one called IKKepsilon or IKK-i and one variously named TBK1 (TANK-binding kinase), NAK (NF-kappaB-activated kinase), or T2K (TRAF2-associated kinase), were identified that exhibit structural similarity to IKKalpha and IKKbeta. These protein kinases are important for the activation of interferon response factor 3 (IRF3) and IRF7, TFs that play key roles in the induction of type I interferon (IFN-I). Together, the IKKs and IKK-related kinases are instrumental for activation of the host defense system. This Review focuses on the functions of IKK and IKK-related kinases and the molecular mechanisms that regulate their activities.
Collapse
Affiliation(s)
- Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA.
| | | |
Collapse
|
34
|
Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72:1161-79. [PMID: 16970925 DOI: 10.1016/j.bcp.2006.08.007] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 01/08/2023]
Abstract
The past two decades have led to a tremendous work on the transcription factor NF-kappaB and its molecular mechanisms of activation. The nuclear translocation of NF-kappaB is controlled by two main pathways: the classical and the alternative NF-kappaB pathways. The classical NF-kappaB pathway activates the IKK complex that controls the inducible degradation of most IkappaB family members that are IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and p105. The alternative NF-kappaB pathway induces p100 processing and p52 generation through the activation of at least two kinases, which are NIK and IKKalpha. Genetic studies have shown that IKKgamma is dispensable for the alternative pathway, which suggests the existence of an alternative IKKalpha-containing complex. It is noteworthy that activation of particular p52 heterodimers like p52/RelB requires solely the alternative pathway while activation of p52/p65 or p52/c-Rel involves a "hybrid pathway". Among others, LTbetaR, BAFF-R, CD40 and RANK have the ability to induce the alternative pathway. The latter plays some roles in biological functions controlled by these receptors, which are the development of secondary lymphoid organs, the proliferation, survival and maturation of B cell, and the osteoclastogenesis. Exacerbated activation of the alternative pathway is potentially associated to a wide range of disorders like rheumatoid arthritis, ulcerative colitis or B cell lymphomas. Therefore, inhibitors of the alternative pathway could be valuable tools for the treatment of inflammatory disorders and cancers.
Collapse
Affiliation(s)
- Emmanuel Dejardin
- Laboratory of Virology & Immunology, Centre of Biomedical Integrative Genoproteomics (CBIG), University of Liège, Avenue de l'Hôpital, Sart-Tilman, CHU, B23, 4000 Liege, Belgium.
| |
Collapse
|
35
|
Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC. Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A 2006; 103:7264-9. [PMID: 16651533 PMCID: PMC1464331 DOI: 10.1073/pnas.0509808103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the noncanonical NF-kappaB signaling pathway involved in the proteolytic processing of NF-kappaB p100 to p52 is tightly regulated, and overproduction of p52 leads to lymphocyte hyperplasia and transformation. We have demonstrated that active but not latent Stat3, expressed in many types of human cancers involved in cell proliferation and survival, induces p100 processing to p52 by activation of IKKalpha and subsequent phosphorylation of p100. The Stat3-mediated p100 processing to p52 requires activation of Stat3 by the acetyltransferase activity of cAMP-response element-binding protein (CREB)-binding protein (CBP)/p300. A mutant of Stat3 defective in acetylation blocked Stat3-mediated p100 processing to p52 and acted as a dominant negative in blocking the production of p52. Furthermore, overexpression of p52 protected cells from apoptotic cell death. Thus, activation of the processing of p100 to p52 by Stat3 may represent one of the common pathways used by cancer cells to survive and escape therapy.
Collapse
Affiliation(s)
- Nagalakshmi Nadiminty
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Wei Lou
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Soo Ok Lee
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Xin Lin
- Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Donald L. Trump
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Allen C. Gao
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
- To whom correspondence should be addressed at:
Grace Cancer Drug Center, Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263. E-mail:
| |
Collapse
|
36
|
Gustin JA, Korgaonkar CK, Pincheira R, Li Q, Donner DB. Akt regulates basal and induced processing of NF-kappaB2 (p100) to p52. J Biol Chem 2006; 281:16473-81. [PMID: 16613850 DOI: 10.1074/jbc.m507373200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NF-kappaB is a family of transcription factors important for innate and adaptive immunity. NF-kappaB is restricted to the cytoplasm by inhibitory proteins that are degraded when specifically phosphorylated, permitting NF-kappaB to enter the nucleus and activate target genes. Phosphorylation of the inhibitory proteins is mediated by an IkappaB kinase (IKK) complex, which can be composed of two subunits with enzymatic activity, IKKalpha and IKKbeta. The preferred substrate for IKKbeta is IkappaBalpha, degradation of which liberates p65 (RelA) to enter the nucleus where it induces genes important to innate immunity. IKKalpha activates a non-canonical NF-kappaB pathway in which p100 (NF-kappaB2) is processed to p52. Once produced, p52 can enter the nucleus and induce genes important to adaptive immunity. This study shows that Akt binds to and increases the activity of IKKalpha and thereby increases p52 production in cells. Constitutively active Akt augments non-canonical NF-kappaB activity, whereas kinase dead Akt or inhibition of phosphatidylinositol 3-kinase have the opposite effect. Basal and ligand-induced p52 production is reduced in mouse embryo fibroblasts deficient in Akt1 and Akt2 compared with parental cells. These observations show that Akt plays a role in activation of basal and induced non-canonical NF-kappaB activity.
Collapse
Affiliation(s)
- Jason A Gustin
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
37
|
Qing G, Qu Z, Xiao G. Stabilization of Basally Translated NF-κB-inducing Kinase (NIK) Protein Functions as a Molecular Switch of Processing of NF-κB2 p100. J Biol Chem 2005; 280:40578-82. [PMID: 16223731 DOI: 10.1074/jbc.m508776200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-canonical pathway based on processing of NF-kappaB2 precursor protein p100 to generate p52 plays a critical role in controlling B cell function and lymphoid organogenesis. Activation of this unique pathway by extracellular stimuli requires NF-kappaB-inducing kinase (NIK) and de novo protein synthesis. However, how NIK is regulated is largely unknown. Here, we systematically analyzed NIK expression at different levels in the presence or absence of different NF-kappaB stimuli. We found that NIK mRNA is relatively abundant and undergoes constitutive protein synthesis in resting B cells. However, NIK protein is undetectable. Interestingly, protein expression of NIK is steadily induced by B cell-activating factor or CD40 ligand, two major physiological inducers of p100 processing, but not by mitogen phorbol 12-myristate 13-acetate/ionomycin or cytokine tumor necrosis factor alpha, two well known inducers of the canonical NF-kappaB signaling. Remarkably, both B cell-activating factor and CD40 ligand do not significantly induce expression of NIK at translational or transcriptional level but rather rescue the basally translated NIK protein from undergoing degradation. Furthermore, overexpressed or purified NIK protein triggers p100 processing in the presence of protein synthesis inhibitor. Taken together, these studies define one important mechanism of NIK regulation and the central role of NIK stabilization in the induction of p100 processing. These studies also provide the first evidence explaining why activation of the non-canonical NF-kappaB signaling is delayed and can be inhibited by protein synthesis inhibitor as well as why most classical NF-kappaB stimuli, including mitogens and tumor necrosis factor alpha, fail to induce p100 processing.
Collapse
Affiliation(s)
- Guoliang Qing
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
38
|
|
39
|
Gao M, Karin M. Regulating the Regulators: Control of Protein Ubiquitination and Ubiquitin-like Modifications by Extracellular Stimuli. Mol Cell 2005; 19:581-93. [PMID: 16137616 DOI: 10.1016/j.molcel.2005.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/15/2005] [Accepted: 08/18/2005] [Indexed: 02/02/2023]
Abstract
Like many other posttranscriptional modifications, ubiquitination and conjugation of ubiquitin-like polypeptides to target proteins are tightly regulated by extracellular stimuli. In many cases, this regulation is dependent upon protein phosphorylation. The regulatory step affected by phosphorylation could involve either recognition of the substrate by an E3 ubiquitin ligase or the actual conjugation reaction. Regulation occurs through phosphorylation of either the substrates or the E3 ligases themselves. This review focuses on recent advances in understanding how extracellular stimuli modulate the attachment of ubiquitin and ubiquitin-like peptides to target proteins.
Collapse
Affiliation(s)
- Min Gao
- Pharmacopeia Drug Discovery, Cranbury, New Jersey 08512, USA
| | | |
Collapse
|
40
|
Hu J, Colburn NH. Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding. Mol Cancer Res 2005; 3:100-9. [PMID: 15755876 DOI: 10.1158/1541-7786.mcr-04-0070] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as a promising new class of cancer therapeutic agents. HDAC inhibitors relieve the deacetylation of histone proteins. However, little is known about the nonhistone targets of HDAC inhibitors and their roles in gene regulation. In this study, we addressed the molecular basis of the down-regulation of the nuclear factor-kappaB (NF-kappaB)-responsive gene cyclin D1 by the HDAC inhibitor trichostatin A in mouse JB6 cells. Cyclin D1 plays a critical role in cell proliferation and tumor progression. Trichostatin A inhibits cyclin D1 expression in a NF-kappaB-dependent manner in JB6 cells. Electrophoretic mobility shift assay studies showed that trichostatin A treatment prevents p65 dimer binding to NF-kappaB sites on DNA. Moreover, a chromatin immunoprecipitation assay shows that trichostatin A treatment inhibits endogenous cyclin D1 gene transcription by preventing p65 binding to the cyclin D1 promoter. However, acetylation of p65 is not affected by trichostatin A treatment. Instead, trichostatin A enhances p52 acetylation and increases p52 protein level by enhancing p100 processing. This is the first report that trichostatin A, a HDAC inhibitor, activates p100 processing and relieves the repression of p52 acetylation. The enhanced acetylation of p52 in the nuclei may operate to cause nuclear retention of p65 by increasing the p52/p65 interaction and preventing IkappaBalpha-p65 binding. The enhanced p52 acetylation coincides with decreased p65 DNA binding, suggesting a potential role of p52 acetylation in NF-kappaB regulation. Together, the results provide the first demonstration that HDAC inhibitor trichostatin A inhibits cyclin D1 gene transcription through targeting transcription factor NF-kappaB/p65 DNA binding. NF-kappaB is therefore identified as a transcription factor target of trichostatin A treatment.
Collapse
Affiliation(s)
- Jing Hu
- Gene Regulation Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute-Frederick, Building 567, Room 188, Frederick, MD 21702, USA.
| | | |
Collapse
|
41
|
Sims-Mourtada JC, Bruce S, McKeller MR, Rangel R, Guzman-Rojas L, Cain K, Lopez C, Zimonjic DB, Popescu NC, Gordon J, Wilkinson MF, Martinez-Valdez H. The human AKNA gene expresses multiple transcripts and protein isoforms as a result of alternative promoter usage, splicing, and polyadenylation. DNA Cell Biol 2005; 24:325-38. [PMID: 15869410 DOI: 10.1089/dna.2005.24.325] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We previously showed that the human AKNA gene encodes an AT-hook transcription factor that regulates the expression of costimulatory cell surface molecules on lymphocytes. However, AKNA cDNA probes hybridize with multiple transcripts, suggesting either the existence of other homologous genes or a complex regulation operating on a single gene. Here we report evidence for the latter, as we find that AKNA is encoded by a single gene that spans a 61-kb locus of 24 exons on the fragile FRA9E region of human chromosome 9q32. This gene gives rise to at least nine distinct transcripts, most of which are expressed in a tissue-specific manner in lymphoid organs. Many of the AKNA transcripts originate from alternative splicing; others appear to derive from differential polyadenylation and promoter usage. The alternative AKNA transcripts are predicted to encode overlapping protein isoforms, some of which (p70 and p100) are readily detectable using a polyclonal anti-AKNA antisera that we generated. We also find that AKNA PEST-dependent cleavage into p50 polypeptides is targeted to mature B cells and appears to be required for CD40 upregulation. The unusual capacity of the AKNA gene to generate multiple transcripts and proteins may reflect its functional diversity, and it may also provide a fail-safe mechanism that preserves AKNA expression.
Collapse
Affiliation(s)
- Jennifer C Sims-Mourtada
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim YS, Nedospasov SA, Liu ZG. TRAF2 plays a key, nonredundant role in LIGHT-lymphotoxin beta receptor signaling. Mol Cell Biol 2005; 25:2130-7. [PMID: 15743811 PMCID: PMC1061604 DOI: 10.1128/mcb.25.6.2130-2137.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
LIGHT is a member of the tumor necrosis factor (TNF) superfamily, and its function is mediated by at least two receptors, including lymphotoxin beta receptor (LTbetaR) and herpes simplex virus entry mediator. However, the molecular mechanism of LIGHT signaling mediated by LTbetaR has not been clearly defined. In this report, we demonstrate that TRAF2 is critical for LIGHT- and LTbetaR-mediated activation of both the transcription factor NF-kappaB and the mitogen-activated protein kinase JNK. In HeLa cells, LIGHT induces NF-kappaB and JNK activation, which can be blocked by the dominant negative mutant of TRAF2. In these cells, LIGHT causes the recruitment of TRAF2, TRAF3, and IkappaB kinase into the LTbetaR complex. Importantly, while both NF-kappaB and JNK are activated by LIGHT in wild-type mouse embryonic fibroblasts, no activation of either of these two pathways is observed in TRAF2 null fibroblasts. However, LIGHT-induced NF-kappaB and JNK activation can be restored by ectopic expression of TRAF2 in TRAF2-/- cells. Interestingly, in contrast to TNF signaling, the activation of both NF-kappaB and JNK by LIGHT was normal in RIP-/- and TRAF5-/- cells. Taken together, our data demonstrate that TRAF2, an important effector molecule of TNF signaling, plays a critical, nonredundant role in LIGHT-LTbetaR signaling.
Collapse
Affiliation(s)
- You-Sun Kim
- Cell and Cancer Biology Branch,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm. 6N105, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Qing G, Xiao G. Essential role of IkappaB kinase alpha in the constitutive processing of NF-kappaB2 p100. J Biol Chem 2005; 280:9765-8. [PMID: 15677466 DOI: 10.1074/jbc.c400502200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of NF-kappaB2 precursor protein p100 to generate p52 is tightly controlled, which is important for proper function of NF-kappaB. Accordingly, constitutive processing of p100, caused by the loss of its C-terminal processing inhibitory domain due to nfkappab2 gene rearrangements, is associated with the development of various lymphomas and leukemia. In contrast to the physiological processing of p100 triggered by NF-kappaB-inducing kinase (NIK) and its downstream kinase, IkappaB kinase alpha (IKKalpha), which requires the E3 ligase, beta-transducin repeat-containing protein (beta-TrCP), and occurs only in the cytoplasm, the constitutive processing of p100 is independent of beta-TrCP but rather is regulated by the nuclear shuttling of p100. Here, we show that constitutive processing of p100 also requires IKKalpha, but not IKKbeta (IkappaB kinase beta) or IKKgamma (IkappaB kinase gamma). It seems that NIK is also dispensable for this pathogenic processing of p100. These results demonstrate a general role of IKKalpha in p100 processing under both physiological and pathogenic conditions. Additionally, we find that IKKalpha is not required for the nuclear translocation of p100. Thus, these results also indicate that p100 nuclear translocation is not sufficient for the constitutive processing of p100.
Collapse
Affiliation(s)
- Guoliang Qing
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Rd., Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
44
|
Abstract
Processing of NF-kappa B2 precursor protein p100 to generate p52 is tightly regulated. However, this proteolytic event could be actively induced by the NF-kappa B-inducing kinase and the human T-cell leukemia virus-encoded oncoprotein Tax or be constitutively turned on due to the loss of the C-terminal portion of p100. Whereas NF-kappa B-inducing kinase-mediated p100 processing requires beta-transducin repeat-containing protein, constitutive processing of p100 is independent of this protein. On the other hand, Tax-induced processing of p100 appears to be both beta-transducin repeat-containing protein-dependent and -independent. We show here that, besides the C-terminal sequences, multiple functional regions, including the two alpha-helices, dimerization domain, nuclear localization sequence, and glycine-rich region, located in the N terminus of p100, also play important roles in both constitutive and inducible processing, suggesting a common mechanism for p100 processing. We further demonstrate that with the help of the C-terminal death domain and I kappa B kinase alpha-targeting serines, the C-terminal ankyrin-repeat domain of p100 strongly interacts with its N-terminal dimerization domain and nuclear localization sequence, thereby bringing the C- and N-terminal sequences together to form a three-dimensional domain. This presumptive domain is not only responsible for suppression of constitutive processing but also required for inducible processing of p100. Taken together, these studies highlight the mechanism by which the different sequences within p100 work in concert to regulate its processing and shed light on the mechanisms of how p100 processing is tightly and delicately controlled.
Collapse
Affiliation(s)
- Guoliang Qing
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
45
|
Wu P, Wang P. Per-Arnt-Sim domain-dependent association of cAMP-phosphodiesterase 8A1 with IkappaB proteins. Proc Natl Acad Sci U S A 2004; 101:17634-9. [PMID: 15596729 PMCID: PMC539753 DOI: 10.1073/pnas.0407649101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterase (PDE) 8A1 is a cAMP-specific PDE isozyme characterized by the presence of a Per-Arnt-Sim (PAS) domain. However, the function(s) of the PAS domain has remained unknown. In this study, using a lysate of HEK293 cells overexpressing recombinant human PDE8A1, we detected a physical association between PDE8A1 and endogenous IkappaBbeta by an antibody array technique. The association was specific for PDE8A1 and depended on the presence of the PAS domain. Subsequent coimmunoprecipitation experiments revealed that, in addition to IkappaBbeta, other IkappaB family members examined (p105, p100, and IkappaBalpha) also associated with PDE8A1. Furthermore, it was found that PDE8A1 competed with the p65/p50 NF-kappaB for IkappaBbeta binding. Taken together, these data indicate that PDE8A1, through its PAS domain, may bind with IkappaB proteins in a region containing their ankyrin repeats. Functionally, in vitro and in vivo experiments demonstrated that the association with IkappaB greatly enhanced the enzyme activity of PDE8A1. However, the PDE8A1-IkappaB association did not affect NF-kappaB activation. The biological role of the PDE8A1-IkappaB association remains to be elucidated.
Collapse
Affiliation(s)
- Ping Wu
- Department of Inflammation and Infection, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
46
|
Shcherbik N, Kee Y, Lyon N, Huibregtse JM, Haines DS. A Single PXY Motif Located within the Carboxyl Terminus of Spt23p and Mga2p Mediates a Physical and Functional Interaction with Ubiquitin Ligase Rsp5p. J Biol Chem 2004; 279:53892-8. [PMID: 15466864 DOI: 10.1074/jbc.m410325200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome-dependent processing of the endoplasmic reticulum localized transcription factor Spt23p of Saccharomyces cerevisiae generates its transcriptionally competent form and requires the WW domain containing Rsp5p ubiquitin ligase. Although previous studies documented an Rsp5p-Spt23p association in cells, very little is known about the nature of this interaction. We report here the identification of an imperfect type I WW domain-binding site (LPKY) within the carboxyl-terminal region of Spt23p that is required for Rsp5p binding in vitro and in vivo. Deletion of this motif abrogates Rsp5p-induced ubiquitination of Spt23p in vitro and reduces ubiquitination of the Spt23p precursor in yeast. In addition, the Spt23pDeltaLPKY mutant is inefficiently processed and is defective at up-regulating target gene (OLE1) expression in cells. Deletion of the corresponding LPKY site within Mga2p, an Spt23p homologue, also abrogates Rsp5p binding and Rsp5p-dependent ubiquitination in vitro as well as Rsp5p binding and Mga2p polyubiquitination in cells. However, the Mga2pDeltaLPKY mutant undergoes efficient proteasome-dependent processing. These experiments indicate that the LPKY motif of Spt23p is required for Rsp5p binding, Rsp5-induced ubiquitination, proteasome-dependent processing, and its OLE1 inducing function. They also suggest that the LPKY motif of Mga2p is required for Rsp5p binding and ubiquitination, and Rsp5p regulates Mga2p function by a mechanism that is independent of providing the partial degradation signal.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad St., Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
47
|
Rape M, Jentsch S. Productive RUPture: activation of transcription factors by proteasomal processing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1695:209-13. [PMID: 15571816 DOI: 10.1016/j.bbamcr.2004.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Proteasomes usually degrade proteins completely into small peptides. In a few cases, however, proteasomal degradation rather results in protein processing, thereby yielding proteins of different biological activity. This process, termed "regulated ubiquitin/proteasome-dependent processing" or RUP, is essential for the function of certain transcription factors and crucial for their regulation. Examples are proteins of the mammalian NF-kappaB family and the yeast proteins SPT23 and MGA2. In this review, we summarize the available data and suggest a mechanistic model for proteasomal processing.
Collapse
Affiliation(s)
- Michael Rape
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
48
|
Beinke S, Ley S. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004; 382:393-409. [PMID: 15214841 PMCID: PMC1133795 DOI: 10.1042/bj20040544] [Citation(s) in RCA: 483] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/22/2004] [Accepted: 06/24/2004] [Indexed: 01/01/2023]
Abstract
Two members of the NF-kappaB (nuclear factor kappaB)/Rel transcription factor family, NF-kappaB1 and NF-kappaB2, are produced as precursor proteins, NF-kappaB1 p105 and NF-kappaB2 p100 respectively. These are proteolytically processed by the proteasome to produce the mature transcription factors NF-kappaB1 p50 and NF-kappaB2 p52. p105 and p100 are known to function additionally as IkappaBs (inhibitors of NF-kappaB), which retain associated NF-kappaB subunits in the cytoplasm of unstimulated cells. The present review focuses on the latest advances in research on the function of NF-kappaB1 and NF-kappaB2 in immune cells. NF-kappaB2 p100 processing has recently been shown to be stimulated by a subset of NF-kappaB inducers, including lymphotoxin-beta, B-cell activating factor and CD40 ligand, via a novel signalling pathway. This promotes the nuclear translocation of p52-containing NF-kappaB dimers, which regulate peripheral lymphoid organogenesis and B-lymphocyte differentiation. Increased p100 processing also contributes to the malignant phenotype of certain T- and B-cell lymphomas. NF-kappaB1 has a distinct function from NF-kappaB2, and is important in controlling lymphocyte and macrophage function in immune and inflammatory responses. In contrast with p100, p105 is constitutively processed to p50. However, after stimulation with agonists, such as tumour necrosis factor-alpha and lipopolysaccharide, p105 is completely degraded by the proteasome. This releases associated p50, which translocates into the nucleus to modulate target gene expression. p105 degradation also liberates the p105-associated MAP kinase (mitogen-activated protein kinase) kinase kinase TPL-2 (tumour progression locus-2), which can then activate the ERK (extracellular-signal-regulated kinase)/MAP kinase cascade. Thus, in addition to its role in NF-kappaB activation, p105 functions as a regulator of MAP kinase signalling.
Collapse
Key Words
- iκb kinase (ikk)
- nuclear factor κb (nf-κb)
- p100
- p105
- toll-like receptor (tlr)
- tumour progression locus-2 (tpl-2)
- abin, a20-binding inhibitor of nuclear factor κb
- baff, b-cell activating factor
- bmdm, bone-marrow-derived macrophage
- βtrcp, β-transducin repeat-containing protein
- cox-2, cyclo-oxygenase-2
- dc, dendritic cell
- dd, death domain
- dif, dorsal-related immunity factor
- ebna1, ebv nuclear antigen 1
- ebv, epstein–barr virus
- erk, extracellular-signal-regulated kinase
- fn14, fibroblast-growth-factor-inducible 14
- gc, germinal centre
- gm-csf, granulocyte–macrophage colony-stimulating factor
- grr, glycine-rich region
- gsk, glycogen synthase kinase
- htlv-1, human t-cell leukaemia virus type 1
- ifnβ, interferon-β
- iκb, inhibitor of nuclear factor κb
- ikk, iκb kinase
- il, interleukin
- imd, immune deficiency
- jnk, c-jun n-terminal kinase
- lmp1, latent membrane protein 1
- lps, lipopolysaccharide
- ltβr, lymphotoxin-β receptor
- map kinase, mitogen-activated protein kinase
- map 3-kinase, map kinase kinase kinase
- mef, mouse embryo fibroblast
- mek, map kinase/erk kinase
- mip, macrophage inflammatory protein
- nemo, nuclear factor κb essential modulator
- nf-κb, nuclear factor κb
- nik, nf-κb-inducing kinase
- pest region, polypeptide sequence enriched in proline (p), glutamic acid (e), serine (s) and threonine (t)
- pgrp-lc, peptidoglycan recognition protein lc
- rankl, receptor activator of nf-κb ligand
- rhd, rel homology domain
- scf, skp1/cul1/f-box
- th1, t-helper 1
- th2, t-helper 2
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tpl-2, tumour progression locus-2
- traf, tnf-receptor-associated factor
- tweak, tnf-like weak inducer of apoptosis
Collapse
Affiliation(s)
- Sören Beinke
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| | - Steven C. Ley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| |
Collapse
|
49
|
Qu Z, Qing G, Rabson A, Xiao G. Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and -independent mechanisms. J Biol Chem 2004; 279:44563-72. [PMID: 15310758 DOI: 10.1074/jbc.m403689200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of the nf-kappab2 gene product p100 to generate p52 is a tightly regulated event, consistent with the fact that the processing product, p52, is hardly detected in most cell types, including T cells, although the precursor p100 is expressed abundantly in these cells. However, in T cells transformed by the human T-cell leukemia virus type I (HTLV-I), p100 processing is very active, resulting in high level expression of p52. Because overproduction of p52 is associated with lymphoid hyperplasia and transformation, deregulation of p100 processing may be part of the oncogenic mechanism of HTLV-I. We demonstrated previously that HTLV-I Tax oncoprotein is a potent inducer of p100 processing through specific targeting of IKKalpha via IKKgamma to p100 to trigger p100 phosphorylation and ubiquitination. In this study, we further show that Tax-mediated recruitment of IKKalpha to p100 requires serines 866 and 870 of p100, shown to be essential for inducible processing of p100. Upon interaction with p100, activated IKKalpha phosphorylates both N- and C-terminal serines of p100 (serines 99, 108, 115, 123 and 872), serving as a critical step in Tax-induced p100 processing. Using a genetic approach, we find that beta-transducin repeat-containing protein, a component of the SCF ubiquitin ligase complex, previously shown to be required for physiological p100 processing mediated by nuclear factor-kappaB-inducing kinase, is only partially involved in Tax-induced processing of p100. These results indicate that both beta-transducin repeat-containing protein-dependent and -independent mechanisms contribute to Tax-deregulated p100 processing, further suggesting the involvement of different mechanisms in cellular and viral pathways of p100 processing.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
50
|
Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004; 279:30099-105. [PMID: 15140882 DOI: 10.1074/jbc.m401428200] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of the nfkappab2 gene product p100 to generate p52 is a regulated event, which is important for the instrumental function of NF-kappaB. We previously demonstrated that this tightly controlled event is regulated positively by NF-kappaB-inducing kinase (NIK) and its downstream kinase, IkappaB kinase alpha (IKKalpha). However, the precise mechanisms by which NIK and IKKalpha induce p100 processing remain unclear. Here, we show that, besides activating IKKalpha, NIK also serves as a docking molecule recruiting IKKalpha to p100. This novel function of NIK requires two specific amino acid residues, serine 866 and serine 870, of p100 that are known to be essential for inducible processing of p100. We also show that, after being recruited into p100 complex, activated IKKalpha phosphorylates specific serines located in both N- and C-terminal regions of p100 (serines 99, 108, 115, 123, and 872). The phosphorylation of these specific serines is the prerequisite for ubiquitination and subsequent processing of p100 mediated by the beta-TrCP ubiquitin ligase and 26 S proteasome, respectively. These results highlight the critical but different roles of NIK and IKKalpha in regulating p100 processing and shed light on the mechanisms mediating the tight control of p100 processing. These data also provide the first evidence for explaining why overexpression of IKKalpha or its activation by many other stimuli such as tumor necrosis factor and mitogens fails to induce p100 processing.
Collapse
Affiliation(s)
- Gutian Xiao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|