1
|
PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol Syst Biol 2009; 5:246. [PMID: 19225459 PMCID: PMC2657535 DOI: 10.1038/msb.2009.4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 01/05/2009] [Indexed: 01/08/2023] Open
Abstract
Although it is appreciated that canonical signal-transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross-talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross-talk mechanisms in the platelet-derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3-kinase (PI3K) and Ras/extracellular signal-regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross-talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K-dependent and -independent modes of Ras/Erk activation.
Collapse
|
2
|
Lypowy J, Chen IY, Abdellatif M. An alliance between Ras GTPase-activating protein, filamin C, and Ras GTPase-activating protein SH3 domain-binding protein regulates myocyte growth. J Biol Chem 2005; 280:25717-28. [PMID: 15886195 DOI: 10.1074/jbc.m414266200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have previously reported that Ras GTPase-activating protein (RasGAP) is involved in a pathway that regulates total cellular mRNA and protein synthesis in cardiac myocytes. A yeast two-hybrid screen resulted in identification of filamin C (FLN-C) as one of its targets. Knockdown of RasGAP or FLN-C, or severing their interaction, resulted in down-regulation of the RNA polymerase II kinase, cyclin-dependent kinase 7 (Cdk7). This appeared to be provoked by the release of cdk7 mRNA from RasGAP SH3 domain-binding protein, G3BP, and its subsequent degradation. In parallel, myocyte growth was also inhibited. On the other hand, overexpression of RasGAP induced a Cdk7- and FLN-C-dependent growth. Thus, we propose that the physical interaction between RasGAP and FLN-C facilitates an interaction between G3BP and cdk7 mRNA. This results in stabilization of cdk7 mRNA, an increase in its protein, which is required for cell growth.
Collapse
Affiliation(s)
- Jacqueline Lypowy
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
3
|
Ugi S, Sharma PM, Ricketts W, Imamura T, Olefsky JM. Phosphatidylinositol 3-kinase is required for insulin-stimulated tyrosine phosphorylation of Shc in 3T3-L1 adipocytes. J Biol Chem 2002; 277:18592-7. [PMID: 11897789 DOI: 10.1074/jbc.m201019200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between the phosphatidylinositol 3-kinase (PI 3-kinase) and Ras/MAPK kinase pathways have been the subject of considerable interest. In the current studies, we find that epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) lead to rapid phosphorylation of Shc (maximum at 1-2 min), whereas insulin-mediated Shc phosphorylation is relatively delayed (maximum at 5-10 min), suggesting that an intermediary step may be necessary for insulin stimulation of Shc phosphorylation. The Src homology-2 (SH2) domain of Shc is necessary for PDGF- and EGF-mediated Shc phosphorylation, whereas the phosphotyrosine binding (PTB) domain is critical for the actions of insulin. Because the Shc PTB domain can interact with phospholipids, we postulated that PI 3-kinase might be a necessary intermediary step facilitating insulin-stimulated phosphorylation of Shc. In support of this, we found that the PI 3-kinase inhibitors, wortmannin and LY294002, blocked insulin-stimulated but not EGF- or PDGF-stimulated Shc phosphorylation. Furthermore, overexpression of a dominant negative PI 3-kinase construct (p85N-SH2) blocked insulin, but not EGF- or PDGF-induced Shc phosphorylation. All three growth factors cause localization of Shc to the plasma membrane, but only the effect of insulin was inhibited by wortmannin, supporting the view that PI 3-kinase-generated phospholipids mediate insulin-stimulated Shc phosphorylation. Consistent with this, expression of a constitutively active PI 3-kinase (p110(C)(AAX)) increased membrane localization of Shc, and this was completely blocked by wortmannin. A mutant Shc with a disrupted PTB domain (Shc S154) did not localize to the membrane in p110(C)(AAX)-expressing cells or after insulin stimulation and was not phosphorylated by insulin. In summary, 1) PI 3-kinase is a necessary early step in insulin-stimulated Shc phosphorylation, whereas the effects of EGF and PDGF on Shc phosphorylation are independent of PI 3-kinase. 2) PI 3-kinase-stimulated generation of membrane phospholipids can localize Shc to the plasma membrane through the Shc PTB domain facilitating phosphorylation by the insulin receptor.
Collapse
Affiliation(s)
- Satoshi Ugi
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | |
Collapse
|
4
|
Terruzzi I, Allibardi S, Bendinelli P, Maroni P, Piccoletti R, Vesco F, Samaja M, Luzi L. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms. Mol Cell Endocrinol 2002; 190:135-45. [PMID: 11997187 DOI: 10.1016/s0303-7207(02)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipids compete with glucose for utilization by the myocardium. Amino acids are an important energetic substrate in the heart but it is unknown whether they reduce glucose disposal. The molecular mechanisms by which lipids and amino acids impair insulin-mediated glucose disposal in the myocardium are unknown. We evaluated the effect of lipids and amino acids on the insulin stimulated glucose uptake in the isolated rat heart and explored the involved target proteins. The hearts were perfused with 16 mM glucose alone or with 6% lipid or 10% amino acid solutions at the rate of 15 ml/min. After 1 h of perfusion (basal period), insulin (240 nmol/l) was added and maintained for an additional hour. Both lipids and amino acids blocked the insulin effect on glucose uptake (P<0.01) and reduced the activity of the IRSs/PI 3-kinase/Akt/GSK3 axis leading to the activation of glucose transport and glycogen synthesis. Amino acids, but not lipids, increased the activity of the p70 S6 kinase leading to the stimulation of protein synthesis. Amino acids induce myocardial insulin resistance recruiting the same molecular mechanisms as lipids. Amino acids retain an insulin-like stimulatory effect on p70 S6 kinase, which is independent from the PI 3-Kinase downstream effectors.
Collapse
Affiliation(s)
- Ileana Terruzzi
- Dipartimento di Medicina, San Raffaele Scientific Institute, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The systemic actions of aldosterone are well documented; however, in comparison, our understanding of the cellular and molecular mechanisms by which aldosterone orchestrates these actions is rudimentary. Aldosterone exerts most of its physiological actions by modifying gene expression. It is now apparent that aldosterone represses almost as many genes as it induces. Several aldosterone-sensitive genes, including serum and glucocorticoid-inducible kinase (sgk) and small, monomeric Kirsten Ras GTP-binding protein (Ki-ras) have recently been identified. The molecular mechanisms and elements bestowing corticosteroid sensitivity on these and many other genes are becoming clear. Induction of Ki-Ras and Sgk is necessary and sufficient for some portion of aldosterone action in epithelia. These two signaling factors are components of a converging pathway with phosphatidylinositol 3-kinase positioned between them that enables both stabilizing the epithelial Na(+) channel (ENaC) in the open state as well as increasing the number of ENaC in the apical membrane. This aldosterone-induced signaling pathway contains many potential sites for feedback regulation and cross talk from other cascades and potentially impinges directly on the activity of transport proteins and/or cellular differentiation to modify electrolyte transport.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229-3900, USA.
| |
Collapse
|
6
|
Carrillo JJ, Ibares B, Esteban-Gamboa A, Felíu JE. Involvement of both phosphatidylinositol 3-kinase and p44/p42 mitogen-activated protein kinase pathways in the short-term regulation of pyruvate kinase L by insulin. Endocrinology 2001; 142:1057-64. [PMID: 11181519 DOI: 10.1210/endo.142.3.7992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pyruvate kinase L (PK-L) is a key regulatory enzyme of the hepatic glycolytic/gluconeogenic pathway that can be dephosphorylated and activated in response to insulin. However, the signaling cascades involved in this insulin effect have not been established. In this work we have investigated the potential involvement of phosphatidylinositol 3-kinase (PI 3-K) and p44/p42 mitogen-activated protein kinase (MAPK) pathways in the short-term modulation of PK-L by insulin in primary cultures of rat hepatocytes. Wortmannin, at a concentration of 100 nM, caused a marked inhibition of the PI 3-K/protein kinase B pathway, which became complete at 500 nM wortmannin. Likewise, wortmannin at 100 and 500 nM, elicited partial and total inhibitions of insulin-mediated activation of PK-L, respectively. However, this PI 3-K inhibitor also reduced insulin-mediated phosphorylation of p44/p42 MAPK in cultured rat hepatocytes, indicating that both the PI 3-K and MAPK pathways could be involved in PK-L activation by insulin. Three facts appear to reinforce this hypothesis: 1) the selective and complete inhibition of the PI 3-K/protein kinase B pathway by LY294002 (50 microM) was accompanied by a partial blockade of insulin-induced PK-L activation; 2) when signaling through the MAPK cascade was selectively suppressed by the presence of PD98059 (50 microM), a 50% reduction of insulin-induced activation of PK-L was observed; and 3) the effect of PD98059 (50 microM) on PK-L activation was reinforced by the additional presence of 100 nM wortmannin. We also observed that the blockade of p70 S6-kinase by rapamycin did not affect the activation of PK-L by insulin. From these findings it can be concluded that both PI 3-K and MAPK pathways, but not p70 S6-kinase, are involved in the short-term activation of PK-L by insulin in rat hepatocytes.
Collapse
Affiliation(s)
- J J Carrillo
- Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Crompton AM, Foley LH, Wood A, Roscoe W, Stokoe D, McCormick F, Symons M, Bollag G. Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands. J Biol Chem 2000; 275:25751-9. [PMID: 10835422 DOI: 10.1074/jbc.m002050200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho family GTPases play roles in cytoskeletal organization and cellular transformation. Tiam1 is a member of the Dbl family of guanine nucleotide exchange factors that activate Rho family GTPases. These exchange factors have in common a catalytic Dbl homology and adjacent pleckstrin homology domain. Previous structural studies suggest that the pleckstrin domain, a putative phosphoinositide-binding site, may serve a regulatory function. We identified ascorbyl stearate as a compound that binds to the pleckstrin domain of p120 Ras GTPase-activating protein. Furthermore, ascorbyl stearate appears to be a general pleckstrin domain ligand, perhaps by mimicking an endogenous amphiphilic ligand. Tiam1 nucleotide exchange activity was greatly stimulated by ascorbyl stearate. Certain phosphoinositides also stimulated Tiam1 activity but were less potent than ascorbyl stearate. Tiam1 contains an additional N-terminal pleckstrin domain, but only the C-terminal pleckstrin domain was required for activation. Our results suggest that the pleckstrin domains of Dbl-type proteins may not only be involved in subcellular localization but may also directly regulate the nucleotide exchange activity of an associated Dbl homology domain. In addition, this paper introduces ascorbyl stearate as a pleckstrin domain ligand that can modulate the activity of certain pleckstrin domain-containing proteins.
Collapse
Affiliation(s)
- A M Crompton
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abdellatif M, Packer SE, Michael LH, Zhang D, Charng MJ, Schneider MD. A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 1998; 18:6729-36. [PMID: 9774686 PMCID: PMC109256 DOI: 10.1128/mcb.18.11.6729] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 08/04/1998] [Indexed: 11/20/2022] Open
Abstract
Despite extensive evidence implicating Ras in cardiac muscle hypertrophy, the mechanisms involved are unclear. We previously reported that Ras, through an effector-like function of Ras GTPase-activating protein (GAP) in neonatal cardiac myocytes (M. Abdellatif et al., J. Biol. Chem. 269:15423-15426, 1994; M. Abdellatif and M. D. Schneider, J. Biol. Chem. 272:527-533, 1997), can up-regulate expression from a comprehensive set of promoters, including both cardiac cell-specific and constitutive ones. To investigate the mechanism(s) underlying these earlier findings, we have used recombinant adenoviruses harboring a dominant negative Ras (17N Ras) allele or the N-terminal domain of GAP (nGAP), responsible for the Ras-like effector function. Inhibition of endogenous Ras reduced basal levels of [3H]uridine and [3H]phenylalanine incorporation into total RNA, mRNA, and protein, with parallel changes in apparent cell size. In addition, 17N Ras markedly inhibited phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (pol II), known to regulate transcript elongation, accompanied by down-regulation of its principal kinase, cyclin-dependent kinase 7 (Cdk7). In contrast, nGAP elicited the opposite effects on each of these parameters. Furthermore, cotransfection of constitutively active Ras (12R Ras) with wild-type pol II, rather than a truncated mutant lacking the CTD, demonstrated that Ras activation of transcription was dependent on the pol II CTD. Consistent with a potential role for this pathway in the development of cardiac myocyte hypertrophy, alpha1-adrenergic stimulation similarly enhanced pol II phosphorylation and Cdk7 expression, where both effects were inhibited by dominant negative Ras, while pressure overload hypertrophy led to an increase in both hyperphosphorylated and hypophosphorylated pol II in addition to Cdk7.
Collapse
Affiliation(s)
- M Abdellatif
- Molecular Cardiology Unit, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 1998; 333 ( Pt 3):471-90. [PMID: 9677303 PMCID: PMC1219607 DOI: 10.1042/bj3330471] [Citation(s) in RCA: 727] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses.
Collapse
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
10
|
Sharma PM, Egawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J Biol Chem 1998; 273:18528-37. [PMID: 9660823 DOI: 10.1074/jbc.273.29.18528] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-K) is implicated in cellular events including glucose transport, glycogen synthesis, and protein synthesis. It is activated in insulin-stimulated cells by binding of the Src homology 2 (SH2) domains in its 85-kDa regulatory subunit to insulin receptor substrate-1 (IRS-1), and, others. We have previously shown that IRS-1-associated PI 3-kinase activity is not essential for insulin-stimulated glucose transport in 3T3-L1 adipocytes, and that alternate pathways exist in these cells. We now show that adenovirus-mediated overexpression of the p85N-SH2 domain in these cells behaves in a dominant-negative manner, interfering with complex formation between endogenous PI 3-K and its SH2 binding targets. This not only inhibited insulin-stimulated IRS-1-associated PI 3-kinase activity, but also completely blocked anti-phosphotyrosine-associated PI 3-kinase activity, which would include the non-IRS-1-associated activity. This resulted in inhibition of insulin-stimulated glucose transport, glycogen synthase activity and DNA synthesis. Further, Ser/Thr phosphorylation of downstream molecules Akt and p70 S6 kinase was inhibited. However, co-expression of a membrane-targeted p110(C) with the p85N-SH2 protein rescued glucose transport, supporting our argument that the p85N-SH2 protein specifically blocks insulin-mediated PI 3-kinase activity, and, that the signaling pathways downstream of PI 3-kinase are intact. Unexpectedly, GTP-bound Ras was elevated in the basal state. Since p85 is known to interact with GTPase-activating protein in 3T3-L1 adipocytes, the overexpressed p85N-SH2 peptide could titrate out cellular GTPase-activating protein by direct association, such that it is unavailable to hydrolyze GTP-bound Ras. However, insulin-induced mitogen-activated protein kinase phosphorylation was inhibited. Thus, PI 3-kinase may be required for this action at a step independent of and downstream of Ras. We conclude that, in 3T3-L1 adipocytes, non-IRS-1-associated PI 3-kinase activity is crucial for insulin's metabolic signaling, and that overexpressed p85N-SH2 protein inhibits a variety of insulin's ultimate biological effects.
Collapse
Affiliation(s)
- P M Sharma
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Feranchak AP, Roman RM, Schwiebert EM, Fitz JG. Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release. J Biol Chem 1998; 273:14906-11. [PMID: 9614094 DOI: 10.1074/jbc.273.24.14906] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated changes in cell volume represent a signal that modulates a broad range of cell and organ functions. In HTC hepatoma cells, increases in volume are coupled to membrane ion permeability through a pathway involving (i) ATP efflux, (ii) autocrine stimulation of P2 receptors, and (iii) increases in anion permeability and Cl- efflux, contributing to recovery of volume toward basal values. Based on recent evidence that cell volume increases also stimulate phosphoinositide kinases, the purpose of these studies was to determine if phosphatidylinositol 3-kinase (PI 3-kinase) modulates these pathways. Exposure of cells to hypotonic buffer (20 or 40% less NaCl) caused an initial increase in cell volume and stimulated a rapid increase in ATP release. Subsequent opening of Cl- channels was followed by recovery of cell volume toward basal values, despite the continuous presence of hypotonic buffer. Inhibition of PI 3-kinase with wortmannin (Ki = 3 nM) significantly inhibited both the rate of volume recovery and activation of Cl- currents; similar results were obtained with LY294002 (10 microM). Additionally, current activation was inhibited by intracellular dialysis with antibodies specific for the 110-kDa catalytic subunit of PI 3-kinase. Since release of ATP is a critical element in the volume-regulatory pathway, the role of PI 3-kinase on volume-stimulated ATP release was assessed. Both wortmannin and LY294002 decreased basal and volume-stimulated ATP permeability but had no effect on the current response to exogenous ATP (10 microM). These findings indicate that PI 3-kinase plays a significant role in regulation of cell volume and suggest that the effects are mediated in part through modulation of cellular ATP release.
Collapse
Affiliation(s)
- A P Feranchak
- Departments of Pediatrics and Medicine, Children's Hospital and the University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
12
|
Klemm DJ, Roesler WJ, Boras T, Colton LA, Felder K, Reusch JE. Insulin stimulates cAMP-response element binding protein activity in HepG2 and 3T3-L1 cell lines. J Biol Chem 1998; 273:917-23. [PMID: 9422750 DOI: 10.1074/jbc.273.2.917] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Earlier studies from our laboratory demonstrated an insulin-mediated increase in cAMP-response element binding protein (CREB) phosphorylation. In this report, we show that insulin stimulates both CREB phosphorylation and transcriptional activation in HepG2 and 3T3-L1 cell lines, models of insulin-sensitive tissues. Insulin stimulated the phosphorylation of CREB at serine 133, the protein kinase A site, and mutation of serine 133 to alanine blocked the insulin effect. Many of the signaling pathways known to be activated by insulin have been implicated in CREB phosphorylation and activation. The ability of insulin to induce CREB phosphorylation and activity was efficiently blocked by PD98059, a potent inhibitor of mitogen-activated protein kinase kinase (MEK1), but not significantly by rapamycin or wortmannin. Likewise, expression of dominant negative forms of Ras or Raf-1 completely blocked insulin-stimulated CREB transcriptional activity. Finally, we demonstrate an essential role for CREB in insulin activation of fatty-acid synthase and fatty acid binding protein (FABP) indicating the potential physiologic relevance of insulin regulation of CREB. In summary, insulin regulates CREB transcriptional activity in insulin-sensitive tissues via the Raf --> MEK pathway and has an impact on physiologically relevant genes in these cells.
Collapse
Affiliation(s)
- D J Klemm
- Department of Allergy and Clinical Immunology, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | | | | | | | |
Collapse
|
13
|
Goalstone ML, Draznin B. Insulin signaling. West J Med 1997; 167:166-73. [PMID: 9308409 PMCID: PMC1304516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The following article is another in a series of papers presented at the Annual Meeting of the Western Association of Physicians. The WAP meets in Carmel, usually in the first week of February, along with sister organization the Western Society for Clinical Investigation and the Western Federation for Clinical Research. These meetings are designed to offer members and guest physicians broad updates in multiple specialties of medicine and basic science. This eclectic approach provides broad cross-fertilization of ideas, often leading to scientific collaboration. Readers of The Western Journal of Medicine are encouraged to register and attend the meetings. The scheduled program for future meetings will be published in the December issue of the journal.
Collapse
Affiliation(s)
- M L Goalstone
- Research Service, Denver Veterans Administration Medical Center, CO 80220, USA
| | | |
Collapse
|
14
|
King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997; 17:4406-18. [PMID: 9234699 PMCID: PMC232295 DOI: 10.1128/mcb.17.8.4406] [Citation(s) in RCA: 356] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases.
Collapse
Affiliation(s)
- W G King
- ARIAD Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Takahashi T, Kawahara Y, Okuda M, Ueno H, Takeshita A, Yokoyama M. Angiotensin II stimulates mitogen-activated protein kinases and protein synthesis by a Ras-independent pathway in vascular smooth muscle cells. J Biol Chem 1997; 272:16018-22. [PMID: 9188505 DOI: 10.1074/jbc.272.25.16018] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Angiotensin II (ANG II), a potent hypertrophic factor of vascular smooth muscle cells (VSMC), induces activation of the ras protooncogene product (Ras) and mitogen-activated protein (MAP) kinases and subsequent stimulation of protein synthesis in VSMC. In the present study, we examined whether Ras activation is required for ANG II-induced MAP kinase activation and stimulation of protein synthesis in cultured rat VSMC. Pretreatment with tyrosine kinase inhibitors, genistein and herbimycin A, or a putative phosphatidylinositol 3-kinase inhibitor, wortmannin, completely blocked ANG II-induced Ras activation, whereas neither of them had an effect on ANG II-induced MAP kinase activation. Adenovirus-mediated expression of a dominant negative mutant of Ha-Ras completely inhibited ANG II-induced Ras activation but failed to inhibit MAP kinase activation and stimulation of protein synthesis by this vasoconstrictor. These results indicate that ANG II stimulates MAP kinases and protein synthesis by a Ras-independent pathway in VSMC.
Collapse
Affiliation(s)
- T Takahashi
- Department of Internal Medicine (1st Division), Kobe University School of Medicine, Kobe 650, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Valverde AM, Lorenzo M, Navarro P, Benito M. Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocrinol 1997; 11:595-607. [PMID: 9139803 DOI: 10.1210/mend.11.5.9924] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present study we have examined the role of phosphatidylinositol 3-kinase (PI 3-kinase) in the insulin-like growth factor I (IGF-I)-signaling pathways involved in differentiation and in mitogenesis in fetal rat brown adipocytes. Activation of PI 3-kinase in response to IGF-I was markedly inhibited by two PI 3-kinase inhibitors (wortmannin and LY294002) in a dose-dependent manner. IGF-I-stimulated glucose uptake was also inhibited by both compounds. The expression of adipogenic-related genes such as fatty acid synthase, malic enzyme, glycerol 3-phosphate dehydrogenase, and acetylcoenzyme A carboxylase induced by IGF-I was totally prevented in the presence of IGF-I and any of those inhibitors, resulting in a marked decrease of the cytoplasmic lipid content. Moreover, the expression of the thermogenic marker uncoupling protein induced by IGF-I was also down-regulated in the presence of wortmannin/LY294002. IGF-I-induced adipogenic- and thermogenic-related gene expression was only partly inhibited by the p70S6k inhibitor rapamycin. In addition, pretreatment of brown adipocytes with either wortmannin or LY294002, but not with rapamycin, blocked protein kinase C zeta activation by IGF-I. In contrast, IGF-I-induced fetal brown adipocyte proliferation was PI 3-kinase-independent. Our results show for the first time an essential requirement of PI 3-kinase in the IGF-I-signaling pathways leading to fetal brown adipocyte differentiation, but not leading to mitogenesis. In addition, protein kinase C zeta seems to be a signaling molecule also involved in the IGF-I differentiation pathways downstream from PI 3-kinase.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquimica y Biologia Molecular II, Instituto de Bioquimica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Frevert EU, Kahn BB. Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol 1997; 17:190-8. [PMID: 8972199 PMCID: PMC231743 DOI: 10.1128/mcb.17.1.190] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K (iSH2) and the catalytic p110 alpha subunit (p110). Coexpression resulted in PI3K activity that exceeded insulin-stimulated activity by two- to fivefold in cytosol, total membranes, and the low density microsome (LDM) fraction, the site of greatest insulin stimulation. While insulin increased glucose transport 15-fold, coexpression of iSH2-p110 increased transport (5.2-) +/- 0.7-fold with a parallel increase in GLUT4 translocation to the plasma membrane. Constitutive activation of PI3K had no effect on maximally insulin-stimulated glucose transport. Neither basal nor insulin-stimulated activity of glycogen synthase or mitogen-activated protein kinase was altered by iSH2-p110 coexpression. DNA synthesis was increased twofold by insulin in control 3T3-L1 adipocytes transduced with beta-galactosidase-encoding recombinant adenovirus, while iSH2-p110 coexpression increased DNA synthesis fivefold. These data indicate that (i) increased PI3K activity is sufficient to activate some but not all metabolic responses to insulin, (ii) activation of PI3K to levels exceeding the effect of insulin in adipocyte LDM results in only a partial stimulation of glucose transport, and (iii) increased PI3K activity in the absence of growth factor or oncoprotein stimulation is a potent stimulus of DNA synthesis.
Collapse
Affiliation(s)
- E U Frevert
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
18
|
Carel K, Kummer JL, Schubert C, Leitner W, Heidenreich KA, Draznin B. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J Biol Chem 1996; 271:30625-30. [PMID: 8940037 DOI: 10.1074/jbc.271.48.30625] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- K Carel
- Medical Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
19
|
Uribe JM, Keely SJ, Traynor-Kaplan AE, Barrett KE. Phosphatidylinositol 3-kinase mediates the inhibitory effect of epidermal growth factor on calcium-dependent chloride secretion. J Biol Chem 1996; 271:26588-95. [PMID: 8900131 DOI: 10.1074/jbc.271.43.26588] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epidermal growth factor (EGF) and carbachol both inhibit calcium-activated chloride secretion by the human colonic epithelial cell line, T84. Although the inhibitory mechanism for the carbachol effect involves the 3,4,5,6-isomer of inositol tetrakisphosphate, the mechanisms responsible for the EGF effect have not yet been fully elucidated. Here, we studied the role of phosphatidylinositol 3-kinase (PI 3-kinase) in the inhibitory effect of EGF. The PI 3-kinase inhibitor, wortmannin, slightly increased basal chloride secretion and potentiated the secretory response to thapsigargin. Wortmannin also partially reversed EGF-induced, but not carbachol-induced, inhibition of thapsigargin-stimulated chloride secretion. Wortmannin alone had no effect on carbachol- or histamine-induced chloride secretion and completely reversed EGF-induced inhibition of the secretory response to these agonists. EGF, carbachol, histamine, and thapsigargin all increased levels of the 85-kDa regulatory subunit of PI 3-kinase in antiphosphotyrosine immunoprecipitates. However, only EGF significantly increased levels of the 110-kDa catalytic subunit. Furthermore, only EGF increased PI 3-kinase activity in an in vitro kinase assay. High levels of phosphatidylinositol (3)-monophosphate were present in unstimulated cells and significantly reduced by wortmannin. EGF, but not carbachol, rapidly increased levels of phosphatidylinositol (3,4)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate. Production of these lipids was also sensitive to wortmannin. Our data suggest that EGF activates PI 3-kinase and that its lipid products may mediate the inhibitory effect of EGF on calcium-dependent chloride secretion. Our data also suggest that a phosphatidylinositol-specific 3-kinase activity is present in unstimulated T84 cells and may regulate production of phosphatidylinositol (3)-monophosphate and basal secretory tone.
Collapse
Affiliation(s)
- J M Uribe
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California 92103, USA
| | | | | | | |
Collapse
|
20
|
Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A. Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 1996; 16:5905-14. [PMID: 8816504 PMCID: PMC231592 DOI: 10.1128/mcb.16.10.5905] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.
Collapse
Affiliation(s)
- R A Klinghoffer
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
CD28 and the related molecule cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), together with their natural ligands B7.1 and B7.2, have been implicated in the differential regulation of several immune responses. CD28 provides signals during T cell activation which are required for the production of interleukin 2 and other cytokines and chemokines, and it has also been implicated in the regulation of T cell anergy and programmed T cell death. The biochemical signals provided by CD28 are cyclosporin A-resistant and complement those provided by the T cell antigen receptor to allow full activation of T cells. Multiple signalling cascades which may be independent of, or dependent on, protein tyrosine kinase activation have been demonstrated to be activated by CD28, including activation of phospholipase C, p21ran, phosphoinositide 3-kinase, sphingomyelinase/ceramide and 5-lipoxygenase. The relative contributions of these cascades to overall CD28 signalling are still unknown, but probably depend on the state of activation of the T cell and the level of CD28 activation. The importance of these signalling cascades (in particular the phosphoinositide 3-kinase-mediated cascade) to functional indications of CD28 activation, such as interleukin 2 gene regulation, has been investigated using pharmacological and genetic manipulations. These approaches have demonstrated that CD28-activated signalling cascades regulate several transcription factors involved in interleukin 2 transcriptional activation. This review describes in detail the structure and expression of the CD28 and B7 families, the functional outcomes of CD28 ligation and the signalling events that are thought to mediate these functions.
Collapse
Affiliation(s)
- S G Ward
- Department of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, U.K
| |
Collapse
|
22
|
Schubert C, Carel K, DePaolo D, Leitner W, Draznin B. Interactions of protein kinase C with insulin signaling. Influence on GAP and Sos activities. J Biol Chem 1996; 271:15311-4. [PMID: 8663173 DOI: 10.1074/jbc.271.26.15311] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, we investigated the influence of the protein kinase C (PKC)-dependent system upon the ability of insulin to stimulate p21(ras).GTP loading in 3T3-L1 adipocytes. Activation of PKC by 12-0-tetradecanoylphorbol-13-acetate (TPA) did not affect the basal amount of p21(ras).GTP but significantly reduced insulin-induced increases in p21(ras).GTP. This reduction was due to inhibition of the insulin's ability to stimulate guanine nucleotide exchange activity of Sos in cells incubated with 100 nM TPA for either 30 min or 3 h. TPA had no effect on basal activity of Sos. Depletion of PKC by an 18-h incubation with TPA or inhibition by bisindolylmaleimide resulted in profound inhibition of the insulin-induced p21(ras).GTP loading. In contrast to PKC activation, removal of PKC did not influence Sos activity but resulted in a 2-fold stimulation of GTPase activating protein (GAP). This effect of PKC depletion is unique to 3T3-L1 adipocytes and was not observed in either 3T3-L1 fibroblasts or Rat-1 fibroblasts. Thus, it appears that in 3T3-L1 adipocytes, PKC has a constitutive inhibitory effect on GAP that permits insulin to activate Sos and p21(ras). Removal of this inhibitory influence activates GAP and reduces insulin-stimulated p21(ras).GTP loading.
Collapse
Affiliation(s)
- C Schubert
- Medical Research Service, Veterans Affairs Medical Center and the University of Colorado Health Sciences Center, Denver, Colorado 80220, USA
| | | | | | | | | |
Collapse
|