1
|
Liu S, Li L, Liang Y, Tan Y, Wang X, Feng Y, Chen N, Lei X. Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization. Brief Bioinform 2024; 26:bbaf032. [PMID: 39883516 PMCID: PMC11781221 DOI: 10.1093/bib/bbaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed. A large-scale meta-analysis of psoriasis genome-wide association studies (GWAS) totaling 20 105 cases and 842 975 controls was conducted. Based on the GWAS results, Mendelian randomization (MR) analyses were then performed on three cis-protein quantitative trait loci (pQTL) data in blood. Furthermore, druggability verification and mouse knock-out models were utilized to explore the clinical value of screened proteins. We identified 42 genome-wide significant psoriasis risk variants (P < 5 × 10-8), of which 33 were previously unreported. MR analyses unveiled 19 unique circulating proteins that were associated with psoriasis, among which only AIF1, FCGR3A, NEU1, HSPA1A, TNXB, and ABO were the potential proteins that interacted with psoriasis risk after being analyzed with high evidence of colocalization (PP.H4 > 0.9). In addition, AIF1, FCGR3A, and HSPA1A have been finally determined to be feasible therapeutic targets for psoriasis after being confirmed by druggability verification and specific mouse knock-out models. This large-scale GWAS meta-analysis identified 33 new variants for psoriasis. This study announced that AIF1, FCGR3, and HSPA1A were the unexplored but material variants of psoriasis, thus providing novel and valuable targets for psoriasis treatment and broadening new orientation of drug development for psoriasis.
Collapse
Affiliation(s)
- Shunying Liu
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yi Liang
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yanhai Feng
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, No. 5, Mount Everest West Road, Xigaze District, Shigatse 857007, China
| | - Nian Chen
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
- Research Center for Skin Tissue Engineering of Chongqing Higher Education Institutions, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| |
Collapse
|
2
|
Thambyrajah R, Maqueda M, Fadlullah MZ, Proffitt M, Neo WH, Guillén Y, Casado-Pelaez M, Herrero-Molinero P, Brujas C, Castelluccio N, González J, Iglesias A, Marruecos L, Ruiz-Herguido C, Esteller M, Mereu E, Lacaud G, Espinosa L, Bigas A. IκBα controls dormancy in hematopoietic stem cells via retinoic acid during embryonic development. Nat Commun 2024; 15:4673. [PMID: 38824124 PMCID: PMC11144194 DOI: 10.1038/s41467-024-48854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.
Collapse
Grants
- PID2022-137945OB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- PID2019-104695RB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- 2021SGR00039 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2016(00021) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2018(00034) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- CA22/00011 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| | - Maria Maqueda
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Muhammad Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin Proffitt
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yolanda Guillén
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | | | - Carla Brujas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Noemi Castelluccio
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Ghent University Hospital, Ghent, Belgium
| | - Jessica González
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Arnau Iglesias
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Laura Marruecos
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | | | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Agrawal R, Hu A, Bollag WB. The Skin and Inflamm-Aging. BIOLOGY 2023; 12:1396. [PMID: 37997995 PMCID: PMC10669244 DOI: 10.3390/biology12111396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
With its unique anatomical location facing both the external and internal environment, the skin has crucial functions, including shielding the body from damage caused by ultraviolet radiation and chemicals, preventing water loss, acting as a primary barrier against pathogens, participating in metabolic processes like vitamin D production and temperature control and relaying information to the body through sensory and proprioceptor nerves. Like all organ systems, skin is known to undergo multiple changes with aging. A better understanding of the mechanisms that mediate aging-related skin dysfunction may allow the creation of targeted therapeutics that have beneficial effects not only on aged skin but also on other organs and tissues that experience a loss of or decline in function with aging. The skin is the largest organ of the body and can contribute to serum inflammatory mediator levels. One alteration known to occur with age is an impairment of skin barrier function; since disruption of the barrier is known to induce inflammation, skin may be a major contributor to the sustained, sub-clinical systemic inflammation associated with aging. Such "inflamm-aging" may underlie many of the deleterious changes observed in aged individuals. This review explores the role of age-related skin changes, skin inflammation and inflamm-aging.
Collapse
Affiliation(s)
- Rashi Agrawal
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (R.A.); (A.H.)
| | - Anne Hu
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (R.A.); (A.H.)
| | - Wendy B. Bollag
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (R.A.); (A.H.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
7
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
8
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Linoleic acid reduces apoptosis via NF-κB during the in vitro development of induced parthenogenic porcine embryos. Theriogenology 2022; 187:173-181. [PMID: 35596974 DOI: 10.1016/j.theriogenology.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Fatty acid has a various role in preimplantation embryo development. Especially, Linoleic acid, polyunsaturated fatty acid, has been reported to affect the apoptosis pathway via nuclear transcription factor-kappa B. But to date, the function of NF-κB has not been demonstrated in porcine preimplantation embryos. We demonstrated that linoleic acid had a positive effect on embryo development at a certain concentration(25 μM), but developmental failure was observed at higher concentration. Furthermore, the expression level of NF-κB increased, unlike that of IL-6, as the concentration of linoleic acid increased. Interestingly, the concentration of NF-κB was found to increase even at the concentration of linoleic acid at which embryo development decreased. We found that pro-apoptotic gene expression was downregulated in the linoleic acid-treated group. It was also found that MCL-1, an anti-apoptotic gene known to be unaffected by IL-6, was found to be increased at the mRNA level in the linoleic acid-treated group. As the concentration of NF-kB increased, the nuclear translocation of C-JUN gradually increased dependent on the linoleic acid concentration. It was confirmed that NF-κB is an important factor in porcine embryos by treated ammonium pyrrolidinedithiocarbamate (APDC 0.1 μM, an inhibitor of NF-κB) affected NF-κB protein expression, IL-6 expression, and blastocyst production. These data supported porcine embryos can use exogenous linoleic acid as a metabolic energy source via NF-κB.
Collapse
|
10
|
Lusk JB, Chua EHZ, Kaur P, Sung ICH, Lim WK, Lam VYM, Harmston N, Tolwinski NS. A non-canonical Raf function is required for dorsal-ventral patterning during Drosophila embryogenesis. Sci Rep 2022; 12:7684. [PMID: 35538124 PMCID: PMC9090920 DOI: 10.1038/s41598-022-11699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Proper embryonic development requires directional axes to pattern cells into embryonic structures. In Drosophila, spatially discrete expression of transcription factors determines the anterior to posterior organization of the early embryo, while the Toll and TGFβ signalling pathways determine the early dorsal to ventral pattern. Embryonic MAPK/ERK signaling contributes to both anterior to posterior patterning in the terminal regions and to dorsal to ventral patterning during oogenesis and embryonic stages. Here we describe a novel loss of function mutation in the Raf kinase gene, which leads to loss of ventral cell fates as seen through the loss of the ventral furrow, the absence of Dorsal/NFκB nuclear localization, the absence of mesoderm determinants Twist and Snail, and the expansion of TGFβ. Gene expression analysis showed cells adopting ectodermal fates much like loss of Toll signaling. Our results combine novel mutants, live imaging, optogenetics and transcriptomics to establish a novel role for Raf, that appears to be independent of the MAPK cascade, in embryonic patterning.
Collapse
Affiliation(s)
- Jay B Lusk
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Prameet Kaur
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Wen Kin Lim
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Nicholas S Tolwinski
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore.
- Yale-NUS College Research Labs @ E6, E6, 5 Engineering Drive 1, #04-02, Singapore, 117608, Singapore.
| |
Collapse
|
11
|
Kim M, Vu NT, Wang X, Bulut GB, Wang MH, Uram-Tuculescu C, Pillappa R, Kim S, Chalfant CE. Caspase-9b drives cellular transformation, lung inflammation, and lung tumorigenesis. Mol Cancer Res 2022; 20:1284-1294. [PMID: 35412615 DOI: 10.1158/1541-7786.mcr-21-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Caspase 9 undergoes alternative splicing to produce two opposing isoforms: pro-apoptotic Caspase-9a (C9a) and pro-survival Caspase-9b (C9b). Previously, our laboratory reported that C9b is expressed in majority of non-small cell lung cancer tumors and directly activates the NF-κB pathway. In this study, the role of C9b in activation of the NF-κB pathway in vivo, lung inflammation and immune responses, and lung tumorigenesis were examined. Specifically, a transgenic mouse model expressing human C9b in the lung pneumocytes developed inflammatory lung lesions, which correlated with enhanced activation of the NF-κB pathway and increased influx of immunosuppressive MDSCs in contrast to wild-type mice. C9b mice presented with facial dermatitis, a thickened and disorganized dermis, enhanced collagen depth, and increased serum levels of IL-6. C9b mice also developed spontaneous lung tumors, and C9b cooperated with oncogenic KRAS in lung tumorigenesis. C9b expression also cooperated with oncogenic KRAS and p53 downregulation to drive the full cell transformation of human bronchial epithelial cells (e.g., tumor formation). Implications: Our findings show that C9b can directly activate NF-κB pathway in vivo to modulate lung inflammation, immune cell influx, and peripheral immune responses, which demonstrates that C9b is key factor in driving cell transformation and lung tumorigenesis.
Collapse
Affiliation(s)
- Minjung Kim
- University of South Florida, Tampa, FL, United States
| | - Ngoc T Vu
- University of South Florida, United States
| | - Xue Wang
- University of South Florida, Tampa, Virginia, United States
| | - Gamze B Bulut
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | - Min-Hsuan Wang
- H. Lee Moffitt Cancer Center & Research, Tampa, Florida, United States
| | | | - Raghavendra Pillappa
- Virginia Commonwealth University-School of Medicine, Richmond, Virginia, United States
| | | | - Charles E Chalfant
- University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
12
|
Xia P, Pasquali L, Gao C, Srivastava A, Khera N, Freisenhausen JC, Luo L, Rosén E, van Lierop A, Homey B, Pivarcsi A, Sonkoly E. miR-378a regulates keratinocyte responsiveness to IL-17A in psoriasis. Br J Dermatol 2022; 187:211-222. [PMID: 35257359 PMCID: PMC9545829 DOI: 10.1111/bjd.21232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Background Psoriasis is an immune‐mediated inflammatory skin disease, in which an interplay between infiltrating immune cells and keratinocytes sustains chronic skin inflammation. Interleukin (IL)‐17A is a key inflammatory cytokine in psoriasis and its main cellular targets are keratinocytes. Objectives To explore the role of miR‐378a in psoriasis. Methods Keratinocytes obtained from psoriatic skin and healthy epidermis were separated by magnetic sorting, and the expression of miR‐378a was analysed by quantitative polymerase chain reaction. The regulation and function of miR‐378a was studied using primary human keratinocytes. The expression of miR‐378a was modulated by synthetic mimics, and nuclear factor kappa B (NF‐κB) activity and transcriptomic changes were studied. Synthetic miR‐378a was delivered to mouse skin in conjunction with induction of psoriasiform skin inflammation by imiquimod. Results We show that miR‐378a is induced by IL‐17A in keratinocytes through NF‐κB, C/EBP‐β and IκBζ and that it is overexpressed in psoriatic epidermis. In cultured keratinocytes, ectopic expression of miR‐378a resulted in the nuclear translocation of p65 and enhanced NF‐κB‐driven promoter activity even in the absence of inflammatory stimuli. Moreover, miR‐378a potentiated the effect of IL‐17A on NF‐κB nuclear translocation and downstream activation of the NF‐κB pathway. Finally, injection of miR‐378a into mouse skin augmented psoriasis‐like skin inflammation with increased epidermal proliferation and induction of inflammatory mediators. Mechanistically, miR‐378a acts as a suppressor of NFKBIA/IκBζ, an important negative regulator of the NF‐κB pathway in keratinocytes. Conclusions Collectively, our findings identify miR‐378a as an amplifier of IL‐17A‐induced NF‐κB signalling in keratinocytes and suggest that increased miR‐378a levels contribute to the amplification of IL‐17A‐driven skin inflammation in psoriasis.
Collapse
Affiliation(s)
- Ping Xia
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Dermatology Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Chenying Gao
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.,The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Nupur Khera
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Jan Cedric Freisenhausen
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Longlong Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Einar Rosén
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anke van Lierop
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
De Ridder R, Vandeweyer G, Boudin E, Hendrickx G, Huybrechts Y, Cremers TC, Devogelaer JP, Mortier G, Fransen E, Van Hul W. A Panel-Based Sequencing Analysis of Patients with Paget's Disease of Bone Suggests Enrichment of Rare Genetic Variation in regulators of NF-κB Signaling and Supports the Importance of the 7q33 Locus. Calcif Tissue Int 2021; 109:656-665. [PMID: 34173013 DOI: 10.1007/s00223-021-00881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Paget's disease of bone (PDB) is a common bone disorder characterized by focal lesions caused by increased bone turnover. Monogenic forms of PDB and PDB-related phenotypes as well as genome-wide association studies strongly support the involvement of genetic variation in components of the NF-κB signaling pathway in the pathogenesis of PDB. In this study, we performed a panel-based mutation screening of 52 genes. Single variant association testing and a series of gene-based association tests were performed. The former revealed a novel association with NFKBIA and further supports an involvement of variation in NR4A1, VCP, TNFRSF11A, and NUP205. The latter indicated a trend for enrichment of rare genetic variation in GAB2 and PRKCI. Both single variant tests and gene-based tests highlighted two genes, NR4A1 and NUP205. In conclusion, our findings support the involvement of genetic variation in modulators of NF-κB signaling in PDB and confirm the association of previously associated genes with the pathogenesis of PDB.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Eveline Boudin
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Gretl Hendrickx
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Yentl Huybrechts
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Tycho Canter Cremers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Jean-Pierre Devogelaer
- Department of Rheumatology, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
14
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
15
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
16
|
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 2021; 8:287-297. [PMID: 33997176 PMCID: PMC8093649 DOI: 10.1016/j.gendis.2020.06.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa B (NF-kB) family of transcription factors plays an essential role as stressors in the cellular environment, and controls the expression of important regulatory genes such as immunity, inflammation, death, and cell proliferation. NF-kB protein is located in the cytoplasm, and can be activated by various cellular stimuli. There are two pathways for NF-kB activation, as the canonical and non-canonical pathways, which require complex molecular interactions with adapter proteins and phosphorylation and ubiquitinase enzymes. Accordingly, this increases NF-kB translocation in the nucleus and regulates gene expression. In this study, the concepts that emerge in different cellular systems allow the design of NF-kB function in humans. This would not only allow the development for rare diseases associated with NF-kB, but would also be used as a source of useful information to eliminate widespread consequences such as cancer or inflammatory/immune diseases.
Collapse
Affiliation(s)
| | - Bettina Schock
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1336616357, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| | | | - Seyed Amir Jalali
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1336616357, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| |
Collapse
|
17
|
Li X, Hu Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers (Basel) 2021; 13:cancers13061411. [PMID: 33808757 PMCID: PMC8003426 DOI: 10.3390/cancers13061411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary CHUK/IKKα has emerged as a novel tumor suppressor in several organs of humans and mice. In general, activation of NF-κB promotes inflammation and tumorigenesis. IKKα reduction stimulates inflammatory responses including NF-κB’s targets and NF-κB-independent pathways for tumor promotion. Specific phenomena from genetically-modified mice and human TCGA database show the crosstalk between IKKα and NF-κB although their nature paths for normal organ development and the disease and cancer pathogenesis remains largely under investigation. In this review, we focus on the interplay between IKKα and NF-κB signaling during carcinogenesis. A better understanding of their relationship will provide insight into therapeutic targets of cancer. Abstract Studies analyzing human cancer genome sequences and genetically modified mouse models have extensively expanded our understanding of human tumorigenesis, even challenging or reversing the dogma of certain genes as originally characterized by in vitro studies. Inhibitor-κB kinase α (IKKα), which is encoded by the conserved helix-loop-helix ubiquitous kinase (CHUK) gene, is first identified as a serine/threonine protein kinase in the inhibitor-κB kinase complex (IKK), which is composed of IKKα, IKKβ, and IKKγ (NEMO). IKK phosphorylates serine residues 32 and 36 of IκBα, a nuclear factor-κB (NF-κB) inhibitor, to induce IκBα protein degradation, resulting in the nuclear translocation of NF-κB dimers that function as transcriptional factors to regulate immunity, infection, lymphoid organ/cell development, cell death/growth, and tumorigenesis. NF-κB and IKK are broadly and differentially expressed in the cells of our body. For a long time, the idea that the IKK complex acts as a direct upstream activator of NF-κB in carcinogenesis has been predominately accepted in the field. Surprisingly, IKKα has emerged as a novel suppressor for skin, lung, esophageal, and nasopharyngeal squamous cell carcinoma, as well as lung and pancreatic adenocarcinoma (ADC). Thus, Ikkα loss is a tumor driver in mice. On the other hand, lacking the RANKL/RANK/IKKα pathway impairs mammary gland development and attenuates oncogene- and chemical carcinogen-induced breast and prostate tumorigenesis and metastasis. In general, NF-κB activation leads one of the major inflammatory pathways and stimulates tumorigenesis. Since IKKα and NF-κB play significant roles in human health, revealing the interplay between them greatly benefits the diagnosis, treatment, and prevention of human cancer. In this review, we discuss the intriguing attribution of NF-κB to CHUK/IKKα-involved carcinogenesis.
Collapse
|
18
|
Kolesnichenko M, Mikuda N, Höpken UE, Kärgel E, Uyar B, Tufan AB, Milanovic M, Sun W, Krahn I, Schleich K, von Hoff L, Hinz M, Willenbrock M, Jungmann S, Akalin A, Lee S, Schmidt-Ullrich R, Schmitt CA, Scheidereit C. Transcriptional repression of NFKBIA triggers constitutive IKK- and proteasome-independent p65/RelA activation in senescence. EMBO J 2021; 40:e104296. [PMID: 33459422 PMCID: PMC7957429 DOI: 10.15252/embj.2019104296] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
The IκB kinase (IKK)‐NF‐κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double‐strand breaks elicit two subsequent phases of NF‐κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA‐sequencing reveals that the first‐phase controls anti‐apoptotic gene expression, while the second drives expression of senescence‐associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM‐PARP1‐TRAF6‐IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re‐expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF‐κB family member p65/RelA, in part mediated by GSK3β, results in transcriptional silencing of NFKBIA and IKK‐independent, constitutive activation of NF‐κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF‐κB activation with important implications for genotoxic cancer treatment.
Collapse
Affiliation(s)
- Marina Kolesnichenko
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nadine Mikuda
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bora Uyar
- Bioinformatics/Mathematical Modeling Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ahmet Bugra Tufan
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Maja Milanovic
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Wei Sun
- Laboratory for Functional Genomics and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kolja Schleich
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Linda von Hoff
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Hinz
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sabine Jungmann
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics/Mathematical Modeling Platform, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Soyoung Lee
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Clemens A Schmitt
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
19
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
20
|
Trochopoulos AGX, Zaharieva MM, Marinova MH, Yoncheva K, Tibi IPE, Berger MR, Konstantinov SM. Antineoplastic effect of a novel nanosized curcumin on cutaneous T cell lymphoma. Oncol Lett 2020; 20:304. [PMID: 33093913 PMCID: PMC7573878 DOI: 10.3892/ol.2020.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) are a group of heterogeneous, life-threatening, extra-nodal and lymphoproliferative T cell neoplasms. Since chronic inflammation serves a key role in CTCL progression, curcumin, a natural pigment with proven anti-inflammatory and antineoplastic properties, as well as minimal toxicity, may be used as a therapeutic agent. In the present study, two formulations of curcumin (standard ethanolic and a Pluronic®P-123/F-127 micellar solution) were compared regarding their cytotoxic efficacy and speed of internalization in three CTCL cell lines, namely HuT-78, HH and MJ. In addition, the modulating effect of curcumin on selected proteins involved in the proliferation and progression of the disease was determined. The results indicated the superiority of the Pluronic®P-123/F-127 micellar curcumin over the standard ethanol solution in terms of cellular internalization efficiency as determined by spectrophotometric analysis. Notably, the presence of commonly used media components, such as phenol red, may interfere when interpreting the cytotoxicity of curcumin, due to their overlapping absorbance peaks. Therefore, it was concluded that phenol red-free media are superior over media with phenol red in order to correctly measure the cytotoxic efficacy and cell penetration of curcumin. Depending on the cell line, the IC50 values of micellar curcumin varied from 29.76 to 1.24 µΜ, with HH cells demonstrating the highest sensitivity. This cell line had the lowest expression levels of the Wilms' tumor-1 transcription factor. Performing western blot analyses of treated and untreated CTCL cells, selective signal transduction changes were recorded for the first time, thus making curcumin nano-formulation an attractive and prospective option with therapeutic relevance for CTCL as a rare orphan disease.
Collapse
Affiliation(s)
- Antonios G X Trochopoulos
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Maya M Zaharieva
- Department of Infectious Microbiology, Institute of Microbiology 'Stephan Angeloff', Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mirela H Marinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krasimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Pencheva-El Tibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Martin R Berger
- Unit of Toxicology and Chemotherapy, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Spiro M Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
21
|
Dysregulation of Cell Death in Human Chronic Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037036. [PMID: 31843991 DOI: 10.1101/cshperspect.a037036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inflammation is a fundamental biological process mediating host defense and wound healing during infections and tissue injury. Perpetuated and excessive inflammation may cause autoinflammation, autoimmunity, degenerative disorders, allergies, and malignancies. Multimodal signaling by tumor necrosis factor receptor 1 (TNFR1) plays a crucial role in determining the transition between inflammation, cell survival, and programmed cell death. Targeting TNF signaling has been proven as an effective therapeutic in several immune-related disorders. Mouse studies have provided critical mechanistic insights into TNFR1 signaling and its potential role in a broad spectrum of diseases. The characterization of patients with monogenic primary immunodeficiencies (PIDs) has highlighted the importance of TNFR1 signaling in human disease. In particular, patients with PIDs have revealed paradoxical connections between immunodeficiency, chronic inflammation, and dysregulated cell death. Importantly, studies on PIDs may help to predict beneficial effects and side-effects of therapeutic targeting of TNFR1 signaling.
Collapse
|
22
|
Mikuda N, Schmidt-Ullrich R, Kärgel E, Golusda L, Wolf J, Höpken UE, Scheidereit C, Kühl AA, Kolesnichenko M. Deficiency in IκBα in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut. J Pathol 2020; 251:160-174. [PMID: 32222043 DOI: 10.1002/path.5437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
The IκB kinase (IKK)-NF-κB signaling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signaling, these involve either knockouts of a single family member of NF-κB or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess. To examine the role of constitutive NF-κB activation in intestinal epithelial cells, we generated a mouse model with a tissue-specific knockout of the direct inhibitor of NF-κB, Nfkbia/IκBα. We demonstrate that constitutive activation of NF-κB in intestinal epithelial cells induces several hallmarks of IBD including increased apoptosis, mucosal inflammation in both the small intestine and the colon, crypt hyperplasia, and depletion of Paneth cells, concomitant with aberrant Wnt signaling. To determine which NF-κB-driven phenotypes are cell-intrinsic, and which are extrinsic and thus require the immune compartment, we established a long-term organoid culture. Constitutive NF-κB promoted stem-cell proliferation, mis-localization of Paneth cells, and sensitization of intestinal epithelial cells to apoptosis in a cell-intrinsic manner. Increased number of stem cells was accompanied by a net increase in Wnt activity in organoids. Because aberrant Wnt signaling is associated with increased risk of cancer in IBD patients and because NFKBIA has recently emerged as a risk locus for IBD, our findings have critical implications for the clinic. In a context of constitutive NF-κB, our findings imply that general anti-inflammatory or immunosuppressive therapies should be supplemented with direct targeting of NF-κB within the epithelial compartment in order to attenuate apoptosis, inflammation, and hyperproliferation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nadine Mikuda
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eva Kärgel
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Laura Golusda
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, iPATH.Berlin - Core Unit for Immunopathology, Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Anja A Kühl
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, iPATH.Berlin - Core Unit for Immunopathology, Berlin, Germany
| | - Marina Kolesnichenko
- Signal Transduction in Tumour Cells, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|
23
|
Yoshikawa N, Fumoto S, Yoshikawa K, Hu D, Okami K, Kato R, Nakashima M, Miyamoto H, Nishida K. Interaction of Lipoplex with Albumin Enhances Gene Expression in Hepatitis Mice. Pharmaceutics 2020; 12:E341. [PMID: 32290201 PMCID: PMC7238045 DOI: 10.3390/pharmaceutics12040341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding the in vivo fate of lipoplex, which is composed of cationic liposomes and DNA, is an important issue toward gene therapy. In disease conditions, the fate of lipoplex might change compared with the normal condition. Here, we examined the contribution of interaction with serum components to in vivo transfection using lipoplex in hepatitis mice. Prior to administration, lipoplex was incubated with serum or albumin. In the liver, the interaction with albumin enhanced gene expression in hepatitis mice, while in the lung, the interaction with serum or albumin enhanced it. In normal mice, the interaction with albumin did not enhance hepatic and pulmonary gene expression. Furthermore, hepatic and pulmonary gene expression levels of albumin-interacted lipoplex were correlated with serum transaminases in hepatitis mice. The albumin interaction increased the hepatic accumulation of lipoplex and serum tumor necrosis factor-α level. We suggest that the interaction with albumin enhanced the inflammation level after the administration of lipoplex in hepatitis mice. Consequently, the enhancement of the inflammation level might enhance the gene expression level. Information obtained in the current study will be valuable toward future clinical application of the lipoplex.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Keiko Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Kazuya Okami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Riku Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| |
Collapse
|
24
|
Marruecos L, Bertran J, Guillén Y, González J, Batlle R, López-Arribillaga E, Garrido M, Ruiz-Herguido C, Lisiero D, González-Farré M, Arce-Gallego S, Iglesias M, Nebreda AR, Miyamoto S, Bigas A, Espinosa L. IκBα deficiency imposes a fetal phenotype to intestinal stem cells. EMBO Rep 2020; 21:e49708. [PMID: 32270911 DOI: 10.15252/embr.201949708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium is a paradigm of adult tissue in constant regeneration that is supported by intestinal stem cells (ISCs). The mechanisms regulating ISC homeostasis after injury are poorly understood. We previously demonstrated that IκBα, the main regulator of NF-κB, exerts alternative nuclear functions as cytokine sensor in a subset of PRC2-regulated genes. Here, we show that nuclear IκBα is present in the ISC compartment. Mice deficient for IκBα show altered intestinal cell differentiation with persistence of a fetal-like ISC phenotype, associated with aberrant PRC2 activity at specific loci. Moreover, IκBα-deficient intestinal cells produce morphologically aberrant organoids carrying a PRC2-dependent fetal-like transcriptional signature. DSS treatment, which induces acute damage in the colonic epithelium of mice, results in a temporary loss of nuclear P-IκBα and its subsequent accumulation in early CD44-positive regenerating areas. Importantly, IκBα-deficient mice show higher resistance to damage, likely due to the persistent fetal-like ISC phenotype. These results highlight intestinal IκBα as a chromatin sensor of inflammation in the ISC compartment.
Collapse
Affiliation(s)
- Laura Marruecos
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain.,Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Jéssica González
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Raquel Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Erika López-Arribillaga
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Cristina Ruiz-Herguido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Dominique Lisiero
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Mónica González-Farré
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Sara Arce-Gallego
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Shigeki Miyamoto
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
25
|
Khan SZ, Gasperino S, Zeichner SL. Nuclear Transit and HIV LTR Binding of NF-κB Subunits Held by IκB Proteins: Implications for HIV-1 Activation. Viruses 2019; 11:v11121162. [PMID: 31888181 PMCID: PMC6949894 DOI: 10.3390/v11121162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
No effective therapy to eliminate the HIV latently infected cell reservoir has been developed. One approach, “shock and kill”, employs agents that activate HIV, subsequently killing the activated infected cells and/or virus. Shock and kill requires agents that safely and effectively activate HIV. One class of activation agents works through classical NF-κB pathways, but global NF-κB activators are non-specific and toxic. There exist two major IκBs: IκBα, and IκBε, which hold activating NF-κB subunits in the cytoplasm, releasing them for nuclear transit upon cell stimulation. IκBα was considered the main IκB responsible for gene expression regulation, including HIV activation. IκBε is expressed in cells constituting much of the latent HIV reservoir, and IκBε knockout mice have a minimal phenotype, suggesting that IκBε could be a valuable target for HIV activation and reservoir depletion. We previously showed that targeting IκBε yields substantial increases in HIV expression. Here, we show that IκBε holds c-Rel and p65 activating NF-κB subunits in the cytoplasm, and that targeting IκBε with siRNA produces a strong increase in HIV expression associated with enhanced c-Rel and p65 transit to the nucleus and binding to the HIV LTR of the activating NF-κBs, demonstrating a mechanism through which targeting IκBε increases HIV expression. The findings suggest that it may be helpful to develop HIV activation approaches, acting specifically to target IκBε and its interactions with the NF-κBs.
Collapse
Affiliation(s)
- Sohrab Z. Khan
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Sofia Gasperino
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Steven L. Zeichner
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
26
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
27
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
28
|
Jaworek J, Szklarczyk J, Kot M, Góralska M, Jaworek A, Bonior J, Leja-Szpak A, Nawrot-Porąbka K, Link-Lenczowski P, Ceranowicz P, Galazka K, Warzecha Z, Dembinski A, Pierzchalski P. Chemerin alleviates acute pancreatitis in the rat thorough modulation of NF-κB signal. Pancreatology 2019; 19:401-408. [PMID: 30833212 DOI: 10.1016/j.pan.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Chemerin, an adipokine, works as the chemoattractant for the immune cells. The role of chemerin in the inflammatory reaction is controversial. Chemerin has been shown to aggravate the inflammatory response, but other studies demonstrated its anti-inflammatory influence. This study assessed the effects of chemerin on acute pancreatitis (AP) in vivo and in vitro. METHODS For in vivo experiments male Wistar rats were used. For in vitro study rat pancreatic AR42J cells were employed. Chemerin (1, 5 or 10 μg/kg) was given to the rats prior to the induction of AP by subcutaneous caerulein infusion (25 μg/kg). For in vitro studies cells were subjected to caerulein (10 nM) with or without chemerin (100 nM). Serum amylase activity was measured by enzymatic method, serum TNFα concentration - by ELISA kit. Western-blot was used to examine cellular proteins. RESULTS AP was confirmed by histological examination. Chemerin given to AP rats decreased histological manifestations of AP, reduced serum amylase activity and TNFα concentration. In AR42J cells subjected to caerulein with addition of chemerin signal for TNFα was reduced comparing to the cultures treated with caerulein alone. Analysis of the dynamics of nuclear translocation for p50, p65 and Bcl-3 points out to NF-κB attenuation as a mechanism of observed anti-inflammatory action of chemerin. CONCLUSION Chemerin significantly alleviated severity of AP in the rat, this is possibly due to the inhibition of pro-inflammatory signaling in the pancreatic cells.
Collapse
Affiliation(s)
- Jolanta Jaworek
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland.
| | - Joanna Szklarczyk
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| | - Michalina Kot
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| | - Marta Góralska
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| | | | - Joanna Bonior
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| | - Anna Leja-Szpak
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| | | | | | - Piotr Ceranowicz
- Department of Medical Physiology, Faculty of Medicine, Krakow, Poland
| | - Krystyna Galazka
- Department of Pathology Jagiellonian University Medical College, Krakow, Poland
| | - Zygmunt Warzecha
- Department of Medical Physiology, Faculty of Medicine, Krakow, Poland
| | - Artur Dembinski
- Department of Medical Physiology, Faculty of Medicine, Krakow, Poland
| | - Piotr Pierzchalski
- Department of Medical Physiology Faculty of Health Sciences, Krakow, Poland
| |
Collapse
|
29
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
30
|
Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M, Schmitz ML. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J 2018; 33:4188-4202. [PMID: 30526044 PMCID: PMC6404571 DOI: 10.1096/fj.201801638r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence shows that many transcription factors execute important biologic functions independent from their DNA-binding capacity. The NF-κB p65 (RELA) subunit is a central regulator of innate immunity. Here, we investigated the relative functional contribution of p65 DNA-binding and dimerization in p65-deficient human and murine cells reconstituted with single amino acid mutants preventing either DNA-binding (p65 E/I) or dimerization (p65 FL/DD). DNA-binding of p65 was required for RelB-dependent stabilization of the NF-κB p100 protein. The antiapoptotic function of p65 and expression of the majority of TNF-α–induced genes were dependent on p65’s ability to bind DNA and to dimerize. Chromatin immunoprecipitation with massively parallel DNA sequencing experiments revealed that impaired DNA-binding and dimerization strongly diminish the chromatin association of p65. However, there were also p65-independent TNF-α–inducible genes and a subgroup of p65 binding sites still allowed some residual chromatin association of the mutants. These sites were enriched in activator protein 1 (AP-1) binding motifs and showed increased chromatin accessibility and basal transcription. This suggests a mechanism of assisted p65 chromatin association that can be in part facilitated by chromatin priming and cooperativity with other transcription factors such as AP-1.—Riedlinger, T., Liefke, R., Meier-Soelch, J., Jurida, L., Nist, A., Stiewe, T., Kracht, M., Schmitz, M. L. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Robert Liefke
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Philipps University Marburg, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Andrea Nist
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - M Lienhard Schmitz
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
31
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
32
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
33
|
Dong J, Qu Y, Li J, Cui L, Wang Y, Lin J, Wang H. Cortisol inhibits NF-κB and MAPK pathways in LPS activated bovine endometrial epithelial cells. Int Immunopharmacol 2018; 56:71-77. [PMID: 29367089 DOI: 10.1016/j.intimp.2018.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023]
Abstract
The bovine uterus is subject to infection after calving, which may lead to endometritis. Elevated cortisol levels have been observed in postpartum cattle. However, the role of cortisol in the inflammatory response of the uterus has not been reported. The aim of this study was to investigate the anti-inflammatory effects of cortisol on lipopolysaccharide (LPS)-induced primary bovine endometrial epithelial cells (BEECs). BEECs were treated with various concentrations of cortisol (5, 15 and 30 ng/mL) in the presence of LPS. The mRNA expression of TLR4 and proinflammatory cytokines was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blotting and immunofluorescence. Cortisol induced the down-regulation of the mRNA expression of toll-like receptor 4 (TLR4) and proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS). Cortisol inhibited the activity of nuclear factor-κB (NF-κB) via blocking the phosphorylation and degradation of IκB. Cortisol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK1/2), p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). These results demonstrated that cortisol may exert its anti-inflammatory actions by regulating NF-κB activation and MAPK phosphorylation.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yang Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yefan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jiaqi Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
34
|
Cook S, Hung V, Duncan KA. Crosstalk between Estrogen Withdrawal and NFκB Signaling following Penetrating Brain Injury. Neuroimmunomodulation 2018; 25:193-200. [PMID: 30423555 DOI: 10.1159/000493506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Characterized by neuroinflammation, traumatic brain injury (TBI) induces neuropathological changes and cognitive deficits. Estrogens are neuroprotective by increasing cell survival and this increase is mediated by a decrease in neuroinflammation. To further explore the relationship between estrogens, brain injury, and neuroinflammation, we examined the expression of the IKK/NFκB complex. The IKK/NFκB complex is a pleiotropic regulator of many cellular signaling pathways linked to inflammation, as well as three major cytokines (IL-1β, IL-6, and TNF-α). We hypothesized that NFκB expression would be upregulated following injury and that this increase would be exacerbated when circulating estrogens were decreased with fadrozole (aromatase inhibitor). METHODS Using adult zebra finches, we first determined the expression of major components of the NFκB complex (NFκB, IκB-α, and IκB-β) following injury using qPCR. Next, male and female finches were collected at 2 time points (2 or 24 h after injury) and brain tissue was analyzed to determine whether NFκB expression was differentially expressed in males and females at either time point. Finally, we examined how the expression of NFκB changed when estrogen levels were decreased immediately after injury. RESULTS Our study documented an increase in the expression of the major components of the NFκB complex (NFκB, IκB-α, and IκB-β) following injury. Decreasing estrogen levels resulted in a surprising decrease in the NFκB complex studied here. DISCUSSION These data further expand the model of how estrogens and other steroid hormones interact with the inflammatory pathways following injury and may prove beneficial when developing therapies for treatment of TBI.
Collapse
Affiliation(s)
- Samarah Cook
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| | - Vanessa Hung
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| | - Kelli A Duncan
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA,
- Department of Biology, Vassar College, Poughkeepsie, New York, USA,
| |
Collapse
|
35
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
36
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
37
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
38
|
Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-κB activity in cell culture and zebrafish in real time. J Cell Sci 2016; 130:648-657. [PMID: 27980067 DOI: 10.1242/jcs.196485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (NF)-κB transcription factors play major roles in numerous biological processes including development and immunity. Here, we engineered a novel bi-directional NF-κB-responsive reporter, pSGNluc, in which a high-affinity NF-κB promoter fragment simultaneously drives expression of luciferase and GFP. Treatment with TNFα (also known as TNF) induced a strong, dose-dependent luciferase signal in cell culture. The degree of induction over background was comparable to that of other NF-κB-driven luciferase reporters, but the absolute level of expression was at least 20-fold higher. This extends the sensitivity range of otherwise difficult assays mediated exclusively by endogenously expressed receptors, as we show for Nod1 signaling in HEK293 cells. To measure NF-κB activity in the living organism, we established a transgenic zebrafish line carrying the pSGNluc construct. Live in toto imaging of transgenic embryos revealed the activation patterns of NF-κB signaling during embryonic development and as responses to inflammatory stimuli. Taken together, by integrating qualitative and quantitative NF-κB reporter activity, pSGNluc is a valuable tool for studying NF-κB signaling at high spatiotemporal resolution in cultured cells and living animals that goes beyond the possibilities provided by currently available reporters.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany .,Institute of Genetics, University of Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany.,EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Baubak Bajoghli
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
39
|
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, Goodman SB. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:117-154. [PMID: 28215222 DOI: 10.1016/bs.apcsb.2016.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system.
Collapse
Affiliation(s)
- T-H Lin
- Stanford University, Stanford, CA, United States
| | - J Pajarinen
- Stanford University, Stanford, CA, United States
| | - L Lu
- Stanford University, Stanford, CA, United States
| | - A Nabeshima
- Stanford University, Stanford, CA, United States
| | - L A Cordova
- Stanford University, Stanford, CA, United States; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Z Yao
- Stanford University, Stanford, CA, United States
| | - S B Goodman
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
40
|
Morotti A, Crivellaro S, Panuzzo C, Carrà G, Guerrasio A, Saglio G. IκB-α: At the crossroad between oncogenic and tumor-suppressive signals. Oncol Lett 2016; 13:531-534. [PMID: 28356925 PMCID: PMC5351326 DOI: 10.3892/ol.2016.5465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/19/2016] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor κB (NF-κB) is an essential component of tumorigenesis and resistance to cancer treatments. NFKB inhibitor α (IκB-α) acts as a negative regulator of the classical NF-κB pathway through its ability to maintain the presence of NF-κB in the cytoplasm. However, IκB-α is also able to form a complex with tumor protein p53, promoting its inactivation. Recently, we demonstrated that IκB-α is able to mediate p53 nuclear exclusion and inactivation in chronic myeloid leukemia, indicating that IκB-α can modulate either oncogenic or tumor-suppressive functions, with important implications for cancer treatment. The present review describes the role of IκB-α in cancer pathogenesis, with particular attention to hematological cancers, and highlights the involvement of IκB-α in the regulation of p53 tumor-suppressive functions.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
41
|
Lee JH, Han JS, Kong J, Ji Y, Lv X, Lee J, Li P, Kim JB. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes. J Biol Chem 2016; 291:20315-28. [PMID: 27496951 DOI: 10.1074/jbc.m116.740464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.
Collapse
Affiliation(s)
- Jung Hyun Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Ji Seul Han
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Jinuk Kong
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Yul Ji
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Xuchao Lv
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Junho Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea, the Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08862, Korea
| | - Peng Li
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Jae Bum Kim
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea,
| |
Collapse
|
42
|
Mei ZZ, Chen XY, Hu SW, Wang N, Ou XL, Wang J, Luo HH, Liu J, Jiang Y. Kelch-like Protein 21 (KLHL21) Targets IκB Kinase-β to Regulate Nuclear Factor κ-Light Chain Enhancer of Activated B Cells (NF-κB) Signaling Negatively. J Biol Chem 2016; 291:18176-89. [PMID: 27387502 DOI: 10.1074/jbc.m116.715854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Activation of IKKβ is the key step in canonical activation of NF-κB signaling. Extensive work has provided insight into the mechanisms underlying IKKβ activation through the identification of context-specific regulators. However, the molecular processes responsible for its negative regulation are not completely understood. Here, we identified KLHL21, a member of the Kelch-like gene family, as a novel negative regulator of IKKβ. The expression of KLHL21 was rapidly down-regulated in macrophages upon treatment with proinflammatory stimuli. Overexpression of KLHL21 inhibited the activation of IKKβ and degradation of IκBα, whereas KLHL21 depletion via siRNA showed the opposite results. Coimmunoprecipitation assays revealed that KLHL21 specifically bound to the kinase domain of IKKβ via its Kelch domains and that this interaction was gradually attenuated upon TNFα treatment. Furthermore, KLHL21 did not disrupt the interaction between IKKβ and TAK1, TRAF2, or IκBα. Also, KLHL21 did not require its E3 ubiquitin ligase activity for IKKβ inhibition. Our findings suggest that KLHL21 may exert its inhibitory function by binding to the kinase domain and sequestering the region from potential IKKβ inducers. Taken together, our data clearly demonstrate that KLHL21 negatively regulates TNFα-activated NF-κB signaling via targeting IKKβ, providing new insight into the mechanisms underlying NF-κB regulation in cells.
Collapse
Affiliation(s)
- Zhu-Zhong Mei
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Xin-Yu Chen
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Shui-Wang Hu
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Ni Wang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Li Ou
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Hai-Hua Luo
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jinghua Liu
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Angelini F, Di Matteo G, Balestrero S, Brunetti E, Mancino G, Rossi P, Galli E. Nuclear Factor κB Activity is Increased in Peripheral Blood Mononuclear Cells of Children Affected by Atopic and Non-Atopic Eczema. Int J Immunopathol Pharmacol 2016; 20:59-67. [PMID: 17346428 DOI: 10.1177/039463200702000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atopic and non-atopic eczema is an inflammatory cutaneous disease which is common in childhood and is associated with a dysregulation of the immune system. Many genes encoding immune receptors, cytokines, chemokines, chemokine receptors, and adhesion molecules involved in the development of the disease are under the control of transcription factors belonging to the nuclear factor (NF)-κB family. To investigate the role of NF-κB in the development of eczema, 20 children, affected by relapsing chronic eczema, were enrolled in this study. Eleven of the 20 children showed IgE immunoreactivity and had a positive prick test. The DNA binding activity of NF-κB in nuclear extracts of the patients' peripheral blood mononuclear cells (PBMC) was examined by electrophoretic mobility shift assay. We found that basal NF-κB-DNA binding activity in PBMC was significantly higher in the eczema patient group in comparison with the same parameter in the healthy age-matched control group. Moreover, we observed a significant correlation between NF-κB-DNA binding activity and patients' clinical score (SCORAD). Based on these observations we speculate that NF-κB can play an important role in the immunopathogenesis of eczema and therefore could be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- F Angelini
- Department of Pediatrics, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Espín-Palazón R, Traver D. The NF-κB family: Key players during embryonic development and HSC emergence. Exp Hematol 2016; 44:519-27. [PMID: 27132652 DOI: 10.1016/j.exphem.2016.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 02/07/2023]
Abstract
The nuclear factor-κB (NF-κB) family is a crucial transcription factor group known mainly for its role in the regulation of the immune system and its response to infection in vertebrates. The signaling pathway leading to NF-κB activation and translocation to the nucleus to exert its function as a transcription factor is well conserved among Kingdom Animalia, which has helped to elucidate other roles that NF-κB plays in other biological contexts such as developmental biology. The manipulation of NF-κB members in a diverse range of animal models results in severe developmental defects during embryogenesis, very often leading to embryonic lethality. Defects include dorsal-ventral patterning and limb, liver, skin, lung, neural, notochord, muscle, skeletal, and hematopoietic defects. Here, we recapitulate the research that has been done to address the role that NF-κB plays during embryonic development, in particular to emphasize its recently discovered role in the specification of hematopoietic stem cells (HSCs), the foundation of the hematopoietic system in vertebrates.
Collapse
Affiliation(s)
- Raquel Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA.
| |
Collapse
|
45
|
Lorenz VN, Schön MP, Seitz CS. c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation. J Invest Dermatol 2016; 136:1090-1096. [PMID: 27032306 DOI: 10.1016/j.jid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
To maintain proper skin barrier function, epidermal homeostasis requires a subtly governed balance of proliferating and differentiating keratinocytes. While differentiation takes place in the suprabasal layers, proliferation, including mitosis, is usually restricted to the basal layer. Only recently identified as an important regulator of epidermal homeostasis, c-Rel, an NF-κB transcription factor subunit, affects the viability and proliferation of epidermal keratinocytes. In human keratinocytes, decreased expression of c-Rel causes a plethora of dysregulated cellular functions including impaired cell viability, increased apoptosis, and abnormalities during mitosis and cell cycle regulation. On the other hand, c-Rel shows aberrant expression in many epidermal tumors. Here, in the context of its role in different cell types and compared with other NF-κB subunits, we discuss the putative function of c-Rel as a regulator of epidermal homeostasis and mitotic progression. In addition, implications for disease pathophysiology with perturbed c-Rel function and abnormal homeostasis, such as epidermal carcinogenesis, will be discussed.
Collapse
Affiliation(s)
- Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany.
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| |
Collapse
|
46
|
Chen J, Ying XM, Huang XM, Huang P, Yan SC. Association between polymorphisms in selected inflammatory response genes and the risk of prostate cancer. Onco Targets Ther 2016; 9:223-9. [PMID: 26834482 PMCID: PMC4716763 DOI: 10.2147/ott.s91420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammation represents an important event which facilitates prostate carcinogenesis. Genetic variations in inflammatory response genes could affect the level and function of the protein products, resulting in the differential prostate cancer risk among carriers of different variants. This study attempted to investigate the association of IL-4 rs2243250, IL-6 rs10499563, IL-8 rs4073, as well as NFKBIA rs2233406 and rs3138053 polymorphisms with prostate cancer risk in the Chinese population. Genotyping of the polymorphisms was performed by using polymerase chain reaction-restriction fragment length polymorphism technique on 439 prostate cancer patients and 524 controls, and the association of each polymorphic genotype with prostate cancer risk was evaluated by using logistic regression analysis based on allele, heterozygous, and homozygous comparison models, with adjustment to age and smoking status. We showed that the C allele of IL-4 rs2243250 polymorphism could increase prostate cancer risk (heterozygous comparison model: odds ratio [OR] =1.434, 95% confidence interval [CI] =1.092–1.881, P=0.009; homozygous comparison model: OR =2.301, 95% CI =1.402–3.775, P=0.001; allele comparison model: OR =1.509, 95% CI =1.228–1.853, P<0.001). On the other hand, the C allele of rs10499563 polymorphism could decrease prostate cancer risk (heterozygous comparison model: OR =0.694, 95% CI =0.525–0.918, P=0.010; homozygous comparison model: OR =0.499, 95% CI =0.269–0.926, P=0.028; allele comparison model: OR =0.692, 95% CI =0.553–0.867, P=0.001). No association was observed for the other polymorphisms. In conclusion, IL-4 rs2243250 and IL-6 rs10499563 polymorphisms could serve as potential predictive biomarkers for prostate cancer risk in the Chinese population.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xue-Ming Ying
- Department of Oncology, Jingdezhen City People's Hospital, Jingdezhen, People's Republic of China
| | - Xue-Ming Huang
- Department of Urology, Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Peng Huang
- The Medical School of Nanchang University, School of Public Health, Nanchang, People's Republic of China
| | - Shao-Cong Yan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
47
|
MaruYama T. The nuclear IκB family of proteins controls gene regulation and immune homeostasis. Int Immunopharmacol 2015; 28:836-40. [DOI: 10.1016/j.intimp.2015.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
|
48
|
Wongprayoon P, Govitrapong P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology 2015; 50:122-30. [DOI: 10.1016/j.neuro.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023]
|
49
|
Inoue N, Dainichi T, Fujisawa A, Nakano H, Sawamura D, Kabashima K. CARD14Glu138 mutation in familial pityriasis rubra pilaris does not warrant differentiation from familial psoriasis. J Dermatol 2015; 43:187-9. [DOI: 10.1111/1346-8138.13008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Nana Inoue
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Teruki Dainichi
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Akihiro Fujisawa
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Hajime Nakano
- Department of Dermatology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Daisuke Sawamura
- Department of Dermatology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
50
|
Lee DJ, Du F, Chen SW, Nakasaki M, Rana I, Shih VFS, Hoffmann A, Jamora C. Regulation and Function of the Caspase-1 in an Inflammatory Microenvironment. J Invest Dermatol 2015; 135:2012-2020. [PMID: 25815426 PMCID: PMC4504759 DOI: 10.1038/jid.2015.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/18/2023]
Abstract
The inflammasome is a complex of proteins that has a critical role in mounting an inflammatory response in reply to a harmful stimulus that compromises the homeostatic state of the tissue. The NLRP3 inflammasome, which is found in a wound-like environment, is comprised of three components: the NLRP3, the adaptor protein ASC and caspase-1. Interestingly, although ASC levels do not fluctuate, caspase-1 levels are elevated in both physiological and pathological conditions. Despite the observation that merely raising caspase-1 levels is sufficient to induce inflammation, the crucial question regarding the mechanism governing its expression is unexplored. We found that, in an inflammatory microenvironment, caspase-1 is regulated by NF-κB. Consistent with this association, the inhibition of caspase-1 activity parallels the effects on wound healing caused by the abrogation of NF-κB activation. Surprisingly, not only does inhibition of the NF-κB/caspase-1 axis disrupt the inflammatory phase of the wound-healing program, but it also impairs the stimulation of cutaneous epithelial stem cells of the proliferative phase. These data provide a mechanistic basis for the complex interplay between different phases of the wound-healing response in which the downstream signaling activity of immune cells can kindle the amplification of local stem cells to advance tissue repair.
Collapse
Affiliation(s)
- Dai-Jen Lee
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Fei Du
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Shih-Wei Chen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Manando Nakasaki
- IFOM-inSTEM Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Centre for Inflammation and Tissue Homeostasis, Bangalore, India
| | - Isha Rana
- IFOM-inSTEM Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Centre for Inflammation and Tissue Homeostasis, Bangalore, India
| | - Vincent F S Shih
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Colin Jamora
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA; IFOM-inSTEM Joint Research Laboratory, Institute for Stem Cell Biology and Regenerative Medicine, Centre for Inflammation and Tissue Homeostasis, Bangalore, India; Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|