1
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
2
|
Zou Y, Dong Y, Meng Q, Zhao Y, Li N. Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy. Sci Rep 2018; 8:2781. [PMID: 29426944 PMCID: PMC5807547 DOI: 10.1038/s41598-018-21122-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
In this study, we upregulated insulin-like growth factor-1 (IGF1) expression specifically in skeletal muscle by engineering an enhancer into its non-coding regions and verified the expected phenotype in a mouse model. To select an appropriate site for introducing a skeletal muscle-specific myosin light chain (MLC) enhancer, three candidate sites that exhibited the least evolutionary conservation were chosen and validated in C2C12 single-cell colonies harbouring the MLC enhancer at each site. IGF1 was dramatically upregulated in only the site 2 single-cell colony series, and it exhibited functional activity leading to the formation of extra myotubes. Therefore, we chose site 2 to generate a genetically modified (GM) mouse model with the MLC enhancer incorporated by CRISPR/Cas9 technology. The GM mice exhibited dramatically elevated IGF1 levels, which stimulated downstream pathways in skeletal muscle. Female GM mice exhibited more conspicuous muscle hypertrophy than male GM mice. The GM mice possessed similar circulating IGF1 levels and tibia length as their WT littermates; they also did not exhibit heart abnormalities. Our findings demonstrate that genetically modifying a non-coding region is a feasible method to upregulate gene expression and obtain animals with desirable traits.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
3
|
Seidl MD, Stein J, Hamer S, Pluteanu F, Scholz B, Wardelmann E, Huge A, Witten A, Stoll M, Hammer E, Völker U, Müller FU. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005075. [DOI: 10.1161/circep.117.005075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
Background—
Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice.
Methods and Results—
Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator–activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K
+
-channel subunits and ion channel modulators, relevant in human AF.
Conclusions—
The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology.
Collapse
Affiliation(s)
- Matthias D. Seidl
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Juliane Stein
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Sabine Hamer
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Florentina Pluteanu
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Beatrix Scholz
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Eva Wardelmann
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Andreas Huge
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Anika Witten
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Monika Stoll
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Elke Hammer
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Uwe Völker
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Frank U. Müller
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| |
Collapse
|
4
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
5
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Suzuki YJ. Cell signaling pathways for the regulation of GATA4 transcription factor: Implications for cell growth and apoptosis. Cell Signal 2011; 23:1094-9. [PMID: 21376121 PMCID: PMC3078531 DOI: 10.1016/j.cellsig.2011.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/12/2011] [Accepted: 02/22/2011] [Indexed: 01/28/2023]
Abstract
GATA4 is a member of the GATA family of zinc finger transcription factor, which regulates gene transcription by binding to GATA elements. GATA4 was originally discovered as a regulator of cardiac development and subsequently identified as a major regulator of adult cardiac hypertrophy. GATA4 regulates gene expression of various genes, which are involved in cardiac development and cardiac hypertrophy and heart failure. In addition to the heart, GATA4 plays important roles in the reproductive system, gastrointestinal system, respiratory system and cancer. Positive and negative regulations of GATA4 therefore are important components of biologic functions. The activation of GATA4 occurs via various cell signaling events. Earlier studies have identified protein-protein interactions of GATA4 with other factors. The discovery of interactions of GATA4 with nuclear factor for activated T cells (NFAT) revealed the importance of calcium signaling in the activation of GATA4. GATA4 can also be phosphorylated by mitogen activated protein kinases and protein kinase A. Lysine modifications also occur on the GATA4 molecule including acetylation and sumoylation. Both reactive oxygen-dependent and -independent antioxidant-sensitive pathways for GATA4 activation have also been demonstrated. The GATA4 activity is also regulated by modulating the level of GATA4 expression via transcriptional as well as translational mechanisms. This work summarizes the current understanding of regulatory mechanisms for modulating GATA4 activity.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
8
|
Ling F, Fang W, Chen Y, Li J, Liu X, Wang L, Zhang H, Chen S, Mei Y, Du H, Wang C. Identification of novel transcripts from the porcine MYL1 gene and initial characterization of its promoters. Mol Cell Biochem 2010; 343:239-47. [PMID: 20563743 DOI: 10.1007/s11010-010-0519-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
Abstract
The fast skeletal alkali myosin light polypeptide 1 (MYL1) gene is one of three mammalian alkali MLC genes and encodes two isoforms, 1f and 3f, which play a vital role in embryonic, fetal, and adult skeletal muscle development. We isolated the MYL1 gene from a pig BAC library with the goal of characterizing its promoter and identifying its transcripts. Genes and isoforms were identified by reverse transcriptase-PCR, northern blot and RACE (Rapid Amplification of cDNA Ends). Potential MYL1 gene promoters were characterized using a luciferase reporter assay and electrophoretic mobility shift assays (EMSA). MLC1f, MLC3f, and three additional isoforms of porcine MYL1, MLC5f-A, -B, and -C were identified. Up to now, the three novel isoforms had not been reported in human or mouse. Northern blot analysis indicated that MLC1f, MLC3f, and MLC5fs were expressed only in longissimus dorsi muscles. Two transcription initiation and termination sites were identified by RACE. Promoter analysis and EMSA demonstrated the presence of a MEF3 (skeletal muscle-specific transcriptional enhancer) binding site (+384 to +481), which might be essential for porcine MYL1 transcription. Our results suggested that five transcript variants were generated using alternative promoters, two transcription start sites, and polyA sites, as well as variable splicing of the pig MYL1 exon 5. The identification of alternative promoters and splice variants, the expression of the splice variants in different muscle tissues, and the definition of regulatory elements provide important molecular genetic knowledge concerning the MYL1 gene.
Collapse
Affiliation(s)
- Fei Ling
- College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McGrew MJ, Sherman A, Lillico SG, Taylor L, Sang H. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC DEVELOPMENTAL BIOLOGY 2010; 10:26. [PMID: 20184756 PMCID: PMC2841079 DOI: 10.1186/1471-213x-10-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species.
Collapse
Affiliation(s)
- Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK.
| | | | | | | | | |
Collapse
|
10
|
Zammit PS, Cohen A, Buckingham ME, Kelly RG. Integration of embryonic and fetal skeletal myogenic programs at the myosin light chain 1f/3f locus. Dev Biol 2007; 313:420-33. [PMID: 18062958 DOI: 10.1016/j.ydbio.2007.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 10/16/2007] [Accepted: 10/26/2007] [Indexed: 12/25/2022]
Abstract
The genetic control of skeletal muscle differentiation at the onset of myogenesis in the embryo is relatively well understood compared to the formation of muscle during the fetal period giving rise to the bulk of skeletal muscle fibers at birth. The Mlc1f/3f (Myl1) locus encodes two alkali myosin light chains, Mlc1f and Mlc3f, from two promoters that are differentially regulated during development. The Mlc1f promoter is active in embryonic, fetal and adult fast skeletal muscle whereas the Mlc3f promoter is upregulated during fetal development and remains on in adult fast skeletal muscle. Two enhancer elements have been identified at the mammalian Mlc1f/3f locus, a 3' element active at all developmental stages and an intronic enhancer activated during fetal development. Here, using transgenesis, we demonstrate that these enhancers act combinatorially to confer the spatial, temporal and quantitative expression profile of the endogenous Mlc3f promoter. Using double reporter transgenes we demonstrate that each enhancer can activate both Mlc1f and Mlc3f promoters in vivo, revealing enhancer sharing rather than exclusive enhancer-promoter interactions. Finally, we demonstrate that the fetal activated enhancer contains critical E-box myogenic regulatory factor binding sites and that enhancer activation is impaired in vivo in the absence of myogenin but not in the absence of innervation. Together our observations provide insights into the regulation of fetal myogenesis and the mechanisms by which temporally distinct genetic programs are integrated at a single locus.
Collapse
Affiliation(s)
- Peter S Zammit
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
11
|
Di Lisi R, Picard A, Ausoni S, Schiaffino S. GATA elements control repression of cardiac troponin I promoter activity in skeletal muscle cells. BMC Mol Biol 2007; 8:78. [PMID: 17875210 PMCID: PMC2045674 DOI: 10.1186/1471-2199-8-78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 09/17/2007] [Indexed: 05/12/2023] Open
Abstract
Background We reported previously that the cardiac troponin I (cTnI) promoter drives cardiac-specific expression of reporter genes in cardiac muscle cells and in transgenic mice, and that disruption of GATA elements inactivates the cTnI promoter in cultured cardiomyocytes. We have now examined the role of cTnI promoter GATA elements in skeletal muscle cells. Results Mutation or deletion of GATA elements induces a strong transcriptional activation of the cTnI promoter in regenerating skeletal muscle and in cultured skeletal muscle cells. Electrophoretic mobility shift assays show that proteins present in nuclear extracts of C2C12 muscle cells bind the GATA motifs present in the cTnI promoter. However, GATA protein complex formation is neither reduced nor supershifted by antibodies specific for GATA-2, -3 and -4, the only GATA transcripts present in muscle cells. Conclusion These findings indicate that the cTnI gene promoter is repressed in skeletal muscle cells by GATA-like factors and open the way to further studies aimed at identifying these factors.
Collapse
Affiliation(s)
- Raffaella Di Lisi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anne Picard
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Simonetta Ausoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Schiaffino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
12
|
Creemers EE, Sutherland LB, Oh J, Barbosa AC, Olson EN. Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR. Mol Cell 2006; 23:83-96. [PMID: 16818234 DOI: 10.1016/j.molcel.2006.05.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 05/10/2006] [Indexed: 11/26/2022]
Abstract
Myocardin is a cardiac- and smooth muscle-specific SAP domain transcription factor that functions as a coactivator for serum response factor (SRF), which controls genes involved in muscle differentiation and cell proliferation. The DNA binding domain of SRF, which interacts with myocardin, shares homology with the MEF2 transcription factor, which also controls muscle and growth-associated genes. Here we show that alternative splicing produces a cardiac-enriched isoform of myocardin containing a unique peptide sequence that confers the ability to interact with and stimulate the transcriptional activity of MEF2. This MEF2 binding motif is also contained in a previously unknown SAP domain transcription factor, referred to as MASTR, which functions as a MEF2 coactivator. This unique protein-protein interaction motif expands the regulatory potential of myocardin, and its presence in MASTR reveals a new mechanism for the control of MEF2 activity.
Collapse
Affiliation(s)
- Esther E Creemers
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, 75390, USA
| | | | | | | | | |
Collapse
|
13
|
Kobiyama A, Hirayama M, Muramatsu-Uno M, Watabe S. Functional analysis on the 5′-flanking region of carp fast skeletal myosin heavy chain genes for their expression at different temperatures. Gene 2006; 372:82-91. [PMID: 16472943 DOI: 10.1016/j.gene.2005.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 12/03/2005] [Accepted: 12/14/2005] [Indexed: 12/01/2022]
Abstract
Two types of the fast skeletal myosin heavy chain (MYH) genes were cloned from a genomic DNA library of carp (Cyprinus carpio L.) and named MYH10 and MYH30, which showed the sequence similarity to the MYH cDNAs predominantly expressed in carp acclimated to 10 and 30 degrees C, respectively. The 5'-flanking region of about 3 kbp in size each from MYH10 and MYH30 contained various cis-elements to bind to transcriptional regulatory factors such as MyoD family and myocyte enhancer factor 2 (MEF2) family members. To localize functional regions responsible for the MYH gene expression in a temperature-dependent manner, a series of deletion constructs were prepared from the 5'-flanking region, inserted upstream the luciferase gene in a commercially available plasmid, and injected into the dorsal fast muscle of carp acclimated to 10 and 30 degrees C. The sequence of -1004 to -995 bp with the transcriptional activity in MYH30 was identified as an MEF2 binding site. While the activity given by a sequence of -921 to -824 bp in MYH10 contained only a GATA box, that of the activity of the -1 kbp construct from MYH10 was markedly higher in carp reared at 10 degrees C than fish reared at 30 degrees C. On the other hand, no temperature-dependent expressional regulation was observed for MYH30 even with the full-length construct of -3 kbp. The DNA fragment of -921 to -824 bp in MYH10 and MEF2 binding site in MYH30 interacted with nuclear proteins extracted from carp fast skeletal muscle as revealed by electrophoretic mobility shift assay. The signal intensity of a complex formed between the DNA fragment of MYH10 and nuclear extracts from the 10 degrees C-acclimated carp were higher than those with extracts from the 30 degrees C-acclimated fish. Although MEF2-binding site in MYH30 could form complex with nuclear extracts from the 30 degrees C-acclimated carp, the same or stronger signals were detected in complex formed with extracts from the 10 degrees C-acclimated fish.
Collapse
Affiliation(s)
- Atsushi Kobiyama
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
14
|
Ohara Y, Atarashi T, Ishibashi T, Ohashi-Kobayashi A, Maeda M. GATA-4 Gene Organization and Analysis of Its Promoter. Biol Pharm Bull 2006; 29:410-9. [PMID: 16508137 DOI: 10.1248/bpb.29.410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse GATA-4 gene is separated by six introns, and this gene organization is conserved in rodents and man. The transcriptional start site of the GATA-4 gene is essentially the same in rat heart, stomach and testis, and in cultured cells expressing GATA-4 such as TM3, TM4, I-10 and P19.CL6 cells. The 5'-upstream of the GATA-4 gene is also conserved in rodents and man. We examined its promoter activity by means of luciferase reporter gene assay using testis-derived TM3 and TM4 cells. The GC-boxes and E-box located in the several tens of base pairs upstream of the transcriptional start sites of the GATA-4 gene were found to be critical for its promoter activity in these cells, consistent with the mode of transcription characteristics of the TATA-less promoter. P19.CL6 cells differentiate into beating cardiomyocytes upon induction by DMSO, accompanied by stimulation of the transcription of heart-specific genes including GATA-4. Interestingly, they exhibit increased luciferase reporter gene activity upon induction by DMSO. Both proximal tandem GC-boxes and the E-box are also contributed to the reporter gene activity in P19.CL6 cells.
Collapse
Affiliation(s)
- Yasunori Ohara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
15
|
Heidt AB, Black BL. Transgenic mice that express Cre recombinase under control of a skeletal muscle-specific promoter from mef2c. Genesis 2005; 42:28-32. [PMID: 15828002 DOI: 10.1002/gene.20123] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genes expressed in skeletal muscle are often required in other tissues. This is particularly the case for cardiac and smooth muscle, both contractile tissues that share numerous characteristics with skeletal muscle, such that targeted inactivation can lead to embryonic lethality prior to a requirement for gene function in skeletal muscle. Thus, it is essential that conditional inactivation approaches are developed to disrupt genes specifically in skeletal muscle. In this report, we describe a transgenic mouse that expresses Cre recombinase under the control of a skeletal muscle-specific promoter from the mef2c gene. Cre expression in this transgenic line is completely restricted to skeletal muscle from early in development and is present in all skeletal muscles, including those of epaxial and hypaxial origins and in fast and slow fibers. This early skeletal muscle-specific Cre line will be a useful tool to define the function of genes specifically in skeletal muscle.
Collapse
Affiliation(s)
- Analeah B Heidt
- Cardiovascular Research Institute, University of California, San Francisco, California 94143-0130, USA
| | | |
Collapse
|
16
|
Kelly RG, Lemonnier M, Zaffran S, Munk A, Buckingham ME. Cell history determines the maintenance of transcriptional differences between left and right ventricular cardiomyocytes in the developing mouse heart. J Cell Sci 2004; 116:5005-13. [PMID: 14625394 DOI: 10.1242/jcs.00824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that establish and maintain transcriptional differences between cardiomyocytes in the left and right ventricular chambers are unkown. We have previously analysed a myosin light chain 3f transgene containing an nlacZ reporter gene, which is transcribed in left but not right ventricular cardiomyocytes. In this report we examine the mechanisms involved in maintaining regionalised transgene expression. Primary cardiomyocytes prepared from left and right ventricular walls of transgenic mice were found to maintain transgene expression status in culture. However, similar cultures prepared from nontransgenic mice or rats show uniform expression after transient transfection of Mlc3f constructs, suggesting that the mechanism responsible for differential expression of the transgene between left and right ventricular cells does not operate on transiently introduced molecules. These data suggest that developmental cell history determines transgene expression status. Maintenance of transgene expression status is regulated by a cell-autonomous mechanism that is independent of DNA methylation, trichostatin A-sensitive histone deacetylation and miss-expression of transcription factors that are expressed in the left or right ventricles of the embryonic heart. Parallels between Mlc3f transgene repression in right ventricular cardiomyocytes and polycomb-mediated silencing in Drosophila suggest that Mlc3f regulatory sequences included on the transgene may contain a cellular memory module that is switched into an on or off state during early cardiogenesis. Epigenetic mechanisms may therefore be involved in maintaining patterning of the mammalian myocardium.
Collapse
Affiliation(s)
- Robert G Kelly
- CNRS URA 2578, Department of Developmental Biology, Pasteur Institute, 25 Rue du Dr Roux, Paris 75015, France.
| | | | | | | | | |
Collapse
|
17
|
Moorman AFM, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev 2003; 83:1223-67. [PMID: 14506305 DOI: 10.1152/physrev.00006.2003] [Citation(s) in RCA: 478] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Concepts of cardiac development have greatly influenced the description of the formation of the four-chambered vertebrate heart. Traditionally, the embryonic tubular heart is considered to be a composite of serially arranged segments representing adult cardiac compartments. Conversion of such a serial arrangement into the parallel arrangement of the mammalian heart is difficult to understand. Logical integration of the development of the cardiac conduction system into the serial concept has remained puzzling as well. Therefore, the current description needed reconsideration, and we decided to evaluate the essentialities of cardiac design, its evolutionary and embryonic development, and the molecular pathways recruited to make the four-chambered mammalian heart. The three principal notions taken into consideration are as follows. 1) Both the ancestor chordate heart and the embryonic tubular heart of higher vertebrates consist of poorly developed and poorly coupled "pacemaker-like" cardiac muscle cells with the highest pacemaker activity at the venous pole, causing unidirectional peristaltic contraction waves. 2) From this heart tube, ventricular chambers differentiate ventrally and atrial chambers dorsally. The developing chambers display high proliferative activity and consist of structurally well-developed and well-coupled muscle cells with low pacemaker activity, which permits fast conduction of the impulse and efficacious contraction. The forming chambers remain flanked by slowly proliferating pacemaker-like myocardium that is temporally prevented from differentiating into chamber myocardium. 3) The trabecular myocardium proliferates slowly, consists of structurally poorly developed, but well-coupled, cells and contributes to the ventricular conduction system. The atrial and ventricular chambers of the formed heart are activated and interconnected by derivatives of embryonic myocardium. The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart. This view on the development of cardiac design unfolds fascinating possibilities for future research.
Collapse
Affiliation(s)
- Antoon F M Moorman
- Department of Anatomy & Embryology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
18
|
Konig S, Burkman J, Fitzgerald J, Mitchell M, Su L, Stedman H. Modular organization of phylogenetically conserved domains controlling developmental regulation of the human skeletal myosin heavy chain gene family. J Biol Chem 2002; 277:27593-605. [PMID: 11971910 DOI: 10.1074/jbc.m203162200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian skeletal myosin heavy chain locus is composed of a six-membered family of tandemly linked genes whose complex regulation plays a central role in striated muscle development and diversification. We have used publicly available genomic DNA sequences to provide a theoretical foundation for an experimental analysis of transcriptional regulation among the six promoters at this locus. After reconstruction of annotated drafts of the human and murine loci from fragmented DNA sequences, phylogenetic footprint analysis of each of the six promoters using standard and Bayesian alignment algorithms revealed unexpected patterns of DNA sequence conservation among orthologous and paralogous gene pairs. The conserved domains within 2.0 kilobases of each transcriptional start site are rich in putative muscle-specific transcription factor binding sites. Experiments based on plasmid transfection in vitro and electroporation in vivo validated several predictions of the bioinformatic analysis, yielding a picture of synergistic interaction between proximal and distal promoter elements in controlling developmental stage-specific gene activation. Of particular interest for future studies of heterologous gene expression is a 650-base pair construct containing modules from the proximal and distal human embryonic myosin heavy chain promoter that drives extraordinarily powerful transcription during muscle differentiation in vitro.
Collapse
Affiliation(s)
- Stephane Konig
- Department of Surgery, University of Pennsylvania Medical System, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dai YS, Cserjesi P, Markham BE, Molkentin JD. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem 2002; 277:24390-8. [PMID: 11994297 DOI: 10.1074/jbc.m202490200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An intricate array of heterogeneous transcription factors participate in programming tissue-specific gene expression through combinatorial interactions that are unique to a given cell-type. The zinc finger-containing transcription factor GATA4, which is widely expressed in mesodermal and endodermal derived tissues, is thought to regulate cardiac myocyte-specific gene expression through combinatorial interactions with other semi-restricted transcription factors such as myocyte enhancer factor 2, nuclear factor of activated T-cells, serum response factor, and Nkx2.5. Here we determined that GATA4 also interacts with the cardiac-expressed basic helix-loop-helix transcription factor dHAND (also known as HAND2). GATA4 and dHAND synergistically activated expression of cardiac-specific promoters from the atrial natriuretic factor gene, the b-type natriuretic peptide gene, and the alpha-myosin heavy chain gene. Using artificial reporter constructs this functional synergy was shown to be GATA site-dependent, but E-box site-independent. A mechanism for the transcriptional synergy was suggested by the observation that the bHLH domain of dHAND physically interacted with the C-terminal zinc finger domain of GATA4 forming a higher order complex. This transcriptional synergy observed between GATA4 and dHAND was associated with p300 recruitment, but not with alterations in DNA binding activity of either factor. Moreover, the bHLH domain of dHAND directly interacted with the CH3 domain of p300 suggesting the existence of a higher order complex between GATA4, dHAND, and p300. Taken together with previous observations, these results suggest the existence of an enhanceosome complex comprised of p300 and multiple semi-restricted transcription factors that together specify tissue-specific gene expression in the heart.
Collapse
Affiliation(s)
- Yan-Shan Dai
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
20
|
Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, Guanti G, Puri PL, Giordano A. Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene 2002; 21:4137-48. [PMID: 12037670 DOI: 10.1038/sj.onc.1205493] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Revised: 03/01/2002] [Accepted: 03/18/2002] [Indexed: 11/09/2022]
Abstract
Myogenic transcription is repressed in myoblasts by serum-activated cyclin-dependent kinases, such as cdk2 and cdk4. Serum withdrawal promotes muscle-specific gene expression at least in part by down-regulating the activity of these cdks. Unlike the other cdks, cdk9 is not serum- or cell cycle-regulated and is instead involved in the regulation of transcriptional elongation by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. While ectopic expression of cdk2 together with its regulatory subunits (cyclins E and A) inhibits myogenic transcription, overproduction of cdk9 and its associated cyclin (cyclin T2a) strengthens MyoD-dependent transcription and stimulates myogenic differentiation in both MyoD-converted fibroblasts and C2C12 muscle cells. Conversely, inhibition of cdk9 activity by a dominant negative form (cdk9-dn) represses the myogenic program. Cdk9, cyclinT2 and MyoD can be detected in a multimeric complex in C2C12 cells, with the minimal cdk9-binding region of MyoD mapping within 101-161 aa of the bHLH region. Finally, cdk9 can phosphorylate MyoD in vitro, suggesting the possibility that cdk9/cycT2a regulation of muscle differentiation includes the direct enzymatic activity of the kinase on MyoD.
Collapse
Affiliation(s)
- Cristiano Simone
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiang P, Song J, Gu G, Slonimsky E, Li E, Rosenthal N. Targeted deletion of the MLC1f/3f downstream enhancer results in precocious MLC expression and mesoderm ablation. Dev Biol 2002; 243:281-93. [PMID: 11884037 DOI: 10.1006/dbio.2002.0574] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of skeletal muscle contractile proteins is tightly regulated during embryonic development. In the mouse, the myosin light chain (MLC) 1f/3f gene locus is not activated until E9.5, exclusively in skeletal muscle precursor cells. A potent enhancer downstream of the MLC1f/3f locus confers correct temporal and spatial activation of linked reporter gene in transgenic mouse embryos. To examine roles of the MLC downstream enhancer (MLCE) in its native context of the MLC1f/3f gene locus, we eliminated a 1.5-kb DNA segment containing the enhancer from the mouse genome by targeted deletion, leaving no exogenous sequences at the deletion site. Mouse embryos homozygous for the MLCE deletion were smaller and developmentally delayed, formed no mesoderm by E7.5, and were resorbed almost completely at E8.5. In situ hybridization and RT-PCR analyses of affected mutant embryos at E7.5 revealed ectopic MLC transcripts, whose products would be predicted to interfere with a variety of nonmuscle cell functions determining differentiation of mesoderm. These results suggest that the MLC downstream enhancer and its flanking sequences include negative regulatory elements which block precocious activation of MLC expression in mesodermal precursors during a critical window of development, as well as positive elements which subsequently permit tissue-restricted MLC transcription in differentiating skeletal muscles.
Collapse
Affiliation(s)
- Ping Jiang
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
22
|
Marttila M, Hautala N, Paradis P, Toth M, Vuolteenaho O, Nemer M, Ruskoaho H. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. Endocrinology 2001; 142:4693-700. [PMID: 11606434 DOI: 10.1210/endo.142.11.8468] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify the mechanisms that couple hemodynamic stress to alterations in cardiac gene expression, DNA constructs containing the rat B-type natriuretic peptide (BNP) promoter were injected into the myocardium of rats, which underwent bilateral nephrectomy or were sham-operated. Ventricular BNP mRNA levels were induced about 4-fold; and the BNP reporter construct containing the proximal 2200 bp, 5-fold, in response to 1-d nephrectomy. Deletion of sequences between bp -2200 and -114 did not affect basal or inducible activity of the BNP promoter. An activator protein-1-like site and two tandem GATA elements are located within this 114-bp sequence. Both deletion and mutation of the AP-1-like motif decreased basal activity but did not abolish the response to nephrectomy. In contrast, mutation or deletion of -90 bp GATA-sites abrogated the response to hemodynamic stress. The importance of these GATA elements to BNP promoter activation was further confirmed by the corresponding 38-bp oligonucleotide conferring hemodynamic stress responsiveness to a minimal BNP promoter. In gel mobility shift assays, nephrectomy increased left ventricular BNP GATA4 binding activity significantly. In conclusion, GATA elements are necessary and sufficient to confer transcriptional activation of BNP gene in response to hemodynamic stress.
Collapse
Affiliation(s)
- M Marttila
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Morimoto T, Hasegawa K, Wada H, Kakita T, Kaburagi S, Yanazume T, Sasayama S. Calcineurin-GATA4 pathway is involved in beta-adrenergic agonist-responsive endothelin-1 transcription in cardiac myocytes. J Biol Chem 2001; 276:34983-9. [PMID: 11435416 DOI: 10.1074/jbc.m005498200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increases in the expression of endothelin-1 (ET-1) in cardiac myocytes play a critical role in the development of heart failure in vivo. Whereas norepinephrine (NE) is a potent inducer of ET-1 expression in cardiac myocytes, the signaling pathways that link NE to inducible cardiac ET-1 expression are unknown. Adrenergic stimulation results in an increase in intracellular calcium levels, which in turn activates calcineurin. Here, we have shown that stimulation with NE markedly increased the expression of the ET-1 gene in primary cardiac myocytes from neonatal rats. This increase was severely attenuated by a beta-adrenergic antagonist, metoprolol, but not by an alpha-adrenergic antagonist, prazosin. Consistent with these data, the beta-adrenergic agonist isoproterenol (ISO) activated the rat ET-1 promoter activity to an extent that was similar to NE. The ISO-stimulated increase in promoter activity was significantly inhibited by a Ca(2+)-antagonist, nifedipine, and an immunosuppressant, cyclosporin A, which blocks calcineurin. Mutation analysis indicated that the GATA4 binding site is required for ISO-responsive ET-1 transcription. Stimulation with ISO enhanced the interaction between NFATc and GATA4 in cardiac myocytes. Consistent with this interaction, overexpression of GATA4 and NFATc synergistically activated the ET-1 promoter. These findings demonstrate that NE-stimulated ET-1 expression in cardiac myocytes is mediated predominantly via a beta-adrenergic pathway, and that calcium-activated calcineurin-GATA4 plays a role in this process.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
McBride K, Nemer M. Regulation of the ANF and BNP promoters by GATA factors: Lessons learned for cardiac transcription. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-037] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification and molecular cloning of the cardiac transcription factors GATA-4, -5, and -6 has greatly contributed to our understanding of how tissue-specific transcription is achieved during cardiac growth and development. Through analysis of their interacting partners, it has also become apparent that a major mechanism underlying spatial and temporal specificity within the heart as well as in the response to cardiogenic regulators is the combinatorial interaction between cardiac-restricted and inducible transcription factors. The cardiac GATA factors appear to be fundamental contributors to these regulatory networks. Two of the first targets identified for the cardiac GATA factors were the natriuretic peptide genes encoding atrial natriuretic factor (ANF) and B-type natriuretic peptide (BNP), the major heart secretory products that are also accepted clinical markers of the diseased heart. Studies using the ANF and BNP promoters as models of cardiac-specific transcription have unraveled the pivotal role that GATA proteins play in cardiac gene expression. We review the current knowledge on the modulation of the natriuretic peptide promoters by GATA factors, including examples of combinatorial interactions between GATA proteins and diverse transcription factors.Key words: ANF, BNP, GATA factors, cardiac transcription.
Collapse
|
25
|
Liu ZP, Nakagawa O, Nakagawa M, Yanagisawa H, Passier R, Richardson JA, Srivastava D, Olson EN. CHAMP, a novel cardiac-specific helicase regulated by MEF2C. Dev Biol 2001; 234:497-509. [PMID: 11397016 DOI: 10.1006/dbio.2001.0277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MEF2C is a MADS-box transcription factor required for cardiac myogenesis and morphogenesis. In MEF2C mutant mouse embryos, heart development arrests at the looping stage (embryonic day 9.0), the future right ventricular chamber fails to form, and cardiomyocyte differentiation is disrupted. To identify genes regulated by MEF2C in the developing heart, we performed differential array analysis coupled with subtractive cloning using RNA from heart tubes of wild-type and MEF2C-null embryos. Here, we describe a novel MEF2C-dependent gene that encodes a cardiac-restricted protein, called CHAMP (cardiac helicase activated by MEF2 protein), that contains seven conserved motifs characteristic of helicases involved in RNA processing, DNA replication, and transcription. During mouse embryogenesis, CHAMP expression commences in the linear heart tube at embryonic day 8.0, shortly after initiation of MEF2C expression in the cardiogenic region. Thereafter, CHAMP is expressed specifically in embryonic and postnatal cardiomyocytes. At the trabeculation stage of heart development, CHAMP expression is highest in the trabecular region in which cardiomyocytes have exited the cell cycle and is lowest in the proliferative compact zone. These findings suggest that CHAMP acts downstream of MEF2C in a cardiac-specific regulatory pathway for RNA processing and/or transcriptional control.
Collapse
Affiliation(s)
- Z P Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Goswami SK, Shafiq S, Siddiqui MA. Modulation of MLC-2v gene expression by AP-1: complex regulatory role of Jun in cardiac myocytes. Mol Cell Biochem 2001; 217:13-20. [PMID: 11269656 DOI: 10.1023/a:1007296330181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypertrophic stimulation of cardiac myocytes results in rapid induction of a number of transcription factors, including members of the AP-1 family, which is followed by a programmed alteration in the pattern of gene expression. In the ventricular cardiocytes there is re-expression of the fetal atrial natriuretic factor (ANF) gene and upregulation of its myosin light chain-2 (MLC-2v). The mechanism(s) by which the induction ofAP-1 is coupled to the promoters of these target genes is largely unknown. In this report, we demonstrate that in transient co-transfection assay, c-Jun inhibited while Jun B stimulated the MLC-2v promoter activity. Mutant c-Jun recombinants, in which the activation domains were deleted, still remained inhibitory, but a specific mutation in the leucine zipper, which changes the alignment of Jun with its dimerization partner, caused a reversal of its effect on the target MLC-2v promoter. Based on these findings, we propose that in chicken cardiac myocytes, the regulation of MLC-2v promoter by Jun may occur via its interaction with other proteins, possibly of the leucine zipper family.
Collapse
Affiliation(s)
- S K Goswami
- Center for Cardiovascular and Muscle Research and the Department of Anatomy and Cell Biology, State University of New York Health Science Center at Brooklyn, 11203, USA
| | | | | |
Collapse
|
27
|
Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 2000; 275:38949-52. [PMID: 11042222 DOI: 10.1074/jbc.r000029200] [Citation(s) in RCA: 670] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- J D Molkentin
- Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
28
|
Sparrow DB, Cai C, Kotecha S, Latinkic B, Cooper B, Towers N, Evans SM, Mohun TJ. Regulation of the tinman homologues in Xenopus embryos. Dev Biol 2000; 227:65-79. [PMID: 11076677 DOI: 10.1006/dbio.2000.9891] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vertebrate homologues of the Drosophila tinman transcription factor have been implicated in the processes of specification and differentiation of cardiac mesoderm. In Xenopus three members of this family have been isolated to date. Here we show that the XNkx2-3, Xnkx2-5, and XNkx2-10 genes are expressed in increasingly distinctive patterns in endodermal and mesodermal germ layers through early development, suggesting that their protein products (either individually or in different combinations) perform distinct functions. Using amphibian transgenesis, we find that the expression pattern of one of these genes, XNkx2-5, can be reproduced using transgenes containing only 4.3 kb of promoter sequence. Sequence analysis reveals remarkable conservation between the distalmost 300 bp of the Xenopus promoter and a portion of the AR2 element upstream of the mouse and human Nkx2-5 genes. Interestingly, only the 3' half of this evolutionarily conserved sequence element is required for correct transgene expression in frog embryos. Mutation of conserved GATA sites or a motif resembling the dpp-response element in the Drosophila tinman tinD enhancer dramatically reduces the levels of transgene expression. Finally we show that, despite its activity in Xenopus embryos, in transgenic mice the Xenopus Nkx2-5 promoter is able to drive reporter gene expression only in a limited subset of cells expressing the endogenous gene. This intriguing result suggests that despite evolutionary conservation of some cis-regulatory sequences, the regulatory controls on Nkx2-5 expression have diverged between mammals and amphibians.
Collapse
Affiliation(s)
- D B Sparrow
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Isoform diversity in striated muscle is largely controlled at the level of transcription. In this review we will concentrate on studies concerning transcriptional regulation of the alkali myosin light chain 1F/3F gene. Uncoupled activity of the MLC1F and 3F promoters, together with complex patterns of transcription in developing skeletal and cardiac muscle, combine to make analysis of this gene particularly intriguing. In vitro and transgenic studies of MLC1F/3F regulatory elements have revealed an array of cis-acting modules that each drive a subset of the expression pattern of the two promoters. These cis-acting regulatory modules, including the MLC1F and 3F promoter regions and two skeletal muscle enhancers, control tissue-specificity, cell or fibre-type specificity, and the spatiotemporal regulation of gene expression, including positional information. How each of these regulatory modules acts and how their individual activites are integrated to coordinate transcription at this locus are discussed.
Collapse
Affiliation(s)
- R G Kelly
- CNRS URA 1947, Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
30
|
Abstract
In vertebrates, heart development is a multistep process that starts with formation and patterning of the primitive heart tube and is followed by complex morphological events to give rise to the mature four-chambered heart. These various stages are characterized by distinct patterns of gene expression. Although chamber specificity and developmental regulation can be demonstrated in transgenic mice using short promoter fragments, the mechanism underlying spatial and temporal specificity within the heart remains largely unclear. Combinatorial interaction between a limited number of cardiac-specific and ubiquitous transcription factors may account for the diverse genetic inputs required to generate the complex transcriptional patterns that characterize the developing myocardium. We have used the cardiac atrial natriuretic peptide (ANP) promoter to test this hypothesis. The ANP gene is transcribed in a spatial- and temporal-specific manner in the heart, and a 500 bp promoter fragment is sufficient to recapitulate both chamber and developmental specificity. This promoter is composed of three modules, a "basal" cardiac promoter that is essential for transcription in embryonic and postnatal atrial and ventricular myocytes and two other independent modules that behave as chamber-specific enhancers. The basal cardiac promoter is the target of two cardiac-specific transcription factors, the zinc finger GATA-4 protein and the Nkx2-5 homeodomain, which bind to contiguous elements within this region. At low concentrations--a situation that likely occurs during the very first stages of cardiac cell fate determination--the two proteins synergistically activate transcription from the ANP promoter. This functional synergy requires physical interaction between the GATA-4 protein and an extended C-terminal homeodomain on Nkx2-5. This interaction, which unmasks an activation domain present just N-terminal of the homeodomain, is specific for GATA-4 and-5, but is not observed with the other cardiac GATA factor, GATA-6. Optimal synergy requires binding of both proteins to their cognate sites, although modest synergy also could be observed on heterologous promoters containing only multimerized Nkx binding sites, suggesting that Nkx2-5 is able to recruit GATA-4 into a transcriptionally active complex. The GATA/Nkx interaction, which appears to have been evolutionary conserved in nematode, fly, and mammals, provides a paradigm for analyzing transcription factor interaction during organogenesis. The data are also discussed in the context of our present knowledge of the roles of GATA and NK2 proteins in cardiac development.
Collapse
Affiliation(s)
- D Durocher
- Laboratoire de développement et différenciation cardiaques, Institut de recherches cliniques de Montréal, Québec, Canada
| | | |
Collapse
|
31
|
Morimoto T, Hasegawa K, Kaburagi S, Kakita T, Wada H, Yanazume T, Sasayama S. Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem 2000; 275:13721-6. [PMID: 10788492 DOI: 10.1074/jbc.275.18.13721] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The expression of endothelin-1 (ET-1) in cardiac myocytes is markedly induced during the development of heart failure in vivo and by stimulation with the alpha(1)-adrenergic agonist phenylephrine in culture. Although recent studies have suggested a role for cardiac-specific zinc finger GATA factors in the transcriptional pathways that modulate cardiac hypertrophy, it is unknown whether these factors are also involved in cardiac ET-1 transcription and if so, how these factors are modulated during this process. Using transient transfection assays in primary cardiac myocytes from neonatal rats, we show here that the GATA element in the rat ET-1 promoter was required for phenylephrine-stimulated ET-1 transcription. Cardiac GATA-4 bound the ET-1 GATA element and activated the ET-1 promoter in a sequence-specific manner. Stimulation by phenylephrine caused serine phosphorylation of GATA-4 and increased its ability to bind the ET-1 GATA element. Inhibition of the extracellularly responsive kinase cascade with PD098059 blocked the phenylephrine-induced increase in the DNA binding ability and the phosphorylation of GATA-4. These findings demonstrate that serine phosphorylation of GATA-4 is involved in alpha(1)-adrenergic agonist-responsive transcription of the ET-1 gene in cardiac myocytes and that extracellularly responsive kinase 1/2 activation plays a role upstream of GATA-4.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Guillot PV, Liu L, Kuivenhoven JA, Guan J, Rosenberg RD, Aird WC. Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression. Physiol Genomics 2000; 2:77-83. [PMID: 11015585 DOI: 10.1152/physiolgenomics.2000.2.2.77] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenotypic heterogeneity of the endothelium arises from cell type-specific differences in gene expression. An understanding of the mechanisms that underlie differential gene expression would provide important insight into the molecular basis of vascular diversity. In standard transgenic assays, multiple copies of heterologous DNA cassettes are randomly integrated into the mouse genome, resulting in significant line-to-line variation in expression. To overcome these limitations, we have targeted a single copy of a transgene that contains 1,600 bp of the human endothelial nitric oxide synthase (eNOS) promoter coupled to the LacZ reporter gene to the X-linked hypoxanthine phosphoribosyltransferase (Hprt) locus of mice by homologous recombination. The transgene was inserted in either of the orientations relative to that of the Hprt gene. In mice derived from multiple embryonic stem (ES) cell clones, the expression pattern was limited to a subset of endothelial cells, cardiomyocytes, and vascular smooth muscle cells. These findings suggest that Hprt locus targeting is a feasible tool for studying endothelial cell-restricted gene regulation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Vessels/cytology
- Blood Vessels/embryology
- Blood Vessels/metabolism
- Clone Cells
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Fluorescent Antibody Technique
- Gene Expression/genetics
- Gene Targeting
- Genes, Reporter/genetics
- Heart/embryology
- Humans
- Hypoxanthine Phosphoribosyltransferase/genetics
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Stem Cells
- Transgenes/genetics
- beta-Galactosidase/biosynthesis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- P V Guillot
- Beth Israel Deaconess Medical Center, Department of Molecular Medicine, Boston 02215, USA
| | | | | | | | | | | |
Collapse
|
33
|
Molkentin JD, Antos C, Mercer B, Taigen T, Miano JM, Olson EN. Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev Biol 2000; 217:301-9. [PMID: 10625555 DOI: 10.1006/dbio.1999.9544] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zinc finger transcription factors GATA4, -5, and -6 and the homeodomain protein Nkx2.5 are expressed in the developing heart and have been shown to activate a variety of cardiac-specific genes. To begin to define the regulatory relationships between these cardiac transcription factors and to understand the mechanisms that control their expression during cardiogenesis, we analyzed the mouse GATA6 gene for regulatory elements sufficient to direct cardiac expression during embryogenesis. Using beta-galactosidase fusion constructs in transgenic mice, a 4.3-kb 5' regulatory region that directed transcription specifically in the cardiac lineage, beginning at the cardiac crescent stage, was identified. Thereafter, transgene expression became compartmentalized to the outflow tract, a portion of the right ventricle, and a limited region of the common atrial chamber of the embryonic heart. Further dissection of this regulatory region identified a 1.8-kb cardiac-specific enhancer that recapitulated the expression pattern of the larger region when fused to a heterologous promoter and a smaller 500-bp subregion that retained cardiac expression, but was quantitatively weaker. The GATA6 cardiac enhancer contained a binding site for Nkx2.5 that was essential for cardiac-specific expression in transgenic mice. These studies demonstrate that GATA6 is a direct target gene for Nkx2.5 in the developing heart and reveal a mutually reinforcing regulatory network of Nkx2.5 and GATA transcription factors during cardiogenesis.
Collapse
Affiliation(s)
- J D Molkentin
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Vyas DR, McCarthy JJ, Tsika RW. Nuclear protein binding at the beta-myosin heavy chain A/T-rich element is enriched following increased skeletal muscle activity. J Biol Chem 1999; 274:30832-42. [PMID: 10521475 DOI: 10.1074/jbc.274.43.30832] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In adult mouse skeletal muscle, beta-myosin heavy chain (betaMyHC) gene expression is primarily restricted to slow-type I fibers but can be induced in fast-type II fibers by mechanical overload (MOV). Our previous transgenic analyses have delimited an 89-base pair (bp) MOV-responsive region (-293 to -205), and shown that mutation of the MCAT and C-rich elements within this region did not abolish betaMyHC transgene induction by MOV. In this study we describe an A/T-rich element (betaA/T-rich; -269 5'-GGAGATATTTTT-3' -258) located within this 89-bp region that, only under MOV conditions, revealed enriched binding as characterized by electrophoretic mobility shift assays and dimethyl sulfate and diethyl pyrocarbonate interference footprinting. Direct, competition, and supershift electrophoretic mobility shift assays revealed highly enriched specific binding activity at the betaA/T-rich element that was antigenically distinct from GATA-4, MEF2A-D, SRF, and Oct-1, nuclear proteins that were previously shown to bind A/T-rich elements. In vitro translated GATA-4, MEF2C, SRF, and Oct-1 bound to consensus GATA, MEF2, SRE, and Oct-1 elements, respectively, but not to the betaA/T-rich element. Two-dimensional UV cross-linking of the bromodeoxyuridine-substituted betaA/T-rich element with mechanically overloaded plantaris (MOV-P) nuclear extract detected two proteins (44 and 48 kDa). Our results indicate that the betaA/T-rich element may function in vivo as a betaMyHC MOV-inducible element during hypertrophy of adult skeletal muscle by binding two distinct proteins identified only in MOV-P nuclear extract.
Collapse
Affiliation(s)
- D R Vyas
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
35
|
Ceccarelli E, McGrew MJ, Nguyen T, Grieshammer U, Horgan D, Hughes SH, Rosenthal N. An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation. Dev Biol 1999; 213:217-29. [PMID: 10452859 DOI: 10.1006/dbio.1999.9345] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To dissect the molecular mechanisms conferring positional information in skeletal muscles, we characterized the control elements responsible for the positionally restricted expression patterns of a muscle-specific transgene reporter, driven by regulatory sequences from the MLC1/3 locus. These sequences have previously been shown to generate graded transgene expression in the segmented axial muscles and their myotomal precursors, fortuitously marking their positional address. An evolutionarily conserved E box in the MLC enhancer core, not recognized by MyoD, is a target for a nuclear protein complex, present in a variety of tissues, which includes Hox proteins and Zbu1, a DNA-binding member of the SW12/SNF2 gene family. Mutation of this E box in the MLC enhancer has only a modest positive effect on linked CAT gene expression in transfected muscle cells, but when introduced into transgenic mice the same mutation elevates CAT transgene expression in skeletal muscles, specifically releasing the rostral restriction on MLC-CAT transgene expression in the segmented axial musculature. Increased transgene activity resulting from the E box mutation in the MLC enhancer correlates with reduced DNA methylation of the distal transgenic MLC1 promoter as well as in the enhancer itself. These results identify an E box and the proteins that bind to it as a positional sensor responsible for regional differences in axial skeletal muscle gene expression and accessibility.
Collapse
Affiliation(s)
- E Ceccarelli
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Charron F, Paradis P, Bronchain O, Nemer G, Nemer M. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol 1999; 19:4355-65. [PMID: 10330176 PMCID: PMC104395 DOI: 10.1128/mcb.19.6.4355] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two members of the GATA family of transcription factors, GATA-4 and GATA-6, are expressed in the developing and postnatal myocardium and are equally potent transactivators of several cardiac promoters. However, several in vitro and in vivo lines of evidence suggest distinct roles for the two factors in the heart. Since identification of the endogenous downstream targets of GATA factors would greatly help to elucidate their exact functions, we have developed an adenovirus-mediated antisense strategy to specifically inhibit GATA-4 and GATA-6 protein production in postnatal cardiomyocytes. Expression of several endogenous cardiac genes was significantly down-regulated in cells lacking GATA-4 or GATA-6, indicating that these factors are required for the maintenance of the cardiac genetic program. Interestingly, transcription of some genes like the alpha- and beta-myosin heavy-chain (alpha- and beta-MHC) genes was preferentially regulated by GATA-4 due, in part, to higher affinity of GATA-4 for their promoter GATA element. However, transcription of several other genes, including the atrial natriuretic factor and B-type natriuretic peptide (ANF and BNP) genes, was similarly down-regulated in cardiomyocytes lacking one or both GATA factors, suggesting that GATA-4 and GATA-6 could act through the same transcriptional pathway. Consistent with this, GATA-4 and GATA-6 were found to colocalize in postnatal cardiomyocytes and to interact functionally and physically to provide cooperative activation of the ANF and BNP promoters. The results identify for the first time bona fide in vivo targets for GATA-4 and GATA-6 in the myocardium. The data also show that GATA factors act in concert to regulate distinct subsets of genes, suggesting that combinatorial interactions among GATA factors may differentially control various cellular processes.
Collapse
Affiliation(s)
- F Charron
- Laboratoire de Développement et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
37
|
Lewis AL, Xia Y, Datta SK, McMillin J, Kellems RE. Combinatorial interactions regulate cardiac expression of the murine adenylosuccinate synthetase 1 gene. J Biol Chem 1999; 274:14188-97. [PMID: 10318837 DOI: 10.1074/jbc.274.20.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian heart begins contracting at the linear tube stage during embryogenesis and continuously pumps, nonstop, throughout the entire lifetime of the animal. Therefore, the cardiac energy metabolizing pathways must be properly established and efficiently functioning. While the biochemistry of these pathways is well defined, limited information regarding the regulation of cardiac metabolic genes is available. Previously, we reported that 1.9 kilobase pairs of murine adenylosuccinate synthetase 1 gene (Adss1) 5'-flanking DNA directs high levels of reporter expression to the adult transgenic heart. In this report, we define the 1.9-kilobase pair fragment as a cardiac-specific enhancer that controls correct spatiotemporal expression of a reporter similar to the endogenous Adss1 gene. A 700-base pair fragment within this region activates a heterologous promoter specifically in adult transgenic hearts. Proteins present in a cardiac nuclear extract interact with potential transcription factor binding sites of this region and these cis-acting sites play important regulatory roles in the cardiac expression of this reporter. Finally, we report that several different cardiac transcription factors trans-activate the 1.9HSCAT construct through these sites and that combinations result in enhanced reporter expression. Adss1 appears to be one of the first target genes identified for the bHLH factors Hand1 and Hand2.
Collapse
Affiliation(s)
- A L Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Morimoto T, Hasegawa K, Kaburagi S, Kakita T, Masutani H, Kitsis RN, Matsumori A, Sasayama S. GATA-5 is involved in leukemia inhibitory factor-responsive transcription of the beta-myosin heavy chain gene in cardiac myocytes. J Biol Chem 1999; 274:12811-8. [PMID: 10212267 DOI: 10.1074/jbc.274.18.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor is a member of a family of structurally related cytokines sharing the receptor component gp130. Activation of gp130 by leukemia inhibitory factor is sufficient to induce myocardial cell hypertrophy accompanied by specific changes in the pattern of gene expression. However, the molecular mechanisms that link gp130 activation to these changes have not been clarified. The present study investigated the transcriptional pathways by which leukemia inhibitory factor activates beta-myosin heavy chain expression during myocardial cell hypertrophy. Mutation of the GATA motif in the beta-myosin heavy chain promoter totally abolished leukemia inhibitory factor-responsive transcription without changing basal transcriptional activity. In contrast, endothelin-1 responsiveness was unaffected by the GATA mutation. Among members of the cardiac GATA transcription factor subfamily (GATA-4, -5, and -6), GATA-5 was the sole and potent transactivator for the beta-myosin heavy chain promoter. This transactivation was dependent on sequence-specific binding of GATA-5 to the beta-myosin heavy chain GATA element. Cardiac nuclear factors that bind to to the beta-myosin heavy chain GATA element were induced by leukemia inhibitory factor stimulation. Last, leukemia inhibitory factor stimulation markedly increased transcripts of cardiac GATA-5, the expression of which is normally restricted to the early embryo. Thus, GATA-5 may be involved in gp130 signaling in cardiac myocytes.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR. The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J Biol Chem 1999; 274:12819-26. [PMID: 10212268 DOI: 10.1074/jbc.274.18.12819] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac Na+-Ca2+ exchanger (NCX1) is the principal Ca2+ efflux mechanism in cardiocytes. The exchanger is up-regulated in both cardiac hypertrophy and failure. In this report, we identify the cis-acting elements that control cardiac expression and alpha-adrenergic up-regulation of the exchanger gene. Deletion analysis revealed that a minimal cardiac promoter fragment from -184 to +172 is sufficient for cardiac expression and alpha-adrenergic stimulation. Mutational analysis revealed that both the CArG element at -80 and the GATA element at -50 were required for cardiac expression. Gel mobility shift assay supershift analysis demonstrated that the serum response factor binds to the CArG element and GATA-4 binds to the GATA element. Point mutations in the -172 E-box demonstrated that it was required for alpha-adrenergic induction. In addition, deletion analysis revealed one or more enhancer elements in the first intron (+103 to +134) that are essential for phenylephrine up-regulation but bear no homology to any known transcription element. Therefore, this work demonstrates that SRF and GATA-4 are critical for NCX1 expression in neonatal cardiomyocytes and that the -172 E-box in addition to a novel enhancer element(s) are required for phenylephrine up-regulation of NCX1 and may mediate its hypertrophic up-regulation.
Collapse
Affiliation(s)
- G Cheng
- Cardiology Division, Department of Medicine, and the Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221, USA
| | | | | | | | | |
Collapse
|
40
|
Mano T, Luo Z, Malendowicz SL, Evans T, Walsh K. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circ Res 1999; 84:647-54. [PMID: 10189352 DOI: 10.1161/01.res.84.6.647] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The GATA-6 transcription factor is expressed in quiescent vascular smooth muscle cells (VSMCs) in culture, and levels of its transcript are rapidly downregulated on mitogen stimulation. In this study, we demonstrate that the GATA-6 transcript, protein, and DNA-binding activity are downregulated in rat carotid arteries on balloon injury. Downregulation was detected at 1 and 3 days after injury and recovered by 7 days. To assess the role of GATA-6 downregulation in injury-induced vascular lesion formation, adenoviral vectors were used to express wild-type human GATA-6 cDNA (Ad-GATA6) or an inactive mutant cDNA that lacks a portion of the zinc-finger domain (Ad-GATA6DeltaZF). Adenovirus-mediated GATA-6 gene transfer to the vessel wall after balloon injury partially restored the levels of GATA-6 protein and DNA-binding activity to before injury levels. The local delivery of Ad-GATA6 but not Ad-GATA6DeltaZF inhibited lesion formation by 46% relative to saline control and 50% relative to a control adenovirus that expressed lacZ. Local delivery of Ad-GATA6 also reversed changes in the expression patterns of smooth muscle myosin heavy chain, smooth muscle alpha-actin, calponin, vinculin, metavinculin, and proliferating cell nuclear antigen that are associated with injury-induced VSMC phenotypic modulation. These data indicate that the injury-induced downregulation of GATA-6 is an essential feature of VSMC phenotypic modulation that contributes to vessel lesion formation.
Collapse
Affiliation(s)
- T Mano
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Mass. 02135, USA
| | | | | | | | | |
Collapse
|
41
|
Qian Q, Kuo L, Yu YT, Rottman JN. A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Circ Res 1999; 84:276-89. [PMID: 10024301 DOI: 10.1161/01.res.84.3.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.
Collapse
Affiliation(s)
- Q Qian
- Departments of Internal Medicine (Cardiology), Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
42
|
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1999; 14:167-96. [PMID: 9891782 DOI: 10.1146/annurev.cellbio.14.1.167] [Citation(s) in RCA: 806] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans contain multiple types of muscle cells that share several common properties, including contractility, excitability, and expression of overlapping sets of muscle structural genes that mediate these functions. Recent biochemical and genetic studies have demonstrated that members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors play multiple roles in muscle cells to control myogenesis and morphogenesis. Like other MADS-box proteins, MEF2 proteins act combinatorially through protein-protein interactions with other transcription factors to control specific sets of target genes. Genetic studies in Drosophila have also begun to reveal the upstream elements of myogenic regulatory hierarchies that control MEF2 expression during development of skeletal, cardiac, and visceral muscle lineages. Paradoxically, MEF2 factors also regulate cell proliferation by functioning as endpoints for a variety of growth factor-regulated intracellular signaling pathways that are antagonistic to muscle differentiation. We discuss the diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | |
Collapse
|
43
|
Searcy RD, Vincent EB, Liberatore CM, Yutzey KE. A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 1998; 125:4461-70. [PMID: 9778505 DOI: 10.1242/dev.125.22.4461] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
nkx-2.5 is one of the first genes expressed in the developing heart of early stage vertebrate embryos. Cardiac expression of nkx-2.5 is maintained throughout development and nkx-2.5 also is expressed in the developing pharyngeal arches, spleen, thyroid and tongue. Genomic sequences flanking the mouse nkx-2.5 gene were analyzed for early developmental regulatory activity in transgenic mice. Approximately 3 kb of 5′ flanking sequence is sufficient to activate gene expression in the cardiac crescent as early as E7.25 and in limited regions of the developing heart at later stages. Expression also was detected in the developing spleen anlage at least 24 hours before the earliest reported spleen marker and in the pharyngeal pouches and their derivatives including the thyroid. The observed expression pattern from the −3 kb construct represents a subset of the endogenous nkx-2.5 expression pattern which is evidence for compartment-specific nkx-2.5 regulatory modules. A 505 bp regulatory element was identified that contains multiple GATA, NKE, bHLH, HMG and HOX consensus binding sites. This element is sufficient for gene activation in the cardiac crescent and in the heart outflow tract, pharynx and spleen when linked directly to lacZ or when positioned adjacent to the hsp68 promoter. Mutation of paired GATA sites within this element eliminates gene activation in the heart, pharynx and spleen primordia of transgenic embryos. The dependence of this nkx-2. 5 regulatory element on GATA sites for gene activity is evidence for a GATA-dependent regulatory mechanism controlling nkx-2.5 gene expression. The presence of consensus binding sites for other developmentally important regulatory factors within the 505 bp distal element suggests that combinatorial interactions between multiple regulatory factors are responsible for the initial activation of nkx-2.5 in the cardiac, thyroid and spleen primordia.
Collapse
Affiliation(s)
- R D Searcy
- Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
44
|
Wang GF, Nikovits W, Schleinitz M, Stockdale FE. A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol Cell Biol 1998; 18:6023-34. [PMID: 9742119 PMCID: PMC109188 DOI: 10.1128/mcb.18.10.6023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 07/13/1998] [Indexed: 11/20/2022] Open
Abstract
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5115, USA
| | | | | | | |
Collapse
|
45
|
Di Lisi R, Millino C, Calabria E, Altruda F, Schiaffino S, Ausoni S. Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I gene in vitro and in vivo. J Biol Chem 1998; 273:25371-80. [PMID: 9738004 DOI: 10.1074/jbc.273.39.25371] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac troponin I gene is one of the few sarcomeric protein genes exclusively expressed in cardiac muscle. We show here that this specificity is controlled by a proximal promoter (-230/+16) in transfected cardiac cells in culture, in the adult hearts, and in transgenic animals. Functional analysis indicates that MEF2/Oct-1, Sp1, and GATA regulatory elements are required for optimal gene activation because selective mutations produce weak or inactive promoters. MEF2 and Oct-1 transcription factors bind to the same A/T-rich element. A mutation that blocks this binding markedly reduces gene activation in vivo and in vitro, and overexpression of MEF2A, MEF2C, and MEF2D in noncardiac cells transactivates the cardiac troponin I promoter. Disruption of these elements inactivates the cardiac troponin I promoter in cultured cardiac cells but has a less important role in transfected adult heart. Moreover, nuclear extracts from an almost pure population of adult cardiac cells contain much lower levels of GATA binding activity compared with fetal cardiac cells. These findings point to a differential role of GATA factors in the maintenance of gene expression in the adult heart as compared with the activation of cardiac genes in fetal cardiomyocytes. Overexpression of GATA family members transactivates the cardiac troponin I promoter, and GATA-5 and GATA-6 are stronger transactivators than GATA-4, a property apparently unique to the cardiac troponin I promoter. Transgenic mice carrying the -230/+126 base pair promoter express beta-galactosidase reporter gene in the heart both at early stages of cardiogenesis and in the adult animals. These results indicate that the ability of the cardiac troponin I proximal promoter to target expression of a downstream gene in the heart is also maintained when the transgene is integrated into the genome.
Collapse
Affiliation(s)
- R Di Lisi
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Gao J, Li Z, Paulin D. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skeletal muscle. J Biol Chem 1998; 273:6402-9. [PMID: 9497371 DOI: 10.1074/jbc.273.11.6402] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous investigations have shown that expression of the muscle-specific intermediate filament desmin gene in skeletal muscle is controlled in part by a 5' muscle-specific enhancer. This enhancer activity can be divided into myoblast-specific and myotube-specific activation domains. The myotube-specific region contains a MyoD and MEF2 sites, whereas the myoblast-specific region contains Sp1, Krox, and Mb sites. In the present study, we designed mutations in the conserved portion of the myotube-specific region; transfection analysis of these mutations showed that a novel site located between the MyoD and MEF2 sites, named Mt (GGTATTT), is required for full transcriptional activity of the desmin enhancer in skeletal muscle. Although gel mobility shift assays demonstrate that myotube, myoblast, fibroblast, and HeLa nuclear extracts contain a nuclear factor that binds specifically to Mt, four copies of the Mt site function as the native enhancer only in myotubes. Functional synergism among the MyoD, MEF2, and Mt sites in myotubes has been demonstrated. These results show that the novel Mt site cooperates with MyoD and MEF2 to give maximal expression of the desmin gene.
Collapse
Affiliation(s)
- J Gao
- Laboratoire de Biologie Mol culaire de la Différentiation Cellulaire, Université Paris VII, 25 rue du Dr. Roux, Paris cedex 15, France
| | | | | |
Collapse
|
47
|
Gallagher PG, Forget BG. An alternate promoter directs expression of a truncated, muscle-specific isoform of the human ankyrin 1 gene. J Biol Chem 1998; 273:1339-48. [PMID: 9430667 DOI: 10.1074/jbc.273.3.1339] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ankyrin 1, an erythrocyte membrane protein that links the underlying cytoskeleton to the plasma membrane, is also expressed in brain and muscle. We cloned a truncated, muscle-specific ankyrin 1 cDNA composed of novel 5' sequences and 3' sequences previously identified in the last 3 exons of the human ankyrin 1 erythroid gene. Northern blot analysis revealed expression restricted to cardiac and skeletal muscle tissues. Deduced amino acid sequence of this muscle cDNA predicted a peptide of 155 amino acids in length with a hydrophobic NH2 terminus. Cloning of the corresponding chromosomal gene revealed that the ankyrin 1 muscle transcript is composed of four exons spread over approximately 10 kilobase pairs of DNA. Reverse transcriptase-polymerase chain reaction of skeletal muscle cDNA identified multiple cDNA isoforms created by alternative splicing. The ankyrin 1 muscle promoter was identified as a (G + C)-rich promoter located > 200 kilobase pairs from the ankyrin 1 erythroid promoter. An ankyrin 1 muscle promoter fragment directed high level expression of a reporter gene in cultured C2C12 muscle cells, but not in HeLa or K562 (erythroid) cells. DNA-protein interactions were identified in vitro at a single Sp1 and two E box consensus binding sites contained within the promoter. A MyoD cDNA expression plasmid transactivated an ankyrin 1 muscle promoter fragment/reporter gene plasmid in a dose-dependent fashion in both HeLa and K562 cells. A polyclonal antibody raised to human ankyrin 1 muscle-specific sequences reacted with peptides of 28 and 30 kDa on immunoblots of human skeletal muscle.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8021, USA.
| | | |
Collapse
|
48
|
Firulli A, Olson E. Evolution of muscle cell diversity through modular enhancers. Trends Genet 1997. [DOI: 10.1016/s0168-9525(97)90062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Franco D, Kelly R, Lamers WH, Buckingham M, Moorman AF. Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: morphogenetic implications. Dev Biol 1997; 188:17-33. [PMID: 9245508 DOI: 10.1006/dbio.1997.8622] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the embryonic heart, five segments can be distinguished: two fast-conducting atrial and ventricular compartments flanked by slow-conducting segments, the inflow tract, the atrioventricular canal, and the outflow tract. These compartments assume morphological identity as a result of looping of the linear heart tube. Subsequently, the formation of interatrial, interventricular, and outflow tract septa generates a four-chambered heart. The lack of markers that distinguish right and left compartments within the heart has prevented a precise understanding of these processes. Transgenic mice carrying an nlacZ reporter gene under transcriptional control of regulatory sequences from the MLC1F/3F gene provide specific markers to investigate such regionalization. Our results show that transgene expression is restricted to distinct regions of the myocardium: beta-galactosidase activity in 3F-nlacZ-2E mice is confined predominantly to the embryonic right atrium, atrioventricular canal, and left ventricle, whereas, in 3F-nlacZ-9 mice, the transgene is expressed in both atrial and ventricular segments (right/left) and in the atrioventricular canal, but not in the inflow and outflow tracts. These lines of mice illustrate that distinct embryonic cardiac regions have different transcriptional specificities and provide early markers of myocardial subdivisions. Regional differences in transgene expression are not detected in the linear heart tube but become apparent as the heart begins to loop. Subsequent regionalization of transgene expression provides new insights into later morphogenetic events, including the development of the atrioventricular canal and the fate of the outflow tract.
Collapse
Affiliation(s)
- D Franco
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Kelly RG, Zammit PS, Schneider A, Alonso S, Biben C, Buckingham ME. Embryonic and fetal myogenic programs act through separate enhancers at the MLC1F/3F locus. Dev Biol 1997; 187:183-99. [PMID: 9242416 DOI: 10.1006/dbio.1997.8577] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Embryonic and fetal stages of skeletal muscle development are characterized by the differential expression of a number of muscle-specific genes. These include the products of independent promoters at the fast myosin light chain 1F/3F locus. In the mouse embryo MLC1F transcripts accumulate in embryonic skeletal muscle from E9, 4-5 days before high-level accumulation of MLC3F transcripts. A 3' enhancer can activate MLC1F and MLC3F promoters in differentiated muscle cells in vitro and in transgenic mice; both promoters, however, are activated at the time of MLC1F transcript accumulation. We now demonstrate the presence of a second muscle-specific enhancer at this locus, located in the intron separating the MLC1F and MLC3F promoters. Transgenic mice containing the intronic, but lacking the 3' enhancer, express high levels of an nlacZ reporter gene from the MLC3F promoter in adult fast skeletal muscle fibers. In contrast to the 3' enhancer, the intronic element is inactive both in embryonic muscle cells in vivo and in embryonic myocyte cultures. The intronic enhancer is activated at the onset of fetal development in both primary and secondary muscle fibers, at the time of endogenous MLC3F transcript accumulation. Late-activated MLC3F transgenes thus provide a novel in toto marker of fetal myogenesis. These results suggest that temporal regulation of transcription at the MLC1F/3F locus is controlled by separate enhancers which are differentially activated during embryonic and fetal development.
Collapse
Affiliation(s)
- R G Kelly
- CNRS URA 1947, Département de Biologie Moléculaire, Institut Pasteur,Paris, France
| | | | | | | | | | | |
Collapse
|