1
|
Cui K, Qin L, Tang X, Nong J, Chen J, Wu N, Gong X, Yi L, Yang C, Xia S. A Single Amino Acid Substitution in RFC4 Leads to Endoduplication and Compromised Resistance to DNA Damage in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13061037. [PMID: 35741798 PMCID: PMC9223238 DOI: 10.3390/genes13061037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Replication factor C (RFC) is a heteropentameric ATPase associated with the diverse cellular activities (AAA+ATPase) protein complex, which is composed of one large subunit, known as RFC1, and four small subunits, RFC2/3/4/5. Among them, RFC1 and RFC3 were previously reported to mediate genomic stability and resistance to pathogens in Arabidopsis. Here, we generated a viable rfc4e (rfc4-1/RFC4G54E) mutant with a single amino acid substitution by site-directed mutagenesis. Three of six positive T2 mutants with the same amino acid substitution, but different insertion loci, were sequenced to identify homozygotes, and the three homozygote mutants showed dwarfism, early flowering, and a partially sterile phenotype. RNA sequencing revealed that genes related to DNA repair and replication were highly upregulated. Moreover, the frequency of DNA lesions was found to be increased in rfc4e mutants. Consistent with this, the rfc4e mutants were very sensitive to DSB-inducing genotoxic agents. In addition, the G54E amino acid substitution in AtRFC4 delayed cell cycle progression and led to endoduplication. Overall, our study provides evidence supporting the notion that RFC4 plays an important role in resistance to genotoxicity and cell proliferation by regulating DNA damage repair in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kan Cui
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jin Chen
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
- Changsha Technology Innovation Center for Phytoremediation of Heavy Metal Contaminated Soil, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nan Wu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lixiong Yi
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
- Correspondence:
| |
Collapse
|
2
|
Chen P, Liu Y, Ma X, Li Q, Zhang Y, Xiong Q, Song T. Replication Factor C4 in human hepatocellular carcinoma: A potent prognostic factor associated with cell proliferation. Biosci Trends 2021; 15:249-256. [PMID: 34053971 DOI: 10.5582/bst.2021.01139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Replication Factor c4 (RFC4) has been found to play important roles in many carcinomas and is correlated with poor prognosis. The present study was performed to investigate the specific role of RFC4 in hepatocellular carcinoma (HCC) and the underlying molecular mechanism. Public datasets including TCGA and GTEx were applied to explore the expression of RFC4 in HCC and its association with HCC prognosis. The results of bioinformatics analysis showed that RFC4 was overexpressed in HCC tissues compared with noncancerous tissues and significantly correlated with poor prognosis for HCC. Through immunohistochemistry, the association between RFC4 expression and clinical-pathological features of HCC patients was evaluated. Western blots were applied to investigate relative protein expression. Then in vivo and in vitro experiments were performed to explore the function of RFC4 in HCC tumor cells. The present results suggest that high level expression of RFC4 is associated with tumor size. In addition, RFC4 knockdown suppressed the cell proliferation and sphere formation of hepatoma cells in vitro. Moreover, silencing of RFC4 significantly decreased the growth of tumors in a xenograft tumor model. In conclusion, our study indicates that RFC4 is a potential prognostic predictor associated with poor outcomes for HCC patients. Furthermore, knocking down RFC4 could significantly inhibit tumor progression both in vitro and in vivo. Therefore, the present study can shed new light on the understanding of molecular mechanisms of HCC and may provide molecular targets and diagnostic biomarkers for the treatment of HCC.
Collapse
Affiliation(s)
- Ping Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yayue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaochen Ma
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingli Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yangfan Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Chen Y, Qian J, You L, Zhang X, Jiao J, Liu Y, Zhao J. Subunit Interaction Differences Between the Replication Factor C Complexes in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:779. [PMID: 29971074 PMCID: PMC6018503 DOI: 10.3389/fpls.2018.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 06/01/2023]
Abstract
Replication factor C (RFC) is a multisubunit complex that opens the sliding clamp and loads it onto the DNA chain in an ATP-dependent manner and is thus critical for high-speed DNA synthesis. In yeast (Saccharomyces cerevisiae) and humans, biochemical studies and structural analysis revealed interaction patterns between the subunits and architectures of the clamp loaders. Mutations of ScRFC1/2/3/4/5 lead to loss of cell viability and defective replication. However, the functions of RFC subunits in higher plants are unclear, except for AtRFC1/3/4, and the interaction and arrangement of the subunits have not been studied. Here, we identified rfc2-1/+, rfc3-2/+, and rfc5-1/+ mutants in Arabidopsis, and found that embryos and endosperm arrested at the 2/4-celled embryo proper stage and 6-8 nuclei stages, respectively. Subcellular localization analysis revealed that AtRFC1 and OsRFC1/4/5 proteins were localized in the nucleus, while AtRFC2/3/4/5 and OsRFC2/3 proteins were present both in the nucleus and cytoplasm. By using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) techniques, we demonstrated the interactions of Arabidopsis and rice (Oryza sativa) RFC subunits, and proposed arrangements of the five subunits within the RFC complex, which were AtRFC5-AtRFC4-AtRFC3/2-AtRFC2/3-AtRFC1 and OsRFC5-OsRFC2-OsRFC3-OsRFC4-OsRFC1, respectively. In addition, AtRFC1 could interact with AtRFC2/3/4/5 in the presence of other subunits, while OsRFC1 directly interacted with the other four subunits. To further characterize the regions required for complex formation, truncated RFC proteins of the subunits were created. The results showed that C-termini of the RFC subunits are required for complex formation. Our studies indicate that the localization and interactions of RFCs in Arabidopsis and rice are distinctly discrepant.
Collapse
|
4
|
Peng WX, Han X, Zhang CL, Ge L, Du FY, Jin J, Gong AH. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol 2017; 33:527-537. [PMID: 28185110 DOI: 10.1007/s10565-017-9381-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Although methylguanine-DNA-methyltransferase (MGMT) plays an important role in resistance to temozolomide (TMZ) in glioma, 40% of gliomas with MGMT inactivation are still resistant to TMZ. The underlying mechanism is not clear. Here, we report that forkhead box M1 (FoxM1) transcriptionally activates the expression of DNA repair gene replication factor C5 (RFC5) to promote TMZ resistance in glioma cells independent of MGMT activation. We showed that RFC5 expression is positively correlated with FoxM1 expression in human glioma cells and FoxM1 is able to transcriptionally activate RFC expression by interaction with the RFC5 promoter. Furthermore, knockdown of FoxM1 or RFC5 partially re-sensitizes glioma cells to TMZ. Consistently, thiostrepton, a FoxM1 inhibitor, in combination with TMZ significantly inhibits proliferation and promotes apoptosis in glioma cells. Taken together, these findings suggest that the FoxM1-RFC5 axis may mediate TMZ resistance and thiostrepton may serve as a potential therapeutic agent against TMZ resistance in glioma cells.
Collapse
Affiliation(s)
- Wan-Xin Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiu Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chun-Li Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lu Ge
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Feng-Yi Du
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Jin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ai-Hua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Suzuki M, Takahashi T. Aberrant DNA replication in cancer. Mutat Res 2012; 743-744:111-117. [PMID: 22968031 DOI: 10.1016/j.mrfmmm.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
Abstract
Genomic instability plays an important role in cancer susceptibility, though the mechanics of its development remain unclear. An often-stated hypothesis is that error-prone phenotypes in DNA replication or aberrations in translesion DNA synthesis lead to genomic instability and cancer. Mutations in core DNA replication proteins have been identified in human cancer, although DNA replication is essential for cell proliferation and most mutations eliminating this function are deleterious. With recent developments in this field we review and discuss the possible involvement of DNA replication proteins in carcinogenesis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Svensson JP, Pesudo LQ, Fry RC, Adeleye YA, Carmichael P, Samson LD. Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC SYSTEMS BIOLOGY 2011; 5:157. [PMID: 21978764 PMCID: PMC3213080 DOI: 10.1186/1752-0509-5-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND A myriad of new chemicals has been introduced into our environment and exposure to these agents can damage cells and induce cytotoxicity through different mechanisms, including damaging DNA directly. Analysis of global transcriptional and phenotypic responses in the yeast S. cerevisiae provides means to identify pathways of damage recovery upon toxic exposure. RESULTS Here we present a phenotypic screen of S. cerevisiae in liquid culture in a microtiter format. Detailed growth measurements were analyzed to reveal effects on ~5,500 different haploid strains that have either non-essential genes deleted or essential genes modified to generate unstable transcripts. The pattern of yeast mutants that are growth-inhibited (compared to WT cells) reveals the mechanisms ordinarily used to recover after damage. In addition to identifying previously-described DNA repair and cell cycle checkpoint deficient strains, we also identified new functional groups that profoundly affect MMS sensitivity, including RNA processing and telomere maintenance. CONCLUSIONS We present here a data-driven method to reveal modes of toxicity of different agents that impair cellular growth. The results from this study complement previous genomic phenotyping studies as we have expanded the data to include essential genes and to provide detailed mutant growth analysis for each individual strain. This eukaryotic testing system could potentially be used to screen compounds for toxicity, to identify mechanisms of toxicity, and to reduce the need for animal testing.
Collapse
Affiliation(s)
- J Peter Svensson
- Biological Engineering Department, Center for Environmental Health Sciences, Biology Department, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
7
|
Navadgi-Patil VM, Kumar S, Burgers PM. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. J Biol Chem 2011; 286:40999-1007. [PMID: 21956112 DOI: 10.1074/jbc.m111.283994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.
Collapse
Affiliation(s)
- Vasundhara M Navadgi-Patil
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
8
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 PMCID: PMC2725198 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
9
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Arai M, Kondoh N, Imazeki N, Hada A, Hatsuse K, Matsubara O, Yamamoto M. The knockdown of endogenous replication factor C4 decreases the growth and enhances the chemosensitivity of hepatocellular carcinoma cells. Liver Int 2009; 29:55-62. [PMID: 18492021 DOI: 10.1111/j.1478-3231.2008.01792.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS To identify differentially expressed genes and thereby detect potential molecular targets for future therapies directed against hepatocellular carcinoma (HCC). METHODS To isolate differentially expressed genes between HCC and adjacent non-cancerous liver tissues, cDNA microarray and quantitative reverse transcriptase polymerase chain reaction analyses were performed. Gene knockdown experiments in HepG2 cells were also performed using small interfering RNAs (siRNAs). Proteins were detected by immunostaining, and cell proliferation was analysed using the MTT/WST-8 assay. Apoptosis and cell cycle analyses were performed using flow cytometry. RESULTS After an intensive screening for differentially expressed genes in HCC tissues, we isolated 23 upregulated genes in these lesions. Among these, we focused on the replication factor C4 (RFC4) gene. The expression of endogenous RFC4 proteins in HepG2 cells was found to be significantly reduced by RFC4-specific siRNA. This inhibition of RFC4 expression correlated with a decrease in cellular proliferation, increased levels of apoptosis and a sensitizing of the cells to the DNA-damaging chemotherapeutic agents, doxorubicin and camptothecin. CONCLUSION The replication factor C4 gene may be a novel target for developing cancer therapeutics, which can enhance the antitumour activity of chemotherapeutic agents that induce DNA damage.
Collapse
Affiliation(s)
- Masaaki Arai
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 2008; 32:106-17. [PMID: 18851837 PMCID: PMC2699584 DOI: 10.1016/j.molcel.2008.08.020] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/06/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
Abstract
Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.
Collapse
Affiliation(s)
- Huiqiang Lou
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Makiko Komata
- Laboratory of Genome Structure and Function, Division for Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-65, 4259, Nagatsuta, Midori-ku, Yokohama City, Kanagawa, 226-8501, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Division for Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-65, 4259, Nagatsuta, Midori-ku, Yokohama City, Kanagawa, 226-8501, Japan
| | - Zhiyun Guan
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Clara C. Reis
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Martin Budd
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Division for Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-65, 4259, Nagatsuta, Midori-ku, Yokohama City, Kanagawa, 226-8501, Japan
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
12
|
Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 2006; 127:509-22. [PMID: 17081974 DOI: 10.1016/j.cell.2006.08.050] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/19/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022]
Abstract
The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.
Collapse
Affiliation(s)
- Dana Branzei
- FIRC Institute of Molecular Oncology Foundation and Department of Biomedical Sciences and Biotechnology, Università degli Studi di Milano, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Branzei D, Foiani M. The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 2006; 312:2654-9. [PMID: 16859682 DOI: 10.1016/j.yexcr.2006.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 06/14/2006] [Indexed: 01/29/2023]
Abstract
Cells are continually exposed to genomic insults resulting from exogenous and endogenous damage as well as by challenges posed by DNA replication. In order to maintain genome integrity, the cells must monitor and coordinate different aspects of chromosome metabolism with cell cycle events that are performed in a predetermined order. Checkpoints are cellular surveillance and signaling pathways that coordinate these physiological responses, and growing evidence suggests that failure of these controls can lead to profound genome instability and genetic disorders. In this review, we focus on the different types of signals and mechanisms that contribute to the budding yeast checkpoint activation, the role of the activated replication checkpoint in stabilizing replication forks and in assisting different types of DNA repair and fork restart mechanisms, as well as on the ability of cells to recover from checkpoint arrest after repairing the lesions or adapt when faced with unrepairable DNA damage.
Collapse
Affiliation(s)
- Dana Branzei
- FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | | |
Collapse
|
14
|
Naiki T, Wakayama T, Nakada D, Matsumoto K, Sugimoto K. Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism. Mol Cell Biol 2004; 24:3277-85. [PMID: 15060150 PMCID: PMC381673 DOI: 10.1128/mcb.24.8.3277-3285.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rad9 is required for the activation of DNA damage checkpoint pathways in budding yeast. Rad9 is phosphorylated after DNA damage in a Mec1- and Tel1-dependent manner and subsequently interacts with Rad53. This Rad9-Rad53 interaction has been suggested to trigger the activation and phosphorylation of Rad53. Here we show that Mec1 controls the Rad9 accumulation at double-strand breaks (DSBs). Rad9 was phosphorylated after DSB induction and associated with DSBs. However, its phosphorylation and association with DSBs were significantly decreased in cells carrying a mec1Delta or kinase-negative mec1 mutation. Mec1 phosphorylated the S/TQ motifs of Rad9 in vitro, the same motifs that are phosphorylated after DNA damage in vivo. In addition, multiple mutations in the Rad9 S/TQ motifs resulted in its defective association with DSBs. Phosphorylation of Rad9 was partially defective in cells carrying a weak mec1 allele (mec1-81), whereas its association with DSBs occurred efficiently in the mec1-81 mutants, as found in wild-type cells. However, the Rad9-Rad53 interaction after DSB induction was significantly decreased in mec1-81 mutants, as it was in mec1Delta mutants. Deletion mutation in RAD53 did not affect the association of Rad9 with DSBs. Our results suggest that Mec1 promotes association of Rad9 with sites of DNA damage, thereby leading to full phosphorylation of Rad9 and its interaction with Rad53.
Collapse
Affiliation(s)
- Takahiro Naiki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
15
|
Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 2003; 1:E33. [PMID: 14624239 PMCID: PMC261875 DOI: 10.1371/journal.pbio.0000033] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 08/23/2003] [Indexed: 11/18/2022] Open
Abstract
The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17–Rfc2–Rfc3–Rfc4–Rfc5) complex and an RHR heterotrimer (Rad1–Hus1–Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5′ recessed ends whereas RFC preferred 3′ recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes. A cell cycle checkpoint complex is shown to bind preferentially to DNA with 5'recessed ends. This activity suggests that the complex might be involved in various DNA maintenance pathways
Collapse
Affiliation(s)
- Viola Ellison
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| | - Bruce Stillman
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| |
Collapse
|
16
|
Lee SJ, Schwartz MF, Duong JK, Stern DF. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol Cell Biol 2003; 23:6300-14. [PMID: 12917350 PMCID: PMC180918 DOI: 10.1128/mcb.23.17.6300-6314.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 05/07/2003] [Accepted: 06/03/2003] [Indexed: 11/20/2022] Open
Abstract
Budding yeast Rad53 is an essential protein kinase that is phosphorylated and activated in a MEC1- and TEL1-dependent manner in response to DNA damage. We studied the role of Rad53 phosphorylation through mutation of consensus phosphorylation sites for upstream kinases Mec1 and Tel1. Alanine substitution of the Rad53 amino-terminal TQ cluster region reduced viability and impaired checkpoint functions. These substitution mutations spared the basal interaction with Asf1 and the DNA damage-induced interactions with Rad9. However, they caused a decrease in DNA damage-induced Rad53 kinase activity and an impaired interaction with the protein kinase Dun1. The Dun1 FHA (Forkhead-associated) domain recognized the amino-terminal TQ cluster of Rad53 after DNA damage or replication blockade. Thus, the phosphorylation of Rad53 by upstream kinases is important not only for Rad53 activation but also for creation of an interface between Rad53 and Dun1.
Collapse
Affiliation(s)
- Soo-Jung Lee
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510,USA
| | | | | | | |
Collapse
|
17
|
Furukawa T, Ishibashi T, Kimura S, Tanaka H, Hashimoto J, Sakaguchi K. Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development. PLANT MOLECULAR BIOLOGY 2003; 53:15-25. [PMID: 14756303 DOI: 10.1023/b:plan.0000009258.04711.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Replication factor C (RFC), which is composed of five subunits, is an important factor involved in DNA replication and repair mechanisms. Following previous studies on the RFC3 homologue from rice (Oryza sativa L. cv. Nipponbare) (OsRFC3), we succeeded in isolating and characterizing one large and three small subunits of RFC homologues from the same rice species and termed them OsRFC1, OsRFC2, OsRFC4 and OsRFC5. The plant was found to have all RFC subunits known in yeasts, human and other eukaryotes. The open reading frames of OsRFCs encoded a predicted product of 1021 amino acid residues with a molecular mass of 110.8 kDa for OsRFC1, 339 amino acid residues with a molecular mass of 37.4 kDa for OsRFC2, 335 amino acid residues with a molecular mass of 36.8 kDa for OsRFC4, and 354 amino acid residues with a molecular mass of 40.5 kDa for OsRFC5. All the OsRFC subunits have highly conserved amino acid motifs among RFC proteins, RFC box, and an unrooted phylogenetic tree shows each OsRFC subunit belongs to each RFC subunit group. These subunits showed differences in their expression patterns among tissues. The transcripts of OsRFCs were expressed strongly in the proliferating tissue, the shoot apical meristem (SAM), and very weakly in the mature leaves which have no proliferating tissues. However, in young leaves and flag leaves, tissue-specific expression of OsRFC3 and OsRFC4 was shown. On the other hand, cell cycle arrest by cell cycle inhibitors resulted in significant differences in OsRFC expression patterns. These results suggest the functional differences of each OsRFC subunit in tissues and the plant cell cycle. The roles of these molecules in plant DNA replication and DNA repair are discussed.
Collapse
MESH Headings
- Animals
- Aphidicolin/pharmacology
- Arabidopsis/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Cloning, Molecular
- Colchicine/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Drosophila/genetics
- Exons
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Hydroxyurea/pharmacology
- In Situ Hybridization
- Introns
- Molecular Sequence Data
- Oryza/genetics
- Oryza/growth & development
- Phylogeny
- Protein Subunits/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Replication Protein C
- Sequence Analysis, DNA
- Sucrose/pharmacology
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- National Institute of Agrobiological Sciences, 2-1-2 Tsukuba-shi, Ibaraki-ken 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Bellaoui M, Chang M, Ou J, Xu H, Boone C, Brown GW. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J 2003; 22:4304-13. [PMID: 12912927 PMCID: PMC175796 DOI: 10.1093/emboj/cdg406] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damage checkpoint RFC and the sister chromatid cohesion RFC. As expected from its genetic interactions, elg1 mutants are sensitive to DNA damage. Elg1 is redundant with Rad24 in the DNA damage response and contributes to activation of the checkpoint kinase Rad53. We find that elg1 mutants display DNA replication defects and genome instability, including increased recombination and mutation frequencies, and minichromosome maintenance defects. Mutants in elg1 show genetic interactions with pathways required for processing of stalled replication forks, and are defective in recovery from DNA damage during S phase. We propose that Elg1-RFC functions both in normal DNA replication and in the DNA damage response.
Collapse
Affiliation(s)
- Mohammed Bellaoui
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Osborn AJ, Elledge SJ. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 2003; 17:1755-67. [PMID: 12865299 PMCID: PMC196183 DOI: 10.1101/gad.1098303] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When DNA replication is stalled, a signal transduction pathway is activated that promotes the stability of stalled forks and resumption of DNA synthesis. In budding yeast, this pathway includes the kinases Mec1 and Rad53. Here we report that the Mediator protein Mrc1, which is required for normal DNA replication and for activation of Rad53, is present at replication forks. Mrc1 initially binds early-replicating sequences and moves along chromatin with the replication fork. Blocking initiation of DNA replication blocks Mrc1 loading onto origins, providing an explanation for why so many mutants in DNA replication show checkpoint defects. In the presence of replication blocks, we find that Mec1 is recruited to regions of stalled replication, where it encounters and presumably phosphorylates Mrc1. Mutation of the canonical Mec1 phosphorylation sites on Mrc1 prevents Mrc1 phosphorylation and blocks Rad53 activation, but does not alter Mrc1's role in DNA replication. Our results suggest a model whereby in response to DNA replication interference, the Mec1 kinase is recruited to sites of replication blocks and phosphorylates a component of the DNA replication complex, Mrc1, thereby setting up a solid-state Rad53 activation platform to initiate the checkpoint response.
Collapse
Affiliation(s)
- Alexander J Osborn
- Verna and Marrs MacLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Tercero JA, Longhese MP, Diffley JFX. A central role for DNA replication forks in checkpoint activation and response. Mol Cell 2003; 11:1323-36. [PMID: 12769855 DOI: 10.1016/s1097-2765(03)00169-2] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The checkpoint proteins Rad53 and Mec1-Ddc2 regulate many aspects of cell metabolism in response to DNA damage. We have examined the relative importance of downstream checkpoint effectors on cell viability. Checkpoint regulation of mitosis, gene expression, and late origin firing make only modest contributions to viability. By contrast, the checkpoint is essential for preventing irreversible breakdown of stalled replication forks. Moreover, recruitment of Ddc2 to nuclear foci and subsequent activation of the Rad53 kinase only occur during S phase and require the assembly of replication forks. Thus, DNA replication forks are both activators and primary effectors of the checkpoint pathway in S phase.
Collapse
Affiliation(s)
- José Antonio Tercero
- Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
21
|
Kenna MA, Skibbens RV. Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol 2003; 23:2999-3007. [PMID: 12665596 PMCID: PMC152568 DOI: 10.1128/mcb.23.8.2999-3007.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTF7/ECO1 is an essential yeast gene required for the establishment of sister chromatid cohesion. The findings that CTF7/ECO1, POL30 (PCNA), and CHL12/CTF18 (a replication factor C [RFC] homolog) genetically interact provided the first evidence that the processes of cohesion establishment and DNA replication are intimately coupled-a link now confirmed by other studies. To date, however, it is unknown how Ctf7p/Eco1p function is coupled to DNA replication or whether Ctf7p/Eco1p physically associates with any components of the DNA replication machinery. Here, we report that Ctf7p/Eco1p associates with proteins that perform partially redundant functions in DNA replication. Chl12p/Ctf18p combines with Rfc2p to Rfc5p to form one of three independent RFC complexes. By chromatographic methods, Ctf7p/Eco1p was found to associate with Chl12/Ctf18p and with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. The association between Ctf7p/Eco1p and this RFC complex is biologically relevant in that (i) Ctf7p/Eco1p cosediments with Chl12p/Ctf18p in vivo and (ii) rfc5-1 mutant cells exhibit precocious sister separation. Previous studies revealed that Rfc1p or Rad24p associates with Rfc2p to Rfc5p to form two other RFC complexes independent of Ctf18p-RFC complexes. These Rfc1p-RFC and Rad24p-RFC complexes function in DNA replication or repair and DNA damage checkpoint pathways. Importantly, Ctf7p/Eco1p also associates with Rfc1p and Rad24p, suggesting that these RFC complexes also play critical roles in cohesion establishment. The associations between Ctf7p/Eco1p and RFC subunits provide novel evidence regarding the physical linkage between cohesion establishment and DNA replication. Furthermore, the association of Ctf7p/Eco1p with each of three RFC complexes supplies new insights into the functional redundancy of RFC complexes in cohesion establishment.
Collapse
Affiliation(s)
- Margaret A Kenna
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
22
|
Clarke DJ. Establishment of dependence relationships between genome replication and mitosis. J Cell Biochem 2003; 88:95-103. [PMID: 12461778 DOI: 10.1002/jcb.10324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although budding yeast cell biology and genetics provided a powerful system to isolate S-phase checkpoint mutants, initial studies relied on a defect not likely to be relevant in higher eukaryotes. The first mutants were isolated for their inability to restrain mitotic spindle elongation in S-phase. Since most eukaryotes do not assemble spindles until prometaphase the validity of this approach might have been questioned. However, these early studies were designed with a highly valid assumption in mind; that checkpoints have a variety of targets, but comprise conserved kinase cascades that make up these signaling pathways. The task that lies ahead is to determine targets of the S-phase checkpoint relevant to mammals. One step forward might be the realization that the budding yeast S-phase checkpoint prevents loss of sister chromatid cohesion while DNA replication is ongoing. If this mechanism is conserved in mammals, it could prove vital for chromosome segregation fidelity.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, 420 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
23
|
Dahm K, Hübscher U. Colocalization of human Rad17 and PCNA in late S phase of the cell cycle upon replication block. Oncogene 2002; 21:7710-9. [PMID: 12400013 DOI: 10.1038/sj.onc.1205872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Revised: 07/11/2002] [Accepted: 07/15/2002] [Indexed: 12/22/2022]
Abstract
In response to replication block or DNA damage in S phase the DNA replication and DNA damage checkpoints are activated. The current model in human predicts, that a Rad17/Replication factor C (RF-C) complex might serve as a recruitment complex for the Rad9/Hus1/Rad1 complex to sites of replication block or DNA damage. In this study we have investigated the fate of the Rad17/RF-C complex after treatment of synchronized Hela cells with the replication inhibitor hydroxyurea. In hydroxyurea treated cells the RF-C p37 subunit became more resistant to extraction. Moreover, co-immunoprecipitation studies with extracts of hydroxyurea treated cells showed an interaction of RF-C p37 with Rad17 and of PCNA with Rad9 and RF-C p37. An enhanced colocalization of Rad17 and PCNA in late S phase after hydroxyurea treatment was observed. Our data suggested, that upon replication block a Rad17/RF-C complex is recruited to sites of DNA lesions in late S phase, binds the Rad9/Hus1/Rad1 complex and enables it to interact with PCNA. An interaction of Rad17/RF-C with PCNA appears to be mediated by the small RF-C p37 subunit, suggesting that PCNA might provide communication between replication checkpoint control and DNA replication and repair.
Collapse
Affiliation(s)
- Kirsten Dahm
- Institute of Veterinary Biochemistry and Molecular Biology, University Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
24
|
Abstract
The checkpoint-mediated control of DNA replication is essential for maintaining the stability of the genome and preventing cancer in humans. The RecQ family of helicases has been shown to be important for the maintenance of genomic integrity in organisms ranging from bacteria to man. We propose that the RecQ homologue, Sgs1p, has an important function in the S-phase checkpoint response of budding yeast, where it may be both a 'sensor' for damage during replication and a 'resolvase' for structures that arise at paused forks. RecQ helicases may serve a unique function that integrates checkpoint proteins with the recombination and replication fork machinery.
Collapse
Affiliation(s)
- Jennifer A Cobb
- University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | | | | |
Collapse
|
25
|
Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:4500-7. [PMID: 11917116 PMCID: PMC123677 DOI: 10.1073/pnas.062702199] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints were found to cause increased accumulation of genome rearrangements in both wild-type strains and to an even greater extent in strains containing mutations causing defects in the intra-S checkpoint. The rearrangements were primarily translocations or events resulting in deletion of a portion of a chromosome arm along with the addition of a new telomere. Combinations of mutations causing individual defects in the RAD24 or SGS1 branches of the intra-S checkpoint or the replication checkpoint showed synergistic interactions with regard to the spontaneous genome instability rate. PDS1 and the RAD50-MRE11-XRS2 complex were found to be important members of all the S-phase checkpoints in suppressing genome instability, whereas RAD53 only seemed to play a role in the intra-S checkpoints. Combinations of mutations that seem to result in inactivation of the S-phase checkpoints and critical effectors resulted in as much as 12,000-14,000-fold increases in the genome instability rate. These data support the view that spontaneous genome rearrangements result from DNA replication errors and indicate that there is a high degree of redundancy among the checkpoints that act in S phase to suppress such genome instability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Oakley TJ, Hickson ID. Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair (Amst) 2002; 1:175-207. [PMID: 12509252 DOI: 10.1016/s1568-7864(02)00002-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of genome stability is important not only for cell viability, but also for the suppression of neoplastic transformation in higher eukaryotes. It has long been recognised that a common feature of cancer cells is genomic instability. Although the so-called three 'Rs' of genome maintenance, DNA replication, recombination and repair, have historically been studied in isolation, a wealth of recent evidence indicates that these processes are intimately interrelated and interdependent. In this article, we will focus on challenges to the maintenance of genome integrity that arise during the S-phase of the cell cycle, and the possible roles that RecQ helicases and topoisomerase III play in the maintenance of genome integrity during the process of DNA replication.
Collapse
Affiliation(s)
- Thomas J Oakley
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
27
|
Labib K, Kearsey SE, Diffley JF. MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 2001; 12:3658-67. [PMID: 11694596 PMCID: PMC60283 DOI: 10.1091/mbc.12.11.3658] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.
Collapse
Affiliation(s)
- K Labib
- ICRF Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | |
Collapse
|
28
|
Chakraverty RK, Kearsey JM, Oakley TJ, Grenon M, de La Torre Ruiz MA, Lowndes NF, Hickson ID. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol 2001; 21:7150-62. [PMID: 11585898 PMCID: PMC99890 DOI: 10.1128/mcb.21.21.7150-7162.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Schmidt SL, Pautz AL, Burgers PM. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation. J Biol Chem 2001; 276:34792-800. [PMID: 11549622 DOI: 10.1074/jbc.m011671200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C is required to load proliferating cell nuclear antigen onto primer-template junctions, using the energy of ATP hydrolysis. Four of the five RFC genes have consensus ATP-binding motifs. To determine the relative importance of these sites for proper DNA metabolism in the cell, the conserved lysine in the Walker A motif of RFC1, RFC2, RFC3, or RFC4 was mutated to either arginine or glutamic acid. Arginine mutations in all RFC genes tested permitted cell growth, although poor growth was observed for rfc2-K71R. A glutamic acid substitution resulted in lethality in RFC2 and RFC3 but not in RFC1 or RFC4. Most double mutants combining mutations in two RFC genes were inviable. Except for the rfc1-K359R and rfc4-K55E mutants, which were phenotypically similar to wild type in every assay, the mutants were sensitive to DNA-damaging agents. The rfc2-K71R and rfc4-K55R mutants show checkpoint defects, most likely in the intra-S phase checkpoint. Regulation of the damage-inducible RNR3 promoter was impaired in these mutants, and phosphorylation of Rad53p in response to DNA damage was specifically defective when cells were in S phase. No dramatic defects in telomere length regulation were detected in the mutants. These data demonstrate that the ATP binding function of RFC2 is important for both DNA replication and checkpoint function and, for the first time, that RFC4 also plays a role in checkpoint regulation.
Collapse
Affiliation(s)
- S L Schmidt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 2001; 21:5838-45. [PMID: 11486023 PMCID: PMC87303 DOI: 10.1128/mcb.21.17.5838-5845.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAD24 has been identified as a gene essential for the DNA damage checkpoint in budding yeast. Rad24 is structurally related to subunits of the replication factor C (RFC) complex, and forms an RFC-related complex with Rfc2, Rfc3, Rfc4, and Rfc5. The rad24Delta mutation enhances the defect of rfc5-1 in the DNA replication block checkpoint, implicating RAD24 in this checkpoint. CHL12 (also called CTF18) encodes a protein that is structurally related to the Rad24 and RFC proteins. We show here that although neither chl12Delta nor rad24Delta single mutants are defective, chl12Delta rad24Delta double mutants become defective in the replication block checkpoint. We also show that Chl12 interacts physically with Rfc2, Rfc3, Rfc4, and Rfc5 and forms an RFC-related complex which is distinct from the RFC and RAD24 complexes. Our results suggest that Chl12 forms a novel RFC-related complex and functions redundantly with Rad24 in the DNA replication block checkpoint.
Collapse
Affiliation(s)
- T Naiki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human.
Collapse
Affiliation(s)
- S Broomfield
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, SK, S7N 5E5, Saskatoon, Canada
| | | | | |
Collapse
|
32
|
Krause SA, Loupart ML, Vass S, Schoenfelder S, Harrison S, Heck MM. Loss of cell cycle checkpoint control in Drosophila Rfc4 mutants. Mol Cell Biol 2001; 21:5156-68. [PMID: 11438670 PMCID: PMC87240 DOI: 10.1128/mcb.21.15.5156-5168.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two alleles of the Drosophila melanogaster Rfc4 (DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these two DmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.
Collapse
Affiliation(s)
- S A Krause
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cells are constantly under threat from the cytotoxic and mutagenic effects of DNA damaging agents. These agents can either be exogenous or formed within cells. Environmental DNA-damaging agents include UV light and ionizing radiation, as well as a variety of chemicals encountered in foodstuffs, or as air- and water-borne agents. Endogenous damaging agents include methylating species and the reactive oxygen species that arise during respiration. Although diverse responses are elicited in cells following DNA damage, this review focuses on three aspects: DNA repair mechanisms, cell cycle checkpoints, and apoptosis. Because the areas of nucleotide excision repair and mismatch repair have been covered extensively in recent reviews, we restrict our coverage of the DNA repair field to base excision repair and DNA double-strand break repair.
Collapse
Affiliation(s)
- C J Norbury
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | | |
Collapse
|
34
|
Abstract
We define a DNA damage checkpoint pathway in S. cerevisiae governed by the ATM homolog Tel1 and the Mre11 complex. In mitotic cells, the Tel1-Mre11 complex pathway triggers Rad53 activation and its interaction with Rad9, whereas in meiosis it acts via Rad9 and the Rad53 paralog Mre4/Mek1. Activation of the Tel1-Mre11 complex pathway checkpoint functions appears to depend upon the Mre11 complex as a damage sensor and, at least in meiotic cells, to depend on unprocessed DNA double-strand breaks (DSBs). The DSB repair functions of the Mre11 complex are enhanced by the pathway, suggesting that the complex both initiates and is regulated by the Tel1-dependent DSB signal. These findings demonstrate that the diverse functions of the Mre11 complex in the cellular DNA damage response are conserved in mammals and yeast.
Collapse
Affiliation(s)
- T Usui
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Osaka, Japan
| | | | | |
Collapse
|
35
|
Leroy C, Mann C, Marsolier MC. Silent repair accounts for cell cycle specificity in the signaling of oxidative DNA lesions. EMBO J 2001; 20:2896-906. [PMID: 11387222 PMCID: PMC125485 DOI: 10.1093/emboj/20.11.2896] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species are the most important source of DNA lesions in aerobic organisms, but little is known about the activation of the DNA checkpoints in response to oxidative stress. We show that treatment of yeast cells with sublethal concentrations of hydrogen peroxide induces a Mec1-dependent phosphorylation of Rad53 and a Rad53-dependent cell cycle delay specifically during S phase. The lack of Rad53 phosphorylation after hydrogen peroxide treatment in the G1 and G2 phases is due to the silent repair of oxidative DNA lesions produced at these stages by the base excision repair (BER) pathway. Only the disruption of the BER pathway and the accumulation and/or treatment of DNA intermediates by alternative repair pathways reveal the existence of primary DNA lesions induced at all phases of the cell cycle by hydrogen peroxide. Our data illustrate both the concept of silent repair of DNA damage and the high sensitivity of S-phase cells to hydrogen peroxide.
Collapse
Affiliation(s)
| | | | - Marie-Claude Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
Corresponding author e-mail:
| |
Collapse
|
36
|
Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:3725-37. [PMID: 11340166 PMCID: PMC87010 DOI: 10.1128/mcb.21.11.3725-3737.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G(1)/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G(2)/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.
Collapse
Affiliation(s)
- H S Kim
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
37
|
Kai M, Tanaka H, Wang TS. Fission yeast Rad17 associates with chromatin in response to aberrant genomic structures. Mol Cell Biol 2001; 21:3289-301. [PMID: 11313455 PMCID: PMC100251 DOI: 10.1128/mcb.21.10.3289-3301.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2000] [Accepted: 02/26/2001] [Indexed: 01/02/2023] Open
Abstract
Fission yeast checkpoint protein Rad17 is required for the DNA integrity checkpoint responses. A fraction of Rad17 is chromatin bound independent of the other checkpoint proteins throughout the cell cycle. Here we show that in response to DNA damage induced by either methyl methanesulfonate treatment or ionizing radiation, increased levels of Rad17 bind to chromatin. Following S-phase stall induced by hydroxyurea or a cdc22 mutation, the chromatin-bound Rad17 progressively dissociates from the chromatin. After S-phase arrest by hydroxyurea in cds1Delta or rad3Delta cells or by replication mutants, Rad17 remains chromatin bound. Rad17 is able to complex in vivo with an Rfc small subunit, Rfc2, but not with Rfc1. Furthermore, cells with rfc1Delta are checkpoint proficient, suggesting that Rfc1 does not have a role in checkpoint function. A checkpoint-defective mutant protein, Rad17(K118E), which has similar nuclear localization to that of the wild type, is unable to bind ATP and has reduced ability in chromatin binding. Mutant Rad17(K118E) protein also has reduced ability to complex with Rfc2, suggesting that Lys(118) of Rad17 plays a role in Rad17-Rfc small-subunit complex formation and chromatin association. However, in the rad17.K118E mutant cells, Cds1 can be activated by hydroxyurea. Together, these results suggest that Rad17 binds to chromatin in response to an aberrant genomic structure generated from DNA damage, replication mutant arrest, or hydroxyurea arrest in the absence of Cds1. Rad17 is not required to bind chromatin when genomic structures are protected by hydroxyurea-activated Cds1. The possible checkpoint events induced by chromatin-bound Rad17 are discussed.
Collapse
Affiliation(s)
- M Kai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | |
Collapse
|
38
|
Hanna JS, Kroll ES, Lundblad V, Spencer FA. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 2001; 21:3144-58. [PMID: 11287619 PMCID: PMC86942 DOI: 10.1128/mcb.21.9.3144-3158.2001] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.
Collapse
Affiliation(s)
- J S Hanna
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
39
|
Pennaneach V, Salles-Passador I, Munshi A, Brickner H, Regazzoni K, Dick F, Dyson N, Chen TT, Wang JY, Fotedar R, Fotedar A. The large subunit of replication factor C promotes cell survival after DNA damage in an LxCxE motif- and Rb-dependent manner. Mol Cell 2001; 7:715-27. [PMID: 11336696 DOI: 10.1016/s1097-2765(01)00217-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoblastoma (Rb) protein promotes cell survival after DNA damage. We show here that the LxCxE binding site in Rb mediates both cell survival and cell-cycle arrest after DNA damage. Replication factor C (RF-C) complex plays an important role in DNA replication. We describe a novel function of the large subunit of RF-C in promoting cell survival after DNA damage. RF-Cp145 contains an LxCxE motif, and mutation of this motif abolishes the protective effect of RF-Cp145. The inability of wild-type RF-Cp145 to promote cell survival in Rb-null cells is rescued by Rb but not by Rb mutants defective in binding LxCxE proteins. RF-C thus enhances cell survival after DNA damage in an Rb-dependent manner.
Collapse
Affiliation(s)
- V Pennaneach
- Sidney Kimmel Cancer Center, 10835 Altman Road, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
41
|
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104:397-408. [PMID: 11239397 DOI: 10.1016/s0092-8674(01)00227-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
42
|
Abstract
Kcc4, a kinase of the budding yeast Saccharomyces cerevisiae, is homologous to the bud neck protein kinases Hsl1/Nik1 and Gin4. We report here that a GFP-Kcc4 fusion protein is localized at the bud neck and that the non-kinase domain is required for this localization. We also demonstrate that Kcc4 associates with septin proteins in vitro and in vivo by two-hybrid analysis, GST pull-down experiments, immunoprecipitation, and analysis of direct association with affinity-purified GST-Kcc4 and MBP-Septin proteins. From the results obtained here, we suggest that Cdc11 is the primary association partner of Kcc4.
Collapse
Affiliation(s)
- D Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, 565-0871, Osaka, Japan
| | | |
Collapse
|
43
|
Wakayama T, Kondo T, Ando S, Matsumoto K, Sugimoto K. Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:755-64. [PMID: 11154263 PMCID: PMC86667 DOI: 10.1128/mcb.21.3.755-764.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1 is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Delta mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Delta cells, as in mec1Delta cells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of the pie1Delta mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Delta mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.
Collapse
Affiliation(s)
- T Wakayama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.
Collapse
Affiliation(s)
- B B Zhou
- Department of Oncology Research, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | |
Collapse
|
45
|
Kihara M, Nakai W, Asano S, Suzuki A, Kitada K, Kawasaki Y, Johnston LH, Sugino A. Characterization of the yeast Cdc7p/Dbf4p complex purified from insect cells. Its protein kinase activity is regulated by Rad53p. J Biol Chem 2000; 275:35051-62. [PMID: 10964916 DOI: 10.1074/jbc.m003491200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The yeast Saccharomyces cerevisiae Cdc7p/Dbf4p protein kinase complex was purified to near homogeneity from insect cells. The complex efficiently phosphorylated yeast Mcm2p and less efficiently the remaining Mcm proteins or other replication proteins. Significantly, when pretreated with alkaline phosphatase, Mcm2p became completely inactive as a substrate, suggesting that it must be phosphorylated by other protein kinase(s) to be a substrate for the Cdc7p/Dbf4p complex. Mutant Cdc7p/Dbf4p complexes containing either Cdc7-1p or Dbf4-1 approximately 5p were also partially purified from insect cells and characterized in vitro. Furthermore, the autonomously replicating sequence binding activity of various dbf4 mutants was also analyzed. These studies suggest that the autonomously replicating sequence-binding and Cdc7p protein kinase activation domains of Dbf4p collaborate to form an active Cdc7p/Dbf4p complex and function during S phase in S. cerevisiae. It is shown that Rad53p phosphorylates the Cdc7p/Dbf4p complex in vitro and that this phosphorylation greatly inhibits the kinase activity of Cdc7p/Dbf4p. This result suggests that Rad53p controls the initiation of chromosomal DNA replication by regulating the protein kinase activity associated with the Cdc7p/Dbf4p complex.
Collapse
Affiliation(s)
- M Kihara
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rouse J, Jackson SP. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 2000; 19:5801-12. [PMID: 11060031 PMCID: PMC305794 DOI: 10.1093/emboj/19.21.5801] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified YDR499W as a Saccharomyces cerevisiae open reading frame with homology to several checkpoint proteins, including S. cerevisiae Rfc5p and Schizosaccharomyces pombe Rad26. Disruption of YDR499W (termed LCD1) results in lethality that is rescued by increasing cellular deoxyribonucleotide levels. Cells lacking LCD1 are very sensitive to a range of DNA-damaging agents, including UV irradiation, and to the inhibition of DNA replication. LCD1 is necessary for the phosphorylation and activation of Rad53p in response to DNA damage or DNA replication blocks, and for Chk1p activation in response to DNA damage. LCD1 is also required for efficient DNA damage-induced phosphorylation of Rad9p and for the association of Rad9p with the FHA2 domain of Rad53p after DNA damage. In addition, cells lacking LCD1 are completely defective in the G(1)/S and G(2)/M DNA damage checkpoints. Finally, we reveal that endogenous Mec1p co-immunoprecipitates with Lcd1p both before and after treatment with DNA-damaging agents. These results indicate that Lcd1p is a pivotal checkpoint regulator, involved in both the essential and checkpoint functions of the Mec1p pathway.
Collapse
Affiliation(s)
- J Rouse
- Wellcome Trust and Cancer Research Campaign, Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
47
|
Liberi G, Chiolo I, Pellicioli A, Lopes M, Plevani P, Muzi-Falconi M, Foiani M. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J 2000; 19:5027-38. [PMID: 10990466 PMCID: PMC314228 DOI: 10.1093/emboj/19.18.5027] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra-S DNA damage in a checkpoint-dependent manner. DNA damage-induced Srs2 phosphorylation also requires the activity of the cyclin-dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra-S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage-induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint-defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.
Collapse
Affiliation(s)
- G Liberi
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Datta A, Schmeits JL, Amin NS, Lau PJ, Myung K, Kolodner RD. Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell 2000; 6:593-603. [PMID: 11030339 DOI: 10.1016/s1097-2765(00)00058-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae DNA polymerase delta proofreading exonuclease-defective mutation pol3-01 is known to cause high rates of accumulating mutations. The pol3-01 mutant was found to have abnormal cell cycle progression due to activation of the S phase checkpoint. Inactivation of the S phase checkpoint suppressed both the pol3-01 cell cycle progression defect and mutator phenotype, indicating that the pol3-01 mutator phenotype was dependent on the S phase damage checkpoint pathway. Epistasis analysis suggested that a portion of the pol3-01 mutator phenotype involves members of the RAD6 epistasis group that function in both error-free and error-prone repair. These results indicate that activation of a checkpoint in response to certain types of replicative defects can result in the accumulation of mutations.
Collapse
Affiliation(s)
- A Datta
- Ludwig Institute for Cancer Research, University of California, San Diego, Medical School, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
49
|
Fritz E, Friedl AA, Zwacka RM, Eckardt-Schupp F, Meyn MS. The yeast TEL1 gene partially substitutes for human ATM in suppressing hyperrecombination, radiation-induced apoptosis and telomere shortening in A-T cells. Mol Biol Cell 2000; 11:2605-16. [PMID: 10930457 PMCID: PMC14943 DOI: 10.1091/mbc.11.8.2605] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homozygous mutations in the human ATM gene lead to a pleiotropic clinical phenotype of ataxia-telangiectasia (A-T) patients and correlating cellular deficiencies in cells derived from A-T donors. Saccharomyces cerevisiae tel1 mutants lacking Tel1p, which is the closest sequence homologue to the ATM protein, share some of the cellular defects with A-T. Through genetic complementation of A-T cells with the yeast TEL1 gene, we provide evidence that Tel1p can partially compensate for ATM in suppressing hyperrecombination, radiation-induced apoptosis, and telomere shortening. Complementation appears to be independent of p53 activation. The data provided suggest that TEL1 is a functional homologue of human ATM in yeast, and they help to elucidate different cellular and biochemical pathways in human cells regulated by the ATM protein.
Collapse
Affiliation(s)
- E Fritz
- GSF, National Research Center for Environment and Health, Institute of Radiobiology, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Longhese MP, Paciotti V, Neecke H, Lucchini G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics 2000; 155:1577-91. [PMID: 10924458 PMCID: PMC1461196 DOI: 10.1093/genetics/155.4.1577] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| | | | | | | |
Collapse
|