1
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Novel role for cyclophilin A in regulation of chondrogenic commitment and endochondral ossification. Mol Cell Biol 2015; 35:2119-30. [PMID: 25870110 DOI: 10.1128/mcb.01414-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/01/2015] [Indexed: 11/20/2022] Open
Abstract
Recent studies showed that cyclophilin A (CypA) promotes NF-κB/p65 nuclear translocation, resulting in enhanced NF-κB activity and altered expression of its target genes, such as the Sox9 transcriptional factor, which plays a critical role in chondrogenic differentiation and endochondral ossification. In this report, we unveil the role of CypA in signal-induced chondrogenic differentiation and endochondral ossification. Expression levels of the chondrogenic differentiation markers and transcriptional regulators Sox9 and Runx2 were all significantly lower in CypA knockdown chondrogenic cells than in wild-type cells, indicating that CypA plays a functional role in chondrogenic differentiation. In vitro differentiation studies using micromass cultures of mouse limb bud cells further supported the conclusion that CypA is needed for chondrogenic differentiation. Newborn CypA-deficient pups double stained with alcian blue and alizarin red exhibited generalized, pronounced skeletal defects, while high-resolution micro-computed tomography (microCT) analyses of the femurs and lumbar vertebrae revealed delayed or incomplete endochondral ossification. Comparative histology and immunohistochemistry (IHC) analyses further verified the effects of CypA deficiency on chondrogenic differentiation. Our results provide evidence for the important contribution of CypA as a pertinent component acting through NF-κB-Sox9 in regulation of chondrogenesis signaling. These findings are important to better understand signal-induced chondrogenesis of chondrogenic progenitors in physiological and pathophysiological contexts.
Collapse
|
3
|
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is a busy ground for the action of the ubiquitin-proteasome system; many of the signaling steps are coordinated by protein ubiquitination. The end point of this pathway is to induce transcription, and to this end, there is a need to overcome a major obstacle, a set of inhibitors (IκBs) that bind NF-κB and prohibit either the nuclear entry or the DNA binding of the transcription factor. Two major signaling steps are required for the elimination of the inhibitors: activation of the IκB kinase (IKK) and degradation of the phosphorylated inhibitors. IKK activation and IκB degradation involve different ubiquitination modes; the latter is mediated by a specific E3 ubiquitin ligase SCF(β-TrCP) . The F-box component of this E3, β-TrCP, recognizes the IκB degron formed following phosphorylation by IKK and thus couples IκB phosphorylation to ubiquitination. SCF(β-TrCP) -mediated IκB ubiquitination and degradation is a very efficient process, often resulting in complete degradation of the key inhibitor IκBα within a few minutes of cell stimulation. In vivo ablation of β-TrCP results in accumulation of all the IκBs and complete NF-κB inhibition. As many details of IκB-β-TrCP interaction have been worked out, the development of β-TrCP inhibitors might be a feasible therapeutic approach for NF-κB-associated human disease. However, we may still need to advance our understanding of the mechanism of IκB degradation as well as of the diverse functions of β-TrCP in vivo.
Collapse
Affiliation(s)
- Naama Kanarek
- Lautenberg Centre for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
4
|
Clavijo PE, Frauwirth KA. Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1213-21. [PMID: 22205033 DOI: 10.4049/jimmunol.1100793] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because of the cytotoxic potential of CD8(+) T cells, maintenance of CD8(+) peripheral tolerance is extremely important. A major peripheral tolerance mechanism is the induction of anergy, a refractory state in which proliferation and IL-2 production are inhibited. We used a TCR transgenic mouse model to investigate the signaling defects in CD8(+) T cells rendered anergic in vivo. In addition to a previously reported alteration in calcium/NFAT signaling, we also found a defect in NF-κB-mediated gene transcription. This was not due to blockade of early NF-κB activation events, including IκB degradation and NF-κB nuclear translocation, as these occurred normally in tolerant T cells. However, we discovered that anergic cells failed to phosphorylate the NF-κB p65 subunit at Ser(311) and also failed to acetylate p65 at Lys(310). Both of these modifications have been implicated as critical for NF-κB transactivation capacity, and thus, our results suggest that defects in key phosphorylation and acetylation events are important for the inhibition of NF-κB activity (and subsequent T cell function) in anergic CD8(+) T cells.
Collapse
Affiliation(s)
- Paúl E Clavijo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
5
|
Abstract
Acute cerebral ischemia elicits an innate immune response that leads to a cascade of events that culminates in necrotic death of neurons and injury to their supportive structures in the neurovascular unit. Indeed, clinical studies have shown a close relationship between elevated levels of inflammatory markers and the risk for ischemic stroke. However, the signaling pathways that link these events are not well understood. A central regulator of inflammatory response is the transcription factor, nuclear factor-kappa B (NF-κB). The activation of NF-κB is required for the transcriptional induction of many proinflammatory mediators involved in innate immunity, such as cellular adhesion molecules, cytokines, and growth factors. Therefore, factors that modulate the activity of NF-κB could potentially regulate inflammatory processes in ischemic stroke. Here, we review the relationship between NF-κB and ischemic stroke, its role in the neurovascular unit, and discuss some animal models that suggest that this relationship is causal.
Collapse
Affiliation(s)
- Olivier A Harari
- Vascular Medicine Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Okamoto M, Van Stry M, Chung L, Koyanagi M, Sun X, Suzuki Y, Ohara O, Kitamura H, Hijikata A, Kubo M, Bix M. Mina, an Il4 repressor, controls T helper type 2 bias. Nat Immunol 2009; 10:872-9. [PMID: 19561615 DOI: 10.1038/ni.1747] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 05/06/2009] [Indexed: 12/15/2022]
Abstract
T helper type 2 (T(H)2) bias, which is the propensity of naive CD4(+) T cells to differentiate into interleukin 4 (IL-4)-secreting T(H)2 cells, is a genetic trait that affects susceptibility to infectious, autoimmune and allergic diseases. T(H)2 bias correlates with the amount of IL-4 initially secreted by newly activated helper T cells that feeds back positively through the pathway of the IL-4 receptor and the transcription factors STAT6 and GATA-3 to drive T(H)2 development. Here we identify Mina, a member of the jumonji C (JmjC) protein family, as a genetic determinant of T(H)2 bias. Mina specifically bound to and repressed the Il4 promoter. Mina overexpression in transgenic mice impaired Il4 expression, whereas its knockdown in primary CD4(+) T cells led to Il4 derepression. Our findings collectively provide mechanistic insight into an Il4-regulatory pathway that controls helper T cell differentiation and genetic variation in T(H)2 bias.
Collapse
Affiliation(s)
- Mariko Okamoto
- Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cohausz O, Althaus FR. Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells. Cell Biol Toxicol 2008; 25:379-91. [DOI: 10.1007/s10565-008-9092-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
|
8
|
Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicol Sci 2007; 99:488-501. [PMID: 17636246 DOI: 10.1093/toxsci/kfm178] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) activation is a critical event for the induction of an immune response to haptens. Although signaling pathways such as mitogen-activated protein kinase (MAPK) family members have been reported to play a role in DC activation by haptens, little is known about the implication of the nuclear factor kappa B (NF-kappaB) pathway. In this work, we showed that NiSO(4) induced the expression of HLA-DR, CD83, CD86, and CD40 and the production of interleukin (IL)-8, IL-6, and IL-12p40 in human DCs, whereas DNCB induced mainly the expression of CD83 and CD86 and the production of IL-8. NiSO(4) but not DNCB was able to activate the degradation of IkappaB-alpha leading to the binding of the p65 subunit of NF-kappaB on specific DNA probes. Inhibition of the NF-kappaB pathway using BAY 11-7085 prevents both CD40 and HLA-DR expression and cytokine production induced by NiSO(4). However, BAY 11-7085 only partially inhibited CD86 and CD83 expression induced by NiSO(4). In addition, p38 MAPK and NF-kappaB were independently activated by NiSO(4) since SB203580 did not inhibit NF-kappaB activation by NiSO(4). Interestingly, we also showed that DNCB inhibited the degradation of IkappaB-alpha induced by tumor necrosis factor-alpha leading to alteration of CD40, HLA-DR, and CD83 expression but not of CD86 and CCR7. Extensive modifications of DC phenotype by NiSO(4) in comparison to DNCB are probably the consequence of NF-kappaB activation by NiSO(4) but not by DNCB.
Collapse
Affiliation(s)
- Nadège Ade
- Univ Paris-Sud, INSERM, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
9
|
Chatzidakis I, Fousteri G, Tsoukatou D, Kollias G, Mamalaki C. An Essential Role for TNF in Modulating Thresholds for Survival, Activation, and Tolerance of CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6735-45. [PMID: 17513720 DOI: 10.4049/jimmunol.178.11.6735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TNF and its receptors p55 and p75 are known to be important in the homeostasis of the peripheral immune system. Previous studies have presented apparently contradictory evidence for an in vivo role of TNF in T cells. In this study, we analyzed TNF-deficient mice crossed with the F5 TCR-transgenic animals. We show that endogenous TNF modulates several aspects of homeostasis of peripheral F5 CD8 T cells. We found that F5/TNF(-/-)mice had reduced numbers of peripheral F5 T cells, F5/TNF(-/-) CD8 T cells exhibited reduced survival potential, and furthermore that T cell-derived TNF is required for optimum recovery of naive CD8 T cells in lymphopenic hosts, suggesting its involvement in the survival of peripheral CD8 T cells. Both peptide activation and ensuing Ag-induced apoptosis are quantitatively reduced in TNF(-/-) CD8 T cells. The latter observations can be related to decreased binding activities of NF-kappaB and NF-ATp observed in Ag-stimulated F5/TNF(-/-) T cells. Finally, in a CD8 T cell tolerance model, endogenous TNF was necessary for several parameters of CD8 T cell tolerance induction. Collectively, our results provide evidence that endogenous TNF modulates thresholds in several ligand-driven T cell responses.
Collapse
Affiliation(s)
- Ioannis Chatzidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, Crete, Greece
| | | | | | | | | |
Collapse
|
10
|
Round JL, Humphries LA, Tomassian T, Mittelstadt P, Zhang M, Miceli MC. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-kappaB transcription factors. Nat Immunol 2006; 8:154-61. [PMID: 17187070 DOI: 10.1038/ni1422] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 11/08/2006] [Indexed: 11/09/2022]
Abstract
Tyrosine kinases couple the T cell receptor (TCR) to discrete signaling cascades, each of which is capable of inducing a distinct functional outcome. Precisely how TCR signals are channeled toward specific targets remains unclear. TCR stimulation triggers 'alternative' activation of the mitogen-activated protein kinase p38, whereby the Lck and Zap70 tyrosine kinases directly activate p38. Here we report that alternatively activated p38 associated with the Dlgh1 MAGUK scaffold protein. 'Knockdown' of Dlgh1 expression blocked TCR-induced activation of p38 and the transcription factor NFAT but not of the mitogen-activated protein kinase Jnk or transcription factor NF-kappaB. A Dlgh1 mutant incapable of binding p38 failed to activate NFAT. Along with reports that the CARMA1 MAGUK scaffold protein coordinates activation of Jnk and NF-kappaB but not of p38 or NFAT, our findings identify MAGUK scaffold proteins as 'orchestrators' of TCR signal specificity.
Collapse
Affiliation(s)
- June L Round
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90066, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25:6781-99. [PMID: 17072328 DOI: 10.1038/sj.onc.1209944] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway serves a crucial role in regulating the transcriptional responses of physiological processes that include cell division, cell survival, differentiation, immunity and inflammation. Here we outline studies using mouse models in which the core components of the NF-kappaB pathway, namely the IkappaB kinase subunits (IKKalpha, IKKbeta and NEMO), the IkappaB proteins (IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and Bcl-3) and the five NF-kappaB transcription factors (NF-kappaB1, NF-kappaB2, c-Rel, RelA and RelB), have been genetically manipulated using transgenic and knockout technology.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pasparakis M, Luedde T, Schmidt-Supprian M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 2006; 13:861-72. [PMID: 16470223 DOI: 10.1038/sj.cdd.4401870] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies in transgenic and knockout mice have made a major contribution to our current understanding of the physiological functions of the NF-kappaB signalling cascade. The generation and analysis of mice with targeted modifications of individual components of the NF-kappaB pathway tremendously advanced our knowledge of the roles of the NF-kappaB proteins themselves, and also of the many activators and negative regulators of NF-kappaB. These studies have highlighted the complexity of the NF-kappaB system, by revealing the multiple interactions, redundancies, but also diverse functions, performed by the different molecules participating in the regulation of NF-kappaB signalling. Furthermore, inhibition or enforced activation of NF-kappaB in transgenic mice has uncovered the critical roles that NF-kappaB plays in the pathogenesis of various diseases such as liver failure, diabetes and cancer.
Collapse
Affiliation(s)
- M Pasparakis
- European Molecular Biology Laboratory, Mouse Biology Unit, Via Ramarini 32, Monterotondo-Scalo, Rome 00016, Italy.
| | | | | |
Collapse
|
13
|
Minami T, Miura M, Aird WC, Kodama T. Thrombin-induced autoinhibitory factor, Down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium. J Biol Chem 2006; 281:20503-20. [PMID: 16627481 DOI: 10.1074/jbc.m513112200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
14
|
Minamoto K, Harada H, Lama VN, Fedarau MA, Pinsky DJ. Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase. ACTA ACUST UNITED AC 2005; 202:283-94. [PMID: 16027238 PMCID: PMC2213014 DOI: 10.1084/jem.20050377] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obliterative bronchiolitis (OB) develops insidiously in nearly half of all lung transplant recipients. Although typically preceded by a CD8+ T cell–rich lymphocytic bronchitis, it remains unresponsive to conventional immunosuppression. Using an airflow permissive model to study the role of gases flowing over the transplanted airway, it is shown that prolonged inhalation of sublethal doses of carbon monoxide (CO), but not nitric oxide (NO), obliterate the appearance of the obstructive airway lesion. Induction of the enzyme responsible for the synthesis of CO, heme oxygenase (Hmox) 1, increased carboxyhemoglobin levels and suppressed lymphocytic bronchitis and airway luminal occlusion after transplantation. In contrast, zinc protoporphyrin IX, a competitive inhibitor of Hmox, increased airway luminal occlusion. Compared with wild-type allografts, expression of inducible NO synthase (iNOS), which promotes the influx of cytoeffector leukocytes and airway graft rejection, was strikingly reduced by either enhanced expression of Hmox-1 or exogenous CO. Hmox-1/CO decreased nuclear factor (NF)-κB binding activity to the iNOS promoter region and iNOS expression. Inhibition of soluble guanylate cyclase did not interfere with the ability of CO to suppress OB, implicating a cyclic guanosine 3′,5′-monophosphate–independent mechanism through which CO suppresses NF-κB, iNOS transcription, and OB. Prolonged CO inhalation represents a new immunosuppresive strategy to prevent OB.
Collapse
Affiliation(s)
- Kanji Minamoto
- Department of Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | | | | | | | | |
Collapse
|
15
|
Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5:435-45. [PMID: 15905862 DOI: 10.1038/nri1629] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evolutionarily conserved nuclear factor-kappaB family of transcription factors is known to have a crucial role in rapid responses to stress and pathogens, inducing transcription of many genes that are essential for host defence. Now, studies of mice that are deficient in nuclear factor-kappaB-family members (or deficient in the activation of these factors) reveal that nuclear factor-kappaB is extensively involved in the development of T cells and B cells. And, as we review here, although these factors have several roles, their primary cell-autonomous function is to ensure lymphocyte survival at various developmental stages. This function is subverted in numerous diseases and can lead, for example, to survival of self-reactive lymphocytes or tumour cells.
Collapse
Affiliation(s)
- Ulrich Siebenlist
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA.
| | | | | |
Collapse
|
16
|
Chen Y, Vallee S, Wu J, Vu D, Sondek J, Ghosh G. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24:3048-56. [PMID: 15024091 PMCID: PMC371134 DOI: 10.1128/mcb.24.7.3048-3056.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IkappaBbeta, one of the major IkappaB proteins, is only partially degraded in response to most extracellular signals. However, the molecular mechanism of this event is unknown. We show here that IkappaBbeta exists in at least two different forms: one that is bound to the NF-kappaB dimer and the other bound to both NF-kappaB and kappaB-Ras, a Ras-like small G protein. Removal of cellular kappaB-Ras enhances whereas excess kappaB-Ras blocks induced IkappaBbeta degradation. Remarkably, kappaB-Ras functions in both GDP- and GTP-bound states, and mutations of the conserved guanine-binding residues of kappaB-Ras abrogate its ability to block degradation of IkappaBbeta. kappaB-Ras also directly blocks the in vitro phosphorylation of IkappaBbeta by IKKbeta. These observations suggest that IkappaBbeta in the ternary complex is resistant to degradation by most signals. We suggest that specific signals, in addition to those that activate only IKK, are essential for the complete degradation of IkappaBbeta.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
17
|
Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israël A, Rajewsky K, Pasparakis M. Mature T cells depend on signaling through the IKK complex. Immunity 2003; 19:377-89. [PMID: 14499113 DOI: 10.1016/s1074-7613(03)00237-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor NF-kappaB is implicated in various aspects of T cell development and function. The IkappaB kinase (IKK) complex, consisting of two kinases, IKK1/alpha and IKK2/beta, and the NEMO/IKKgamma regulatory subunit, mediates NF-kappaB activation by most known stimuli. Adoptive transfer experiments had demonstrated that IKK1 and IKK2 are dispensable for T cell development. We show here that T lineage-specific deletion of IKK2 allows survival of naive peripheral T cells but interferes with the generation of regulatory and memory T cells. T cell-specific ablation of NEMO or replacement of IKK2 with a kinase-dead mutant prevent development of peripheral T cells altogether. Thus, IKK-induced NF-kappaB activation, mediated by either IKK1 or IKK2, is essential for the generation and survival of mature T cells, and IKK2 has an additional role in regulatory and memory T cell development.
Collapse
Affiliation(s)
- Marc Schmidt-Supprian
- Center for Blood Research, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Mora AL, Corn RA, Stanic AK, Goenka S, Aronica M, Stanley S, Ballard DW, Joyce S, Boothby M. Antiapoptotic function of NF-kappaB in T lymphocytes is influenced by their differentiation status: roles of Fas, c-FLIP, and Bcl-xL. Cell Death Differ 2003; 10:1032-44. [PMID: 12934078 DOI: 10.1038/sj.cdd.4401257] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inducible protection from apoptosis in vivo controls the size of cell populations. An important question in this respect is how differentiation affects mechanisms of apoptosis regulation. Among mature T lymphocytes, the NF-kappaB/Rel transcription factors are coupled to receptors that control cell population sizes by concurrently regulating survival and multiplication. In the present study, we used a transgenic inhibitor of NF-kappaB/Rel signaling to investigate the role of this pathway in proliferation and death of mature T cells in vivo. The results indicate that NF-kappaB integrates two critical yet distinct molecular pathways preventing apoptosis affected by the death receptor Fas, coordinately regulating levels of FLIP and Bcl-x(L) in primary T cells. Surprisingly, NF-kappaB blockade preferentially impacted naive as compared to memory T cells. The Fas/FasL pathway was linked to these findings by evidence that the abnormalities imposed by NF-kappaB inhibition were ameliorated by Fas deficiency, particularly for the CD4(+) lineage. Moreover, levels of an inhibitor of Fas-mediated apoptosis, c-FLIP, were diminished in cells expressing the transgenic inhibitor. NF-kappaB was also linked to T cell survival in vivo by mediating induction of Bcl-x(L): restoration of Bcl-x(L) levels reversed the preferential deficit of naive T cells, differentially impacting the CD4 and CD8 subsets. These results show that promoting survival and effective multiplication are central roles for NF-kappaB in T lymphoid homeostasis in vivo, but this effect and its underlying mechanisms are influenced by the developmental state of the lymphocyte.
Collapse
Affiliation(s)
- A L Mora
- Department of Microbiology & Immunology, Vanderbilt University Medical School, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat domain of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta x NF-kappaB complexes. J Biol Chem 2003; 278:23101-6. [PMID: 12672800 DOI: 10.1074/jbc.m301021200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IkappaBalpha and IkappaBbeta proteins inhibit the transcriptional potential of active NF-kappaB dimers through stable complex formation. It has been shown that inactive IkappaBalpha x NF-kappaB complexes shuttle in and out of the nucleus, whereas IkappaBbeta x NF-kappaB complexes are retained exclusively in the cytoplasm of resting cells. The biochemical mechanism underlying this functional difference and its consequences are unknown. Although the two IkappaB proteins are significantly homologous, IkappaBbeta contains a unique 47-amino acid insertion of unknown function within its ankyrin repeat domain. In this study, we assess the role of the IkappaBbeta insert in regulating cytoplasmic retention of IkappaBbeta.NF-kappaB complexes. Deletion of the IkappaBbeta insert renders IkappaBbeta x NF-kappaB complexes capable of shuttling between the nucleus and cytoplasm, similar to IkappaBalpha x NF-kappaB complexes. A small Ras-like G-protein, kappaB-Ras, participates with the IkappaBbeta insert to effectively mask the NF-kappaB nuclear localization potential. Similarly, a complex between NF-kappaB and a mutant IkappaBbeta protein containing four serine to alanine mutations within its C-terminal proline, glutamic acid, serine, and threonine-rich sequence exhibits nucleocytoplasmic shuttling. This suggests a phosphorylation state-dependent role for the C-terminal proline, glutamic acid, serine, and threonine-rich sequence of IkappaBbeta in proper localization of IkappaBbeta x NF-kappaB complexes. These results are consistent with structural studies, which predicted that binary IkappaBbeta x NF-kappaB complexes should be capable of nuclear translocation, and with previous observations that hypophosphorylated IkappaBbeta.NF-kappaB complexes can reside in the nucleus.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0359, USA
| | | | | |
Collapse
|
20
|
Mora AL, Stanley S, Armistead W, Chan AC, Boothby M. Inefficient ZAP-70 phosphorylation and decreased thymic selection in vivo result from inhibition of NF-kappaB/Rel. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5628-35. [PMID: 11698434 DOI: 10.4049/jimmunol.167.10.5628] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling from the TCR regulates T lymphoid survival, deletion by apoptosis, and selective clonal expansion. One set of signaling pathways activated during thymic selection leads to degradation of a cytosolic retention protein, the inhibitor of kappaB (IkappaB)alpha, followed by nuclear translocation of the NF-kappaB/Rel family of transcription factors. It has been found previously that NF-kappaB proteins mediate a pathway signaling the survival of mature T cells and protection of thymocytes against TNF-induced apoptosis. In contrast, we show in this study that a transgenic inhibitor of NF-kappaB/Rel signaling interferes with the negative selection of immature thymocytes by endogenous MHC ligands in vivo. Positive selection of the H-Y TCR also was diminished. This attenuation of thymic selection efficiency was associated with decreased ZAP-70 phosphorylation and TCR signaling of CD69 induction. These findings demonstrate that the NF-kappaB transcriptional pathway plays an important role in normal processes of clonal deletion and they indicate that the NF-kappaB/IkappaB axis can regulate the efficiency of TCR signaling.
Collapse
Affiliation(s)
- A L Mora
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
21
|
Hanada T, Yoshida T, Kinjyo I, Minoguchi S, Yasukawa H, Kato S, Mimata H, Nomura Y, Seki Y, Kubo M, Yoshimura A. A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J Biol Chem 2001; 276:40746-54. [PMID: 11522790 DOI: 10.1074/jbc.m106139200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokines exert biological functions by activating Janus tyrosine kinases (JAKs), and JAK inhibitors JAB (also referred to as SOCS1 and SSI1) and CIS3 (SOCS3) play an essential role in the negative regulation of cytokine signaling. We have found that transgenic (Tg) mice expressing a mutant JAB (F59D-JAB) exhibited a more potent STAT3 activation and a more severe colitis than did wild-type littermates after treatment with dextran sulfate sodium. We now find that there is a prolonged activation of JAKs and STATs in response to a number of cytokines in T cells from Tg mice with lck promoter-driven F59D-JAB. Overexpression of F59D-JAB also sustained activation of JAK2 in Ba/F3 cells. These data suggested that F59D-JAB up-regulated STAT activity by sustaining JAK activation. To elucidate molecular mechanisms related to F59D-JAB, we analyzed the effects of F59D-JAB on the JAK/STAT pathway using the 293 cell transient expression system. We found that the C-terminal SOCS-box played an essential role in augmenting cytokine signaling by F59D-JAB. The SOCS-box interacted with the Elongin BC complex, and this interaction stabilized JAB. F59D-JAB induced destabilization of wild-type JAB, whereas overexpression of Elongin BC canceled this effect. Levels of endogenous JAB and CIS3 in T cells from F59D-JAB Tg-mouse were lower than in wild-type mice. We propose that F59D-JAB destabilizes wild-type, endogenous JAB and CIS3 by chelating the Elongin BC complex, thereby sustaining JAK activation.
Collapse
Affiliation(s)
- T Hanada
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ravi R, Bedi GC, Engstrom LW, Zeng Q, Mookerjee B, Gélinas C, Fuchs EJ, Bedi A. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001; 3:409-16. [PMID: 11283615 DOI: 10.1038/35070096] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRAIL (tumour-necrosis factor-related apoptosis ligand or Apo2L) triggers apoptosis through engagement of the death receptors TRAIL-R1 (also known as DR4) and TRAIL-R2 (DR5). Here we show that the c-Rel subunit of the transcription factor NF-kappaB induces expression of TRAIL-R1 and TRAIL-R2; conversely, a transdominant mutant of the inhibitory protein IkappaBalpha or a transactivation-deficient mutant of c-Rel reduces expression of either death receptor. Whereas NF-kappaB promotes death receptor expression, cytokine-mediated activation of the RelA subunit of NF-kappaB also increases expression of the apoptosis inhibitor, Bcl-xL, and protects cells from TRAIL. Inhibition of NF-kappaB by blocking activation of the IkappaB kinase complex reduces Bcl-x L expression and sensitizes tumour cells to TRAIL-induced apoptosis. The ability to induce death receptors or Bcl-xL may explain the dual roles of NF-kappaB as a mediator or inhibitor of cell death during immune and stress responses.
Collapse
Affiliation(s)
- R Ravi
- Johns Hopkins Oncology Center, The Johns Hopkins University School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Virus infections induce a proinflammatory response including expression of cytokines and chemokines. The subsequent leukocyte recruitment and antiviral effector functions contribute to the first line of defense against viruses. The molecular virus-cell interactions initiating these events have been studied intensively, and it appears that viral surface glycoproteins, double-stranded RNA, and intracellular viral proteins all have the capacity to activate signal transduction pathways leading to the expression of cytokines and chemokines. The signaling pathways activated by viral infections include the major proinflammatory pathways, with the transcription factor NF-kappaB having received special attention. These transcription factors in turn promote the expression of specific inducible host proteins and participate in the expression of some viral genes. Here we review the current knowledge of virus-induced signal transduction by seven human pathogenic viruses and the most widely used experimental models for viral infections. The molecular mechanisms of virus-induced expression of cytokines and chemokines is also analyzed.
Collapse
Affiliation(s)
- T H Mogensen
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
24
|
Dawn B, Xuan YT, Marian M, Flaherty MP, Murphree SS, Smith TL, Bolli R, Jones WK. Cardiac-specific abrogation of NF- kappa B activation in mice by transdominant expression of a mutant I kappa B alpha. J Mol Cell Cardiol 2001; 33:161-73. [PMID: 11133232 DOI: 10.1006/jmcc.2000.1291] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappaB (NF-kappa B) is a pleiotropic oxidant-sensitive transcription factor that is present in the cytosol in an inactive form complexed to an inhibitory kappaB (I kappa B) monomer. Various stimuli, including ischemia, hypoxia, free radicals, cytokines, and lipopolysaccharide (LPS), activate NF-kappa B by inducing phosphorylation of I kappa B. Phosphorylation of serine residues at positions 32 and 36 is critical for ubiquitination and degradation of I kappa B alpha with consequent migration of NF-kappa B to the nucleus. Although NF-kappa B is thought to contribute to numerous pathophysiologic processes, definitive assessment of its role has been hindered by the inability to achieve specific inhibition in vivo. Pharmacologic inhibitors of NF-kappa B are available, but their utility for in vivo studies is limited by their relative lack of specificity. Targeted ablation of genes encoding NF-kappa B subunits has not been productive in this regard because of fetal lethality in the case of p65 and functional redundancy in the Rel family of proteins. To overcome these limitations, we have created a viable transgenic mouse that expresses a phosphorylation-resistant mutant of I kappa B alpha (I kappa B alpha(S32A,S36A)) under the direction of a cardiac-specific promoter. Several transgenic lines were obtained with copy numbers ranging from one to seven. The mice exhibit normal cardiac morphology and histology. Total myocardial I kappa B alpha protein level is elevated 3.5- to 6.5-fold with a concomitant 50-60% decrease in the level of I kappa B beta. Importantly, expression of I kappa B(S32A,S36A) results in complete abrogation of myocardial NF-kappa B activation in response to tumor necrosis factor- alpha (TNF-alpha) and LPS stimulation. Thus, novel transgenic mice have been created that make it possible to achieve cardiac-specific and selective inhibition of NF-kappa B in vivo. These transgenic mice should be useful in studies of various cardiac pathophysiological phenomena that involve NF-kappa B activation, including ischemic preconditioning, heart failure, septic shock, acute coronary syndromes, cardiac allograft rejection, and apoptosis.
Collapse
Affiliation(s)
- B Dawn
- Division of Cardiology, University of Louisville, and The Jewish Hospital Heart and Lung Institute, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Denk A, Wirth T, Baumann B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev 2000; 11:303-20. [PMID: 10959078 DOI: 10.1016/s1359-6101(00)00009-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rel/NF-kappaB family of transcription factors has been implicated in the regulation of genes involved in immune and inflammatory responses, and of processes such as cell survival, apoptosis, development, differentiation, cell growth and neoplastic transformation. In this report we will summarize recent findings which highlight critical roles of NF-kappaB in different processes in hematopoietic and neuronal cells.
Collapse
Affiliation(s)
- A Denk
- Department of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | |
Collapse
|
26
|
Grossmann M, O'Reilly LA, Gugasyan R, Strasser A, Adams JM, Gerondakis S. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 2000; 19:6351-60. [PMID: 11101508 PMCID: PMC305873 DOI: 10.1093/emboj/19.23.6351] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rel and RelA, individually dispensable for lymphopoiesis, serve unique functions in activated B and T cells. Here their combined roles in lymphocyte development were examined in chimeric mice repopulated with c-rel(-/-) rela(-/-) fetal liver hemopoietic stem cells. Mice engrafted with double-mutant cells lacked mature IgM(lo)IgD(hi) B cells, and numbers of peripheral CD4(+) and CD8(+) T cells were markedly reduced. The absence of mature B cells was associated with impaired survival that coincided with reduced expression of bcl-2 and A1. bcl-2 transgene expression not only prevented apoptosis and increased peripheral B-cell numbers, but also induced further maturation to an IgM(lo)IgD(hi) phenotype. In contrast, the survival of double-mutant T cells was normal and the bcl-2 transgene could not rectify the peripheral T-cell deficit. These findings indicate that Rel and RelA serve essential, albeit redundant, functions during the later antigen-independent stages of B- and T-cell maturation, with these transcription factors promoting the survival of peripheral B cells in part by upregulating Bcl-2.
Collapse
Affiliation(s)
- M Grossmann
- The Walter and Eliza Hall Institute of Medical Research, Post Office, The Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Cannons JL, Choi Y, Watts TH. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6193-204. [PMID: 11086053 DOI: 10.4049/jimmunol.165.11.6193] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
4-1BB is a costimulatory member of the TNFR family, expressed on activated CD4(+) and CD8(+) T cells. Previous results showed that 4-1BB-mediated T cell costimulation is CD28-independent and involves recruitment of TNFR-associated factor 2 (TRAF2) and activation of the stress-activated protein kinase cascade. Here we describe a role for the p38 mitogen-activated protein kinase (MAPK) pathway in 4-1BB signaling. Aggregation of 4-1BB alone induces p38 activation in a T cell hybridoma, whereas, in normal T cells, p38 MAPK is activated synergistically by immobilized anti-CD3 plus immobilized 4-1BB ligand. 4-1BB-induced p38 MAPK activation is inhibited by the p38-specific inhibitor SB203580 in both a T cell hybridoma and in murine T cells. T cells from TRAF2 dominant-negative mice are impaired in 4-1BB-mediated p38 MAPK activation. A link between TRAF2 and the p38 cascade is provided by the MAPK kinase kinase, apoptosis-signal-regulating kinase 1. A T cell hybrid transfected with a kinase-dead apoptosis-signal-regulating kinase 1 fails to activate p38 MAPK in response to 4-1BB signaling. To assess the role of p38 activation in an immune response, T cells were stimulated in an MLR in the presence of SB203580. In a primary MLR, SB203580 blocked IL-2, IFN-gamma, and IL-4 secretion whether the costimulatory signal was delivered via 4-1BB or CD28. In contrast, following differentiation into Th1 or Th2 cells, p38 inhibition blocked IL-2 and IFN-gamma without affecting IL-4 secretion. Nevertheless, IL-4 secretion by Th2 cells remained costimulation-dependent. Thus, critical T cell signaling events diverge following Th1 vs Th2 differentiation.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Cell Differentiation/immunology
- Cytokines/biosynthesis
- Enzyme Activation/immunology
- Hybridomas
- Ligands
- Lymphocyte Activation
- Lymphocyte Culture Test, Mixed
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- Proteins/physiology
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- TNF Receptor-Associated Factor 2
- Th1 Cells/cytology
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th2 Cells/cytology
- Th2 Cells/enzymology
- Th2 Cells/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- J L Cannons
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. Howard Hughes Medical Institute and Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
28
|
Muraoka RS, Bushdid PB, Brantley DM, Yull FE, Kerr LD. Mesenchymal expression of nuclear factor-kappaB inhibits epithelial growth and branching in the embryonic chick lung. Dev Biol 2000; 225:322-38. [PMID: 10985853 DOI: 10.1006/dbio.2000.9824] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is becoming increasingly recognized that the ubiquitous, inducible transcription factor nuclear factor-kappaB (NF-kappaB) is involved in developmental processes. For example, NF-kappaB acts as a mediator of epithelial-mesenchymal interactions in the developing chick limb. We investigated the role of NF-kappaB in directing the branching morphogenesis of the developing chick lung, a process which relies on epithelial-mesenchymal communication. High level expression of relA was found in the mesenchyme surrounding the nonbranching structures of the lung but was not detected either in the mesenchyme surrounding the branching structures of the distal lung or in the developing lung epithelium. Specific inhibition of mesenchymal NF-kappaB in lung cultures resulted in increased epithelial budding. Conversely, expression of a trans-dominant activator of NF-kappaB in the lung mesenchyme repressed budding. Ectopic expression of RelA was sufficient to inhibit the ability of the distal mesenchyme to induce epithelial bud formation. Cellular proliferation in the mesenchyme was inhibited by hyperactivation of NF-kappaB in the mesenchyme of lung cultures. Interestingly, increased NF-kappaB activity in the mesenchyme also decreased the proliferation of the associated epithelium, while inhibition of NF-kappaB activity increased cellular proliferation in lung cultures. Expression patterns of several genes which are known to influence lung branching morphogenesis were altered in response to changes in mesenchymal NF-kappaB activity, including fgf10, bmp-4, and tgf-beta1. Thus NF-kappaB represents the first transcription factor reported to function within the lung mesenchyme to limit growth and branching of the adjacent epithelium.
Collapse
Affiliation(s)
- R S Muraoka
- Department of Cell Biology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
29
|
Stasiolek M, Gavrilyuk V, Sharp A, Horvath P, Selmaj K, Feinstein DL. Inhibitory and stimulatory effects of lactacystin on expression of nitric oxide synthase type 2 in brain glial cells. The role of Ikappa B-beta. J Biol Chem 2000; 275:24847-56. [PMID: 10827092 DOI: 10.1074/jbc.m910284199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of inflammatory nitric oxide synthase (NOS2) is mediated by transcription factor NFkappaB. By using the specific proteasome inhibitor lactacystin to examine IkappaB degradation, we observed a paradoxical increase in lipopolysaccharide- and cytokine-dependent NOS2 expression at low concentrations or when lactacystin was added subsequent to cytokines. Lactacystin reduced the initial accumulation of NOS2 mRNA but reduced its subsequent decrease. Lactacystin increased NOS2 promoter activation after 24 h, but not after 4 h, and similarly prevented initial NFkappaB activation and at later times caused NFkappaB reactivation. Lactacystin reduced initial degradation of IkappaB-alpha and IkappaB-beta, however, at later times selectively increased IkappaB-beta, which was predominantly non-phosphorylated. Expression of full-length rat IkappaB-beta, but not a carboxyl-terminal truncated form, inhibited NOS2 induction and potentiation by lactacystin. Lactacystin increased IkappaB-beta expression in the absence of NOS2 inducers, as well as expression of heat shock protein 70, and the heat shock response due to hyperthermia increased IkappaB-beta expression. These results suggest that IkappaB-beta contributes to persistent NFkappaB activation and NOS2 expression in glial cells, that IkappaB-beta is a stress protein inducible by hyperthermia or proteasome inhibitors, and that delayed addition of proteasome inhibitors can have stimulatory rather than inhibitory actions.
Collapse
Affiliation(s)
- M Stasiolek
- Department of Neurology, Medical Academy of Lodz, Lodz 90-153, Poland and the Department of Anesthesiology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
30
|
Renard P, Percherancier Y, Kroll M, Thomas D, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F. Inducible NF-kappaB activation is permitted by simultaneous degradation of nuclear IkappaBalpha. J Biol Chem 2000; 275:15193-9. [PMID: 10809754 DOI: 10.1074/jbc.275.20.15193] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Signal-induced phosphorylation and ubiquitination of IkappaBalpha targets this inhibitor of NF-kappaB for proteasome-mediated degradation, thus permitting the release of active NF-kappaB. Upon cell stimulation, NF-kappaB activation results in neotranscription and neosynthesis of its own inhibitor, IkappaBalpha. As reported earlier, the neosynthesized inhibitor is then accumulated in the nucleus, where it rapidly binds to and terminates the function of nuclear NF-kappaB upon withdrawal of the stimulus. The present work was aimed at understanding how NF-kappaB activity is preserved while stimuli persist, despite intense, simultaneous IkappaBalpha neosynthesis, which would be expected to end NF-kappaB activity. We here show that incoming IkappaBalpha in the nucleus represents a target for resident nuclear proteasome complexes. Signal-induced, proteasome-dependent degradation of phosphorylated and ubiquitinated IkappaBalpha occurs in the nucleus, thus permitting the onset and persistence of NF-kappaB activity as long as stimulation is maintained. Our results suggest that intranuclear proteolysis of IkappaBalpha is necessarily required to avoid self-termination of NF-kappaB activity during cell activation.
Collapse
Affiliation(s)
- P Renard
- Unité d'Immunologie Virale, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Gamper C, van Eyndhoven WG, Schweiger E, Mossbacher M, Koo B, Lederman S. TRAF-3 interacts with p62 nucleoporin, a component of the nuclear pore central plug that binds classical NLS-containing import complexes. Mol Immunol 2000; 37:73-84. [PMID: 10781837 DOI: 10.1016/s0161-5890(00)00015-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The TRAF-3 gene encodes a number of splice-variant isoforms that function as adapter molecules in NF-kappaB signaling, in part by associating with the cytoplasmic tails of CD40 or other TNF-receptor (TNF-R) family members. To identify downstream molecules in TRAF-3 signaling, a yeast two-hybrid library was screened with a full-length TRAF-3 construct. Nine independent TRAF-3 interacting clones encoded fragments of p62 Nucleoporin (p62), a 522 amino acid (aa) component of the nuclear pore central plug, that is known to bind karyopherin-beta/classical-NLS import factor complexes. The interaction of p62 with TRAF-3 was specific, since p62 failed to interact with TRAF-2, -4, -5, or -6. Deletional analysis in yeast revealed that the p62:TRAF-3 interaction is mediated by a p62 carboxy (C)-terminal coiled-coil domain and TRAF-3's fifth zinc (Zn) finger and coiled-coil domain. In human 293 T cells, recombinant TRAF-3 or p62 specifically co-immunoprecipitates the other species. In addition, endogenous p62 co-precipitates over-expressed TRAF-3. The functional effects of over-expressing a TRAF-3 binding fragment, p62(aa 336-522) were studied on NF-kappaB-dependent, or control STAT1-dependent reporter activity in 293 T cells, either resting or after stimulation by CD40 or IFN-gamma, respectively. Over-expression of p62(aa 336-522) induces NF-kappaB activation in resting cells and augments CD40-induced NF-kappaB activation, but has no effect on control STAT1 reporter activity, either at baseline or after IFN-gamma induction. The finding that TRAF-3 binds p62, suggests that TRAF-3 may serve as an adapter molecule at the nuclear membrane, in addition to its known adapter function at the plasma membrane.
Collapse
Affiliation(s)
- C Gamper
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Mémet S, Laouini D, Epinat JC, Whiteside ST, Goudeau B, Philpott D, Kayal S, Sansonetti PJ, Berche P, Kanellopoulos J, Israël A. IκBε-Deficient Mice: Reduction of One T Cell Precursor Subspecies and Enhanced Ig Isotype Switching and Cytokine Synthesis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.5994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Three major inhibitors of the NF-κB/Rel family of transcription factors, IκBα, IκBβ, and IκBε, have been described. To examine the in vivo role of the most recently discovered member of the IκB family, IκBε, we generated a null allele of the murine IκBε gene by replacement of all coding sequences with nlslacZ. Unlike IκBα nullizygous mice, mice lacking IκBε are viable, fertile, and indistinguishable from wild-type animals in appearance and histology. Analysis of β-galactosidase expression pattern revealed that IκBε is mainly expressed in T cells in the thymus, spleen, and lymph nodes. Flow cytometric analysis of immune cell populations from the bone marrow, thymus, spleen, and lymph nodes did not show any specific differences between the wild-type and the mutant mice, with the exception of a reproducible 50% reduction of the CD44−CD25+ T cell subspecies. The IκBε-null mice present constitutive up-regulation of IgM and IgG1 Ig isotypes together with a further increased synthesis of these two isotypes after immunization against T cell-dependent or independent Ags. The failure of observable augmentation of constitutive nuclear NF-κB/Rel-binding activity is probably due to compensatory mechanisms involving IκBα and IκBβ, which are up-regulated in several organs. RNase-mapping analysis indicated that IL-1α, IL-1β, IL-1Ra, and IL-6 mRNA levels are constitutively elevated in thioglycolate-elicited IκBε-null macrophages in contrast to GM-CSF, G-CSF, and IFN-γ, which remain undetectable.
Collapse
Affiliation(s)
- Sylvie Mémet
- *Unité de Biologie Moléculaire de l’Expression Génique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1773,
| | - Dhafer Laouini
- †Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale U277, and
| | - Jean-Charles Epinat
- *Unité de Biologie Moléculaire de l’Expression Génique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1773,
| | - Simon T. Whiteside
- *Unité de Biologie Moléculaire de l’Expression Génique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1773,
| | - Bertrand Goudeau
- *Unité de Biologie Moléculaire de l’Expression Génique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1773,
| | - Dana Philpott
- ‡Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U389, Institut Pasteur, Paris, France; and
| | - Samer Kayal
- §Institut National de la Santé et de la Recherche Médicale U411, Faculté de Médecine Necker, Paris, France
| | - Philippe J. Sansonetti
- ‡Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U389, Institut Pasteur, Paris, France; and
| | - Patrick Berche
- §Institut National de la Santé et de la Recherche Médicale U411, Faculté de Médecine Necker, Paris, France
| | - Jean Kanellopoulos
- †Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale U277, and
| | - Alain Israël
- *Unité de Biologie Moléculaire de l’Expression Génique, Centre National de la Recherche Scientifique Unité de Recherche Associée 1773,
| |
Collapse
|
33
|
Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R. Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 1999; 18:6888-95. [PMID: 10602464 DOI: 10.1038/sj.onc.1203236] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rel/NF-kappaB transcription factors have been implicated in regulating a wide variety of genes important in cellular processes that include cell division, cell survival, differentiation and immunity. Here genetic models in which various Rel/NF-kappaB and IkappaB proteins have either been over-expressed or deleted in mice will be reviewed. Although expressed fairly ubiquitously, homozygous disruption of individual Rel/NF-kappaB genes generally affects the development of proper immune cell function. One exception is rela, which is essential for embryonic liver development. The disruption of genes encoding the individual subunits of the IkappaB kinase, namely IKKalpha and IKKbeta, has demonstrated that IKKbeta transmits the response to most common NF-kappaB inducing agents, whereas IKKalpha has an unexpected role in keratinocyte differentiation. Future studies will no doubt focus on the effect of multiple gene disruptions of members of this signaling pathway, on tissue-specific disruptions of these genes, and on the use of these mice as models for human diseases.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Post Office, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
34
|
Sun SC, Ballard DW. Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 1999; 18:6948-58. [PMID: 10602469 DOI: 10.1038/sj.onc.1203220] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biochemical coupling of transcription factor NF-kappaB to antigen and co-stimulatory receptors is required for the temporal control of T-cell proliferation. In contrast to its transitory activation during normal growth-signal transduction, NF-kappaB is constitutively deployed in T-cells transformed by the type 1 human T-cell leukemia virus (HTLV-1). This viral/host interaction is mediated by the HTLV-1-encoded Tax protein, which has potent oncogenic properties. As reviewed here, Tax activates NF-kappaB primarily via a pathway leading to the chronic phosphorylation and degradation of IkappaBalpha, a cytoplasmic inhibitor of NF-kappaB. To access this pathway, Tax associates stably with a cytokine-inducible IkappaB kinase (IKK), which contains both catalytic (IKKalpha and IKKbeta) and noncatalytic (IKKgamma) subunits. Unlike their transiently induced counterparts in cytokine-treated cells, Tax-associated forms of IKKalpha and IKKbeta are persistently activated in HTLV-1-infected T cells. Acquisition of the deregulated IKK phenotype is contingent on the presence of IKKgamma, which functions as a molecular adaptor in the assembly of pathologic Tax/IkappaB kinase complexes. These findings highlight a key mechanistic role for IKK in the Tax/NF-kappaB signaling axis and define new intracellular targets for the therapeutic control of HTLV-1-associated disease.
Collapse
Affiliation(s)
- S C Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania, PA 17033, USA
| | | |
Collapse
|
35
|
Aronica MA, Mora AL, Mitchell DB, Finn PW, Johnson JE, Sheller JR, Boothby MR. Preferential Role for NF-κB/Rel Signaling in the Type 1 But Not Type 2 T Cell-Dependent Immune Response In Vivo. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.9.5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
T cell function is a critical determinant of immune responses as well as susceptibility to allergic diseases. Activated T cells can differentiate into effectors whose cytokine profile is limited to type 1 (IFN-γ-dominant) or type 2 (IL-4-, IL-5-dominant) patterns. To investigate mechanisms that connect extracellular stimuli with the regulation of effector T cell function, we have measured immune responses of transgenic mice whose NF-κB/Rel signaling pathway is inhibited in T cells. Surprisingly, these mice developed type 2 T cell-dependent responses (IgE and eosinophil recruitment) in a model of allergic pulmonary inflammation. In contrast, type 1 T cell responses were severely impaired, as evidenced by markedly diminished delayed-type hypersensitivity responses, IFN-γ production, and Ag-specific IgG2a levels. Taken together, these data indicate that inhibition of NF-κB can lead to preferential impairment of type 1 as compared with type 2 T cell-dependent responses.
Collapse
Affiliation(s)
- Mark A. Aronica
- *Allergy, Pulmonary, and Critical Care Medicine and
- Divisions of
| | - Ana L. Mora
- ‡Department of Microbiology and Immunology, and
- Divisions of
| | | | - Patricia W. Finn
- ¶Pulmonary Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Divisions of
| | - Joyce E. Johnson
- §Department of Pathology, Vanderbilt University Medical School, Nashville, TN 37232; and
- Divisions of
| | | | - Mark R. Boothby
- †Rheumatology, Department of Medicine,
- Divisions of
- ‡Department of Microbiology and Immunology, and
- Divisions of
| |
Collapse
|
36
|
Cannons JL, Hoeflich KP, Woodgett JR, Watts TH. Role of the Stress Kinase Pathway in Signaling Via the T Cell Costimulatory Receptor 4-1BB. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
4-1BB is a member of the TNFR superfamily expressed on activated CD4+ and CD8+ T cells. 4-1BB can costimulate IL-2 production by resting primary T cells independently of CD28 ligation. In this study, we report signaling events following 4-1BB receptor aggregation using an Ak-restricted costimulation-dependent T cell hybridoma, C8.A3. Aggregation of 4-1BB on the surface of C8.A3 cells induces TNFR-associated factor 2 recruitment, which in turn recruits and activates apoptosis signal-regulating kinase-1, leading to downstream activation of c-Jun N-terminal/stress-activated protein kinases (JNK/SAPK). 4-1BB ligation also enhances anti-CD3-induced JNK/SAPK activation in primary T cells. Overexpression of a catalytically inactive form of apoptosis signal-regulating kinase-1 in C8.A3 T cells interferes with activation of the SAPK cascade and with IL-2 secretion, consistent with a critical role for JNK/SAPK activation in 4-1BB-dependent IL-2 production. Given the ability of both CD28 and 4-1BB to induce JNK/SAPK activation, we asked whether hyperosmotic shock, another inducer of this cascade, could function to provide a costimulatory signal to T cells. Osmotic shock of resting primary T cells in conjunction with anti-CD3 treatment was found to costimulate IL-2 production by the T cells, consistent with a pivotal role for JNK/SAPK in T cell costimulation.
Collapse
Affiliation(s)
- Jennifer L. Cannons
- *Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Klaus P. Hoeflich
- †Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, Toronto, Ontario, Canada
| | - James R. Woodgett
- †Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Tania H. Watts
- *Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
37
|
DeLuca C, Kwon H, Lin R, Wainberg M, Hiscott J. NF-kappaB activation and HIV-1 induced apoptosis. Cytokine Growth Factor Rev 1999; 10:235-53. [PMID: 10647779 DOI: 10.1016/s1359-6101(99)00015-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection leads to the progressive loss of CD4+ T cells and the near complete destruction of the immune system in the majority of infected individuals. High levels of viral gene expression and replication result in part from the activation of NF-kappaB transcription factors, which in addition to orchestrating the host inflammatory response also activate the HIV-1 long terminal repeat. NF-kappaB induces the expression of numerous cytokine, chemokine, growth factor and immunoregulatory genes, many of which promote HIV-1 replication. Thus, NF-kappaB activation represents a double edged sword in HIV-1 infected cells, since stimuli that induce an NF-kappaB mediated immune response will also lead to enhanced HIV-1 transcription. NF-kappaB has also been implicated in apoptotic signaling, protecting cells from programmed cell death under most circumstances and accelerating apoptosis in others. Therefore, activation of NF-kappaB can impact upon HIV-1 replication and pathogenesis at many levels, making the relationship between HIV-1 expression and NF-kappaB activation multi-faceted. This review will attempt to analyse the many faces and functions of NF-kappaB in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- C DeLuca
- Lady Davis Institute for Medical Research, Department of Microbiology, McGill AIDS Center, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
38
|
van Eyndhoven WG, Gamper CJ, Cho E, Mackus WJ, Lederman S. TRAF-3 mRNA splice-deletion variants encode isoforms that induce NF-kappaB activation. Mol Immunol 1999; 36:647-58. [PMID: 10509816 DOI: 10.1016/s0161-5890(99)00079-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although TRAF-3 gene products are required for signaling in T-B cell collaboration, full-length TRAF-3 appears to lack signaling function in transient transfection assays that measure NF-kappaB activation. However, the TRAF-3 gene also encodes at least three mRNA splice-deletion variants that predict protein isoforms (delta25aa, delta52aa and delta56aa) with altered zinc (Zn) finger domains and unknown functional capacities. To determine whether TRAF-3 splice-deletion variants may transmit activating receptor signals to the nucleus, cDNAs for five additional splice-variant isoforms (delta27aa, delta83aa, delta103aa, delta130aa and delta221aa) were cloned from a TRAF-3+ lymphoma and the expression and function of each of the eight TRAF-3 splice-deletion variants was analyzed. Among the splice-deletion variants, TRAF-3 delta130 mRNA is expressed by tonsillar B cells and by each of a panel of B and T cell lines. TRAF-3 delta221 protein is expressed by tonsillar B cells and by each of the lymphocytic lines. The functional effect of over-expressing each TRAF-3 splice-deletion variant on NF-kappaB activation was studied in 293 T cells. Seven of the TRAF-3 splice-deletion variants, such as TRAF-3 delta130, induce substantial NF-kappaB-driven luciferase activity (80-500 fold). In contrast, TRAF-3 delta221 (in which the complete Zn finger domain is absent) fails to induce NF-kappaB activation. Although full-length TRAF-3 alone is inactive, it augments the functional effects of the seven activating TRAF-3 splice-deletion variants (1.4-5 fold). These data indicate that alterations of the Zn finger domains render the TRAF-3 splice-deletion variants capable of inducing NF-kappaB activation and that full-length TRAF-3 augments their signaling.
Collapse
Affiliation(s)
- W G van Eyndhoven
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
39
|
Ferreira V, Sidénius N, Tarantino N, Hubert P, Chatenoud L, Blasi F, Körner M. In Vivo Inhibition of NF-κB in T-Lineage Cells Leads to a Dramatic Decrease in Cell Proliferation and Cytokine Production and to Increased Cell Apoptosis in Response to Mitogenic Stimuli, But Not to Abnormal Thymopoiesis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To understand the role of NF-κB complexes in T cell development and activation, we have generated transgenic mice in which RelA and c-Rel complexes were selectively inhibited in the T-lineage cells by specific expression of a trans-dominant form of IκBα. Transgene expression did not affect the thymic development, but led to lowered numbers of splenic T cells and to a dramatic decrease in the ex vivo proliferative response of splenic T lymphocytes. Analysis of IL-2 and IL-2Rα expression demonstrated that the perturbation of the proliferation response was not attributable to an abnormal expression of these genes. In contrast, expression of IL-4, IL-10, and IFN-γ was strongly inhibited in the transgenic T cells. The proliferative deficiency of the transgenic T cells was associated with an increased apoptosis. These results point out the involvement of NF-κB/Rel family proteins in growth signaling pathways by either regulating proteins involved in the IL-2 signaling or by functionally interfering with the cell cycle progression.
Collapse
Affiliation(s)
- Valérie Ferreira
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Nicolai Sidénius
- †Unit of Molecular Genetics, DIBIT, Hospital San Raffaele, Milan, Italy; and
| | - Nadine Tarantino
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Pascale Hubert
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucienne Chatenoud
- ‡Institut National de la Santé et Research Médicale, Unit 25, Hôpital Necker Enfants Malades, Paris, France
| | - Francesco Blasi
- †Unit of Molecular Genetics, DIBIT, Hospital San Raffaele, Milan, Italy; and
| | - Marie Körner
- *Laboratoire d’Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Batiment Centre d’Etudes et de Recherches Virologiques et Immunologiques, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
DeLuca C, Petropoulos L, Zmeureanu D, Hiscott J. Nuclear IkappaBbeta maintains persistent NF-kappaB activation in HIV-1-infected myeloid cells. J Biol Chem 1999; 274:13010-6. [PMID: 10224051 DOI: 10.1074/jbc.274.19.13010] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocytic cells exhibit constitutive NF-kappaB activation upon infection with human immunodeficiency virus-1 (HIV-1). Because IkappaBbeta has been implicated in maintaining NF-kappaB.DNA binding, we sought to investigate whether IkappaBbeta was involved in maintaining persistent NF-kappaB activation in HIV-1-infected monocytic cell lines. IkappaBbeta was present in the nucleus of HIV-1-infected cells and participated in the ternary complex formation with NF-kappaB and DNA. In contrast to uninfected cells, the addition of recombinant glutathione S-transferase-IkappaBalpha protein to preformed NF-kappaB.DNA complexes from HIV-1-infected cell extracts did not completely dissociate the complexes, suggesting that IkappaBbeta may protect NF-kappaB complexes from IkappaBalpha-mediated dissociation. Immunodepletion of IkappaBbeta resulted in an NF-kappaB.DNA binding complex that was sensitive to IkappaBalpha-mediated dissociation, thus demonstrating the protective role of IkappaBbeta. In addition, co-transfection studies with an NF-kappaB-dependent reporter construct demonstrated that IkappaBbeta co-expression partially alleviated inhibition of NF-kappaB-mediated gene expression by IkappaBalpha, implying that IkappaBbeta can maintain transcriptionally active NF-kappaB.DNA complexes. Furthermore, constitutive phosphorylation of IkappaBalpha was observed. Immunoprecipitation of the IkappaB kinase (IKK) complex followed by in vitro analysis of kinase activity demonstrated that IKK was constitutively activated in HIV-1-infected myeloid cells. Thus, virus-induced constitutive IKK activation, coupled with the maintenance of a ternary NF-kappaB.DNA complex by IkappaBbeta, maintains persistent NF-kappaB activity in HIV-1-infected myeloid cells.
Collapse
Affiliation(s)
- C DeLuca
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
41
|
Cheng JD, Ryseck RP, Attar RM, Dambach D, Bravo R. Functional redundancy of the nuclear factor kappa B inhibitors I kappa B alpha and I kappa B beta. J Exp Med 1998; 188:1055-62. [PMID: 9743524 PMCID: PMC2212550 DOI: 10.1084/jem.188.6.1055] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The transcription factor NF-kappaB is sequestered in the cytoplasm by the inhibitor proteins of the IkappaB family. Each member of the IkappaB exhibits structural and biochemical similarities as well as differences. In an effort to address the functional redundancy of two closely related IkappaB molecules, IkappaBalpha and IkappaBbeta, we generated knock-in mice by replacing the IkappaBalpha gene with the IkappaBbeta gene. The knock-in mice do not express IkappaBalpha, but express a T7-tagged IkappaBbeta under the promoter and regulatory sequence of ikba. Unlike the IkappaBalpha-deficient mice, which display severe postnatal developmental defects and die by postnatal day 8, homozygous knock-in mice survive to adulthood, are fertile, and exhibit no apparent abnormalities. Furthermore, thymocytes and embryonic fibroblasts from the knock-in animals exhibit an inducible NF-kappaB response similar to that of wild-type animals. These results indicate that IkappaBalpha and IkappaBbeta share significant similarities in their biochemical activity, and that they acquired their different functions from divergent expression patterns during evolution.
Collapse
Affiliation(s)
- J D Cheng
- Department of Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000, USA
| | | | | | | | | |
Collapse
|