1
|
Rayêe D, Wilmarth PA, VanSlyke JK, Zientek K, Reddy AP, Musil LS, David LL, Cvekl A. Analysis of mouse lens morphological and proteomic abnormalities following depletion of βB3-crystallin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630781. [PMID: 39803551 PMCID: PMC11722438 DOI: 10.1101/2024.12.30.630781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation. While many cataract-causing missense and nonsense mutations are known for these proteins, including the human CRYBB3 gene, the mammalian loss-of function model of the Crybb3 gene remains to be established. Herein, we generated the first mouse model via deletion of the Crybb3 promoter that abolished expression of the βB3-crystallin. Histological analysis of lens morphology using newborn βB3-crystallin-deficient lenses revealed disrupted lens morphology with early-onset phenotypic variability. In-depth lens proteomics at four time points (newborn, 3-weeks, 6-weeks, and 3-months) showed both down- and up-regulation of various proteins, with the highest divergence from control mice observed in 3-months lenses. Apart from the βB3-crystallin, another protein Smarcc1/Baf155 was down-regulated in all four samples. In addition, downregulation of Hspe1, Pdlim1, Ast/Got, Lsm7, Ddx23, and Acad11 was found in three time points. Finally, we show that the βB3-crystallin promoter region, which contains multiple binding sites for the transcription factors AP-2α, c-Jun, c-Maf, Etv5, and Pax6 is activated by FGF2 in primary lens cell culture experiments. Together, these studies establish the mouse Crybb3 loss-of-function model and its disrupted crystallin and non-crystallin proteomes.
Collapse
Affiliation(s)
- Danielle Rayêe
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
| | - Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239
| | - Keith Zientek
- Proteomics Shared Resource, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
2
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
3
|
Disatham J, Brennan L, Cvekl A, Kantorow M. Multiomics Analysis Reveals Novel Genetic Determinants for Lens Differentiation, Structure, and Transparency. Biomolecules 2023; 13:693. [PMID: 37189439 PMCID: PMC10136076 DOI: 10.3390/biom13040693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in next-generation sequencing and data analysis have provided new gateways for identification of novel genome-wide genetic determinants governing tissue development and disease. These advances have revolutionized our understanding of cellular differentiation, homeostasis, and specialized function in multiple tissues. Bioinformatic and functional analysis of these genetic determinants and the pathways they regulate have provided a novel basis for the design of functional experiments to answer a wide range of long-sought biological questions. A well-characterized model for the application of these emerging technologies is the development and differentiation of the ocular lens and how individual pathways regulate lens morphogenesis, gene expression, transparency, and refraction. Recent applications of next-generation sequencing analysis on well-characterized chicken and mouse lens differentiation models using a variety of omics techniques including RNA-seq, ATAC-seq, whole-genome bisulfite sequencing (WGBS), chip-seq, and CUT&RUN have revealed a wide range of essential biological pathways and chromatin features governing lens structure and function. Multiomics integration of these data has established new gene functions and cellular processes essential for lens formation, homeostasis, and transparency including the identification of novel transcription control pathways, autophagy remodeling pathways, and signal transduction pathways, among others. This review summarizes recent omics technologies applied to the lens, methods for integrating multiomics data, and how these recent technologies have advanced our understanding ocular biology and function. The approach and analysis are relevant to identifying the features and functional requirements of more complex tissues and disease states.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA; (J.D.); (L.B.)
| |
Collapse
|
4
|
Chang W, Zhao Y, Rayêe D, Xie Q, Suzuki M, Zheng D, Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023; 16:4. [PMID: 36698218 PMCID: PMC9875507 DOI: 10.1186/s13072-023-00478-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.
Collapse
Affiliation(s)
- William Chang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Danielle Rayêe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Masako Suzuki
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Ma Z, Chauss D, Disatham J, Jiao X, Brennan LA, Menko AS, Kantorow M, Hejtmancik JF. Patterns of Crystallin Gene Expression in Differentiation State Specific Regions of the Embryonic Chicken Lens. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35412582 PMCID: PMC9012887 DOI: 10.1167/iovs.63.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Transition from lens epithelial cells to lens fiber cell is accompanied by numerous changes in gene expression critical for lens transparency. We identify expression patterns of highly prevalent genes including ubiquitous and enzyme crystallins in the embryonic day 13 chicken lens. Methods Embryonic day 13 chicken lenses were dissected into central epithelial cell (EC), equatorial epithelial cell (EQ), cortical fiber cell (FP), and nuclear fiber cell (FC) compartments. Total RNA was prepared, subjected to high-throughput unidirectional mRNA sequencing, analyzed, mapped to the chicken genome, and functionally grouped. Results A total of 77,097 gene-specific transcripts covering 17,450 genes were expressed, of which 10,345 differed between two or more lens subregions. Ubiquitous crystallin gene expression increased from EC to EQ and was similar in FP and FC. Highly expressed crystallin genes fell into three coordinately expressed groups with R2 ≥ 0.93: CRYAA, CRYBB2, CRYAB, and CRYBA2; CRYBB1, CRYBA4, CRYGN, ASL1, and ASL; and CRYBB3 and CRYBA1. The highly expressed transcription factors YBX1, YBX3, PNRC1, and BASP1 were coordinately expressed with the second group of crystallins (r2 > 0.88). Conclusions Although it is well known that lens crystallin gene expression changes during the epithelial to fiber cell transition, these data identify for the first time three distinct patterns of expression for specific subsets of crystallin genes, each highly correlated with expression of specific transcription factors. The results provide a quantitative basis for designing functional experiments pinpointing the mechanisms governing the landscape of crystallin expression during fiber cell differentiation to attain lens transparency.
Collapse
Affiliation(s)
- Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Daniel Chauss
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa Ann Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Autoregulation of Pax6 in neuronal cells is mediated by Pax6(5a), Pax6(ΔPD), SPARC, and p53. Mol Biol Rep 2022; 49:3271-3279. [PMID: 35103896 DOI: 10.1007/s11033-022-07164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pax6, a multifunctional protein and a transcriptional regulator is critical for optimal functioning of neuronal cells. It is known that alternatively spliced Pax6 isoforms and co-expressed interacting proteins mediate cell/tissue specific autoregulation of Pax6, however, underlying mechanism(s) are poorly understood. METHODS AND RESULTS We used Neuro-2a cells to explore the mechanism of autoregulation of Pax6 in neuronal cells whereas NIH/3T3 cells were used as control. We first studied the transcript expression of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD); and the two co-expressed Pax6-interacting partners: SPARC and p53 in normal and overexpressed conditions, through the semi-quantitative RT-PCR. Further, we used the luciferase reporter assay to study the binding and transactivation of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD) to their respective promoters: P0, P1, and Pα; followed by that of the two co-expressed Pax6-interacting partners: SPARC and p53 to the Pax6-P1 promoter. Expression and distribution of Pax6, Pax6(5a) and Pax6(ΔPD), their binding to Pax6-promoters (P0, P1, and Pα) and transactivation were modulated in transfected Neuro-2a cells. CONCLUSION Our results suggest that autoregulation of Pax6 in neuronal cells is driven by a promoter dependent mechanism which is mediated by spliced variants [Pax6(5a) and Pax6(ΔPD)] and interacting proteins (SPARC and p53) of Pax6.
Collapse
|
7
|
Aryal S, Viet J, Weatherbee BAT, Siddam AD, Hernandez FG, Gautier-Courteille C, Paillard L, Lachke SA. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Hum Genet 2020; 139:1541-1554. [PMID: 32594240 DOI: 10.1007/s00439-020-02195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | | | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | | | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France.
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
8
|
Zhang Y, Wang Z, Zhao G, Liu JX. Silver nanoparticles affect lens rather than retina development in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:279-288. [PMID: 30056342 DOI: 10.1016/j.ecoenv.2018.07.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) have been reported to inhibit specification and differentiation of erythroid cells, chromatophores, and myofibrils during zebrafish embryogenesis. However, the knowledge of biological effects of AgNPs on eye development, especially on lens development is scarce. In this study, embryos were exposed to or injected with 0.4 mg/L AgNPs, and the results indicate that no obvious morphological changes in eye formation were observed in the stressed embryos compared to the controls. However, clefts and vacuoles were observed in lens of embryos from AgNPs stressed group. Additionally, the down-regulated expressions of different lens crystallin isoform genes and the normal expression of retinal genes were observed in AgNPs stressed embryos, suggesting AgNPs might inhibit the development of lens rather than the development of retina in zebrafish embryos. Moreover, no obvious cell apoptosis was observed, but normal nuclear DNA and RNA export was observed in lens cells. Together, the data in this study reveal that AgNPs damage the development of lens rather than retina resulting in eye abnormalities via some unknown mechanisms rather than via triggering cells apoptosis or blocking nuclear DNA or RNA export.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, Hunan, China.
| |
Collapse
|
9
|
Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, Zack DJ, Ashery-Padan R. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol 2017; 432:140-150. [PMID: 28993200 DOI: 10.1016/j.ydbio.2017.09.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 09/23/2017] [Indexed: 12/16/2022]
Abstract
In the developing retina, as in other regions of the CNS, neural progenitors give rise to individual cell types during discrete temporal windows. Pax6 is expressed in retinal progenitor cells (RPCs) throughout the course of retinogenesis, and has been shown to be required during early retinogenesis for generation of most early-born cell types. In this study, we examined the function of Pax6 in postnatal mouse retinal development. We found that Pax6 is essential for the generation of late-born interneurons, while inhibiting photoreceptor differentiation. Generation of bipolar interneurons requires Pax6 expression in RPCs, while Pax6 is required for the generation of glycinergic, but not for GABAergic or non-GABAergic-non-glycinergic (nGnG) amacrine cell subtypes. In contrast, overexpression of either full-length Pax6 or its 5a isoform in RPCs induces formation of cells with nGnG amacrine features, and suppresses generation of other inner retinal cell types. Moreover, overexpression of both Pax6 variants prevents photoreceptor differentiation, most likely by inhibiting Crx expression. Taken together, these data show that Pax6 acts in RPCs to control differentiation of multiple late-born neuronal cell types.
Collapse
Affiliation(s)
- Liv Aleen Remez
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Akishi Onishi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Yotam Menuchin-Lasowski
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Assaf Biran
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
| | - Donlad J Zack
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, Mues G, D'Souza RN. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development 2017; 144:3819-3828. [PMID: 28893947 DOI: 10.1242/dev.157750] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9-/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2, proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9-/-Dkk1f/+;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9+/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero, while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders.
Collapse
Affiliation(s)
- Shihai Jia
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Zhou
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Yinshen Wee
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - John Bonds
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Gabriele Mues
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA .,Departments of Neurobiology & Anatomy, Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
12
|
Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, Cohen-Tayar Y, Stolovich-Rain M, Kaestner KH, Glaser B, Ashery-Padan R, Dor Y. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 2016; 127:230-243. [PMID: 27941241 DOI: 10.1172/jci88015] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.
Collapse
|
13
|
Abstract
Background Pax6, a highly conserved multifunctional transcription factor, has been critical for neurogenesis and neuronal plasticity. It is presumed that if level of Pax6 approaches either low or null, critical genes responsible for maintaining functional status of neurons or glia would be modulated. Purpose Therefore, it has been intended to explore possibility of either direct or indirect influence of Pax6 in neurodegeneration. Methods The cell lines having origin of murine embryonic fibroblast (Pax6-non expressing, NIH3T3-cell line), murine neuroblastoma (Pax6-expressing brain-derived, Neuro-2a-cell line), and human glioblastoma-astrocytoma (U87MG) were cultured and maintained in a CO2 incubator at 37°C and 5% CO2 in DMEM containing 10% fetal bovine serum. The knockdown of endogenous Pax6 in Neuro-2a cells was achieved through siRNA based gene knock-down approach. The efficiency and validation of knock-down was done by real time PCR. The knock-down of Pax6 was successfully achieved. Results The levels of expression of transcripts of some of the proposed putative markers of neurodegeneration like Pax6, S100β, GFAP, BDNF, NGN2, p73α, p73δ, LDH, SOD, and Catalase were analyzed in Pax6 knockdown condition for analysis of role of Pax6 in neurodegeneration. Since the Pax6 has been proposed to bind to promoter sequences of catalase, and catalase suppresses TGFβ, relative lower levels of catalase in Neuro-2a and U-87MG as compared to NIH-3T3 indicates a possible progressive dominant negative impact of Pax6. However, presence of SOD and LDH indicates alternative protective mechanism. Conclusion Presence of BDNF and TGFβ indicates association between them in glioblastoma-astrocytoma. Therefore, Pax6 seems to be involved directly with p53 and TGFβ mediated pathways and indirectly with redox-sensitive pathway regulation. The neurodegenerative markers S100β, GFAP, BDNF, NGN2, p73α, p73δ, observed downregulated in Pax6 knockdown condition suggest Pax6-mediated regulation of these markers. Observations enlighten Pax6-mediated influences on cascades of genes involved in growth, differentiation and maturation of neurons and glia.
Collapse
|
14
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
15
|
Kerr CL, Zaveri MA, Robinson ML, Williams T, West-Mays JA. AP-2α is required after lens vesicle formation to maintain lens integrity. Dev Dyn 2014; 243:1298-309. [PMID: 24753151 PMCID: PMC7962590 DOI: 10.1002/dvdy.24141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors are critical in regulating lens development. The AP-2 family of transcription factors functions in differentiation, cell growth and apoptosis, and in lens and eye development. AP-2α, in particular, is important in early lens development, and when conditionally deleted at the placode stage defective separation of the lens vesicle from the surface ectoderm results. AP-2α's role during later stages of lens development is unknown. To address this, the MLR10-Cre transgene was used to delete AP-2α from the lens epithelium beginning at embryonic day (E) 10.5. RESULTS The loss of AP-2α after lens vesicle separation resulted in morphological defects beginning at E18.5. By P4, a small highly vacuolated lens with a multilayered epithelium was evident in the MLR10-AP-2α mutants. Epithelial cells appeared elongated and expressed fiber cell specific βB1 and γ-crystallins. Epithelial cell polarity and lens cell adhesion was disrupted and accompanied by the misexpression of ZO-1, N-Cadherin, and β-catenin. Cell death was observed in the mutant lens epithelium between postnatal day (P) 14 and P30, and correlated with altered arrangements of cells within the epithelium. CONCLUSIONS Our findings demonstrate that AP-2α continues to be required after lens vesicle separation to maintain a normal lens epithelial cell phenotype and overall lens integrity and to ensure correct fiber cell differentiation.
Collapse
Affiliation(s)
- Christine L. Kerr
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Mizna A. Zaveri
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | | | - Trevor Williams
- Department of Craniofacial Biology and Department of Cell and Developmental Biology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Judith A. West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Manthey AL, Terrell AM, Wang Y, Taube JR, Yallowitz AR, Duncan MK. The Zeb proteins δEF1 and Sip1 may have distinct functions in lens cells following cataract surgery. Invest Ophthalmol Vis Sci 2014; 55:5445-55. [PMID: 25082886 DOI: 10.1167/iovs.14-14845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO), the most prevalent side effect of cataract surgery, occurs when residual lens epithelial cells (LECs) undergo fiber cell differentiation or epithelial-to-mesenchymal transition (EMT). Here, we used a murine cataract surgery model to investigate the role of the Zeb proteins, Smad interacting protein 1 (Sip1) and δ-crystallin enhancer-binding factor 1 (δEF1), during PCO. METHODS Extracapsular extraction of lens fiber cells was performed on wild-type and Sip1 knockout mice. Protein expression patterns were assessed at multiple time points after surgery using confocal immunofluorescence. βB1-Crystallin mRNA levels were measured using quantitative RT-PCR. We used Transfac searches to identify δEF1 binding sites in the βB1-crystallin promoter and transfection analysis to test the ability of δEF1 to regulate βB1-crystallin expression. RESULTS δEF1, which, in other systems, can activate fibrotic genes (e.g., α-smooth muscle actin) and repress epithelial genes, upregulates by 48 hours after fiber cell removal. In culture, δEF1 repressed βB1-crystallin promoter activity, suggesting that it may also turn off lens gene expression following surgery, contributing to "fibrotic PCO" development. Sip1 also upregulates in LECs by 48 hours, but analysis of Sip1 knockout lenses demonstrated that Sip1 does not play a major role in EMT or fiber cell differentiation after surgery. However, Sip1 knockout LECs do express the ectodermal marker keratin 8, suggesting that Sip1 may limit the reprogramming of residual LECs to an embryonic state. CONCLUSIONS Zeb transcription factors likely play important, but distinct roles in PCO development after cataract surgery.
Collapse
Affiliation(s)
- Abby L Manthey
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Jennifer R Taube
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Alisha R Yallowitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
17
|
Meng B, Wang Y, Li B. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells. Int J Mol Med 2014; 34:399-408. [PMID: 24939714 PMCID: PMC4094585 DOI: 10.3892/ijmm.2014.1812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers.
Collapse
Affiliation(s)
- Bo Meng
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Yisong Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Bin Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| |
Collapse
|
18
|
Kratz A, Beguin P, Kaneko M, Chimura T, Suzuki AM, Matsunaga A, Kato S, Bertin N, Lassmann T, Vigot R, Carninci P, Plessy C, Launey T. Digital expression profiling of the compartmentalized translatome of Purkinje neurons. Genome Res 2014; 24:1396-410. [PMID: 24904046 PMCID: PMC4120092 DOI: 10.1101/gr.164095.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome-the translatome-from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)-associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities.
Collapse
Affiliation(s)
- Anton Kratz
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Pascal Beguin
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| | - Megumi Kaneko
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| | - Takahiko Chimura
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| | - Ana Maria Suzuki
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Atsuko Matsunaga
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| | - Sachi Kato
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Nicolas Bertin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Réjan Vigot
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| | - Charles Plessy
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan;
| | - Thomas Launey
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
19
|
A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet 2014; 94:186-97. [PMID: 24439111 DOI: 10.1016/j.ajhg.2013.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 70 loci associated with type 2 diabetes (T2D), but for most, the underlying causal variants, associated genes, and functional mechanisms remain unknown. At a T2D- and fasting-proinsulin-associated locus on 11q13.4, we have identified a functional regulatory DNA variant, a candidate target gene, and a plausible underlying molecular mechanism. Fine mapping, conditional analyses, and exome array genotyping in 8,635 individuals from the Metabolic Syndrome in Men study confirmed a single major association signal between fasting proinsulin and noncoding variants (p = 7.4 × 10(-50)). Measurement of allele-specific mRNA levels in human pancreatic islet samples heterozygous for rs11603334 showed that the T2D-risk and proinsulin-decreasing allele (C) is associated with increased ARAP1 expression (p < 0.02). We evaluated four candidate functional SNPs for allelic effects on transcriptional activity by performing reporter assays in rodent pancreatic beta cell lines. The C allele of rs11603334, located near one of the ARAP1 promoters, exhibited 2-fold higher transcriptional activity than did the T allele (p < 0.0001); three other candidate SNPs showed no allelic differences. Electrophoretic mobility shift assays demonstrated decreased binding of pancreatic beta cell transcriptional regulators PAX6 and PAX4 to the rs11603334 C allele. Collectively, these data suggest that the T2D-risk allele of rs11603334 could abrogate binding of a complex containing PAX6 and PAX4 and thus lead to increased promoter activity and ARAP1 expression in human pancreatic islets. This work suggests that increased ARAP1 expression might contribute to T2D susceptibility at this GWAS locus.
Collapse
|
20
|
Manthey AL, Lachke SA, FitzGerald PG, Mason RW, Scheiblin DA, McDonald JH, Duncan MK. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mech Dev 2013; 131:86-110. [PMID: 24161570 DOI: 10.1016/j.mod.2013.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
Abstract
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts.
Collapse
Affiliation(s)
- Abby L Manthey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Robert W Mason
- Department of Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - John H McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
21
|
Shaham O, Gueta K, Mor E, Oren-Giladi P, Grinberg D, Xie Q, Cvekl A, Shomron N, Davis N, Keydar-Prizant M, Raviv S, Pasmanik-Chor M, Bell RE, Levy C, Avellino R, Banfi S, Conte I, Ashery-Padan R. Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet 2013; 9:e1003357. [PMID: 23516376 PMCID: PMC3597499 DOI: 10.1371/journal.pgen.1003357] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204. The transcription factor Pax6 is reiteratively employed in space and time for the establishment of progenitor pools and the differentiation of neuronal and non-neuronal lineages of the CNS, pancreas, and eye. Execution of these diverse developmental programs depends on simultaneous activation and repression of gene networks functioning downstream of Pax6. MicroRNAs function as inhibitors of gene expression. Many microRNA genes are transcribed through common promoters of host genes. In this study, using wide-scale analysis of changes in gene expression following Pax6 deletion in the lens, we discover that Pax6 regulates the gene Trpm3 and its hosted microRNA, miR-204. We then show that miR-204 suppresses several target genes in the lens, notably the neuronal gene Sox11. Lastly, by conducting parallel experiments in the medaka fish, we show that Pax6 control of miR-204 and its target genes is evolutionarily conserved between mammals and fish, stressing the biological importance of this pathway. Pax6 regulation of miR-204 explains part of the complex, divergent inhibitory activity of Pax6 in ocular progenitor cells, which is required to establish and maintain the identity and function of ocular tissues.
Collapse
Affiliation(s)
- Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Gueta
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Mor
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pazit Oren-Giladi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Grinberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Qing Xie
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ales Cvekl
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Davis
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Keydar-Prizant
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel E. Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (IC); (RA-P)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (IC); (RA-P)
| |
Collapse
|
22
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
23
|
de Thonel A, Le Mouël A, Mezger V. Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 2012; 44:1593-612. [PMID: 22750029 DOI: 10.1016/j.biocel.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/16/2022]
Abstract
The members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
24
|
Ho DWH, Yap MKH, Ng PW, Fung WY, Yip SP. Association of high myopia with crystallin beta A4 (CRYBA4) gene polymorphisms in the linkage-identified MYP6 locus. PLoS One 2012; 7:e40238. [PMID: 22792142 PMCID: PMC3389832 DOI: 10.1371/journal.pone.0040238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/03/2012] [Indexed: 12/03/2022] Open
Abstract
Background Myopia is the most common ocular disorder worldwide and imposes tremendous burden on the society. It is a complex disease. The MYP6 locus at 22 q12 is of particular interest because many studies have detected linkage signals at this interval. The MYP6 locus is likely to contain susceptibility gene(s) for myopia, but none has yet been identified. Methodology/Principal Findings Two independent subject groups of southern Chinese in Hong Kong participated in the study an initial study using a discovery sample set of 342 cases and 342 controls, and a follow-up study using a replication sample set of 316 cases and 313 controls. Cases with high myopia were defined by spherical equivalent ≤ -8 dioptres and emmetropic controls by spherical equivalent within ±1.00 dioptre for both eyes. Manual candidate gene selection from the MYP6 locus was supported by objective in silico prioritization. DNA samples of discovery sample set were genotyped for 178 tagging single nucleotide polymorphisms (SNPs) from 26 genes. For replication, 25 SNPs (tagging or located at predicted transcription factor or microRNA binding sites) from 4 genes were subsequently examined using the replication sample set. Fisher P value was calculated for all SNPs and overall association results were summarized by meta-analysis. Based on initial and replication studies, rs2009066 located in the crystallin beta A4 (CRYBA4) gene was identified to be the most significantly associated with high myopia (initial study: P = 0.02; replication study: P = 1.88e-4; meta-analysis: P = 1.54e-5) among all the SNPs tested. The association result survived correction for multiple comparisons. Under the allelic genetic model for the combined sample set, the odds ratio of the minor allele G was 1.41 (95% confidence intervals, 1.21-1.64). Conclusions/Significance A novel susceptibility gene (CRYBA4) was discovered for high myopia. Our study also signified the potential importance of appropriate gene prioritization in candidate selection.
Collapse
Affiliation(s)
- Daniel W. H. Ho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Maurice K. H. Yap
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Po Wah Ng
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wai Yan Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
25
|
Kerr CL, Huang J, Williams T, West-Mays JA. Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci 2012; 53:3316-30. [PMID: 22491411 DOI: 10.1167/iovs.12-9595] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. METHODS We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. RESULTS Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. CONCLUSIONS Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3.
Collapse
Affiliation(s)
- Christine L Kerr
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
27
|
Kiselev Y, Eriksen TE, Forsdahl S, Nguyen LHT, Mikkola I. 3T3 cell lines stably expressing Pax6 or Pax6(5a)--a new tool used for identification of common and isoform specific target genes. PLoS One 2012; 7:e31915. [PMID: 22384097 PMCID: PMC3285655 DOI: 10.1371/journal.pone.0031915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/19/2012] [Indexed: 12/03/2022] Open
Abstract
Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities.
Collapse
Affiliation(s)
| | | | | | | | - Ingvild Mikkola
- Research Group of Pharmacology, Department of Pharmacy, University of Tromsø, Tromsø, Norway
- * E-mail:
| |
Collapse
|
28
|
Ogino H, Ochi H, Reza HM, Yasuda K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev Biol 2012; 363:333-47. [PMID: 22269169 DOI: 10.1016/j.ydbio.2012.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 12/14/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
Abstract
Lens development is a stepwise process accompanied by the sequential activation of transcription factors. Transcription factor genes can be classified into three groups according to their functions: the first group comprises preplacodal genes, which are implicated in the formation of the preplacodal ectoderm that serves as a common primordium for cranial sensory tissues, including the lens. The second group comprises lens-specification genes, which establish the lens-field within the preplacodal ectoderm. The third group comprises lens-differentiation genes, which promote lens morphogenesis after the optic vesicle makes contact with the presumptive lens ectoderm. Analyses of the regulatory interactions between these genes have provided an overview of lens development, highlighting crucial roles for positive cross-regulation in fate specification and for feed-forward regulation in the execution of terminal differentiation. This overview also sheds light upon the mechanisms of how preplacodal gene activities lead to the activation of genes involved in lens-specification.
Collapse
Affiliation(s)
- Hajime Ogino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | | | | | | |
Collapse
|
29
|
Wakamatsu Y. Mutual repression between Pax3 and Pax6 is involved in the positioning of ophthalmic trigeminal placode in avian embryo. Dev Growth Differ 2011; 53:994-1003. [PMID: 22111909 DOI: 10.1111/j.1440-169x.2011.01311.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cranial sense organs and a subset of cranial sensory neurons are generated from placodes, thickenings of the ectoderm. Pax3 has been known as a marker for ophthalmic trigeminal placode specification, and also an important regulator of trigeminal placode neuron differentiation. In this study, I show that Pax6 is initially expressed in the preplacodal region at the level of ophthalmic trigeminal placode, and that this expression gradually regresses in a medial-to-lateral direction as Pax3 expression expands in the same direction. Misexpression studies revealed that Pax6 represses Pax3 expression indirectly as a transcriptional activator in a cell-autonomous manner. Pax3-misexpression represses Pax6 expression in an indirect fashion, suggesting that unknown factor(s) downstream of Pax3 may repress Pax6 expression, and thereby allow an expansion of Pax3-positive ophthalmic trigeminal placode region. These results indicate that the mutual repression between Pax3 and Pax6 has important roles in the specification and the positioning of the ophthalmic trigeminal placode.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Tohoku University, Graduate School of Medicine, Division of Developmental Neuroscience, Miyagi, Japan.
| |
Collapse
|
30
|
Jang ES, Goldman JE. Pax6 expression is sufficient to induce a neurogenic fate in glial progenitors of the neonatal subventricular zone. PLoS One 2011; 6:e20894. [PMID: 21698109 PMCID: PMC3117849 DOI: 10.1371/journal.pone.0020894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/11/2011] [Indexed: 11/23/2022] Open
Abstract
Background The forebrain subventricular zone (SVZ) of neonatal mammals contains a large, heterogeneous population of migratory and proliferating precursors of interneurons and glia. These cell types are produced in large numbers in the immediate postnatal period, the glioblasts populating the hemispheres with astrocytes and oligodendrocytes, the neuroblasts migrating to the olfactory bulb to become interneurons. How cell fate decisions are determined or stabilized in this mixed population is not clear, although previous studies indicate the importance of two transcription factors, Pax6 in neurons and Olig2 in glia, and suggest there may be reciprocal repression between these genes. Methodology/Principal Findings In examining the SVZ of neonatal mouse and rat brain, we find that the very large majority of SVZ cells express either Pax6 or Olig2, but few express both. We have used in vivo retro- and lenti-virus injections into the neonatal SVZ and in vitro gene transfer to demonstrate that pax6 over-expression is sufficient to down-regulate olig2 and to promote a neuronal lineage development and migration pattern in olig2-expressing cells. Furthermore, we provide evidence that Pax6 binds to the olig2 promoter and that an HEB sequence in the promoter is required for the Pax6 repression of olig2 transcription. Lastly, we constructed a lentivirus to target olig2-expressing cells in the SVZ to trace their fates, and found that the very large majority developed into glia. Conclusions/Significance We provide evidence for a direct repression of olig2 by Pax6. Since SVZ cells can display developmental plasticity in vitro, the cross-repression promotes a stabilization of cell fates. This repression may be critical in a germinal zone in which immature cells are highly migratory and are not organized into an epithelium.
Collapse
Affiliation(s)
- Eun Sook Jang
- Integrated CMBS and Pathology Graduate Programs, Columbia University, New York, New York, United States of America
| | - James E. Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Caceres A, Shang F, Wawrousek E, Liu Q, Avidan O, Cvekl A, Yang Y, Haririnia A, Storaska A, Fushman D, Kuszak J, Dudek E, Smith D, Taylor A. Perturbing the ubiquitin pathway reveals how mitosis is hijacked to denucleate and regulate cell proliferation and differentiation in vivo. PLoS One 2010; 5:e13331. [PMID: 20975996 PMCID: PMC2958118 DOI: 10.1371/journal.pone.0013331] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/15/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The eye lens presents a unique opportunity to explore roles for specific molecules in cell proliferation, differentiation and development because cells remain in place throughout life and, like red blood cells and keratinocytes, they go through the most extreme differentiation, including removal of nuclei and cessation of protein synthesis. Ubiquitination controls many critical cellular processes, most of which require specific lysines on ubiquitin (Ub). Of the 7 lysines (K) least is known about effects of modification of K6. METHODOLOGY AND PRINCIPAL FINDINGS We replaced K6 with tryptophan (W) because K6 is the most readily modified K and W is the most structurally similar residue to biotin. The backbone of K6W-Ub is indistinguishable from that of Wt-Ub. K6W-Ub is effectively conjugated and deconjugated but the conjugates are not degraded via the ubiquitin proteasome pathways (UPP). Expression of K6W-ubiquitin in the lens and lens cells results in accumulation of intracellular aggregates and also slows cell proliferation and the differentiation program, including expression of lens specific proteins, differentiation of epithelial cells into fibers, achieving proper fiber cell morphology, and removal of nuclei. The latter is critical for transparency, but the mechanism by which cell nuclei are removed has remained an age old enigma. This was also solved by expressing K6W-Ub. p27(kip), a UPP substrate accumulates in lenses which express K6W-Ub. This precludes phosphorylation of nuclear lamin by the mitotic kinase, a prerequisite for disassembly of the nuclear membrane. Thus the nucleus remains intact and DNAseIIβ neither gains entry to the nucleus nor degrades the DNA. These results could not be obtained using chemical proteasome inhibitors that cannot be directed to specific tissues. CONCLUSIONS AND SIGNIFICANCE K6W-Ub provides a novel, genetic means to study functions of the UPP because it can be targeted to specific cells and tissues. A fully functional UPP is required to execute most stages of lens differentiation, specifically removal of cell nuclei. In the absence of a functional UPP, small aggregate prone, cataractous lenses are formed.
Collapse
Affiliation(s)
- Andrea Caceres
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Eric Wawrousek
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Qing Liu
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Orna Avidan
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Ales Cvekl
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ying Yang
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aydin Haririnia
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, United States of America
| | - Andrew Storaska
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, United States of America
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, United States of America
| | - Jer Kuszak
- Departments of Ophthalmology and Pathology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Edward Dudek
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Donald Smith
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
32
|
Chanas SA, Collinson JM, Ramaesh T, Dorà N, Kleinjan DA, Hill RE, West JD. Effects of elevated Pax6 expression and genetic background on mouse eye development. Invest Ophthalmol Vis Sci 2009; 50:4045-59. [PMID: 19387074 PMCID: PMC2763115 DOI: 10.1167/iovs.07-1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. METHODS Histologic features of eyes from hemizygous PAX77(+/-) transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77(+/-)<-->wild-type and control wild-type<-->wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77(+/-) mice. RESULTS PAX77(+/-) mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6(+/-) heterozygotes (low Pax6 dose). Some previously reported PAX77(+/-) eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77(+/-)<-->wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77(+/-) cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77(+/-) and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77(+/-) and wild-type cells to mix normally and overrepresentation of PAX77(+/-) in the lens epithelium and RPE. CONCLUSIONS The extent of PAX77(+/-) eye abnormalities depended on PAX77(+/-) genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77(+/-) genotype. Abnormal cell mixing between PAX77(+/-) and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77(+/-)<-->wild-type and Pax6(+/-)<-->wild-type chimeras may reflect differences in the levels of PAX77(+/-) and Pax6(+/-) contributions to chimeric lenses.
Collapse
Affiliation(s)
- Simon A. Chanas
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - J. Martin Collinson
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, United Kingdom
| | - Thaya Ramaesh
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Department of Clinical and Surgical Sciences, Ophthalmology Section, University of Edinburgh, Princess Alexandra Eye Pavilion, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Natalie Dorà
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, United Kingdom
| | - Dirk A. Kleinjan
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | - Robert E. Hill
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | - John D. West
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
33
|
García-Villegas R, Escamilla J, Sánchez-Guzmán E, Pastén A, Hernández-Quintero M, Gómez-Flores E, Castro-Muñozledo F. Pax-6 is expressed early in the differentiation of a corneal epithelial model system. J Cell Physiol 2009; 220:348-56. [DOI: 10.1002/jcp.21771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 2009; 334:31-45. [PMID: 19596317 DOI: 10.1016/j.ydbio.2009.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/23/2022]
Abstract
Wnt/beta-catenin signaling is highly active in the dorsal retinal pigment epithelium (RPE) during eye development. To study the role of Wnt/beta-catenin signaling in the RPE development we used a conditional Cre/loxP system in mice to inactivate or ectopically activate Wnt/beta-catenin signaling in the RPE. Inactivation of Wnt/beta-catenin signaling results in transdifferentiation of RPE to neural retina (NR) as documented by downregulation of RPE-specific markers Mitf and Otx2 and ectopic expression of NR-specific markers Chx10 and Rx, respectively. In contrast, ectopic activation of Wnt/beta-catenin signaling results in the disruption of the RPE patterning, indicating that precise spatial and temporal regulation of Wnt/beta-catenin signaling is required for normal RPE development. Using chromatin immunoprecipitation (ChIP) and reporter gene assays we provide evidence that Otx2 and RPE-specific isoform of Mitf, Mitf-H, are direct transcriptional targets of Wnt/beta-catenin signaling. Combined, our data suggest that Wnt/beta-catenin signaling plays an essential role in development of RPE by maintaining or inducing expression of Mitf and Otx2.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Shaham O, Smith AN, Robinson ML, Taketo MM, Lang RA, Ashery-Padan R. Pax6 is essential for lens fiber cell differentiation. Development 2009; 136:2567-78. [PMID: 19570848 DOI: 10.1242/dev.032888] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developing ocular lens provides an excellent model system with which to study the intrinsic and extrinsic cues governing cell differentiation. Although the transcription factors Pax6 and Sox2 have been shown to be essential for lens induction, their later roles during lens fiber differentiation remain largely unknown. Using Cre/loxP mutagenesis, we somatically inactivated Pax6 and Sox2 in the developing mouse lens during differentiation of the secondary lens fibers and explored the regulatory interactions of these two intrinsic factors with the canonical Wnt pathway. Analysis of the Pax6-deficient lenses revealed a requirement for Pax6 in cell cycle exit and differentiation into lens fiber cells. In addition, Pax6 disruption led to apoptosis of lens epithelial cells. We show that Pax6 regulates the Wnt antagonist Sfrp2 in the lens, and that Sox2 expression is upregulated in the Pax6-deficient lenses. However, our study demonstrates that the failure of differentiation following loss of Pax6 is independent of beta-catenin signaling or Sox2 activity. This study reveals that Pax6 is pivotal for initiation of the lens fiber differentiation program in the mammalian eye.
Collapse
Affiliation(s)
- Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Riesenberg AN, Le TT, Willardsen MI, Blackburn DC, Vetter ML, Brown NL. Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 2009; 47:175-87. [PMID: 19208436 DOI: 10.1002/dvg.20479] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activation of the bHLH factor Math5 (Atoh7) is an initiating event for mammalian retinal neurogenesis, as it is critically required for retinal ganglion cell formation. However, the cis-regulatory elements and trans-acting factors that control Math5 expression are largely unknown. Using a combination of transgenic mice and bioinformatics, we identified a phylogenetically conserved regulatory element that is required to activate Math5 transcription during early retinal neurogenesis. This element drives retinal expression in vivo, in a cross-species transgenic assay. Previously, Pax6 was shown to be necessary for the initiation of Math5 mRNA expression. We extend this finding by showing that the Math5 retinal enhancer also requires Pax6 for its activation, via Pax6 binding to a highly conserved binding site. In addition, our data reveal that other retinal factors are required for accurate regulation of Math5 by Pax6.
Collapse
Affiliation(s)
- Amy N Riesenberg
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
37
|
Transcriptional activities of the Pax6 gene eyeless regulate tissue specificity of ectopic eye formation in Drosophila. Dev Biol 2009; 334:492-502. [PMID: 19406113 DOI: 10.1016/j.ydbio.2009.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 11/24/2022]
Abstract
Pax genes encode DNA binding proteins that play pivotal roles in the determination of complex tissues. Members of one subclass, Pax6, function as selector genes and play key roles in the retinal development of all seeing animals. Mutations within the Pax6 homologs including fly eyeless, mouse Small eye and human Pax6 lead to severe retinal defects in their respective systems. In Drosophila eyeless and twin of eyeless, play non-redundant roles in the developing retina. One particularly interesting characteristic of these genes is that, although expression of either gene can induce ectopic eye formation in non-retinal tissues, there are differences in the location and frequencies at which the eyes develop. eyeless induces much larger ectopic eyes, at higher frequencies, and in a broader range of tissues than twin of eyeless. In this report we describe a series of experiments conducted in both yeast and flies that has identified protein modules that are responsible for the differences in tissue transformation. These domains appear to contain transcriptional activator and repressor activity of distinct strengths. We propose a model in which the selective presence of these activities and their relative strengths accounts, in part, for the disparity to which ectopic eyes are induced in response to the forced expression of eyeless and twin of eyeless. The identification of both transcriptional activator and repressor activity within the Pax6 protein furthers our understanding of how this gene family regulates tissue determination.
Collapse
|
38
|
Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A. Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS One 2009; 4:e4159. [PMID: 19132093 PMCID: PMC2612750 DOI: 10.1371/journal.pone.0004159] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/21/2008] [Indexed: 11/20/2022] Open
Abstract
Lineage-specific DNA-binding transcription factors regulate development by activating and repressing particular set of genes required for the acquisition of a specific cell type. Pax6 is a paired domain and homeodomain-containing transcription factor essential for development of central nervous, olfactory and visual systems, as well as endocrine pancreas. Haploinsufficiency of Pax6 results in perturbed lens development and homeostasis. Loss-of-function of Pax6 is incompatible with lens lineage formation and results in abnormal telencephalic development. Using DNA microarrays, we have identified 559 genes expressed differentially between 1-day old mouse Pax6 heterozygous and wild type lenses. Of these, 178 (31.8%) were similarly increased and decreased in Pax6 homozygous embryonic telencephalon [Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M (2007) Loss- and gain-of-function analyses reveals targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34: 99–119]. In contrast, 381 (68.2%) genes were differently regulated between the lens and embryonic telencephalon. Differential expression of nine genes implicated in lens development and homeostasis: Cspg2, Igfbp5, Mab21l2, Nrf2f, Olfm3, Spag5, Spock1, Spon1 and Tgfb2, was confirmed by quantitative RT-PCR, with five of these genes: Cspg2, Mab21l2, Olfm3, Spag5 and Tgfb2, identified as candidate direct Pax6 target genes by quantitative chromatin immunoprecipitation (qChIP). In Mab21l2 and Tgfb2 promoter regions, twelve putative individual Pax6-binding sites were tested by electrophoretic mobility shift assays (EMSAs) with recombinant Pax6 proteins. This led to the identification of two and three sites in the respective Mab21l2 and Tgfb2 promoter regions identified by qChIPs. Collectively, the present studies represent an integrative genome-wide approach to identify downstream networks controlled by Pax6 that control mouse lens and forebrain development.
Collapse
Affiliation(s)
- Louise V. Wolf
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ying Yang
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jinhua Wang
- NYU Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America
| | - Qing Xie
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Barbara Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Jiri Zavadil
- NYU Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Ales Cvekl
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ho HY, Chang KH, Nichols J, Li M. Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells. Mech Dev 2008; 126:18-29. [PMID: 19007884 DOI: 10.1016/j.mod.2008.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/15/2008] [Accepted: 10/22/2008] [Indexed: 11/18/2022]
Abstract
Pitx3 is a bicoid like homeobox transcription factor of which deficiency in mice is linked with the aphakia phenotype. Mutation in human PITX3 gene is associated with autosomal dominant cataract with variable anterior segment mesenchymal dysgenesis. However, the molecular events causing the morphological changes in aphakia remains unknown. In this study we investigated the behaviour of GFP tagged Pitx3 null embryonic stem cells in chimeric lens, as well as the molecular features of the Pitx3-deficient lens of homozygous Pitx3 knockout mice. We show that the lack of colonisation of Pitx3-deficient ES cell derivatives in Pitx3 wild-type<-->Pitx3 null chimeric lens was due to the depletion of the epithelial cells in lens epithelium manifested by aberrant cell cycle exit and precocious onset of fibre cell differentiation of the Pitx3 null cells at the lens vesicle stage. This was demonstrated by the early activation of the cell cycle inhibitors p27Kip1 and p57Kip2, and the expression of beta-and gamma-crystallins. These defects are at least partially attributed to the loss of FoxE3 and misexpression of Prox1 in the lens vesicle epithelial cells. Thus, Pitx3 is essential to maintain lens epithelial phenotype and prevent inappropriate fibre cell differentiation during lens development.
Collapse
Affiliation(s)
- Hsin-Yi Ho
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
41
|
Carmona FD, Jiménez R, Collinson JM. The molecular basis of defective lens development in the Iberian mole. BMC Biol 2008; 6:44. [PMID: 18939978 PMCID: PMC2587461 DOI: 10.1186/1741-7007-6-44] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/21/2008] [Indexed: 11/24/2022] Open
Abstract
Background Fossorial mammals face natural selection pressures that differ from those acting on surface dwelling animals, and these may lead to reduced visual system development. We have studied eye development in a species of true mole, the Iberian mole Talpa occidentalis, and present the molecular basis of abnormal lens development. This is the first embryological developmental study of the eyes of any fossorial mammal at the molecular level. Results Lens fibre differentiation is not completed in the Iberian mole. Although eye development starts normally (similar to other model species), defects are seen after closure of the lens vesicle. PAX6 is not down-regulated in developing lens fibre nuclei, as it is in other species, and there is ectopic expression of FOXE3, a putative downstream effector of PAX6, in some, but not all lens fibres. FOXE3-positive lens fibres continue to proliferate within the posterior compartment of the embryonic lens, but unlike in the mouse, no proliferation was detected anywhere in the postnatal mole lens. The undifferentiated status of the anterior epithelial cells was compromised, and most of them undergo apoptosis. Furthermore, β-crystallin and PROX1 expression patterns are abnormal and our data suggest that genes encoding β-crystallins are not directly regulated by PAX6, c-MAF and PROX1 in the Iberian mole, as they are in other model vertebrates. Conclusion In other model vertebrates, genetic pathways controlling lens development robustly compartmentalise the lens into a simple, undifferentiated, proliferative anterior epithelium, and quiescent, anuclear, terminally differentiated posterior lens fibres. These pathways are not as robust in the mole, and lead to loss of the anterior epithelial phenotype and only partial differentiation of the lens fibres, which continue to express 'epithelial' genes. Paradigms of genetic regulatory networks developed in other vertebrates appear not to hold true for the Iberian mole.
Collapse
Affiliation(s)
- F David Carmona
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | |
Collapse
|
42
|
Chen X, Taube JR, Simirskii VI, Patel TP, Duncan MK. Dual roles for Prox1 in the regulation of the chicken betaB1-crystallin promoter. Invest Ophthalmol Vis Sci 2008; 49:1542-52. [PMID: 18385074 DOI: 10.1167/iovs.07-1300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lens fiber cell differentiation is marked by the onset of betaB1-crystallin expression and is controlled by the cooperative action of a set of transcription factors including Prox1, an atypical homeodomain protein. Previously, the authors reported that Prox1 directly interacts with the OL2 element found in the chicken betaB1-crystallin basal promoter to activate the expression of this gene. Here they mapped the location of activating and repressing sequences of the full-length chicken betaB1-crystallin promoter (-432/+30) in lens epithelial cells, annular pad cells, and intact lens and characterized Prox1-binding sites found in this region. METHODS Transfection analysis and transgenic mice were used to characterize upstream regions of the chicken betaB1-crystallin gene. DNaseI footprinting and chromatin immunoprecipitation was performed to identify Prox1-binding sites, and transfection analyses were used to characterize these sites functionally. RESULTS Sequences between -152 and -432 of the chicken betaB1-crystallin promoter mediated either promoter activation or repression, depending on the stage of lens differentiation tested. Two new Prox1-binding sites were found in this region that bound Prox1 more avidly than the OL2 element. However, neither binding site conferred Prox1-mediated activation on a heterologous promoter; instead, each allowed Prox1 to repress promoter function. CONCLUSIONS The function of the upstream region of the chicken betaB1-crystallin promoter changes depending on cellular context. These data suggest that Prox1 function as a transcriptional activator could be regulated at the DNA level based on the characteristics of the responsive elements.
Collapse
Affiliation(s)
- Xiaoren Chen
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
43
|
Jonasova K, Kozmik Z. Eye evolution: lens and cornea as an upgrade of animal visual system. Semin Cell Dev Biol 2007; 19:71-81. [PMID: 18035562 DOI: 10.1016/j.semcdb.2007.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/19/2022]
Abstract
Lens-containing eyes are a feature of surprisingly broad spectrum of organisms across the animal kingdom that represent a significant improvement of simple eye composed of just photoreceptor cells and pigment cells. It is apparent that such an upgrade of animal visual system has originated numerous times during evolution since many distinct strategies to enhance light refraction through the use of lens and cornea have been utilized. In addition to having an ancient role in prototypical eye formation Pax transcription factors were convergently recruited for regulation of structurally diverse crystallins and genes affecting morphogenesis of various lens-containing eyes.
Collapse
Affiliation(s)
- Kristyna Jonasova
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic.
| | | |
Collapse
|
44
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
45
|
Yan Q, Liu WB, Qin J, Liu J, Chen HG, Huang X, Chen L, Sun S, Deng M, Gong L, Li Y, Zhang L, Liu Y, Feng H, Xiao Y, Liu Y, Li DWC. Protein Phosphatase-1 Modulates the Function of Pax-6, a Transcription Factor Controlling Brain and Eye Development. J Biol Chem 2007; 282:13954-65. [PMID: 17374606 DOI: 10.1074/jbc.m611476200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pax-6 is an evolutionarily conserved transcription factor and acts high up in the regulatory hierarchy controlling eye and brain development in humans, mice, zebrafish, and Drosophila. Previous studies have shown that Pax-6 is a phosphoprotein, and its phosphorylation by ERK, p38, and homeodomain-interacting protein kinase 2 greatly enhances its transactivation activity. However, the protein phosphatases responsible for the dephosphorylation of Pax-6 remain unknown. Here, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 is a major phosphatase that directly dephosphorylates Pax-6. First, purified protein phosphatase-1 directly dephosphorylates Pax-6 in vitro. Second, immunoprecipitation-linked Western blot revealed that both protein phosphatase-1alpha and protein phosphatase-1beta interact with Pax-6. Third, overexpression of protein phosphatase-1 in human lens epithelial cells leads to dephosphorylation of Pax-6. Finally, inhibition of protein phosphatase-1 activity by calyculin A or knockdown of protein phosphatase-1alpha and protein phosphatase-1beta by RNA interference leads to enhanced phosphorylation of Pax-6. Moreover, our results also demonstrate that dephosphorylation of Pax-6 by protein phosphatase-1 significantly modulates its function in regulating expression of both exogenous and endogenous genes. These results demonstrate that protein phosphatase 1 acts as a major phosphatase to dephosphorylate Pax-6 and modulate its function.
Collapse
Affiliation(s)
- Qin Yan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lakowski J, Majumder A, Lauderdale JD. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol 2007; 307:498-520. [PMID: 17509554 DOI: 10.1016/j.ydbio.2007.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/16/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.
Collapse
Affiliation(s)
- Jörn Lakowski
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
47
|
Simirskii VN, Wang Y, Duncan MK. Conditional deletion of beta1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev Biol 2007; 306:658-68. [PMID: 17493607 PMCID: PMC1950782 DOI: 10.1016/j.ydbio.2007.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Beta1-integrins are cell surface receptors that participate in sensing the cell's external environment. We used the Cre-lox system to delete beta1-integrin in all lens cells as the lens vesicle transitions into the lens. Adult mice lacking beta1-integrin in the lens are microphthalmic due to apoptosis of the lens epithelium and neonatal disintegration of the lens fibers. The first morphological alterations in beta1-integrin null lenses are seen at 16.5 dpc when the epithelium becomes disorganized and begins to upregulate the fiber cell markers beta- and gamma-crystallins, the transcription factors cMaf and Prox1 and downregulate Pax6 levels demonstrating that beta1-integrin is essential to maintain the lens epithelial phenotype. Furthermore, beta1-integrin null lens epithelial cells upregulate the expression of alpha-smooth muscle actin and nuclear Smad4 and downregulate Smad6 suggesting that beta1-integrin may brake TGFbeta family signaling leading to epithelial-mesenchymal transitions in the lens. In contrast, beta1-integrin null lens epithelial cells show increased E-cadherin immunoreactivity which supports the proposed role of beta1-integrins in mediating complete EMT in response to TGFbeta family members. Thus, beta1-integrin is required to maintain the lens epithelial phenotype and block inappropriate activation of some aspects of the lens fiber cell differentiation program.
Collapse
Affiliation(s)
| | | | - Melinda K. Duncan
- *To whom all the correspondence should be addressed: Melinda K. Duncan, Department of Biological Sciences, University of Delaware, Newark, DE 19716, Telephone: (302) 831-0533, Fax: (302) 831-2281, E-mail address:
| |
Collapse
|
48
|
Vasiliev O, Rhodes SJ, Beebe DC. Identification and expression of Hop, an atypical homeobox gene expressed late in lens fiber cell terminal differentiation. Mol Vis 2007; 13:114-24. [PMID: 17277742 PMCID: PMC2533040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify transcripts expressed late in lens fiber cell maturation that might regulate fiber cell fusion, organelle degradation, or other events associated with the maturation of lens fiber cells. METHODS cDNA libraries were prepared from microdissected regions of chicken embryo lenses using a PCR-based method. Subtractive hybridization was used to identify transcripts expressed exclusively in fiber cells that had detached from the lens capsule. Database searches and PCR amplification with degenerate primers were used to identify human, mouse, rat, rabbit, and bovine orthologs of one such sequence and to confirm its expression in the lenses of these animals. The ability of in vitro-transcribed and translated protein to bind DNA was assessed by mobility shift assays. The locus encoding this transcript and an area about 6 kb upstream of the translation start site were sequenced. The microscopic morphology of lenses from mice in which the locus encoding this protein had been disrupted by the insertion of a nuclear-targeted bacterial lacZ sequence were analyzed. Gene expression was analyzed by PCR, in situ hybridization, and by staining for beta-galactosidase activity in lenses expressing lacZ in place of the coding sequence. Knockout lenses expressing green fluorescent protein in a mosaic pattern were sectioned in the equatorial plane and viewed with a confocal microscope to assess the presence of cell-cell fusions during fiber cell maturation. RESULTS Subtractive hybridization identified transcripts encoding Hop, a short, atypical homeodomain-containing protein that had previously been shown to be an important regulator of gene expression in the heart and lung. Chicken Hop did not bind to known homeodomain-binding sequences in DNA. In chicken embryos, Hop transcripts were first detected at E6. At all stages analyzed, Hop mRNA was only detected in cells that had detached from the lens capsule. Mice in which the Hop coding sequence was replaced with nuclear-targeted beta-galactosidase showed that Hop was expressed in the mouse lens in a similar pattern to the chicken lens. Characterization of lenses from mice lacking Hop revealed no morphological phenotype and no apparent defects in the degradation of nuclei or fiber cell fusion during fiber cell maturation. CONCLUSIONS The expression pattern of Hop provides the first evidence that new transcription is initiated in lens fiber cells after they detach from the capsule. Hop may be the first of a class of genes with this pattern of expression. Although lens abnormalities have yet to be identified in mice lacking Hop, the genomic sequences that regulate Hop expression in the lens may be useful for expressing exogenous transcripts selectively in fiber cells just before they fuse with their neighbors and degrade their organelles.
Collapse
Affiliation(s)
- Oleg Vasiliev
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaja 16/10, V-437 Moscow, Russia
| | - Simon J. Rhodes
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, IN
| | - David C. Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO,Department of Cell Biology and Physiology, Washington University, St. Louis, MO
| |
Collapse
|
49
|
Grocott T, Frost V, Maillard M, Johansen T, Wheeler GN, Dawes LJ, Wormstone IM, Chantry A. The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter. Nucleic Acids Res 2007; 35:890-901. [PMID: 17251190 PMCID: PMC1807973 DOI: 10.1093/nar/gkl1105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFβ superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFβ on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24 h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFβ receptor and TGFβ ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFβ receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFβ/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3.
Collapse
Affiliation(s)
- Timothy Grocott
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Victoria Frost
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Marjorie Maillard
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Terje Johansen
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Lucy J. Dawes
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - I. Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
- *To whom correspondence should be addressed. Tel: 44 1603 593551; Fax: 44 1603 592250;
| |
Collapse
|
50
|
Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M. Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 2007; 34:99-119. [PMID: 17158062 DOI: 10.1016/j.mcn.2006.10.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 01/22/2023] Open
Abstract
Appropriate neurogenesis and patterning of the forebrain requires the transcription factor Pax6, yet it is largely unknown how Pax6 exerts its effects at the molecular level. To characterize Pax6-mediated regulation of gene expression during murine forebrain neurogenesis, we performed microarray analysis with tissue from the dorsal Pax6-dependent telencephalon and the ventral Pax6-negative telencephalon at the onset of neurogenesis (E12) and at mid-neurogenesis (E15) in wild-type and Pax6-deficient mutant littermates. In the Pax6-deficient cortex the expression levels of various transcription factors involved in neurogenesis (like Satb2, Nfia, AP-2gamma, NeuroD6, Ngn2, Tbr2, Bhlhb5) and the retinoic acid signalling molecule Rlbp1 were reduced. Regulation by Pax6 could be confirmed upon electroporation of a Pax6- and a dominant-negative Pax6-containing vector into embryonic cortex. Taken together, our data reveal novel insights into the molecular pathways regulated by Pax6 during cortical neurogenesis. Most intriguingly, this analysis revealed time- and region-specific differences in Pax6-mediated transcription, explaining the specific function of Pax6 at early and later stages of neurogenesis.
Collapse
Affiliation(s)
- Pontus C Holm
- Institute for Stem Cell Research, National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg/Munich, Germany.
| | | | | | | | | | | |
Collapse
|