1
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
2
|
Han Z, Benlagha K, Lee P, Park CS, Filatov A, Byazrova MG, Miller H, Yang L, Liu C. The function of serine/threonine-specific protein kinases in B cells. Front Immunol 2024; 15:1459527. [PMID: 39445011 PMCID: PMC11496051 DOI: 10.3389/fimmu.2024.1459527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
The serine/threonine-specific protein kinases (STKs) are important for cell survival, proliferation, differentiation, and apoptosis. In B cells, these kinases play indispensable roles in regulating important cellular functions. Multiple studies on human and other animal cells have shown that multiple STKs are involved in different stages of B cell development and antibody production. However, how STKs affect B cell development and function is still not completely understood. Considering that B cells are clinically important in immunity and diseases, our understanding of STKs' roles in B cells is in great need of investigation with current technologies. Investigating serine/threonine kinases will not only deepen our insight into B cell-related disorders but also facilitate the identification of more effective drug targets for conditions like lymphoma and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Zhennan Han
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Singh MV, Wong T, Moorjani S, Mani AM, Dokun AO. Novel components in the nuclear factor-kappa B (NF-κB) signaling pathways of endothelial cells under hyperglycemic-ischemic conditions. Front Cardiovasc Med 2024; 11:1345421. [PMID: 38854657 PMCID: PMC11157070 DOI: 10.3389/fcvm.2024.1345421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes worsens the outcomes of a number of vascular disorders including peripheral arterial disease (PAD) at least in part through induction of chronic inflammation. However, in experimental PAD, recovery requires the nuclear factor-kappa B (NF-κB) activation. Previously we showed that individually, both ischemia and high glucose activate the canonical and non-canonical arms of the NF-κB pathway, but prolonged high glucose exposure specifically impairs ischemia-induced activation of the canonical NF-κB pathway through activation of protein kinase C beta (PKCβ). Although a cascade of phosphorylation events propels the NF-κB signaling, little is known about the impact of hyperglycemia on the canonical and non-canonical NF-κB pathway signaling. Moreover, signal upstream of PKCβ that lead to its activation in endothelial cells during hyperglycemia exposure have not been well defined. In this study, we used endothelial cells exposed to hyperglycemia and ischemia (HGI) and an array of approximately 250 antibodies to approximately 100 proteins and their phosphorylated forms to identify the NF-κB signaling pathway that is altered in ischemic EC that has been exposed to high glucose condition. Comparison of signals from hyperglycemic and ischemic cell lysates yielded a number of proteins whose phosphorylation was either increased or decreased under HGI conditions. Pathway analyses using bioinformatics tools implicated BLNK/BTK known for B cell antigen receptor (BCR)-coupled signaling. Inhibition of BLNK/BTK in endothelial cells by a specific pharmacological inhibitor terreic acid attenuated PKC activation and restored the IκBα degradation suggesting that these molecules play a critical role in hyperglycemic attenuation of the canonical NF-κB pathway. Thus, we have identified a potentially new component of the NF-κB pathway upstream of PKC in endothelial cells that contributes to the poor post ischemic adaptation during hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Smith EJ, Beaumont RE, Dudhia J, Guest DJ. Equine Embryonic Stem Cell-Derived Tenocytes are Insensitive to a Combination of Inflammatory Cytokines and Have Distinct Molecular Responses Compared to Primary Tenocytes. Stem Cell Rev Rep 2024; 20:1040-1059. [PMID: 38396222 PMCID: PMC11087315 DOI: 10.1007/s12015-024-10693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Tissue fibrosis following tendon injury is a major clinical problem due to the increased risk of re-injury and limited treatment options; however, its mechanism remains unclear. Evidence suggests that insufficient resolution of inflammation contributes to fibrotic healing by disrupting tenocyte activity, with the NF-κB pathway being identified as a potential mediator. Equine embryonic stem cell (ESC) derived tenocytes may offer a potential cell-based therapy to improve tendon regeneration, but how they respond to an inflammatory environment is largely unknown. Our findings reveal for the first time that, unlike adult tenocytes, ESC-tenocytes are unaffected by IFN-γ, TNFα, and IL-1β stimulation; producing minimal changes to tendon-associated gene expression and generating 3-D collagen gel constructs indistinguishable from unstimulated controls. Inflammatory pathway analysis found these inflammatory cytokines failed to activate NF-κB in the ESC-tenocytes. However, NF-κB could be activated to induce changes in gene expression following stimulation with NF-κB pharmaceutical activators. Transcriptomic analysis revealed differences between cytokine and NF-κB signalling components between adult and ESC-tenocytes, which may contribute to the mechanism by which ESC-tenocytes escape inflammatory stimuli. Further investigation of these molecular mechanisms will help guide novel therapies to reduce fibrosis and encourage superior tendon healing.
Collapse
Affiliation(s)
- Emily J Smith
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Ross E Beaumont
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Deborah J Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
5
|
Kondo D, Suzuki R, Matsumura A, Meguri H, Tanaka M, Itakura M, Hirashima N. Methiothepin downregulates SNAP-23 and inhibits degranulation of rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Eur J Immunol 2023; 53:e2250360. [PMID: 37736882 DOI: 10.1002/eji.202250360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase β phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase β. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.
Collapse
Affiliation(s)
- Daisuke Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ruriko Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ayako Matsumura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Meguri
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiko Tanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
6
|
Ge J, Liu SL, Zheng JX, Shi Y, Shao Y, Duan YJ, Huang R, Yang LJ, Yang T. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8 + T cell infiltration in colorectal cancer. Transl Oncol 2023; 34:101683. [PMID: 37224767 DOI: 10.1016/j.tranon.2023.101683] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND ALKBH5 belongs to the ALKB family consists of a Fe (II) and a-ketoglutarate-dependent dioxygenase. ALKBH5 directly catalyzes the oxidative demethylation of m6A-methylated adenosine. ALKBH5 involves in tumorigenesis and tumor progression, and is often dysregulated in a wide range of cancers, including colorectal cancer. Emerging evidence indicates that the expression of ALKBH5 is associated with the abundance of infiltrating immune cells in the microenvironment. However, how ALKBH5 affects immune cell infiltration in the microenvironment in colorectal cancer (CRC) has not been reported. The aim of this study was to identify how the expression of ALKBH5 affects the biological behaviors of CRC cell lines and regulates the effects on infiltrating CD8+ T cells in CRC microenvironment with its specific mechanism. METHODS Firstly, the transcriptional expression profiles of CRC were downloaded from TCGA database and integrated via R software (4.1.2). Between CRC and normal colorectal tissues, ALKBH5 mRNA expressions were compared (Wilcoxon rank-sum). We further identified the expression levels of ALKBH5 in CRC tissues and cell lines through quantitative PCR, western blot, and immunohistochemistry. Then, how ALKBH5 affects the biological behaviors of CRC cells were confirmed by gain- and loss-of-function analysis. Furthermore, the relationship between ALKBH5 level and 22 tumor-infiltrating immune cells was examined through CIBERSORT in R software. Furthermore, we explored the correlation between ALKBH5 expression and tumor-infiltrated CD8+, CD4+ and regulatory T cells by utilizing the TIMER database. Finally, the association between chemokines and CD8+ T cells infiltration in CRC was analyzed using GEPIA online database. qRT-PCR, WB and IHC were used to further determine the effect of ALKBH5 on NF-κB-CCL5 signaling axis and CD8+ T cells infiltration. RESULTS Clinically, ALKBH5 expression was downregulated in CRC and low levels of ALKBH5 expression were correlated with poor overall survival (OS). Functionally, overexpression of ALKBH5 reduced the proliferation, migration and invasion of CRC cells, and vice versa. Overexpression of ALKBH5 suppresses NF-κB pathway, thus reduces CCL5 expression and promotes CD8+ T cells infiltration in CRC microenvironment. CONCLUSIONS ALKBH5 is poorly expressed in CRC, and overexpression of ALKBH5 attenuates CRC malignant progression by inhibiting CRC cell proliferation, migration, invasion and promoting CD8+ T cells infiltration in the tumor microenvironment through NF-κB-CCL5 axis.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Sheng-Lu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing-Xiu Zheng
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yu Shi
- Basic Medical Sciences Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ying Shao
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yu-Jing Duan
- Basic Medical Sciences Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rui Huang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Li-Jun Yang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Yang
- Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
7
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
8
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
9
|
Yang C, He Z, Zhang Q, Lu M, Zhao J, Chen W, Gao L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021; 162:6225351. [PMID: 33851697 DOI: 10.1210/endocr/bqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Thyroid-stimulating hormone (TSH) treatment activates inhibitor of NF-κB/nuclear factor κB (IκB/NFκB) and extracellular signal-regulated kinase (ERK)-P38 in macrophages, but how these pathways are activated, and how they contribute to the proinflammatory effect of TSH on macrophages remain unknown. The TSH receptor (TSHR) is coupled to 4 subfamilies of G proteins (Gs, Gi/o, Gq/11, and G12/13) for its downstream signaling. This study investigated the G protein subtypes responsible for the proinflammatory effect of TSH on macrophages. qPCR showed that Gi2, Gi3, Gas, Gq, G11, G12, G13, and G15 are abundantly expressed by macrophages. The contribution of different G protein pathways to the proinflammatory effect was studied by the corresponding inhibitors or siRNA interference. While TSH-induced IκB phosphorylation was not inhibited by Gs inhibitor NF449, Gi inhibitor pertussis toxin, or Gq or G11 siRNA, it was blocked by phospholipase C inhibitor U73122 or G15 siRNA interference. TSH-induced ERK and P38 phosphorylation was blocked by G13 but not G12 siRNA interference. Interference of either G13 or G15 could block the proinflammatory effect of TSH on macrophages. The present study demonstrate that TSH activates macrophage inflammation by the G13/ERK-P38/Rho GTPase and G15/phospholipase C (PLC)/protein kinases C (PKCs)/IκB pathways.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
Chen Z, Duan Y, Wang H, Tang H, Wang S, Wang X, Liu J, Fang X, Ouyang K. Atypical protein kinase C is essential for embryonic vascular development in mice. Genesis 2021; 59:e23412. [PMID: 33547760 DOI: 10.1002/dvg.23412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yaoyun Duan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinru Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
11
|
Wang L, Luo Y, Luo L, Wu D, Ding X, Zheng H, Wu H, Liu B, Yang X, Silva F, Wang C, Zhang X, Zheng X, Chen J, Brigman J, Mandell M, Zhou Z, Liu F, Yang XO, Liu M. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J Exp Med 2021; 218:e20191054. [PMID: 33104171 PMCID: PMC7590510 DOI: 10.1084/jem.20191054] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
ILC2s are present in adipose tissue and play a critical role in regulating adipose thermogenesis. However, the mechanisms underlying the activation of adipose-resident ILC2s remain poorly defined. Here, we show that IL-33, a potent ILC2 activator, stimulates phosphorylation of AMPK at Thr172 via TAK1 in primary ILC2s, which provides a feedback mechanism to inhibit IL-33-induced NF-κB activation and IL-13 production. Treating ILC2s with adiponectin or an adiponectin receptor agonist (AdipoRon) activated AMPK and decreased IL-33-NF-κB signaling. AdipoRon also suppressed cold-induced thermogenic gene expression and energy expenditure in vivo. In contrast, adiponectin deficiency increased the ILC2 fraction and activation, leading to up-regulated thermogenic gene expression in adipose tissue of cold-exposed mice. ILC2 deficiency or blocking ILC2 function by neutralization of the IL-33 receptor with anti-ST2 diminished the suppressive effect of adiponectin on cold-induced adipose thermogenesis and energy expenditure. Taken together, our study reveals that adiponectin is a negative regulator of ILC2 function in adipose tissue via AMPK-mediated negative regulation of IL-33 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Handong Zheng
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Haisha Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xianyun Zheng
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jonathan Brigman
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Mandell
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zhiguang Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX
| | - Xuexian O. Yang
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
12
|
Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem 2020; 193:112231. [PMID: 32193054 DOI: 10.1016/j.ejmech.2020.112231] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
p62/SQSTM1 (hereafter as p62) is a stress-inducible cellular protein, which interacts with various signaling proteins to regulate a variety of cellular functions. Growing lines of evidence supported a critical role of p62 in tumorigenesis, and p62 may become a therapeutic target for tumor. In this review, we summarize biological functions of structural domains of p62, reported bioactive molecules targeting p62, and the relationship between p62 and tumorigenesis.
Collapse
Affiliation(s)
- Mengmin Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
14
|
Lu H, Bogdanovic E, Yu Z, Cho C, Liu L, Ho K, Guo J, Yeung LSN, Lehmann R, Hundal HS, Giacca A, Fantus IG. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159:1658-1677. [PMID: 29370351 PMCID: PMC5939637 DOI: 10.1210/en.2017-00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
A hyperglycemic and hyperinsulinemic environment characteristic of type 2 diabetes causes insulin resistance. In adipocytes, defects in both insulin sensitivity and maximum response of glucose transport have been demonstrated. To investigate the molecular mechanisms, freshly isolated rat adipocytes were incubated in control (5.6 mM glucose, no insulin) and high glucose (20 mM)/high insulin (100 nM) (HG/HI) for 18 hours to induce insulin resistance. Insulin-resistant adipocytes manifested decreased sensitivity of glucose uptake associated with defects in insulin receptor substrate (IRS)-1 Tyr phosphorylation, association of p85 subunit of phosphatidylinositol-3-kinase, Akt Ser473 and Thr308 phosphorylation, accompanied by impaired glucose transporter 4 translocation. In contrast, protein kinase C (PKC)-ζ activity was augmented by chronic HG/HI. Inhibition of PKC-ζ with a specific cell-permeable peptide reversed the signaling defects and insulin sensitivity of glucose uptake. Transfection of dominant-negative, kinase-inactive PKC-ζ blocked insulin resistance, whereas constitutively active PKC-ζ recapitulated the defects. The HG/HI incubation was associated with stimulation of IRS-1 Ser318 and Akt Thr34 phosphorylation, targets of PKC-ζ. Transfection of IRS-1 S318A and Akt T34A each partially corrected insulin signaling, whereas combined transfection of both completely normalized insulin signaling. In vivo hyperglycemia/hyperinsulinemia in rats for 48 hours similarly resulted in activation of PKC-ζ and increased phosphorylation of IRS-1 Ser318 and Akt Thr34. These data indicate that impairment of insulin signaling by chronic HG/HI is mediated by dual defects at IRS-1 and Akt mediated by PKC-ζ.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elena Bogdanovic
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Cho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijiang Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Karen Ho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - June Guo
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lucy S N Yeung
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reiner Lehmann
- Department of Internal Medicine IV, Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University Hospital Tuebingen, Tuebingen, Germany
| | - Harinder S Hundal
- Division of Molecular Physiology Unit, Faculty of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Adria Giacca
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: I. George Fantus, MD, Departments of Medicine and Physiology, Mount Sinai Hospital, Joseph and Wolfe Lebovic Building, 60 Murray Street, 5th Floor, Room 5028, Toronto, Ontario M5T 3L9, Canada. E-mail:
| |
Collapse
|
15
|
Tiwari R, Sahu I, Soni BL, Sathe GJ, Thapa P, Patel P, Sinha S, Vadivel CK, Patel S, Jamghare SN, Oak S, Thorat R, Gowda H, Vaidya MM. Depletion of keratin 8/18 modulates oncogenic potential by governing multiple signaling pathways. FEBS J 2018; 285:1251-1276. [DOI: 10.1111/febs.14401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Richa Tiwari
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
- Department of Biology Technion – Israel Institute of Technology Haifa Israel
| | - Bihari Lal Soni
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | | | - Pankaj Thapa
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Pavan Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Shruti Sinha
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Shweta Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Sayli Nitin Jamghare
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Swapnil Oak
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Rahul Thorat
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Milind M. Vaidya
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
16
|
Zhao Y, Wei L, Shao M, Huang X, Chang J, Zheng J, Chu J, Cui Q, Peng L, Luo Y, Tan W, Tan W, Lin D, Wu C. BRCA1-Associated Protein Increases Invasiveness of Esophageal Squamous Cell Carcinoma. Gastroenterology 2017; 153:1304-1319.e5. [PMID: 28780075 DOI: 10.1053/j.gastro.2017.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We performed a screen for genes whose expression correlates with invasiveness of esophageal squamous cell carcinoma (ESCC) cells. We studied the effects of overexpression and knockdown of these genes in cell lines and expression levels in patient samples. METHODS We selected genes for analysis from 11 loci associated with risk of ESCC. We analyzed the effects of knocking down expression of 47 of these genes using RNA interference on-chip analysis in ESCC cells and HeLa cells. Cells with gene overexpression and knockdown were analyzed in migration and invasion assays or injected into nude mice and metastasis of xenograft tumors was quantified. We collected ESCC and non-tumor esophageal tissues from 94 individuals who underwent surgery in China from 2010 and 2014; clinical information was collected and survival time was measured from the date of diagnosis to the date of last follow-up or death. Levels of messenger RNAs (mRNAs) were quantified by RNA sequencing, and levels of proteins were determined from immunoblot analyses. Patient survival was compared with mRNA levels using Kaplan-Meier methods and hazard ratios were calculated by Cox models. RESULTS We identified 8 genes whose disruption increased migration and 10 genes whose disruption reduced migration. Knockdown of BRCA1-associated protein gene (BRAP) significantly reduced migration of KYSE30, KYSE150, and HeLa cells. In patient tumors, 90% of ESCCs examined had higher levels of BRAP protein than paired non-tumor tissues, and 63.8% had gains in BRAP DNA copy number. Levels of BRAP mRNA in ESCC tissues correlated with patient survival time, and high expression increased risk of death 2.4-fold compared with low expression. ESCCs that had metastasized to lymph node had significantly higher levels of BRAP mRNA than tumors without metastases. Knockdown of BRAP in ESCC and HeLa cell lines significantly reduced migration and invasiveness; these cell lines formed less metastases in mice than control cells. Nuclear translocation of the nuclear factor-κB (NF-κB) P65 subunit and phosphorylation of inhibitor of NF-κB kinase subunit β (IKBKB or IKKβ) increased in cells that overexpressed BRAP and decreased in cells with BRAP knockdown. In immunoprecipitation assays, BRAP interacted directly with IKKβ. Expression of matrix metalloproteinase 9 and vascular epithelial growth factor C, which are regulated by NF-κB, was significantly reduced in cells with knockdown of BRAP and significantly increased in cells that overexpressed BRAP. CONCLUSIONS Expression of BRAP is increased in ESCC samples compared with non-tumor esophageal tissues; increased expression correlates with reduced patient survival time and promotes metastasis of xenograft tumors in mice. BRAP overexpression leads to increased activity of NF-κB and expression of matrix metalloproteinase 9 and vascular epithelial growth factor C.
Collapse
Affiliation(s)
- Yanjie Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixuan Wei
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Shao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Chang
- Key Laboratory for Environment and Health, Ministry of Education, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jiahui Chu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qionghua Cui
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linna Peng
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Luo
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenle Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Stafeev IS, Vorotnikov AV, Ratner EI, Menshikov MY, Parfyonova YV. Latent Inflammation and Insulin Resistance in Adipose Tissue. Int J Endocrinol 2017; 2017:5076732. [PMID: 28912810 PMCID: PMC5585607 DOI: 10.1155/2017/5076732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a growing problem in modern society and medicine. It closely associates with metabolic disorders such as type 2 diabetes mellitus (T2DM) and hepatic and cardiovascular diseases such as nonalcoholic fatty liver disease, atherosclerosis, myocarditis, and hypertension. Obesity is often associated with latent inflammation; however, the link between inflammation, obesity, T2DM, and cardiovascular diseases is still poorly understood. Insulin resistance is the earliest feature of metabolic disorders. It mostly develops as a result of dysregulated insulin signaling in insulin-sensitive cells, as compared to inactivating mutations in insulin receptor or signaling proteins that occur relatively rare. Here, we argue that inflammatory signaling provides a link between latent inflammation, obesity, insulin resistance, and metabolic disorders. We further hypothesize that insulin-activated PI3-kinase pathway and inflammatory signaling mediated by several IκB kinases may constitute negative feedback leading to insulin resistance at least in the fat tissue. Finally, we discuss perspectives for anti-inflammatory therapies in treating the metabolic diseases.
Collapse
Affiliation(s)
- I. S. Stafeev
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow 119192, Russia
- *I. S. Stafeev:
| | - A. V. Vorotnikov
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- M.V. Lomonosov Moscow State University Medical Center, Moscow 119192, Russia
| | - E. I. Ratner
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Endocrinology Research Centre, Moscow 117031, Russia
| | - M. Y. Menshikov
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
| | - Ye. V. Parfyonova
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow 119192, Russia
| |
Collapse
|
18
|
Bodiga VL, Inapurapu SP, Vemuri PK, Kudle MR, Bodiga S. Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCα, NF-κB and ICAM-1 expression. Eur J Pharmacol 2016; 791:355-368. [DOI: 10.1016/j.ejphar.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
19
|
Centurione L, Di Giulio C, Santavenere E, Cacchio M, Sabatini N, Rapino C, Bianchi G, Rapino M, Bosco D, Antonucci A, Cataldi A. Protein Kinase Cζ Regulation of Hypertrophic and Apoptotic Events Occurring during Rat Neonatal Heart Development and Growth. Int J Immunopathol Pharmacol 2016; 18:49-58. [PMID: 15698510 DOI: 10.1177/039463200501800106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development and growth of the rat heart implies hyperplasia, which stops at birth, and hypertrophy, allowing cardiac mass to grow in response to programmed genetic events along with to haemodynamic overload. Moreover, hypertrophy is accomplished to apoptosis which controls the final number of myocardial cells, deletes vestigial structures, and takes part in remodelling the organ. Since at the basis of all these processes, which lead to the complete development of the heart, the activation of specific signalling pathways underlies, attention has been addressed to the role played in vivo by Protein Kinase Cζ (PKCζ) in regulating NF-kB signalling system and “intrinsic” mitochondrial apoptotic route at days 1, 4, 10 and 22 of rat life. In fact, a role has been assigned to PKCζ in indirectly phosphorylating IKBα, which peaks between 10 and 22 days, through a IKK determining, in turn, NF-kB activation, concomitantly to cytochrome c/Apaf 1 co-localization in the cytoplasm and caspase-9/caspase-3 activation, which leads to the occurrence of apoptosis. Thus a key role for PKCζ in regulating the hypertrophic and apoptotic events leading to establishment of complete function in rat neonatal heart is here suggested.
Collapse
Affiliation(s)
- L Centurione
- Dipartimento di Biomorfologia, Facoltà di Farmacia, Cattedra di Anatomia Umana, University of Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Citation(s) in RCA: 741] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Simon Mitchell
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Vargas
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Kim JM, Noh EM, Kim HR, Kim MS, Song HK, Lee M, Yang SH, Lee GS, Moon HC, Kwon KB, Lee YR. Suppression of TPA-induced cancer cell invasion by Peucedanum japonicum Thunb. extract through the inhibition of PKCα/NF-κB-dependent MMP-9 expression in MCF-7 cells. Int J Mol Med 2015; 37:108-14. [PMID: 26717978 PMCID: PMC4687430 DOI: 10.3892/ijmm.2015.2417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Metastatic cancers spread from their site of origin (the primary site) to other parts of the body. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is important in metastatic cancers as it plays a major role in cancer cell invasion. The present study examined the inhibitory effect of an ethanol extract of Peucedanum japonicum Thunb. (PJT) on MMP-9 expression and the invasion of MCF-7 breast cancer cells induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Western blot analysis, gelatin zymography, and reverse transcription-quantitative PCR revealed that PJT significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, PJT attenuated TPA-induced nuclear translocation and the transcriptional activation of nuclear factor (NF)-κB. The results indicated that the PJT-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involved the suppression of the PKCα/NF-κB pathway in MCF-7 cells. Thus, the inhibition of MMP-9 expression by PJT may have potential value as a therapy for restricting the invasiveness of breast cancer.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Ha-Rim Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Mi-Seong Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Hyun-Kyung Song
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Minok Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Guem-San Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Hyoung-Chul Moon
- Institute of Customized Physical Therapy, Gwanju Metropolitan City 506-303, Republic of Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
22
|
Bodiga VL, Kudle MR, Bodiga S. Silencing of PKC-α, TRPC1 or NF-κB expression attenuates cisplatin-induced ICAM-1 expression and endothelial dysfunction. Biochem Pharmacol 2015; 98:78-91. [PMID: 26300057 DOI: 10.1016/j.bcp.2015.08.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023]
Abstract
Platinum-based chemotherapy has been associated with increased long-term cardiovascular events. Also noteworthy is the accumulating awareness of early vascular toxicity occurring at the time of chemotherapy or immediately thereafter. The objective of the study was to delineate the molecular mechanisms associated with the early vascular toxicity and test the molecular silencing approach towards attenuating the endothelial dysfunction during platinum-based chemotherapy. Human umbilical vein endothelial cells (HUVECs) were treated with varying concentrations of cisplatin (1.0-10.0μg/ml) or vehicle control (0.1% dimethyl sulfoxide) for monitoring the changes in Intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression viz. a viz. altered activation of protein kinase C (PKC) isoforms, transient receptor potential channel (TRPC) 1 expression, Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), Store Operated Ca(2+) Entry (SOCE) in cisplatin-induced endothelial permeability and adherence of the activated endothelial cells to human monocyte-like U937 cells. Silencing of either PKC-α, TRPC1 or p65 subunit of NF-κB, all resulted in significant alleviation of cisplatin-induced endothelial dysfunction. At concentrations ≥8μg/ml, cisplatin induced a significant increase in the expression of ICAM-1 mRNA as well as protein. This was mediated by changes in PKC-α membrane translocation, NF-κB activation, increased expression as well as phosphorylation of TRPC1 and enhanced SOCE, leading to hyperpermeability and leakage of albumin. Increased adherence of U937 monocytes to cisplatin-activated endothelial cells was evident. Cisplatin challenge activates PKC-α, which in turn phosphorylated TRPC1 resulting in enhanced Ca(2+) entry. Increased Ca(2+) flux is required for activation of NF-κB and ICAM-1 expression. Enhanced ICAM-1 expression promotes monocyte binding to endothelial cells and increased endothelial hyperpermeability.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Molecular Biology, Institute of Genetics & Hospital for Genetic Diseases, Begumpet, Osmania University, Hyderabad 500016, Telangana, India
| | - Madhukar Rao Kudle
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal 506009, Telangana, India
| | - Sreedhar Bodiga
- Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal 506009, Telangana, India
| |
Collapse
|
23
|
You DJ, Park CR, Furlong M, Koo O, Lee C, Ahn C, Seong JY, Hwang JI. Dimer of arfaptin 2 regulates NF-κB signaling by interacting with IKKβ/NEMO and inhibiting IKKβ kinase activity. Cell Signal 2015; 27:2173-81. [PMID: 26296658 DOI: 10.1016/j.cellsig.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/15/2015] [Indexed: 12/30/2022]
Abstract
IκB kinases (IKKs) are a therapeutic target due to their crucial roles in various biological processes, including the immune response, the stress response, and tumor development. IKKs integrate various upstream signals that activate NF-κB by phosphorylating IκB and also regulate many proteins related to cell growth and metabolism. Although they function as a heteromeric complex comprised of kinase subunits and an adaptor, these kinases produce distinct cellular responses by phosphorylating different target molecules, suggesting that they may also be regulated in a subtype-specific manner. In this study, arfaptin 2 was identified as an IKKβ-specific binding partner. Interestingly, arfaptin 2 also interacted with NEMO. Domain mapping studies revealed that the C-terminal region, including the IKKβ HLH domain and the first coiled-coil NEMO region were respectively required for interactions with the arfaptin 2 N-terminal flexible region. Overexpression of arfaptin 2 inhibited tumor necrosis factor (TNF)-α-stimulated nuclear factor-κB (NF-κB) signaling, whereas downregulation of arfaptin 2 by small interfering RNA enhanced NF-κB activity. Dimerization of arfaptin 2 through the Bin-Amphiphysin-Rvs domain may be essential to inhibit activation of NF-κB through multimodal interactions with IKKβs or IKKβ/NEMO, as ectopic expression of the arfaptin 2 fragment responsible for IKK interactions did not change TNFα-stimulated NF-κB activation. These data indicate that arfaptin 2 is the first molecule to regulate NF-κB signaling by interacting with the functional IKK complex but not by direct inhibiting IKKβ phosphorylation.
Collapse
Affiliation(s)
- Dong-Joo You
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Cho Rong Park
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Michael Furlong
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Okjae Koo
- Samsung Biomedical Research Institute, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 433-803, Republic of Korea
| | - Cheolju Lee
- Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Curie Ahn
- Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| |
Collapse
|
24
|
Boneh A. Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis 2015; 38:729-40. [PMID: 25735935 DOI: 10.1007/s10545-015-9820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
Signal transduction is the process by which external or internal signals exert their intracellular biological effects and by which intracellular communication is regulated. An important component of the signalling pathway is the second messenger, which is produced upon stimulation of the cell and mediates its effects downstream through phosphorylation and dephosphorylation of target proteins. Intracellular accumulation or deficiency of metabolites that serve as second messengers, due to inborn errors of their metabolism, may lead to perturbation of signalling pathways and disruption of the balance between them, serving as a missing link between the genotype, biochemical phenotype and clinical phenotype. The main second messengers that are putatively associated with the pathogenesis of IEM are 'bioactive lipids' (complex lipids and long-chain fatty acids), 'calcium', 'stress' (osmotic, reactive oxygen/nitorgen species, misfolded proteins and others) and 'metabolic' (AMP/ATP ratio, leucine, glutamine). They act through protein kinase C, calcium dependent kinases (CamK) and phosphatase (CN), 'stress-mediated' kinases (MAPK) and AMP/ATP-dependent kinase (AMPK). These signalling pathways lead to cell proliferation, inflammatory response, autophagy (and mitophagy) and apoptosis, suggesting that there are only few final common pathways involved in this pathogenetic mechanism. Questions remain regarding the complexity of the effects of the accumulating metabolites on different signalling pathways, and regarding the relative role and origin of 'proxy' second messengers such as reactive oxygen species. A better understanding of the signalling pathways in IEM may enhance the development of novel therapies in situations where normalising intracellular concentrations of the second messenger is impossible or impractical.
Collapse
Affiliation(s)
- Avihu Boneh
- Metabolic Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Vic, 3052, Melbourne, Australia,
| |
Collapse
|
25
|
Esposito E, Sticozzi C, Ravani L, Drechsler M, Muresan XM, Cervellati F, Cortesi R, Valacchi G. Effect of new curcumin-containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Exp Dermatol 2015; 24:449-54. [DOI: 10.1111/exd.12696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Elisabetta Esposito
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Claudia Sticozzi
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Laura Ravani
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Markus Drechsler
- Macromolecular Chemistry II; University of Bayreuth; Bayreuth Germany
| | - Ximena M. Muresan
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Rita Cortesi
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology; University of Ferrara; Ferrara Italy
| |
Collapse
|
26
|
Das S, Bhattacharjee O, Goswami A, Pal NK, Majumdar S. Arabinosylated lipoarabinomannan (Ara-LAM) mediated intracellular mechanisms against tuberculosis infection: Involvement of protein kinase C (PKC) mediated signaling. Tuberculosis (Edinb) 2015; 95:208-16. [DOI: 10.1016/j.tube.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/30/2014] [Indexed: 12/14/2022]
|
27
|
Guyer RA, Macara IG. Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-κB/interleukin-6 (IL-6) axis in mouse mammary cells. J Biol Chem 2015; 290:8457-68. [PMID: 25657002 DOI: 10.1074/jbc.m114.621011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PAR3 suppresses tumor growth and metastasis in vivo and cell invasion through matrix in vitro. We propose that PAR3 organizes and limits multiple signaling pathways and that inappropriate activation of these pathways occurs without PAR3. Silencing Pard3 in conjunction with oncogenic activation promotes invasion and metastasis via constitutive STAT3 activity in mouse models, but the mechanism for this is unknown. We now show that loss of PAR3 triggers increased production of interleukin-6, which induces STAT3 signaling in an autocrine manner. Activation of atypical protein kinase C ι/λ (aPKCι/λ) mediates this effect by stimulating NF-κB signaling and IL-6 expression. Our results suggest that PAR3 restrains aPKCι/λ activity and thus prevents aPKCι/λ from activating an oncogenic signaling network.
Collapse
Affiliation(s)
- Richard A Guyer
- From the Department of Cell and Developmental Biology and Medical-Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232
| | - Ian G Macara
- From the Department of Cell and Developmental Biology and
| |
Collapse
|
28
|
Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 2014; 21:1766-801. [PMID: 24597893 PMCID: PMC4186766 DOI: 10.1089/ars.2013.5745] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain.
Collapse
Affiliation(s)
- Ana I Rojo
- 1 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dieni CA, Storey KB. Protein kinase C in the wood frog, Rana sylvatica: reassessing the tissue-specific regulation of PKC isozymes during freezing. PeerJ 2014; 2:e558. [PMID: 25210662 PMCID: PMC4157297 DOI: 10.7717/peerj.558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/14/2014] [Indexed: 01/03/2023] Open
Abstract
The wood frog, Rana sylvatica, survives whole-body freezing and thawing each winter. The extensive adaptations required at the biochemical level are facilitated by alterations to signaling pathways, including the insulin/Akt and AMPK pathways. Past studies investigating changing tissue-specific patterns of the second messenger IP3 in adapted frogs have suggested important roles for protein kinase C (PKC) in response to stress. In addition to their dependence on second messengers, phosphorylation of three PKC sites by upstream kinases (most notably PDK1) is needed for full PKC activation, according to widely-accepted models. The present study uses phospho-specific immunoblotting to investigate phosphorylation states of PKC—as they relate to distinct tissues, PKC isozymes, and phosphorylation sites—in control and frozen frogs. In contrast to past studies where second messengers of PKC increased during the freezing process, phosphorylation of PKC tended to generally decline in most tissues of frozen frogs. All PKC isozymes and specific phosphorylation sites detected by immunoblotting decreased in phosphorylation levels in hind leg skeletal muscle and hearts of frozen frogs. Most PKC isozymes and specific phosphorylation sites detected in livers and kidneys also declined; the only exceptions were the levels of isozymes/phosphorylation sites detected by the phospho-PKCα/βII (Thr638/641) antibody, which remained unchanged from control to frozen frogs. Changes in brains of frozen frogs were unique; no decreases were observed in the phosphorylation levels of any of the PKC isozymes and/or specific phosphorylation sites detected by immunoblotting. Rather, increases were observed for the levels of isozymes/phosphorylation sites detected by the phospho-PKCα/βII (Thr638/641), phospho-PKCδ (Thr505), and phospho-PKCθ (Thr538) antibodies; all other isozymes/phosphorylation sites detected in brain remained unchanged from control to frozen frogs. The results of this study indicate a potential important role for PKC in cerebral protection during wood frog freezing. Our findings also call for a reassessment of the previously-inferred importance of PKC in other tissues, particularly in liver; a more thorough investigation is required to determine whether PKC activity in this physiological situation is indeed dependent on phosphorylation, or whether it deviates from the generally-accepted model and can be “overridden” by exceedingly high levels of second messengers, as has been demonstrated with certain PKC isozymes (e.g., PKCδ).
Collapse
Affiliation(s)
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University , Ottawa, Ontario , Canada
| |
Collapse
|
30
|
McCarty MF, Hejazi J, Rastmanesh R. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer. Integr Cancer Ther 2014; 13:386-395. [PMID: 24867960 DOI: 10.1177/1534735414534728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.
Collapse
Affiliation(s)
| | - Jalal Hejazi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rastmanesh
- National Nutrition and Food Sciences Technology Research Institute, Tehran, Iran
| |
Collapse
|
31
|
Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AKT, Soniya EV, Anto RJ. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 2014; 9:e104401. [PMID: 25157570 PMCID: PMC4144808 DOI: 10.1371/journal.pone.0104401] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/13/2014] [Indexed: 02/05/2023] Open
Abstract
We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.
Collapse
Affiliation(s)
- EK Radhakrishnan
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Smitha V. Bava
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sai Shyam Narayanan
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Lekshmi R. Nath
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
32
|
Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochem Pharmacol 2014; 91:501-9. [PMID: 25159986 DOI: 10.1016/j.bcp.2014.08.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022]
Abstract
The transcription factor NF-κB is one of the main players involved in inflammatory responses during which NF-κB becomes rapidly activated. However to maintain homeostasis, this NF-κB activation profile is only transient. Nevertheless deregulation of NF-κB activity is often observed and can lead to chronic inflammatory diseases as well as cancer. Therefore various research projects focus on the development of therapeutics that target the NF-κB activation pathway. One such compound is Withaferin A from the Ayurvedic plant Withania somnifera. Several reports already described the NF-κB inhibiting, anti-inflammatory capacity of WA, either in vitro as well as in vivo. However the underlying molecular mechanism remains largely unknown. In this paper we demonstrate a direct interaction of WA with the IKK-complex, more specifically with IKKβ, a kinase which is indispensable for the nuclear translocation of NF-κB. Hereby WA directly inhibits IKK catalytic activity. By mutation of Cys179 in IKKβ we could demonstrate loss of interaction between IKKβ and WA indicating that WA exerts its anti-inflammatory effects by targeting the crucial Cys179 residue located in the catalytic site of IKKβ. Upon docking of WA to a IKKβ homology structure model, WA was found to fit nicely into the groove of IKKβ where it can form hydrogen bond to stabilize its interaction with Cys179.
Collapse
|
33
|
PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2765-74. [PMID: 25110345 DOI: 10.1016/j.bbamcr.2014.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
p62, also known as SQSTM1, is a multi-domain signalling scaffold protein involved in numerous critical cellular functions such as autophagy, apoptosis and inflammation. Crucial interactions relevant to these functions are mediated by the N-terminal Phox and Bem1p (PB1) domain, which is divided into two interaction surfaces, one of predominantly acidic and one of basic character. Most known interaction partners, including atypical protein kinase C (aPKC), bind to the basic surface, and acidic-basic interactions at this interface also allow for p62 homopolymerisation. We identify here that the coupling of p62 to the cAMP signalling system is conferred by both the direct binding of cAMP degrading phosphodiesterase-4 (PDE4) to the acidic surface of the p62 PB1 domain and the phosphorylation of the basic surface of this domain by cAMP-dependent protein kinase (PKA). Such phosphorylation is a previously unknown means of regulating PB1 domain interaction partnerships by disrupting the interaction of p62 with basic surface binding partners, such as aPKCs, as well as p62 homopolymerisation. Thus, we uncover a new regulatory mechanism that connects cAMP signalling with the p62 multi-domain signalling scaffold and autophagy cargo receptor protein.
Collapse
|
34
|
Zhang X. Depression of testes-specific protease 50 (TSP50) inhibits cell proliferation and induces apoptosis in laryngocarcinoma. Tumour Biol 2014; 35:10781-8. [PMID: 25077921 DOI: 10.1007/s13277-014-2090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Testes-specific protease 50 (TSP50) is a potential cancer-associated gene that may be involved in human laryngocarcinoma. The present study aimed to investigate suppressive effects on the HEp2 human laryngocarcinoma cell line by transfection with TSP50-specific short hairpin RNA (shRNA). Western blot analysis was used to detect the expression levels of TSP50. MTT assay was used to evaluate cell proliferation. Wound healing was used in cell migration and invasion assays to evaluate the cell exercise capacity. Nuclear staining assay was used to evaluate cell apoptosis after knockdown of TSP50. Expression levels of TSP50 protein in the shRNA group were downregulated successfully by transfection, and the knockdown of endogenous TSP50 in HEp2 cells greatly inhibited nuclear factor κB (NF-κB) activity. MTT results showed that the cell proliferation in the shRNA group was significantly more depressed than that in the blank (P < 0.05) and negative control groups (P < 0.05). Additionally, a decreased number of migrated cells in the shRNA group was observed (P < 0.05) using a cell migration and invasion assay. Moreover, knockdown of endogenous TSP50 expression can induce apoptosis in HEp2 Cells. These data indicated that knockdown of TSP50 may cause inhibition of proliferation, migration, and invasion of HEp2 cells. This study provides a new perspective in understanding the molecular mechanisms underlying the progression of laryngocarcinoma and offers a potential therapeutic target for laryngocarcinoma.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China,
| |
Collapse
|
35
|
Sajan MP, Ivey RA, Lee M, Mastorides S, Jurczak MJ, Samuels VT, Shulman GI, Braun U, Leitges M, Farese RV. PKCλ haploinsufficiency prevents diabetes by a mechanism involving alterations in hepatic enzymes. Mol Endocrinol 2014; 28:1097-107. [PMID: 24877563 DOI: 10.1210/me.2014-1025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific knockout (KO) of atypical protein kinase C (aPKC), PKC-λ, yields contrasting phenotypes, depending on the tissue. Thus, whereas muscle KO of PKC-λ impairs glucose transport and causes glucose intolerance, insulin resistance, and liver-dependent lipid abnormalities, liver KO and adipocyte KO of PKC-λ increase insulin sensitivity through salutary alterations in hepatic enzymes. Also note that, although total-body (TB) homozygous KO of PKC-λ is embryonic lethal, TB heterozygous (Het) KO (TBHetλKO) is well-tolerated. However, beneath their seemingly normal growth, appetite, and overall appearance, we found in TBHetλKO mice that insulin receptor phosphorylation and signaling through insulin receptor substrates to phosphatidylinositol 3-kinase, Akt and residual aPKC were markedly diminished in liver, muscle, and adipose tissues, and glucose transport was impaired in muscle and adipose tissues. Furthermore, despite these global impairments in insulin signaling, other than mild hyperinsulinemia, glucose tolerance, serum lipids, and glucose disposal and hepatic glucose output in hyperinsulinemic clamp studies were normal. Moreover, TBHetλKO mice were protected from developing glucose intolerance during high-fat feeding. This metabolic protection (in the face of impaired insulin signaling) in HetλKO mice seemed to reflect a deficiency of PKC-λ in liver with resultant 1) increases in FoxO1 phosphorylation and decreases in expression of hepatic gluconeogenic enzymes and 2) diminished expression of hepatic lipogenic enzymes and proinflammatory cytokines. In keeping with this postulate, adenoviral-mediated supplementation of hepatic PKC-λ induced a diabetic state in HetλKO mice. Our findings underscore the importance of hepatic PKC-λ in provoking abnormalities in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Mini P Sajan
- James A. Haley Veterans Medical Center (M.P.S., R.A.I., M.L., S.M., R.V.F.), Tampa, Florida 33612; Department of Internal Medicine (M.P.S., R.V.F.), University of South Florida College of Medicine, Tampa, Florida; 33612 Departments of Internal Medicine and Cellular and Molecular Physiology and Howard Hughes Medical Institute (M.J.J., V.T.S., G.I.S.), Yale University School of Medicine, New Haven, Connecticut 06510; and Division of Nephrology, Department of Medicine (U.B., M.L.), Hannover Medical School, Hannover, Germany; and Biotechnology Centre of Oslo (U.B., M.L.), Oslo, Norway 0349
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
You DJ, Park CR, Lee HB, Moon MJ, Kang JH, Lee C, Oh SH, Ahn C, Seong JY, Hwang JI. A splicing variant of NME1 negatively regulates NF-κB signaling and inhibits cancer metastasis by interacting with IKKβ. J Biol Chem 2014; 289:17709-20. [PMID: 24811176 DOI: 10.1074/jbc.m114.553552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IKKβ functions as a principal upstream activator of the canonical NF-κB pathway by phosphorylating IκB, leading to its proteasomal degradation. Because IKKβ is considered a therapeutic target, understanding its regulation may facilitate the design of efficient regulators of this molecule. Here, we report a novel IKKβ-interacting molecule, NME1L, a splicing variant of the NME1 protein. NME1 has attracted attention in cancer research because of its antimetastatic activity and reduced expression in multiple aggressive types of cancer. However, the effect was just moderate but not dramatic in anti-cancer activities. We found that only NME1L interacts with IKKβ. Exogenous expression of NME1L resulted in a potent decrease in TNFα-stimulated NF-κB activation, whereas knockdown of NME1/NME1L with shRNA enhanced activity of NF-κB. NME1L down-regulates IKKβ signaling by blocking IKKβ-mediated IκB degradation. When NME1L was introduced into highly metastatic HT1080 cells, the mobility was efficiently inhibited. Furthermore, in a metastasis assay, NME1L-expressing cells did not colonize the lung. Based on these results, NME1L is a potent antimetastatic protein and may be a useful weapon in the fight against cancers.
Collapse
Affiliation(s)
- Dong-Joo You
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Cho Rong Park
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyun Bok Lee
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Mi Jin Moon
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Ju-Hee Kang
- the National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Korea
| | - Cheolju Lee
- the Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - Seong-Hyun Oh
- the College of Pharmacy, Gachon University, Incheon 406-840, Korea, and
| | - Curie Ahn
- the Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Korea
| | - Jae Young Seong
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Jong-Ik Hwang
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea,
| |
Collapse
|
37
|
Basavarajappa HD, Lee B, Fei X, Lim D, Callaghan B, Mund JA, Case J, Rajashekhar G, Seo SY, Corson TW. Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS One 2014; 9:e95694. [PMID: 24752613 PMCID: PMC3994091 DOI: 10.1371/journal.pone.0095694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/30/2014] [Indexed: 12/13/2022] Open
Abstract
Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Xiang Fei
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Daesung Lim
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Breedge Callaghan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Julie A. Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
| | - Jamie Case
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
| | - Gangaraju Rajashekhar
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
- * E-mail: (S-YS); (TWC)
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States Of America
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (S-YS); (TWC)
| |
Collapse
|
38
|
Altura BM, Shah NC, Shah GJ, Zhang A, Li W, Zheng T, Perez-Albela JL, Altura BT. Short-term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF-kB, cytokines, ceramide salvage sphingolipid pathway and PKC-zeta: hypothesis and review. Int J Clin Exp Med 2014; 7:1-21. [PMID: 24482684 PMCID: PMC3902236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Numerous recent,epidemiological studies reveal that Western populations are growing more and more deficient in daily Mg intake which have been linked to etiology of cardiovascular (CV) diseases. A growing body of evidence suggests that a major missing link to this dilemma may reside within the sphingolipid-ceramide pathways. For the past 25 years , our labs have been focusing on these pathways in Mg-deficient mammals. The objective of this paper is two-fold: 1) to test various hypotheses and 2) to review the current status of the field and how protein kinase C isoforms may be pivotal to solving some of the CV attributes of Mg deficiency. Below, we test the hypotheses that: 1) short-term dietary deficiency of magnesium (MgD) would result in the upregulation of protein kinase C (PKC) isoforms in left ventricular (LV) and aortic smooth muscle (ASM) and serum; 2) MgD would result in a release of select cytokines and an upregulation of NF-kB in LV and ASM, and in primary cultured aortic smooth muscle cells (PCASMC); 3) MgD would result in an activation of the sphingolipid salvage pathway in LV and ASM, and in PCASMC; 4) MgD would result in a synthesis of sphingosine, but not sphinganine, in PCASMC which could be inhibited by fumonisin B1 (FB) an inhibitor of ceramide synthase (CS), but not scyphostatin an inhibitor of neutral sphingomyelinase (N-SMase); 5) incubation of PCASMC (in low Mg(2+)) with the PKC-mimic PMA would result in release and synthesis of NF-kB, cytokines, and ceramide but not sphingosine. The new data indicate that short-term MgD (10% normal dietary intake) result in an upregulation of all three classes of PKC isoforms in LV, aortic muscle and in serum coupled to the upregulation of ceramide, NF-kB activation, and cytokines. High degrees of linear correlation were found to exist between upregulation of PKC isoforms, p65 and cytokine release, suggesting cross-talk between these molecules and molecular pathways. Our experiments with PCASMCs demonstrated that MgD caused a pronounced synthesis of sphingosine (but not sphinganine), which could be inhibited with fumonisin B1, but not by scyphostatin; use of PMA stimulation released ceramide but not sphingosine suggesting a role for the "sphingolipid salvage pathway" in MgD vascular muscle. Use of different PKC pharmacological inhibitors suggested that although all three classes of PKC molecules, i.e., classical, novel, and atypical, play roles in MgD-induced synthesis/release of ceramide, sphingosine, and cytokines as well as activation of NF-kB, to varying degrees, PKC-zeta appears to play a greater role in these events than any of the other PKC isoforms; a specific PKC-zeta inhibitory peptide inhibited formation of sphingosine. Even low levels of water-borne Mg (e.g., 15 mg/l/day) either prevented or ameliorated the upregulation of all three classes of PKC isoforms. An attempt is made to integrate our new data with previous information in order to possibly explain many of the cardiovascular effects of MgD.
Collapse
Affiliation(s)
- Burton M Altura
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Department of Medicine, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- School of Graduate Studies Program in Molecular and Cellular Science, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Bio-Defense Systems, Inc, Rockville CentreNY 11570
| | - Nilank C Shah
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Gatha J Shah
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Aimin Zhang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Wenyan Li
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Tao Zheng
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | | | - Bella T Altura
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- School of Graduate Studies Program in Molecular and Cellular Science, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Bio-Defense Systems, Inc, Rockville CentreNY 11570
| |
Collapse
|
39
|
Li WF, Hao DJ, Fan T, Huang HM, Yao H, Niu XF. Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice. Chem Biol Interact 2013; 208:18-27. [PMID: 24300194 DOI: 10.1016/j.cbi.2013.11.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/10/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
The quaternary benzo[c]phenanthridine alkaloid, chelerythrine (CHE), is of great practical and research interest because of its pronounced, widespread physiological effects, primarily antimicrobial and anti-inflammatory, arising from its ability to interact with proteins and DNA. Although CHE was originally shown to possess anti-inflammatory properties, its effects on acute gastric ulcer have not been previously explored. The aim of the present study is to evaluate the protective effect of CHE on ethanol induced gastric ulcer in mice. Administration of CHE at doses of 1, 5 and 10mg/kg bodyweight prior to ethanol ingestion dose-dependently inhibited gastric ulcer. The gastric mucosal lesion was assessed by ulcer area, gastric juice acidity, myeloperoxidase (MPO) activities, macroscopic and histopathological examinations. CHE significantly reduced the gastric ulcer index, myeloperoxidase activities, macroscopic and histological score in a dose-dependent manner. In addition, CHE also significantly inhibited nitric oxide (NO) concentration, pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) level in serum and gastric mucosal in the mice exposed to ethanol induced ulceration in a dose-dependent manner. In addition, immunohistochemical analysis revealed that CHE markedly attenuated the overexpression of nuclear factor-κB in gastric mucosa of mice. It was concluded that CHE represents a potential therapeutic option to reduce the risk of gastric ulceration. In addition, acute toxicity study revealed no abnormal sign to the mice treated with CHE (15mg/kg). These findings suggest that the gastroprotective activity of CHE might contribute in adjusting the inflammatory cytokine by regulating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wei-Feng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | | | - Ting Fan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Xi'an Red Cross Hospital, Xi'an 710054, China
| | - Hui-Min Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Feng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
40
|
Leslie KL, Song GJ, Barrick S, Wehbi VL, Vilardaga JP, Bauer PM, Bisello A. Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) and nuclear factor-κB (NF-κB): a feed-forward loop for systemic and vascular inflammation. J Biol Chem 2013; 288:36426-36. [PMID: 24196963 DOI: 10.1074/jbc.m113.483339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.
Collapse
|
41
|
Rimessi A, Patergnani S, Ioannidi E, Pinton P. Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCζ. Front Oncol 2013; 3:232. [PMID: 24062985 PMCID: PMC3770915 DOI: 10.3389/fonc.2013.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022] Open
Abstract
Atypical protein kinase C isoforms are serine threonine kinases involved in various pathological conditions. In recent years, the PKCζ isoform has emerged as an important regulator of multiple cellular processes operating in cancer. In this review, we will focus on the PKCζ isoform as an oxidative-sensing kinase involved in cancer-related inflammation and chemoresistance. We will discuss its nuclear localization and its possible pivotal role in connecting inflammation with drug resistance.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara , Ferrara , Italy
| | | | | | | |
Collapse
|
42
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
43
|
Schwanke RC, Marcon R, Meotti FC, Bento AF, Dutra RC, Pizzollatti MG, Calixto JB. Oral administration of the flavonoid myricitrin prevents dextran sulfate sodium-induced experimental colitis in mice through modulation of PI3K/Akt signaling pathway. Mol Nutr Food Res 2013; 57:1938-49. [PMID: 23861337 DOI: 10.1002/mnfr.201300134] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/10/2022]
Abstract
SCOPE We investigated the protective effect of the flavonoid myricitrin in dextran sulfate sodium (DSS) induced colitis as promising candidate for the treatment of ulcerative colitis which is considered an important worldwide public health problem. METHODS AND RESULTS Male CD1 mice were provided with a solution of filtered water containing 3% w/v DSS ad libitum over a 5-day period followed by 2 days with normal drinking water. Myricitrin was administered orally, once a day, at the doses 1, 3, and 10 mg/kg of body weight. At the end of day 7th, the animals were euthanized and the colonic tissue was collected to be analyzed by RT-PCR, immunohistochemistry and Western blot. Our results showed that oral treatment with myricitrin exerts consistent anti-inflammatory action in DSS-induced acute colitis in mice by the inhibition of the Akt/phosphatidylinositol-3 kinase-dependent phosphorylation. Consequently, the phosphorylation of mitogen-activated protein kinases (MAPK) p38, extracellular signal-regulated protein kinase (ERK1/2), and c-Jun N-terminal kinase and of the nuclear factor B (NF-κB) was reduced and prevented an increase in the cytokines/chemokines levels. CONCLUSION Together, these data reveal that the anti-inflammatory effect of myricitrin in DSS-induced colitis in mice is likely associated with its ability to prevent the activation of upstream kinases, such as phosphatidylinositol-3 kinase-dependent Akt, NF-κB, and mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Raquel Cristina Schwanke
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Warner N, Burberry A, Franchi L, Kim YG, McDonald C, Sartor MA, Núñez G. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-κB signaling pathways. Sci Signal 2013; 6:rs3. [PMID: 23322906 DOI: 10.1126/scisignal.2003305] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cytoplasmic receptor NOD2 (nucleotide-binding oligomerization domain 2) senses peptidoglycan fragments and triggers host defense pathways, including activation of nuclear factor κB (NF-κB) signaling, which lead to inflammatory immune responses. Dysregulation of NOD2 signaling is associated with inflammatory diseases, such as Crohn's disease and Blau syndrome. We used a genome-wide small interfering RNA screen to identify regulators of the NOD2 signaling pathway. Several genes associated with Crohn's disease risk were identified in the screen. A comparison of candidates from this screen with other "omics" data sets revealed interconnected networks of genes implicated in NF-κB signaling, thus supporting a role for NOD2 and NF-κB pathways in the pathogenesis of Crohn's disease. Many of these regulators were validated in secondary assays, such as measurement of interleukin-8 secretion, which is partially dependent on NF-κB. Knockdown of putative regulators in human embryonic kidney 293 cells followed by stimulation with tumor necrosis factor-α revealed that most of the genes identified were general regulators of NF-κB signaling. Overall, the genes identified here provide a resource to facilitate the elucidation of the molecular mechanisms that regulate NOD2- and NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Neil Warner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Involvement of kinase PKC-zeta in the p62/p62(P392L)-driven activation of NF-κB in human osteoclasts. Biochim Biophys Acta Mol Basis Dis 2012; 1832:475-84. [PMID: 23266528 DOI: 10.1016/j.bbadis.2012.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022]
Abstract
Mutations of the gene encoding sequestosome1 (SQSTM1/p62), clustering in or near the UBA domain, have been described in Paget's disease of bone (PDB); among these the P392L substitution is the most prevalent. Protein p62 mediates several cell functions, including the control of NF-κB signaling, and autophagy. This scaffolding protein interacts with atypical PKCζ in the RANKL-induced signaling complex. We have previously shown that osteoclasts (OCs) overexpressing the p62(P392L) variant were in a constitutively activated state, presenting activated kinase p-PKCζ/λ and activated NF-κB prior to RANKL stimulation. In the present study, we investigated the relationships between PKCζ and NF-κB activation in human OCs transfected with p62 variants. We showed that PKCζ and p-PKCζ/λ co-localize with p62, and that PKCζ is involved in the RANKL-induced NF-κB activation and in the RANKL-independent activation of NF-κB observed in p62(P392L)-transfected cells. We also observed a basal and RANKL-induced increase in IκBα levels in the presence of the p62(P392L) mutation that contrasted with the NF-κB activation. In this study we propose that PKCζ plays a role in the activation of NF-κB by acting as a p65 (RelA) kinase at Ser(536), independently of IκBα; this alternative pathway could be used preferentially in the presence of the p62(P392L) mutation, which may hinder the ubiquitin-proteasome pathway. Overall, our results highlight the importance of p62-associated PKCζ in the overactive state of pagetic OCs and in the activation of NF-κB, particularly in the presence of the p62(P392L) mutation.
Collapse
|
46
|
Heng MCY. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin. Int J Dermatol 2012; 52:531-43. [PMID: 23231506 DOI: 10.1111/j.1365-4632.2012.05703.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months.
Collapse
|
47
|
Pfeifhofer-Obermair C, Thuille N, Baier G. Involvement of distinct PKC gene products in T cell functions. Front Immunol 2012; 3:220. [PMID: 22888329 PMCID: PMC3412260 DOI: 10.3389/fimmu.2012.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/08/2012] [Indexed: 01/07/2023] Open
Abstract
It is well established that members of the protein kinase C (PKC) family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the "flavor of PKC" in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Gottfried Baier
- Division of Cell Genetics, Department of Pharmacology and Genetics, Medical University Innsbruck, Innsbruck,Tyrol, Austria
| |
Collapse
|
48
|
Martin P, Moscat J. Th1/Th2 Differentiation and B Cell Function by the Atypical PKCs and Their Regulators. Front Immunol 2012; 3:241. [PMID: 22888333 PMCID: PMC3412266 DOI: 10.3389/fimmu.2012.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/17/2012] [Indexed: 12/24/2022] Open
Abstract
The members of the atypical Protein Kinase Cs (aPKC) kinase subfamily, PKCζ and PKCλ/ɩ, as well as their adapters, p62 and Par-6, form part of the PB1-domain-containing group of signaling regulators. Both adapters serve to locate through heterotypic interactions the aPKCs into the NF-κB and cell polarity pathways, respectively. Both signaling cascades have been critically implicated in T cell function in vitro and in vivo. The analysis of gene-knockout (KO) mice deficient in the different PB1 molecules is providing more definitive information on the actual role that the aPKCs and other PB1-containing molecules play in B cell biology and T cell polarity, survival, and differentiation toward the different effector lineages in vivo and at the cellular ex vivo level. Here we discuss recent data generated from the analysis of KO mice linking the control of cell polarity by PKCλ/ɩ and PKCζ, their adapter p62, and the Par-4 inhibitor, in the control of B and T cell signaling and differentiation. Altogether, these genetic and biochemical evidences reveal the existence of a PB1-orchestrated signaling network that acts to control Th2 differentiation in vitro and in vivo, and the gene transcriptional programs that are essential during the B cell maturation and function and Th2 differentiation.
Collapse
Affiliation(s)
- Pilar Martin
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain
| | | |
Collapse
|
49
|
Chiarini A, Marconi M, Pacchiana R, Dal Prà I, Wu J, Armato U. Role-Shifting PKCζ Fosters Its Own Proapoptotic Destruction by Complexing with Bcl10 at the Nuclear Envelope of Human Cervical Carcinoma Cells: A Proteomic and Biochemical Study. J Proteome Res 2012; 11:3996-4012. [DOI: 10.1021/pr3000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anna Chiarini
- Histology & Embryology Unit, Department of Life & Reproduction Sciences, University of Verona Medical School, Verona, I-37134, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
From the very early days of nuclear factor-κB (NF-κB) research, it was recognized that different protein kinase C (PKC) isoforms might be involved in the activation of NF-κB. Pharmacological tools and pseudosubstrate inhibitors suggested that these kinases play a role in this important inflammatory and survival pathway; however, it was the analysis of several genetic mouse knockout models that revealed the complexity and interrelations between the different components of the PB1 network in several cellular functions, including T-cell biology, bone homeostasis, inflammation associated with the metabolic syndrome, and cancer. These studies unveiled, for example, the critical role of PKCζ as a positive regulator of NF-κB through the regulation of RelA but also its inflammatory suppressor activities through the regulation of the interleukin-4 signaling cascade. This observation is of relevance in T cells, where p62, PKCζ, PKCλ/ι, and NBR1 establish a mesh of interactions that culminate in the regulation of T-cell effector responses through the modulation of T-cell polarity. Many questions remain to be answered, not just from the point of view of the implication for NF-κB activation but also with regard to the in vivo interplay between these pathways in pathophysiological processes like obesity and cancer.
Collapse
|