1
|
Tamburri S, Zucchelli C, Matafora V, Zapparoli E, Jevtic Z, Farris F, Iannelli F, Musco G, Bachi A. SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex. Nucleic Acids Res 2025; 53:gkae1215. [PMID: 39718989 PMCID: PMC11879014 DOI: 10.1093/nar/gkae1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
SP140, a lymphocytic-restricted protein, is an epigenetic reader working as a corepressor of genes implicated in inflammation and orchestrating macrophage transcriptional programs to maintain cellular identity. Reduced SP140 expression is associated both to autoimmune diseases and blood cancers. However, the molecular mechanisms that link SP140 altered protein levels to detrimental effects on the immune response and cellular growth, as well as the interactors through which SP140 promotes gene silencing, remain elusive. In this work, we have applied a multi-omics approach (i.e. interactomics, ChIP-seq and proteomics) in two Burkitt lymphoma cell lines to identify both interactors and target genes of endogenous SP140. We found that SP140 interacts with the PRC2 and NuRD complexes, and we showed that these interactions are functional as SP140 directs H3K27me3 deposition and NuRD binding on a set of target genes implicated in cellular growth and leukemia progression.
Collapse
Affiliation(s)
- Simone Tamburri
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Vittoria Matafora
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Zivojin Jevtic
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Francesco Farris
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Fabio Iannelli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| |
Collapse
|
2
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Desaki Y, Kato T, Nemoto K, Nozawa A, Uemura T, Ninomiya N, Sawasaki T, Arimura GI. Intricate intracellular kinase network regulates the Spodoptera lituta-derived elicitor response signaling in Arabidopsis. JOURNAL OF PLANT RESEARCH 2025; 138:95-103. [PMID: 39419929 DOI: 10.1007/s10265-024-01586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Plants defend themselves against herbivores by recognizing herbivore-derived elicitors and activating intracellular signaling. In Arabidopsis, the receptor-like kinase HAK1 recognizes the poly-saccharide elicitor (FrA) from Spodoptera litura larvae, leading to the expression of defense-related genes such as PDF1.2. During this process, the cytoplasmic kinase CRK2 phosphorylates PBL27, triggers the ERF13 expression via ethylene signaling and subsequently leads to PDF1.2 expression. Herein, we investigated four cytoplasmic kinases from the same receptor-like cytoplasmic kinase (RLCK) VII family as PBL27 that interacts with CRK2. Among them, PBL11, like PBL27, is phosphorylated by CRK2 and induces PDF1.2 expression but does not affect ERF13 expression. The weight gain of S. litura larvae on PBL11-deficient mutant plants was only slightly higher than that of wild-type plants, suggesting that PBL11 may function as a minor RLCK that supports the defense response.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan.
- Central Research Institute, Ishihara Sangyo Kaisha, Ltd, Kusatsu, 525-0025, Japan.
| | - Tasuku Kato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | | | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Naoya Ninomiya
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan.
| |
Collapse
|
4
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Li Z, Han J, Jing J, Fan A, Zhang Y, Gao Y. Bovine DDX3X Restrains Bovine SP110c-Mediated Activation of Inflammasome in Macrophages. Animals (Basel) 2024; 14:1650. [PMID: 38891697 PMCID: PMC11171048 DOI: 10.3390/ani14111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The inflammasome is a vital part of the host's innate immunity activated by cellular infection or stress. Our previous research identified the bovine SP110c isoform (bSP110c) as a novel activator of the inflammasome that promoted the secretion of proinflammatory cytokines IL-1β and IL-18 in macrophages infected with Listeria monocytogenes or stimulated with lipopolysaccharide (LPS). However, the exact molecular mechanism for inhibiting bSP110c-induced inflammasome activation requires further clarification. Here, the researchers identified bovine DDX3X (bDDX3X) as an NLRP3-associated protein and an inhibitor of the bSP110c-induced inflammasome in the human THP1 macrophage cell line. Immunoprecipitation showed that bDDX3X interacted with the bSP110c CARD domain via its helicase domain. The co-expression of bSP110c and bDDX3X in THP1 macrophages significantly prevented the bSP110c-induced activation of inflammasomes. In addition, both bDDX3X and bSP110c interacted with bovine NLRP3 (bNLRP3), and bDDX3X enhanced the interaction between bSP110c and bNLRP3. The expression of bDDX3X in nigericin-stimulated THP1 macrophages significantly suppressed NLRP3 inflammasome activation, ASC speck formation, and pyroptosis. These findings demonstrate that bDDX3X negatively regulates the bSP110c-mediated inflammatory response by restricting the activation of the NLRP3 inflammasome. This discovery unveils a novel regulatory mechanism involving bDDX3X and bSP110c in coordinating inflammasome activation and subsequent cell-fate decisions in LPS-treated macrophages and, in turn, constitutes a step forward toward the implementation of marker-assisted selection in breeding programs aimed at utilizing cattle's immune defenses.
Collapse
|
6
|
Barashi NS, Li T, Angappulige DH, Zhang B, O’Gorman H, Nottingham CU, Shetty AS, Ippolito JE, Andriole GL, Mahajan NP, Kim EH, Mahajan K. Symptomatic Benign Prostatic Hyperplasia with Suppressed Epigenetic Regulator HOXB13 Shows a Lower Incidence of Prostate Cancer Development. Cancers (Basel) 2024; 16:213. [PMID: 38201640 PMCID: PMC10778073 DOI: 10.3390/cancers16010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.
Collapse
Affiliation(s)
- Nimrod S. Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Duminduni H. Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Harry O’Gorman
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Charles U. Nottingham
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anup S. Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joseph E. Ippolito
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L. Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric H. Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
8
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
9
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
10
|
Ateya A, Al-Sharif M, Abdo M, Fericean L, Essa B. Individual Genomic Loci and mRNA Levels of Immune Biomarkers Associated with Pneumonia Susceptibility in Baladi Goats. Vet Sci 2023; 10:vetsci10030185. [PMID: 36977224 PMCID: PMC10051579 DOI: 10.3390/vetsci10030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The effectiveness of breeding for inherent disease resistance in animals could be considerably increased by identifying the genes and mutations that cause diversity in disease resistance. One hundred and twenty adult female Baladi goats (sixty pneumonic and sixty apparently healthy) were used in this study. DNA and RNA were extracted from blood samples collected from the jugular vein of each goat. SLC11A1, CD-14, CCL2, TLR1, TLR7, TLR8, TLR9, β defensin, SP110, SPP1, BP1, A2M, ADORA3, CARD15, IRF3, and SCART1 SNPs that have been previously found to be associated with pneumonia resistance/susceptibility were identified via PCR-DNA sequencing. The pneumonic and healthy goats differed significantly, according to a Chi-square analysis of the discovered SNPs. The mRNA levels of the studied immune markers were noticeably greater in the pneumonic goats than in the healthy ones. The findings could support the significance of the use of immune gene expression profiles and nucleotide variations as biomarkers for the susceptibility/resistance to pneumonia and provide a practical management technique for Baladi goats. These results also suggest a potential strategy for lowering pneumonia in goats by employing genetic markers linked to an animal’s ability to fend off infection in selective breeding.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.A.); (L.F.)
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
- Correspondence: (A.A.); (L.F.)
| | - Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
11
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
12
|
Du A, Zhao F, Liu Y, Xu L, Chen K, Sun D, Han B. Genetic polymorphisms of PKLR gene and their associations with milk production traits in Chinese Holstein cows. Front Genet 2022; 13:1002706. [PMID: 36118870 PMCID: PMC9479125 DOI: 10.3389/fgene.2022.1002706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work had confirmed that pyruvate kinase L/R (PKLR) gene was expressed differently in different lactation periods of dairy cattle, and participated in lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, suggesting that PKLR is a candidate gene to affect milk production traits in dairy cattle. Here, we verified whether this gene has significant genetic association with milk yield and composition traits in a Chinese Holstein cow population. In total, we identified 21 single nucleotide polymorphisms (SNPs) by resequencing the entire coding region and partial flanking region of PKLR gene, in which, two SNPs were located in 5′ promoter region, two in 5′ untranslated region (UTR), three in introns, five in exons, six in 3′ UTR and three in 3′ flanking region. The single marker association analysis displayed that all SNPs were significantly associated with milk yield, fat and protein yields or protein percentage (p ≤ 0.0497). The haplotype block containing all the SNPs, predicted by Haploview, had a significant association with fat yield and protein percentage (p ≤ 0.0145). Further, four SNPs in 5′ regulatory region and eight SNPs in UTR and exon regions were predicted to change the transcription factor binding sites (TFBSs) and mRNA secondary structure, respectively, thus affecting the expression of PKLR, leading to changes in milk production phenotypes, suggesting that these SNPs might be the potential functional mutations for milk production traits in dairy cattle. In conclusion, we demonstrated that PKLR had significant genetic effects on milk production traits, and the SNPs with significant genetic effects could be used as candidate genetic markers for genomic selection (GS) in dairy cattle.
Collapse
Affiliation(s)
- Aixia Du
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yanan Liu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingna Xu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kewei Chen
- Yantai Institute, China Agricultural University, Yantai, China
| | - Dongxiao Sun
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Bo Han, /
| |
Collapse
|
13
|
Sengupta I, Mondal P, Sengupta A, Mondal A, Singh V, Adhikari S, Dhang S, Roy S, Das C. Epigenetic regulation of Fructose‐1,6‐bisphosphatase 1 by host transcription factor Speckled 110
kDa
during hepatitis B virus infection. FEBS J 2022; 289:6694-6713. [DOI: 10.1111/febs.16544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Isha Sengupta
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
| | - Payel Mondal
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Vipin Singh
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| | - Sinjini Dhang
- Structural Biology & Bio‐Informatics Division CSIR‐Indian Institute of Chemical Biology Kolkata India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Siddhartha Roy
- Structural Biology & Bio‐Informatics Division CSIR‐Indian Institute of Chemical Biology Kolkata India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Chandrima Das
- Biophysics and Structural Genomics Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhaba National Institute Mumbai India
| |
Collapse
|
14
|
Duan Y, Ye T, Qu Z, Chen Y, Miranda A, Zhou X, Lok KC, Chen Y, Fu AKY, Gradinaru V, Ip NY. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nat Biomed Eng 2022; 6:168-180. [PMID: 34312508 DOI: 10.1038/s41551-021-00759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
The pathology of familial Alzheimer's disease, which is caused by dominant mutations in the gene that encodes amyloid-beta precursor protein (APP) and in those that encode presenilin 1 and presenilin 2, is characterized by extracellular amyloid plaques and intracellular neurofibrillary tangles in multiple brain regions. Here we show that the brain-wide selective disruption of a mutated APP allele in transgenic mouse models carrying the human APP Swedish mutation alleviates amyloid-beta-associated pathologies for at least six months after a single intrahippocampal administration of an adeno-associated virus that encodes both Cas9 and a single-guide RNA that targets the mutation. We also show that the deposition of amyloid-beta, as well as microgliosis, neurite dystrophy and the impairment of cognitive performance, can all be ameliorated when the CRISPR-Cas9 construct is delivered intravenously via a modified adeno-associated virus that can cross the blood-brain barrier. Brain-wide disease-modifying genome editing could represent a viable strategy for the treatment of familial Alzheimer's disease and other monogenic diseases that affect multiple brain regions.
Collapse
Affiliation(s)
- Yangyang Duan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tao Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhe Qu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Abigail Miranda
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ka-Chun Lok
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.
| |
Collapse
|
15
|
Ramírez-Jarquín UN, Sharma M, Zhou W, Shahani N, Subramaniam S. Deletion of SUMO1 attenuates behavioral and anatomical deficits by regulating autophagic activities in Huntington disease. Proc Natl Acad Sci U S A 2022; 119:e2107187119. [PMID: 35086928 PMCID: PMC8812691 DOI: 10.1073/pnas.2107187119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The CAG expansion of huntingtin (mHTT) associated with Huntington disease (HD) is a ubiquitously expressed gene, yet it prominently damages the striatum and cortex, followed by widespread peripheral defects as the disease progresses. However, the underlying mechanisms of neuronal vulnerability are unclear. Previous studies have shown that SUMO1 (small ubiquitin-like modifier-1) modification of mHtt promotes cellular toxicity, but the in vivo role and functions of SUMO1 in HD pathogenesis are unclear. Here, we report that SUMO1 deletion in Q175DN HD-het knockin mice (HD mice) prevented age-dependent HD-like motor and neurological impairments and suppressed the striatal atrophy and inflammatory response. SUMO1 deletion caused a drastic reduction in soluble mHtt levels and nuclear and extracellular mHtt inclusions while increasing cytoplasmic mHtt inclusions in the striatum of HD mice. SUMO1 deletion promoted autophagic activity, characterized by augmented interactions between mHtt inclusions and a lysosomal marker (LAMP1), increased LC3B- and LAMP1 interaction, and decreased interaction of sequestosome-1 (p62) and LAMP1 in DARPP-32-positive medium spiny neurons in HD mice. Depletion of SUMO1 in an HD cell model also diminished the mHtt levels and enhanced autophagy flux. In addition, the SUMOylation inhibitor ginkgolic acid strongly enhanced autophagy and diminished mHTT levels in human HD fibroblasts. These results indicate that SUMO is a critical therapeutic target in HD and that blocking SUMO may ameliorate HD pathogenesis by regulating autophagy activities.
Collapse
Affiliation(s)
| | - Manish Sharma
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Wuyue Zhou
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | | |
Collapse
|
16
|
Agnihotri V, Gupta A, Bajpai S, Singhal S, Dey AB, Dey S. Serum Proteomic Approach for Differentiation of Frail and Non-Frail Elderly. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
18
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|
19
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
20
|
Zhou Z, Yao B, Zhao D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 2020; 47:5773-5792. [PMID: 32661874 DOI: 10.1007/s11033-020-05646-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
21
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Huoh YS, Wu B, Park S, Yang D, Bansal K, Greenwald E, Wong WP, Mathis D, Hur S. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nat Commun 2020; 11:1625. [PMID: 32242017 PMCID: PMC7118133 DOI: 10.1038/s41467-020-15448-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Aggregate-like biomolecular assemblies are emerging as new conformational states with functionality. Aire, a transcription factor essential for central T cell tolerance, forms large aggregate-like assemblies visualized as nuclear foci. Here we demonstrate that Aire utilizes its caspase activation recruitment domain (CARD) to form filamentous homo-multimers in vitro, and this assembly mediates foci formation and transcriptional activity. However, CARD-mediated multimerization also makes Aire susceptible to interaction with promyelocytic leukemia protein (PML) bodies, sites of many nuclear processes including protein quality control of nuclear aggregates. Several loss-of-function Aire mutants, including those causing autoimmune polyendocrine syndrome type-1, form foci with increased PML body association. Directing Aire to PML bodies impairs the transcriptional activity of Aire, while dispersing PML bodies with a viral antagonist restores this activity. Our study thus reveals a new regulatory role of PML bodies in Aire function, and highlights the interplay between nuclear aggregate-like assemblies and PML-mediated protein quality control.
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- NTU Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sehoon Park
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Darren Yang
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Kushagra Bansal
- Department of Immunology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, India
| | - Emily Greenwald
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wesley P Wong
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diane Mathis
- Department of Immunology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Ipr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Mol Cell Biol 2020; 40:MCB.00471-19. [PMID: 31988106 DOI: 10.1128/mcb.00471-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.
Collapse
|
24
|
Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep 2020; 10:2300. [PMID: 32042028 PMCID: PMC7010774 DOI: 10.1038/s41598-020-59186-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are known post-transcriptional regulators of various biological processes including ovarian follicle development. We have previously identified miRNAs from human pre-ovulatory ovarian granulosa cells that are expressed from the intronic regions of two key genes in normal follicular development: FSH receptor (FSHR) and CYP19A1, the latter encoding the aromatase enzyme. The present study aims to identify the target genes regulated by these miRNAs: hsa-miR-548ba and hsa-miR-7973, respectively. The miRNAs of interest were transfected into KGN cell line and the gene expression changes were analyzed by Affymetrix microarray. Potential miRNA-regulated genes were further filtered by bioinformatic target prediction algorithms and validated for direct miRNA:mRNA binding by luciferase reporter assay. LIFR, PTEN, NEO1 and SP110 were confirmed as targets for hsa-miR-548ba. Hsa-miR-7973 target genes ADAM19, PXDN and FMNL3 also passed all verification steps. Additionally, the expression pattern of the miRNAs was studied in human primary cumulus granulosa cell culture in relation to the expression of their host genes and FSH stimulation. Based on our findings we propose the involvement of hsa-miR-548ba in the regulation of follicle growth and activation via LIFR and PTEN. Hsa-miR-7973 may be implicated in the modulation of extracellular matrix and cell-cell interactions by regulating the expression of its identified targets.
Collapse
|
25
|
Chen S, Li X, Ma S, Xing X, Wang X, Zhu Z. Chemogenomics analysis of drug targets for the treatment of acute promyelocytic leukemia. Ann Hematol 2020; 99:753-763. [PMID: 32016577 DOI: 10.1007/s00277-019-03888-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
The main challenges in treating acute promyelocytic leukemia (APL) are currently early mortality, relapse, refractory disease after induction therapy, and drug resistance to ATRA and ATO. In this study, a computational chemogenomics approach was used to identify new molecular targets and drugs for APL treatment. The transcriptional profiles induced by APL were compared with those induced by genetic or chemical perturbations. The genes that can reverse the transcriptional profiles induced by APL when perturbed were considered to be potential therapeutic targets for APL. Drugs targeting these genes or proteins are predicted to be able to treat APL if they can reverse the APL-induced transcriptional profiles. To improve the target identification accuracy of the above correlation method, we plotted the functional protein association networks of the predicted targets by STRING. The results determined PML, RARA, SPI1, HDAC3, CEBPA, NPM1, ABL1, BCR, PTEN, FOS, PDGFRB, FGFR1, NUP98, AFF1, and MEIS1 to be top candidates. Interestingly, the functions of PML, RARA, HDAC3, CEBPA, NPM1, ABL, and BCR in APL have been previously reported in the literature. This is the first chemogenomics analysis predicting potential APL drug targets, and the findings could be used to guide the design of new drugs targeting refractory and recurrent APL.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cheminformatics
- Datasets as Topic
- Drug Design
- Drug Development
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/radiation effects
- Gene Targeting
- Genes, Neoplasm
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Nucleophosmin
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Transcriptome
Collapse
Affiliation(s)
- Si Chen
- Department of Pharmacy, 967th Hospital of the Chinese People's Liberation Army, 80 Shengli Road, Xigang district, Dalian, 116011, Liaoning, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China
| | - Shifan Ma
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinrui Xing
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China
| | - Xiaobo Wang
- Department of Pharmacy, 967th Hospital of the Chinese People's Liberation Army, 80 Shengli Road, Xigang district, Dalian, 116011, Liaoning, China.
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe road, Yangpu district, Shanghai, 200433, China.
| |
Collapse
|
26
|
Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020; 25:molecules25030578. [PMID: 32013155 PMCID: PMC7037402 DOI: 10.3390/molecules25030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.
Collapse
|
27
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
28
|
Delmonte OM, Baldin F, Ovchinsky N, Marquardsen F, Recher M, Notarangelo LD, Kosinski SM. Novel Missense Mutation inSP110Associated with Combined Immunodeficiency and Advanced Liver Disease Without VOD. J Clin Immunol 2019; 40:236-239. [PMID: 31721003 DOI: 10.1007/s10875-019-00715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, USA.
| | - Fabian Baldin
- Immunodeficiency Clinic and Laboratory, Department Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Nadia Ovchinsky
- Division of Pediatric Gastroenterology, Albert Einstein College of Medicine, Children's Hospital at Montefiore, The Bronx, NY, USA
| | - Florian Marquardsen
- Immunodeficiency Clinic and Laboratory, Department Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Clinic and Laboratory, Department Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, USA
| | - Slawomir M Kosinski
- Division of Allergy and Immunology, St. Joseph's University Medical Center, Paterson, NJ, USA.
| |
Collapse
|
29
|
Karaky M, Fedetz M, Potenciano V, Andrés-León E, Codina AE, Barrionuevo C, Alcina A, Matesanz F. SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-κB inhibition. Hum Mol Genet 2019; 27:4012-4023. [PMID: 30102396 DOI: 10.1093/hmg/ddy284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
SP140 locus has been associated with multiple sclerosis (MS) as well as other autoimmune diseases by genome-wide association studies (GWAS). The causal variant of these associations (rs28445040-T) alters the splicing of the SP140 gene transcripts reducing the protein expression. We aimed to understand why the reduction of SP140 expression produced by the risk variant can increase the susceptibility to MS. To this end, we determined by RNA sequencing (RNA-seq) analysis the differentially expressed genes after SP140 silencing in lymphoblastoid cell lines (LCLs). We analyzed these genes by gene ontology (GO), comparative transcriptome profiles, enrichment of transcription factors (TFs) in the promoters of these genes and colocalization with GWAS risk variants. We also monitored the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in SP140-silenced cells by luciferase reporter system. We identified 100 genes that were up-regulated and 22 genes down-regulated in SP140-silenced LCLs. GO analysis revealed that genes affected by SP140 were involved in regulation of cytokine production, inflammatory response and cell-cell adhesion. We observed enrichment of NF-κB TF in the promoter of up-regulated genes and NF-κB-increased activity in SP140-silenced cell lines. We showed enrichment of genes regulated by SP140 in GWAS-detected risk loci for MS (14.63 folds), Crohn's disease (4.82 folds) and inflammatory bowel disease (4.47 folds), not observed in other unrelated immune diseases. Our findings showed that SP140 is an important repressor of genes implicated in inflammation, suggesting that decreased expression of SP140, promoted by the rs28445040-T risk variant, may lead to up-regulation of these genes by means of NF-κB inhibition in B cells.
Collapse
Affiliation(s)
- Mohamad Karaky
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Victor Potenciano
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatic Facility, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Anna Esteve Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Barrionuevo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
30
|
Quteineh L, Wójtowicz A, Bochud PY, Crettol S, Vandenberghe F, Venetz JP, Manuel O, Golshayan D, Lehmann R, Mueller NJ, Binet I, van Delden C, Steiger J, Mohacsi P, Dufour JF, Soccal PM, Kutalik Z, Marques-Vidal P, Vollenweider P, Recher M, Hess C, Pascual M, Eap CB. Genetic immune and inflammatory markers associated with diabetes in solid organ transplant recipients. Am J Transplant 2019; 19:238-246. [PMID: 29920932 DOI: 10.1111/ajt.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/25/2023]
Abstract
New-onset diabetes mellitus after transplantation (NODAT) is a complication following solid organ transplantation (SOT) and may be related to immune or inflammatory responses. We investigated whether single nucleotide polymorphisms (SNPs) within 158 immune- or inflammation-related genes contribute to NODAT in SOT recipients. The association between 263 SNPs and NODAT was investigated in a discovery sample of SOT recipients from the Swiss Transplant Cohort Study (STCS, n1 = 696). Positive results were tested in a first STCS replication sample (n2 = 489) and SNPs remaining significant after multiple test corrections were tested in a second SOT replication sample (n3 = 156). Associations with diabetic traits were further tested in several large general population-based samples (n > 480 000). Only SP110 rs2114592C>T remained associated with NODAT in the STCS replication sample. Carriers of rs2114592-TT had 9.9 times (95% confidence interval [CI]: 3.22-30.5, P = .00006) higher risk for NODAT in the combined STCS samples (n = 1184). rs2114592C>T was further associated with NODAT in the second SOT sample (odds ratio: 4.8, 95% CI: 1.55-14.6, P = .006). On the other hand, SP110 rs2114592C>T was not associated with diabetic traits in population-based samples, suggesting a specific gene-environment interaction, possibly due to the use of specific medications (ie, immunosuppressants) in transplant patients and/or to the illness that may unmask the gene effect.
Collapse
Affiliation(s)
- Lina Quteineh
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Agnieszka Wójtowicz
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Severine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Jean-Pierre Venetz
- Transplantation Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Oriol Manuel
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Transplantation Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Roger Lehmann
- Service of Endocrinology and Diabetes, University Hospital, Zurich, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Isabelle Binet
- Service of Nephrology and Transplantation Medicine, Kantonsspital, St Gallen, Switzerland
| | | | - Jürg Steiger
- Service of Nephrology, University Hospital, Basel, Switzerland
| | - Paul Mohacsi
- Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
| | | | - Paola M Soccal
- Service of Pulmonary Medicine, University Hospital, Geneva, Switzerland
| | - Zoltan Kutalik
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mike Recher
- Clinic for Primary Immunodeficiency and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | |
Collapse
|
31
|
Zucchelli C, Tamburri S, Filosa G, Ghitti M, Quilici G, Bachi A, Musco G. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain. Biochim Biophys Acta Gen Subj 2018; 1863:456-465. [PMID: 30465816 DOI: 10.1016/j.bbagen.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. METHODS We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. RESULTS Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. CONCLUSIONS Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. GENERAL SIGNIFICANCE The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators.
Collapse
Affiliation(s)
- Chiara Zucchelli
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Simone Tamburri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; San Raffaele Vita-Salute University, Via Olgettina 60, 20132 Milano, Italy
| | - Giuseppe Filosa
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
32
|
Leu JS, Chang SY, Mu CY, Chen ML, Yan BS. Functional domains of SP110 that modulate its transcriptional regulatory function and cellular translocation. J Biomed Sci 2018; 25:34. [PMID: 29642903 PMCID: PMC5894228 DOI: 10.1186/s12929-018-0434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background SP110, an interferon-induced nuclear protein, belongs to the SP100/SP140 protein family. Very recently, we showed that SP110b, an SP110 isoform, controls host innate immunity to Mycobacterium tuberculosis infection by regulating nuclear factor-κB (NF-κB) activity. However, it remains unclear how the structure of SP110 relates to its cellular functions. In this study, we provide experimental data illustrating the protein domains that are responsible for its functions. Methods We examined the effects of SP110 isoforms and a series of deletion mutants of SP110 on transcriptional regulation by luciferase reporter assays. We also employed confocal microscopy to determine the cellular distributions of enhanced green fluorescent protein-tagged SP110 isoforms and SP110 mutants. In addition, we performed immunoprecipitation and Western blotting analyses to identify the regions of SP110 that are responsible for protein interactions. Results Using reporter assays, we first demonstrated that SP110 isoforms have different regulatory effects on NF-κB-mediated transcription, supporting the notion that SP110 isoforms may have distinct cellular functions. Analysis of deletion mutants of SP110 showed that the interaction of the N-terminal fragment (amino acids 1–276) of SP110 with p50, a subunit of NF-κB, in the cytoplasm plays a crucial role in the down-regulation of the p50-driven tumor necrosis factor-α (TNFα) promoter activity in the nucleus, while the middle and C-terminal regions of SP110 localize it to various cellular compartments. Surprisingly, a nucleolar localization signal (NoLS) that contains one monopartite nuclear localization signal (NLS) and one bipartite NLS was identified in the middle region of SP110. The identification of a cryptic NoLS in the SP110 suggests that although this protein forms nuclear speckles in the nucleoplasm, it may be directed into the nucleolus to carry out distinct functions under certain cellular conditions. Conclusions The findings from this study elucidating the multidomain structure of the SP110 not only identify functional domains of SP110 that are required for transcriptional regulation, cellular translocation, and protein interactions but also implicate that SP110 has additional functions through its unexpected activity in the nucleolus. Electronic supplementary material The online version of this article (10.1186/s12929-018-0434-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Shiun Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - So-Yi Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Chia-Yu Mu
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Ling Chen
- Graduate Institute of Oncology, National Taiwan University Medical College, Taipei, Taiwan.
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan.
| |
Collapse
|
33
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
34
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
35
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
36
|
Polymorphisms in the SP110 and TNF-α Gene and Susceptibility to Pulmonary and Spinal Tuberculosis among Southern Chinese Population. DISEASE MARKERS 2017; 2017:4590235. [PMID: 29430075 PMCID: PMC5752994 DOI: 10.1155/2017/4590235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/10/2017] [Indexed: 01/15/2023]
Abstract
Objective To investigate the association of single-nucleotide polymorphisms (SNPs) in SP110 gene and TNF-α gene among pulmonary TB (PTB) and spinal TB (STB) patients. Methods In a total of 190 PTB patients, 183 STB patients were enrolled as the case group and 362 healthy individuals at the same geographical region as the control group. The SP110 SNPs (rs722555 and rs1135791) and the promoter -308G>A (rs1800629) and -238G>A (rs361525) polymorphisms in TNF-α were genotyped. Results. TNF-α -238G>A polymorphism was involved in susceptibility to STB, but not to PTB. The TNF-α -238 A allele was a protective factor against STB (A versus G: OR [95% CI] = 0.331 [0.113–0.972], P = 0.044). Furthermore, the presence of the -238 A allele was considered a trend to decrease the risk of STB (AG versus GG: P = 0.062, OR [95% CI] = 0.352 [0.118–1.053]; AA + AG versus GG: P = 0.050, OR [95CI%] = 0.335 [0.113–0.999]). However, SP110 SNPs (rs722555 and rs1135791) and TNF-α -308G>A (rs1800629) showed no association with PTB and STB in all genetic models. Conclusion The TNF-α -238 A allele appeared a protective effect against STB, whereas the SP110 SNPs (rs722555 and rs1135791) and TNF-α -308G>A (rs1800629) showed no association with susceptibility to PTB and STB patients in southern China.
Collapse
|
37
|
Sengupta I, Das D, Singh SP, Chakravarty R, Das C. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem 2017; 292:20379-20393. [PMID: 29046350 DOI: 10.1074/jbc.m117.796839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064
| | - Dipanwita Das
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Shivaram Prasad Singh
- the Kalinga Gastroenterology Foundation, Beam Diagnostics Premises, Cuttack-753001, India
| | - Runu Chakravarty
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064,
| |
Collapse
|
38
|
SP100B Expression Indexed Hemorrhage in Mouse Models of Cerebral Hemorrhage. Indian J Clin Biochem 2017; 33:361-364. [PMID: 30072838 DOI: 10.1007/s12291-017-0682-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the expression of SP100B in mouse models with acute cerebral hemorrhage. Mouse models of cerebral hemorrhage were induced using injection of collagenase into the brain. The serum levels of SP100B were detected by ELISA. The expression of SP100B in the hippocampus and other brain tissue were detected by indirect immunofluorescence technique. The mean concentration of serum SP100B was significantly higher in hemorrhage group (0.85 μg/l) than in control group (0.20 μg/l) (P = 0.0017). More importantly, the mean value of serum SP100B in both moderate hemorrhage (0.96 μg/l) and severe hemorrhage (1.21 μg/l) had significantly higher compared to hyporrhea group (0.39 μg/l) (P = 0.0041 and P = 0.0009, respectively). The expression of SP100B also increased in the hippocampus with severe hemorrhage. Additionally, the expression of SP100B was high in the early stage of hemorrhage. SP100B expression was positively related to the severity of hemorrhage in mouse models of cerebral hemorrhage. Serum SP100B might be a noninvasive biomarker for cerebral hemorrhage.
Collapse
|
39
|
Diagnostic autoantibodies for autoimmune liver diseases. Clin Transl Immunology 2017; 6:e139. [PMID: 28690845 PMCID: PMC5493583 DOI: 10.1038/cti.2017.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Autoimmune liver diseases are conditions of low prevalence that comprise the triad of autoimmune hepatitis, primary biliary cholangitis (cirrhosis) and primary sclerosing cholangitis and their poorly characterised overlapping syndromes. Diagnostic autoantibodies are associated with autoimmune hepatitis and primary biliary cholangitis but not with primary sclerosing cholangitis. Autoantibodies are useful disease markers that facilitate early diagnosis of autoimmune hepatitis and primary biliary cholangitis and allow for therapeutic intervention to prevent progression to liver cirrhosis and associated complications. Adult onset type 1 autoimmune hepatitis is associated with F-actin reactive smooth muscle autoantibody, antinuclear autoantibody in 60% of patients, and autoantibody to SLA/LP in 15–20%. Juvenile onset type 2 autoimmune hepatitis is associated with LKM-1 and LC-1 autoantibodies. Primary biliary cholangitis is associated with a mitochondria-associated autoantibody designated M2 in >90% of patients and with disease-specific antinuclear autoantibodies in 50% that bind to antigens in the nuclear core complex and in multiple nuclear dots. Autoantibodies to the nuclear core complex target gp210, nucleoporin p62 and nuclear lamin B receptor. Autoantibodies to multiple nuclear dots target Sp100 and PML antigens. Liver autoantibodies in asymptomatic patients with normal liver function may precede the subsequent development of overt autoimmune liver disease. For routine diagnostic immunology laboratories, initial screening for liver autoantibodies by immunofluorescence remains the method of choice with confirmation for reactivity with their target antigen by enzyme-linked immunosorbent assay (ELISA) or line blot when required.
Collapse
|
40
|
Leu JS, Chen ML, Chang SY, Yu SL, Lin CW, Wang H, Chen WC, Chang CH, Wang JY, Lee LN, Yu CJ, Kramnik I, Yan BS. SP110b Controls Host Immunity and Susceptibility to Tuberculosis. Am J Respir Crit Care Med 2017; 195:369-382. [PMID: 27858493 PMCID: PMC5328177 DOI: 10.1164/rccm.201601-0103oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/15/2016] [Indexed: 12/24/2022] Open
Abstract
RATIONALE How host genetic factors affect Mycobacterium tuberculosis (Mtb) infection outcomes remains largely unknown. SP110b, an IFN-induced nuclear protein, is the nearest human homologue to the mouse Ipr1 protein that has been shown to control host innate immunity to Mtb infection. However, the function(s) of SP110b remains unclear. OBJECTIVES To elucidate the role of SP110b in controlling host immunity and susceptibility to tuberculosis (TB), as well as to identify the fundamental immunological and molecular mechanisms affected by SP110b. METHODS Using cell-based approaches and mouse models of Mtb infection, we characterized the function(s) of SP110b/Ipr1. We also performed genetic characterization of patients with TB to investigate the role of SP110 in controlling host susceptibility to TB. MEASUREMENTS AND MAIN RESULTS SP110b modulates nuclear factor-κB (NF-κB) activity, resulting in downregulation of tumor necrosis factor-α (TNF-α) production and concomitant upregulation of NF-κB-induced antiapoptotic gene expression, thereby suppressing IFN-γ-mediated monocyte and/or macrophage cell death. After Mtb infection, TNF-α is also downregulated in Ipr1-expressing mice that have alleviated cell death, less severe necrotic lung lesions, more efficient Mtb growth control in the lungs, and longer survival. Moreover, genetic studies in patients suggest that SP110 plays a key role in modulating TB susceptibility in concert with NFκB1 and TNFα genes. CONCLUSIONS These results indicate that SP110b plays a crucial role in shaping the inflammatory milieu that supports host protection during infection by fine-tuning NF-κB activity, suggesting that SP110b may serve as a potential target for host-directed therapy aimed at manipulating host immunity against TB.
Collapse
Affiliation(s)
- Jia-Shiun Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - So-Yi Chang
- Institute of Biochemistry and Molecular Biology, and
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Medical College, Taipei, Taiwan
| | - Chia-Wei Lin
- Institute of Biochemistry and Molecular Biology, and
| | - Hsuan Wang
- Institute of Biochemistry and Molecular Biology, and
| | - Wan-Chen Chen
- Institute of Biochemistry and Molecular Biology, and
| | | | | | - Li-Na Lee
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan; and
| | | | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, and
| |
Collapse
|
41
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
42
|
Pozhitkov AE, Neme R, Domazet-Lošo T, Leroux BG, Soni S, Tautz D, Noble PA. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7:160267. [PMID: 28123054 PMCID: PMC5303275 DOI: 10.1098/rsob.160267] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Rafik Neme
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Catholic University of Croatia, Ilica 242, Zagreb, Croatia
| | - Brian G Leroux
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Peter A Noble
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
- PhD Program in Microbiology, Alabama State University, Montgomery, AL 36101-0271, USA
| |
Collapse
|
43
|
Zhang S, Wang XB, Han YD, Wang C, Zhou Y, Zheng F. Certain Polymorphisms in SP110 Gene Confer Susceptibility to Tuberculosis: A Comprehensive Review and Updated Meta-Analysis. Yonsei Med J 2017; 58:165-173. [PMID: 27873510 PMCID: PMC5122633 DOI: 10.3349/ymj.2017.58.1.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/14/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Numerous studies have assessed the association of SP110 gene variants with tuberculosis (TB), but the results were inconsistent. Through a comprehensive review and meta-analysis, our study aimed to clarify the nature of genetic risks contributed by 11 polymorphisms for the development of TB. MATERIALS AND METHODS Through searching PubMed, web of science, China National Knowledge Infrastructure (CNKI) databases, a total of 11 articles including 13 independent studies were selected. The pooled odd ratios (ORs) along with their corresponding 95% confidence interval (CI) were estimated for allelic comparisons, additive model (homozygote comparisons; heterozygote comparisons), dominant model and recessive model. We also assessed the heterogeneity across the studies and publication bias. RESULTS The results of combined analysis revealed a significantly increased risk of TB for single nucleotide polymorphism (SNP) rs9061 in all five comparisons (allelic comparisons: OR=1.28, 95% CI=1.14-1.44, p<0.0001; homozygote comparisons: OR=2.84, 95% CI=1.84-4.38, p<0.00001; heterozygote comparisons: OR=1.23, 95% CI=1.05-1.43, p=0.009; dominant model: OR=1.32, 95% CI=1.14-1.53, p=0.0003; recessive model: OR=2.26, 95% CI=1.18-4.34, p=0.01). In subgroup analysis, the risk of TB associated with SNP rs9061 appeared to be increased. Moreover, increased risk of TB was also found in Asian subgroup of SNP rs11556887, while decreased risk of TB appeared in large sample size subgroup of SNP rs1135791. No significant association was observed between other SNPs and the risk of TB. CONCLUSION Our meta-analysis suggested that the variant of SNP rs9061 might be a risk factor for TB.
Collapse
Affiliation(s)
- Shuai Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ya Di Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ye Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Chen Q, Tong Q, Ge H, Li W, Liu J, Wang Y, Guo Z, Quan F, Zhang Y. Identification of SP110 in horse (Equus caballus): Isolation of novel splice variants and evidence of activation effects on macrophages. Tuberculosis (Edinb) 2016; 101:85-94. [PMID: 27865405 DOI: 10.1016/j.tube.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 11/30/2022]
Abstract
SP110 has previously shown to be a genetic determinant of host resistance to the intracellular pathogen infection in mouse and human. However, its relevant biological information in large non-primate animals still remains unknown. Here we report the novel discovery and characterization of three transcript variants of horse SP110. The transcript variant 1 (Tv1) of horse SP110 with the longest open reading frame has four domains (Sp100, SAND, PHD and Bromo domain). Tv2 and Tv3 share the same N-terminal sequence as Tv1, which contains Sp100 and SAND. We show that Tv2 is generated from alternative splicing and deletion of Exon17-Exon18 segment, while Tv3 is generated by pre-mature transcriptional termination at Exon 16. Furthermore, we demonstrate that the heterologous expression of horse SP110 variants stimulate macrophages into an activation-like phenotype. The macrophages underwent a shift in enhancing the secretion of cytokines (interleukin-1 (IL-1) and TNF-α) and accelerating inducible nitric oxide synthase (iNOS) activity, and eventually went into apoptotic cell death. Intriguingly, horse SP110 Tv1 showed more capability to trigger the immune activities compared to Tv2 and Tv3. To our knowledge, the identification of SP110 transcript variants from horse is the first report on biological function of SP110 in perissodactyla animals.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Tong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hengtao Ge
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenzhong Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
45
|
Yao K, Wu Y, Chen Q, Zhang Z, Chen X, Zhang Y. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1. PLoS One 2016; 11:e0162832. [PMID: 27622275 PMCID: PMC5021326 DOI: 10.1371/journal.pone.0162832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium.
Collapse
Affiliation(s)
- Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
46
|
Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy. Proc Natl Acad Sci U S A 2016; 113:E3091-100. [PMID: 27185954 DOI: 10.1073/pnas.1600084113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10(-5)), and was associated with increased probability of developing DM (P = 4.8 × 10(-6)) and earlier onset of disease (P = 1.7 × 10(-5)). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds.
Collapse
|
47
|
Li LZ, Wang QS, Han LX, Wang JK, Shao SY, Wang L, Liu D, Yang XQ. Molecular characterization of Sp110 gene in pigs. Mol Genet Genomics 2016; 291:1431-42. [PMID: 26995495 DOI: 10.1007/s00438-016-1189-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022]
Abstract
Speckled 110 kDa (Sp110) plays an important role in infectious diseases, as revealed by studies in humans. However, little is known regarding porcine Sp110. To elucidate its potential role in porcine resistance to viral diseases, here, the complete coding sequence of porcine Sp110 gene and its 26 alternatively spliced isoforms were isolated using reverse transcription (RT)-polymerase chain reaction (PCR), and another seven splicing patterns were obtained using a minigene construct. Subcellular distribution of 11 representative isoforms was characterized in PK-15 cells transiently transfected with their respective GFP fusion constructs, and only isoforms (R and V) bearing all functional domains were localized in nucleus, indicating all the other isoforms lose normal functions of Sp110 owing to alternative splicing. Real-time quantitative PCR and competitive RT-PCR showed that both isoforms R and V had similar tissue expression profile, half-life and response to poly(I:C), a synthetic analog of viral double-stranded RNA, while the longer one (isoform R) was transcribed at a higher level. The results indicated that porcine Sp110 has a role in viral infection and that isoform R is the dominant active form. Overall the data provide potential resource for molecular breeding of pig resistant to diseases and contributes to breeding pigs resistant to viral infection.
Collapse
Affiliation(s)
- Li-Zu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qiu-Shi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Li-Xin Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jin-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Si-Yu Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Xiu-Qin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
48
|
Yang T, Wilkinson J, Wang Z, Ladinig A, Harding J, Plastow G. A genome-wide association study of fetal response to type 2 porcine reproductive and respiratory syndrome virus challenge. Sci Rep 2016; 6:20305. [PMID: 26846722 PMCID: PMC4742883 DOI: 10.1038/srep20305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/30/2015] [Indexed: 01/22/2023] Open
Abstract
Control of porcine reproductive and respiratory syndrome (PRRS) is economically important for the swine industry worldwide. As current PRRS vaccines do not completely protect against heterologous challenge, alternative means of control, including enhanced genetic resilience, are needed. For reproductive PRRS, the genetic basis of fetal response to PRRS virus (PRRSV) infection is poorly understood. Genome-wide association studies (GWAS) were done here using data from 928 fetuses from pregnant gilts experimentally challenged with type 2 PRRSV. Fetuses were assessed for viral load in thymus (VLT), viral load in endometrium (VLE), fetal death (FD) and fetal viability (FV), and genotyped at a medium density. Collectively, 21 candidate genomic regions were found associated with these traits, seven of which overlap with previously reported QTLs for pig health and reproduction. A comparison with ongoing and related transcriptomic analyses of fetal response to PRRSV infection found differentially expressed genes within 18 candidate regions. Some of these genes have immune system functions, and have been reported to contribute to host response to PRRSV infection. The results provide new evidence about the genetic basis of fetal response to PRRSV challenge, and may ultimately lead to alternative control strategies to reduce the impact of reproductive PRRS.
Collapse
Affiliation(s)
- Tianfu Yang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - James Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - John Harding
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Graham Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
49
|
SP140L, an Evolutionarily Recent Member of the SP100 Family, Is an Autoantigen in Primary Biliary Cirrhosis. J Immunol Res 2015; 2015:526518. [PMID: 26347895 PMCID: PMC4548144 DOI: 10.1155/2015/526518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Collapse
|
50
|
The effects of SP110's associated genes on fresh cavitary pulmonary tuberculosis in Han Chinese population. Clin Exp Med 2015; 16:219-25. [PMID: 25612917 DOI: 10.1007/s10238-015-0339-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023]
Abstract
SP110 is a promising anti-Mycobacterium tuberculosis (MTB) gene. To investigate the effects of SP110 and its associated genes, i.e., MYBBP1A and RELA, on pathological progression of MTB infection, an association study with 424 patients of fresh pulmonary tuberculosis (PTB) and 424 healthy controls was performed. Moreover, classification and regression tree and multifactor dimensionality reduction were employed to explore the effects of gene-gene interactions on cavitary PTB. The results indicated that both the heterozygous genotype GC and homozygous genotype CC in rs3809849 had significant effects on the risk of PTB (OR 1.42, 95 % CI 1.06-1.92, p 0.019; OR 1.55, 95 % CI 1.04-2.33, p = 0.033, respectively), and heterozygous genotype CT in rs9061 also had similar effects (OR 1.43, 95 % CI 1.07-1.90, p = 0.014). The rs3809849 and rs9905742 in MYBBP1A were also significantly associated with cavitary PTB (p = 0.00046 and 0.039, respectively), while rs9061 in SP110 had no such association (p = 0.06931) except its significant association with non-cavitary PTB (p = 0.0093). The interaction of MYBBP1A and RELA had significant effect on cavitary PTB (OR 4.24, 95 % CI 1.44-12.49, p = 0.005). These suggest that MYBBP1A instead of SP110 may be a genetic risk factor for cavitary PTB and play important effects on its whole progress.
Collapse
|