1
|
Singh MK, Han S, Ju S, Ranbhise JS, Ha J, Yeo SG, Kim SS, Kang I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025; 14:509. [PMID: 40214463 PMCID: PMC11989206 DOI: 10.3390/cells14070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein-protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna S. Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Wang W, Yin H, Sun G, Zhang J, Sun J, Mbabazi N, Zou L, Li B, Lin P, Pei Q, Wang X, Wang P, Ji X, Qu X, Yin D. The Role of Sleep Deprivation in Arrhythmias. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2022. [DOI: 10.15212/cvia.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sleep is essential to the normal psychological and physiological activities of the human body. Increasing evidence indicates that sleep deprivation is associated with the occurrence, development, and poor treatment effects of various arrhythmias. Sleep deprivation affects not only the peripheral nervous system but also the central nervous system, which regulates the occurrence of arrhythmias. In addition, sleep deprivation is associated with apoptotic pathways, mitochondrial energy metabolism disorders, and immune system dysfunction. Although studies increasingly suggest that pathological sleep patterns are associated with various atrial and ventricular arrhythmias, further research is needed to identify specific mechanisms and recommend therapeutic interventions. This review summarizes the findings of sleep deprivation in animal experiments and clinical studies, current challenges, and future research directions in the field of arrhythmias.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongpeng Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junpei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingmei Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nadine Mbabazi
- Department of Cardiology, King Faisal Hospital, Kigali, Rwanda
| | - Lina Zou
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengqi Lin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quanwei Pei
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Penghe Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuanrui Ji
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Protective Effects of Titanium Dioxide-based Emulsion after Short-term and Long-term Infrared-A Ray Irradiation on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
5
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
7
|
Vostakolaei MA, Hatami-Baroogh L, Babaei G, Molavi O, Kordi S, Abdolalizadeh J. Hsp70 in cancer: A double agent in the battle between survival and death. J Cell Physiol 2020; 236:3420-3444. [PMID: 33169384 DOI: 10.1002/jcp.30132] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70-1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane-associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Collapse
Affiliation(s)
- Mehdi A Vostakolaei
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hatami-Baroogh
- Department of Reproduction and Development, Royan Institute for Animal Biotechnology, ACER, Isfahan, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirafkan Kordi
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Singh AK, Upadhyay RC, Chandra G, Kumar S, Malakar D, Singh SV, Singh MK. Genome-wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu × taurine) cattle. Cell Stress Chaperones 2020; 25:327-344. [PMID: 32062819 PMCID: PMC7058763 DOI: 10.1007/s12192-020-01076-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022] Open
Abstract
The present study sought to evaluate mRNA expression profiles in the cultured dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu, Tharparkar × taurine, Holstein Friesian) cattle in response to heat stress. Bioinformatics' analysis identified temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of stress responses, protein repair, metabolism, protein transport, cell division, and apoptosis. The present microarray platform contains 51,338 synthesized oligonucleotide probes corresponding to at least 36,713 unigenes. A total of 11,183 and 8126 transcripts were differentially expressed with a fold change of ≥ 2 in Tharparkar and Karan-Fries cattle, respectively. Randomly selected real-time validation showed 83.33% correlation with microarray data. Functional annotation and pathway study of the differentially expressed transcripts or genes (DEGs) reveal that upregulated genes significantly (P < 0.05) affect protein processing and NOD-like receptor pathways (NLRs), while downregulated genes were significantly (P < 0.05) found to be associated with cell cycle, metabolism, and protein transport. Gene expression changes include activation of heat shock factors (HSFs), increased expression of heat shock proteins (HSPs), and apoptosis, while decreasing protein synthesis and another metabolism. These findings provide insights into the underlying mechanism of the physiology of heat stress in Tharparkar and Karan-Fries cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics in tropical climatic conditions. In conclusion, the present study indicates that heat stress differentially affects the expression of the significant number of genes associated with stress response, metabolism, apoptosis, and protein transport in dermal fibroblasts of Tharparkar and Karan-Fries cattle.
Collapse
Affiliation(s)
- A. K. Singh
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Science & Animal Husbandry, Rewa, Madhya Pradesh 486 001 India
- Dairy Cattle Physiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - R. C. Upadhyay
- Dairy Cattle Physiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Gulab Chandra
- Dairy Cattle Physiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana 132 001 India
- Department of Veterinary Physiology & Biochemistry, College of Veterinary & Animal Sciences, SVBPUAT, Meerut, U.P. 250 110 India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - D. Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - S. V. Singh
- Dairy Cattle Physiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - M. K. Singh
- Department of Poultry Science, DUVASU, Mathura, U.P. 281 001 India
| |
Collapse
|
9
|
Baez-Jurado E, Rincón-Benavides MA, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Sahebkar A, Echeverria V, Garcia-Segura LM, Barreto GE. Molecular mechanisms involved in the protective actions of Selective Estrogen Receptor Modulators in brain cells. Front Neuroendocrinol 2019; 52:44-64. [PMID: 30223003 DOI: 10.1016/j.yfrne.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Synthetic selective modulators of the estrogen receptors (SERMs) have shown to protect neurons and glial cells against toxic insults. Among the most relevant beneficial effects attributed to these compounds are the regulation of inflammation, attenuation of astrogliosis and microglial activation, prevention of excitotoxicity and as a consequence the reduction of neuronal cell death. Under pathological conditions, the mechanism of action of the SERMs involves the activation of estrogen receptors (ERs) and G protein-coupled receptor for estrogens (GRP30). These receptors trigger neuroprotective responses such as increasing the expression of antioxidants and the activation of kinase-mediated survival signaling pathways. Despite the advances in the knowledge of the pathways activated by the SERMs, their mechanism of action is still not entirely clear, and there are several controversies. In this review, we focused on the molecular pathways activated by SERMs in brain cells, mainly astrocytes, as a response to treatment with raloxifene and tamoxifen.
Collapse
Affiliation(s)
- E Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - M A Rincón-Benavides
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - O Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - L M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Langhnoja J, Mustak M. Gamma-Radiation-Induced Endoplasmic Reticulum Stress and Downregulation of WFS1, Nectin 3, and Sostdc1 Gene Expression in Mice Hippocampus. Basic Clin Neurosci 2019; 10:383-392. [PMID: 32231775 PMCID: PMC7101521 DOI: 10.32598/bcn.9.10.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/10/2018] [Accepted: 12/25/2018] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Neurogenesis mainly occurs in the hippocampus that is sensitive to radiation. More histological changes are reported at higher doses of radiation, while low dose radiation causes cognitive dysfunction in adult mammals. In the present study, we tried to correlate the Endoplasmic Reticulum (ER) stress-mediated hippocampus dysfunction after whole-body gamma radiation of mice. METHODS Mice were exposed to a series of gamma radiations, followed by isolation of hippocampus. To elucidate the gene expression profile, qPCR was performed for ER stress markers CHOP, BiP, and hippocampal specific genes WFS1, Nectin 3, and Sostdc 1 on the isolated hippocampus. Expression of CHOP and ERK½ were analyzed by western blot on exposure to gamma radiation. RESULTS qPCR results showed a significant increase in the expression of ER stress-specific genes CHOP, BiP, and decrease in hippocampal specific genes WFS1, Nectin3, and Sostdc1. Western blot study suggests a significant increase in ER stress proteins like CHOP and ERK½ expression. CONCLUSION Exposure to gamma radiation significantly increased the expression of ER-stress genes, suggesting that ER stress plays a major role in inducing radiation mediated dysfunction of the hippocampus. Also, significant downregulation of WFS1, Nectin3, and Sostdc1 genes suggests radiation mediated effect of hippocampal CA 1, CA 2, and CA 3 regions. A further significant increase of ERK½ shows involvement of the ERK pathway in mediating radiation-induced ER stress dysfunction in mice hippocampus. The present findings may lead to the identification of ER stress as a new marker to study radiation-induced neurodegenerative disorder.
Collapse
Affiliation(s)
- Jaldeep Langhnoja
- Department of Applied Zoology, Faculty of Science & Technology, Mangalore University, Mangalagangothri, Karnataka State, India
| | - Mohammed Mustak
- Department of Applied Zoology, Faculty of Science & Technology, Mangalore University, Mangalagangothri, Karnataka State, India.,Corresponding Author: Mohammed Mustak, PhD., Address:Department of Applied Zoology, Faculty of Science & Technology, Mangalore University, Mangalagangothri, Karnataka State, India. Tel:+91 (824) 9743289671, E-mail:
| |
Collapse
|
11
|
Sato-Kaneko F, Wang X, Yao S, Hosoya T, Lao FS, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Carson DA, Corr M, Hayashi T. Discovery of a Novel Microtubule Targeting Agent as an Adjuvant for Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8091283. [PMID: 30406141 PMCID: PMC6199861 DOI: 10.1155/2018/8091283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
For an activating immunotherapy such as adjuvants, a compound that can prolong immune stimulation may enhance efficacy. We leveraged data from two prior high throughput screens with NF-κB and interferon reporter cell lines to identify 4H-chromene-3-carbonitriles as a class of compounds that prolonged activation in both screens. We repurchased 23 of the most promising candidates. Out of these compounds we found #1 to be the most effective agent in stimulating the release of cytokines and chemokines from immune cells, including murine primary bone marrow derived dendritic cells. Mechanistically, #1 inhibited tubulin polymerization, and its effect on immune cell activation was abolished in cells mutated in the beta-tubulin gene (TUBB) encoding the site where colchicine binds. Treatment with #1 resulted in mitochondrial depolarization followed by mitogen-activated protein kinase activation. Because tubulin polymerization modulating agents have been used for chemotherapy to treat malignancy and #1 activated cytokine responses, we hypothesized that #1 could be effective for cancer immunotherapy. Intratumoral injection of #1 delayed tumor growth in a murine syngeneic model of head and neck cancer. When combined with PD-1 blockade, tumor growth slowed in the injected tumor nodule and there was an abscopal effect in an uninjected nodule on the contralateral flank, suggesting central antitumor immune activation. Thus, we identified a new class of tubulin depolymerizing agent that acts as both an innate and an adaptive immune activating agent and that limits solid tumor growth when used concurrently with a checkpoint inhibitor.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Xiaodong Wang
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Tadashi Hosoya
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Fitzgerald S. Lao
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Karen Messer
- Division of Biostatistics, University of California San Diego, La Jolla 92093, USA
| | - Minya Pu
- Division of Biostatistics, University of California San Diego, La Jolla 92093, USA
| | - Nikunj M. Shukla
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Howard B. Cottam
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Michael Chan
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Dennis A. Carson
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla 92093, USA
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla 92093, USA
| |
Collapse
|
12
|
Wang HX, Yang Y, Guo H, Hou DD, Zheng S, Hong YX, Cai YF, Huo W, Qi RQ, Zhang L, Chen HD, Gao XH. HSPB1 deficiency sensitizes melanoma cells to hyperthermia induced cell death. Oncotarget 2018; 7:67449-67462. [PMID: 27626679 PMCID: PMC5341888 DOI: 10.18632/oncotarget.11894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/22/2016] [Indexed: 12/04/2022] Open
Abstract
Hyperthermia has shown clinical potency as a single agent or as adjuvant to other therapies in cancer treatment. However, thermotolerance induced by thermosensitive genes such as the heat shock proteins can limit the efficacy of hyperthermic treatment. In the present study, we identified HSPB1 (HSP27) is hyperthermically inducible or endogenously highly expressed in both murine and human melanoma cell lines. We used a siRNA strategy to reduce HSPB1 levels and showed increased intolerance to hyperthermia via reduced cell viability and/or proliferation of cells. In the investigation of underlying mechanisms, we found knock down of HSPB1 further increased the proportion of apoptotic cells in hyperthermic treated melanoma cells when compared with either single agent alone, and both agents leaded to cell cycle arrest at G0/G1 or G2/M phases. We concluded that hyperthermia combined with silencing of HSPB1 enhanced cell death and resulted in failure to thrive in melanoma cell lines, implying the potential clinical utility of hyperthermia in combination with HSPB1 inhibition in cancer treatment.
Collapse
Affiliation(s)
- He-Xiao Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Yang Yang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Hao Guo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Dian-Dong Hou
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Song Zheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Yu-Xiao Hong
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Yun-Fei Cai
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Wei Huo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Li Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
13
|
Abstract
Heat shock protein 70 (Hsp70) is the most ubiquitous stress-inducible chaperone. It accumulates in the cells in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Intracellular Hsp70 is viewed as a cytoprotective protein. Indeed, this protein can inhibit key effectors of the apoptotic and autophagy machineries. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and can even cause their complete involution. However, HSP70 is also found in the extra-cellular space where it may signal via membrane receptors or endosomes to alter gene transcription and cellular function. Overall, Hsp70 extracellular function is believed to be immnunogenic and the term chaperokine to define the extracellular chaperones such as Hsp70 has been advanced. In this chapter the knowledge to date, as well as some emerging paradigms about the intra- and extra-cellular functions of Hsp70, are presented. The strategies targeting Hsp70 that are being developed in cancer therapy will also be discussed.
Collapse
Affiliation(s)
- Christophe Boudesco
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Sebastien Cause
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Gaëtan Jego
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| | - Carmen Garrido
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.
- INSERM, LNC UMR1231, Dijon, France.
- Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM, LNC UMR1231, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
14
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
15
|
Chen MH, Hanagata N, Ikoma T, Huang JY, Li KY, Lin CP, Lin FH. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment. Acta Biomater 2016; 37:165-73. [PMID: 27060620 DOI: 10.1016/j.actbio.2016.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 01/27/2023]
Abstract
UNLABELLED Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. STATEMENT OF SIGNIFICANCE Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible light (620-690nm). Here we report a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which can trigger ROS when particles are irradiated with high penetrating power of ionizing radiation. The present study provides quantitative data relating ROS generation and the therapeutic effect of Hf:HAp nanoparticles in lung cancer cells. As such, this material has opened an innovative window for deeper tumor and systemic disease treatment.
Collapse
Affiliation(s)
- Min-Hua Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan; Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba 3050047, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba 3050047, Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 1528550, Japan
| | - Jian-Yuan Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Keng-Yuan Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan.
| |
Collapse
|
16
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
17
|
Yang W, Cui M, Lee J, Gong W, Wang S, Fu J, Wu G, Yan K. Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. Chin J Cancer Res 2016; 28:19-28. [PMID: 27041924 DOI: 10.3978/j.issn.1000-9604.2016.02.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We investigated the effect of a small molecular inhibitor of heat shock protein (HSP), quercetin, on tumor radiofrequency (RF) ablation, and explored the underlying molecular mechanisms. METHODS In in vivo study, rats with R3230 breast adenocarcinoma were sacrificed 24 h post-treatment and gross coagulation areas were compared, and next, randomized into four treatment arms (control, quercetin alone, RF alone, and combination) for Kaplan-Meier analysis of defined endpoint survival. Then the distribution and expression levels of heat shock protein 70 (HSP70), cleaved caspase-3 and heat shock factor 1 (HSF1) were analyzed after different treatments. In in vitro study, we used quercetin to promote SK-HEP-1 (hepatic) and MCF-7 (breast) cancer cell apoptosis in heat shock cell model, and siRNA was used to block c-Jun and to explore the role of activating protein-1 (AP-1) signaling pathways. RESULTS We found the effects of quercetin plus RFA resulted in increase on the tumor destruction/endpoint survival (26.5±3.4 d) in vivo, compared with RF alone (17.6±2.5 d) and quercetin alone (15.7±3.1 d). Most importantly, quercetin-induced cancer cell death required the presence of HSF1 in animal model. Furthermore, quercetin directly down-regulated expression of HSF1 in vitro, which our findings have revealed, required the activation of AP-1 signaling pathways by loss-of-function analysis using siRNA mediated targeting of c-Jun. CONCLUSIONS These results indicated a protective role of quercetin in tumor ablation and highlighted a novel mechanism involving HSP70 with HSF1 pathway in thermal ablation of solid tumors.
Collapse
Affiliation(s)
- Wei Yang
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Ming Cui
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jungchieh Lee
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wei Gong
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Song Wang
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jingjing Fu
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Gongxiong Wu
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Kun Yan
- 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, 2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing 100142, China ; 3 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China ; 4 Department of Cardiovascular and Neurovascular, Guangzhou Medical University, Guangzhou 510182, China ; 5 Department of Oncology, The first Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
18
|
Rahman S, Warepam M, Singh LR, Dar TA. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:129-36. [PMID: 26095775 DOI: 10.1016/j.pbiomolbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
Urea is a strong denaturant and inhibits many enzymes but is accumulated intracellularly at very high concentrations (up to 3-4 M) in mammalian kidney and in many marine fishes. It is known that the harmful effects of urea on the macromolecular structure and function is offset by the accumulation of an osmolytic agent called methylamine. Intracellular concentration of urea to methylamines falls in the ratio of 2:1 to 3:2 (molar ratio). At this ratio, the thermodynamic effects of urea and methylamines on protein stability and function are believed to be algebraically additive. The mechanism of urea-methylamine counteraction has been widely investigated on various approaches including, thermodynamic, structural and functional aspects. Recent advances have also revealed atomic level insights of counteraction and various molecular dynamic simulation studies have yielded significant molecular level informations on the interaction between urea and methylamines with proteins. It is worthwhile that urea-methylamine system not only plays pivotal role for the survival and functioning of the renal medullary cells but also is a key osmoregulatory component of the marine elasmobranchs, holocephalans and coelacanths. Therefore, it is important to combine all discoveries and discuss the developments in context to physiology of the mammalian kidney and adaptation of the marine organisms. In this article we have for the first time reviewed all major developments on urea-counteraction systems to date. We have also discussed about other additional urea-counteraction systems discovered so far including urea-NaCl, urea-myoinsoitol and urea-molecular chaperone systems. Insights for the possible future research have also been highlighted.
Collapse
Affiliation(s)
- Safikur Rahman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India.
| |
Collapse
|
19
|
Kim SJ, Yu SY, Yoon HJ, Lee SY, Youn JP, Hwang SY. Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-014-9110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Li L, Chen F, Cao YG, Qi HP, Huang W, Wang Y, Jing S, Sun HL. Role of Calcium-Sensing Receptor in Cardiac Injury of Hereditary Epileptic Rats. Pharmacology 2015; 95:10-21. [DOI: 10.1159/000369627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
21
|
|
22
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
23
|
Sziksz E, Pap D, Veres G, Fekete A, Tulassay T, Vannay &A. Involvement of heat shock proteins in gluten-sensitive enteropathy. World J Gastroenterol 2014; 20:6495-6503. [PMID: 24914370 PMCID: PMC4047334 DOI: 10.3748/wjg.v20.i21.6495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.
Collapse
|
24
|
Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, Kjeldsen F. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS NANO 2014; 8:2161-75. [PMID: 24512182 DOI: 10.1021/nn4050744] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of nanoparticles in foods, materials, and clinical treatments has increased dramatically in the past decade. Because of the possibility of human exposure to nanoparticles, there is an urgent need to investigate the molecular mechanisms underlying the cellular responses that might be triggered. Such information is necessary to assess potential health risks arising from the use of nanoparticles, and for developing new formulations of next generation nanoparticles for clinical treatments. Using mass spectrometry-based proteomic technologies and complementary techniques (e.g., Western blotting and confocal laser scanning microscopy), we present insights into the silver nanoparticle-protein interaction in the human LoVo cell line. Our data indicate that some unique cellular processes are driven by the size. The 100 nm nanoparticles exerted indirect effects via serine/threonine protein kinase (PAK), mitogen-activated protein kinase (MAPK), and phosphatase 2A pathways, and the 20 nm nanoparticles induced direct effects on cellular stress, including generation of reactive oxygen species and protein carbonylation. In addition, we report that proteins involved in SUMOylation were up-regulated after exposure to 20 nm silver nanoparticles. These results were further substantiated by the observation of silver nanoparticles entering the cells; however, data indicate that this was determined by the size of the nanoparticles, since 20 nm particles entered the cells while 100 nm particles did not.
Collapse
Affiliation(s)
- Thiago Verano-Braga
- Protein Research Group and §MEMPHYS Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark , Odense, DK-5230, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen D, Wang W, Qin JJ, Wang MH, Murugesan S, Nadkarni DH, Velu SE, Wang H, Zhang R. Identification of the ZAK-MKK4-JNK-TGFβ signaling pathway as a molecular target for novel synthetic iminoquinone anticancer compound BA-TPQ. Curr Cancer Drug Targets 2014; 13:651-60. [PMID: 23607596 DOI: 10.2174/15680096113139990040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Identification and validation of molecular targets are considered as key elements in new drug discovery and development. We have recently demonstrated that a novel synthetic iminoquinone analog, termed [7-(benzylamino)- 1,3,4,8-tetrahydropyrrolo [4,3, 2-de]quinolin-8(1H)-one] (BA-TPQ), has significant anti-breast cancer activity both in vitro and in vivo, but the underlying molecular mechanisms are not fully understood. Herein, we report the molecular studies for BA-TPQ's effects on JNK and its upstream and downstream signaling pathways. The compound up-regulates the JNK protein levels by increasing its phosphorylation and decreasing its polyubiquitination-mediated degradation. It activates ZAK at the MAPKKK level and MKK4 at the MAPKK level. It also up-regulates the TGFβ2 mRNA level, which can be abolished by the JNK-specific inhibitor SP600125, but not TGFβ pathway-specific inhibitor SD-208, indicating that both JNK and TGFβ signaling pathways are activated by BA-TPQ and that the JNK pathway activation precedes TGFβ activation. The pro-apoptotic and anti-growth effects of BA-TPQ are significantly blocked by both the JNK and TGFβ pathway inhibitors. In addition, BA-TPQ activates the ZAK-MKK4-JNK pathway in MCF7 cells, but not normal MCF10A cells, demonstrating its cancer-specific activities. In conclusion, our results demonstrate that BA-TPQ activates the ZAK-MKK4-JNK-TGFβ signaling cascade as a molecular target for its anticancer activity.
Collapse
Affiliation(s)
- Deng Chen
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 2013; 26:835-45. [PMID: 15727267 DOI: 10.1179/016164104x3824] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Programmed cell death, often in the form of apoptosis, is an important contributing mechanism in the pathogenesis of ischemic brain injury. Depending on the severity of the insult and the stage of the injury, the executional pathways that are directly responsible for cell death and the signaling mechanisms that participate in the regulation of these death pathways may vary. It is likely that molecular or pharmacological targeting of the upstream signaling mechanisms that control the death executional pathways may offer opportunities for more complete and long-term neuroprotection. This review summarizes the recent advancements in the understanding of the executional and regulatory signaling mechanisms in ischemic brain injury.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology and Institute of Neurodegenerative Disorders University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
27
|
The combination of silencing BAG3 and inhibition of the JNK pathway enhances hyperthermia sensitivity in human oral squamous cell carcinoma cells. Cancer Lett 2013; 335:52-7. [DOI: 10.1016/j.canlet.2013.01.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
28
|
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013; 87:1157-1180. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Citation(s) in RCA: 1263] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | | | |
Collapse
|
29
|
Chen F, Cao YG, Qi HP, Li L, Huang W, Wang Y, Sun HL. Involvement of cardiomyocyte apoptosis in myocardial injury of hereditary epileptic rats. Can J Physiol Pharmacol 2013; 91:804-11. [PMID: 24144051 DOI: 10.1139/cjpp-2013-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many clinical cases have been reported where epilepsy profoundly influenced the pathophysiological function of the heart; however, the underlying mechanisms were not elucidated. We use the tremor (TRM) rat as an animal model of epilepsy to investigate the potential mechanisms of myocardial injury. Cardiac functions were assessed by arrhythmia score, heart rate, heart:body mass ratio, and hemodynamic parameters including left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of left ventricular pressure rise and fall (+dp/dtmax and -dp/dtmax). Catecholamine level was detected by HPLC. Apoptotic index was estimated by TUNEL assay. The expressions of Bcl-2, Bax, caspase-3, extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal protein kinases (JNK), and p38 were evaluated by Western blot. The results indicated that there existed cardiac dysfunction and cardiomyocyte apoptosis, accompanied by increasing catecholamine levels in TRM rats. Further investigation revealed that apoptosis was mediated by reducing Bcl-2, upregulating Bax, and activating caspase-3. Additional experiments demonstrated that P-ERK1/2 was decreased, whereas P-JNK and P-p38 were up-regulated. Our results suggest that the sympathetic nervous system activation and cardiomyocyte apoptosis are involved in the myocardial injury of TRM rats. The mechanisms of apoptosis might be associated with the activation of the mitochondria-initiated and the mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Fan Chen
- a Department of Pharmacology, Harbin Medical University - Daqing, Daqing, Heilongjiang 163319, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Park EJ, Lim JS, Jung HJ, Kim E, Han KH, Kwon TH. The role of 70-kDa heat shock protein in dDAVP-induced AQP2 trafficking in kidney collecting duct cells. Am J Physiol Renal Physiol 2013; 304:F958-71. [DOI: 10.1152/ajprenal.00469.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that several proteins [heat shock protein 70 (Hsp70 and Hsc70), annexin II, and tropomyosin 5b] interact with the Ser256 residue on the COOH terminus of aquaporin-2 (AQP2), where vasopressin-induced phosphorylation occurs for mediating AQP2 trafficking. However, it remains unknown whether these proteins, particularly Hsp70, play a role in AQP2 trafficking. Semiquantitative immunoblotting revealed that renal expression of AQP2 and Hsp70 was significantly increased in water-restricted or dDAVP-infused rats. In silico analysis of the 5′-flanking regions of AQP2, Hsp70-1, and Hsp70-2 genes revealed that transcriptional regulator binding elements associated with cAMP response were identified at both the Hsp70-1 and Hsp70-2 promoter regions, in addition to AQP2. Luciferase reporter assay demonstrated the significant increase of luminescence after dDAVP stimulation (10−8 M, 6 h) in the LLC-PK1 cells transfected with luciferase vector containing 1 kb of the 5′-flanking region of Hsp70-2 gene. Hsp70-2 protein expression was also increased in mpkCCDc14 cells treated by dDAVP in a concentration-dependent manner. Cell surface biotinylation analysis demonstrated that forskolin (10−5 M, 15 min)-induced AQP2 targeting to the apical plasma membrane was significantly attenuated in the mpkCCDc14 cells with Hsp70-2 knockdown. Moreover, forskolin-induced AQP2 phosphorylation (Ser256) was not significantly induced in the mpkCCDc14 cells with Hsp70-2 knockdown. In contrast, Hsp70-2 knockdown did not affect the dDAVP-induced AQP2 abundance. In addition, siRNA-directed knockdown of Hsp70 significantly decreased cell viability. The results suggest that Hsp70 is likely to play a role in AQP2 trafficking to the apical plasma membrane, partly through affecting AQP2 phosphorylation at Ser256 and cell viability.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Jung-Suk Lim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Hyun Jun Jung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Eunjung Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| |
Collapse
|
31
|
Tabuchi Y, Furusawa Y, Kariya A, Wada S, Ohtsuka K, Kondo T. Common gene expression patterns responsive to mild temperature hyperthermia in normal human fibroblastic cells. Int J Hyperthermia 2013; 29:38-50. [PMID: 23311377 DOI: 10.3109/02656736.2012.753163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Heat stress induces complex cellular responses, and its detailed molecular mechanisms still remain to be clarified. The objective of this study was to investigate the molecular mechanisms underlying cellular responses to mild hyperthermia (MHT) in normal human fibroblastic (NHF) cells. MATERIALS AND METHODS Cells were treated with MHT (41°C, 30 min) and then cultured at 37°C. Gene expression was determined by the GeneChip® system and bioinformatics tools. RESULTS Treatment of the NHF cell lines, Hs68 and OUMS-36, with MHT did not affect the cell viability or cell cycle. In contrast, many probe sets were differentially expressed by >1.5-fold in both cell lines after MHT treatment. Of the 1,196 commonly and differentially expressed probe sets analysed by k-means clustering, three gene clusters, Up-I, Down-I and Down-II, were observed. Interestingly, two gene networks were obtained from the up-regulated genes in cluster Up-I. The gene network E contained DDIT3 and HSPA5 and was mainly associated with the biological process of endoplasmic reticulum stress, while the network S contained HBEGF and LIF and was associated with the biological process of cell survival. Eighteen genes were validated by quantitative real-time polymerase chain reaction, consistent with the microarray data, in four kinds of NHF cells. CONCLUSIONS Common genes that were differentially expressed and/or acted within a gene network in response to MHT in NHF cells were identified. These findings provide the molecular basis for a further understanding of the mechanisms of the MHT response in NHF cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Centre, University of Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
33
|
Liao M, Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:67-80. [PMID: 22465980 DOI: 10.1016/j.etap.2011.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/03/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
The goal of this study was to investigate the mechanisms of nanocopper-induced nephrotoxicity by analyzing renal gene expression profiles phenotypically anchored to conventional toxicological outcomes. Male Wistar rats were given nanocopper (50, 100, 200 mg/kg) and microcopper (200 mg/kg) at different doses for 5 days. We found nanocopper can induce widespread renal proximal tubule necrosis in rat kidneys with blood urea nitrogen and creatinine increase. Whole genome transcriptome profiling of rat kidneys revealed significant alterations in the expression of many genes involved in valine, leucine, and isoleucine degradation, complement and coagulation cascades, oxidative phosphorylation, cell cycle, mitogen-activated protein kinase signaling pathway, glutathione metabolism, and others may be involved in the development of these phenotypes. Results from this study provide new insights into the nephrotoxicity of copper nano-particles and illustrate how toxicogenomic approaches are providing an unprecedented amount of mechanistic information on molecular responses to nanocopper and how they are likely to impact hazard and risk assessment.
Collapse
Affiliation(s)
- MingYang Liao
- GuangXi Medical University, Nanning, Guangxi, PR China
| | | |
Collapse
|
34
|
Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012; 109:9448-53. [PMID: 22566629 DOI: 10.1073/pnas.1201840109] [Citation(s) in RCA: 630] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl(4)) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl(4)- and alcohol-induced liver fibrosis using Cre-LoxP-based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.
Collapse
|
35
|
Madden LA, Hayman YA, Underwood C, Vince RV, Greenman J, Allsup D, Ali S. Increased inducible heat shock protein 72 expression associated with PBMC isolated from patients with haematological tumours. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:380-6. [PMID: 22548611 DOI: 10.3109/00365513.2012.681683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Heat shock protein 72 (Hsp72) is a highly inducible stress protein and molecular chaperone. Cancers have been shown to be associated with increased Hsp72 expression within the tumour itself and this may lead to resistance to apoptosis. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from patients diagnosed with chronic lymphocytic leukaemia (CLL) (n = 27) and chronic myelomonocytic leukaemia (CMML) (n = 16) and Hsp72 expression was characterized on both the cell surface and intracellularly by flow cytometry. To allow for comparison PBMC from breast cancer patients (n = 25) and healthy volunteers (n = 19) were included. RESULTS Both lymphocytes and monocytes from CLL and CMML patients showed high levels of total Hsp72 expression (4-6 fold increase) in comparison to breast cancer and healthy subjects. The majority of Hsp72 in these tumours was determined to be cell-surface expressed (64-93% of cell total Hsp72). CONCLUSIONS A correlation was observed between lymphocyte and monocyte total Hsp72 expression (p < 0.001) suggesting a common stress response pathway may exist in these blood cells and there are stress conditions present within the circulation. Hsp72 expression was not found to be related to white blood cell count.
Collapse
Affiliation(s)
- Leigh A Madden
- Postgraduate Medical Institute, University of Hull, Hull, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen W, Liu L, Luo Y, Odaka Y, Awate S, Zhou H, Shen T, Zheng S, Lu Y, Huang S. Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells. Cancer Prev Res (Phila) 2012; 5:778-87. [PMID: 22490436 DOI: 10.1158/1940-6207.capr-11-0551] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of survivin and Mcl-1, CPT increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK), and inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2). Inhibition of p38 with SB202190 or JNK with SP600125 attenuated CPT-induced cell death. Similarly, silencing p38 or c-Jun also in part prevented CPT-induced cell death. In contrast, expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) conferred resistance to CPT inhibition of Erk1/2 phosphorylation and induction of cell death. Furthermore, we found that all of these were attributed to CPT induction of reactive oxygen species (ROS). This is evidenced by the findings that CPT induced ROS in a concentration- and time-dependent manner; CPT induction of ROS was inhibited by N-acetyl-L-cysteine (NAC), a ROS scavenger; and NAC attenuated CPT activation of p38/JNK, inhibition of Erk1/2, and induction of cell death. The results suggested that CPT induction of ROS activates p38/JNK and inhibits Erk1/2, leading to caspase-independent cell death in tumor cells.
Collapse
Affiliation(s)
- Wenxing Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, 71130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang W, Ahmed M, Tasawwar B, Levchenko T, Sawant RR, Torchilin V, Goldberg SN. Combination radiofrequency (RF) ablation and IV liposomal heat shock protein suppression: reduced tumor growth and increased animal endpoint survival in a small animal tumor model. J Control Release 2011; 160:239-44. [PMID: 22230341 DOI: 10.1016/j.jconrel.2011.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND To investigate the effect of IV liposomal quercetin (a known down-regulator of heat shock proteins) alone and with liposomal doxorubicin on tumor growth and end-point survival when combined with radiofrequency (RF) tumor ablation in a rat tumor model. METHODS Solitary subcutaneous R3230 mammary adenocarcinoma tumors (1.3-1.5 cm) were implanted in 48 female Fischer rats. Initially, 32 tumors (n=8, each group) were randomized into four experimental groups: (a) conventional monopolar RF alone (70°C for 5 min), (b) IV liposomal quercetin alone (1 mg/kg), (c) IV liposomal quercetin followed 24hr later with RF, and (d) no treatment. Next, 16 additional tumors were randomized into two groups (n=8, each) that received a combined RF and liposomal doxorubicin (15 min post-RF, 8 mg/kg) either with or without liposomal quercetin. Kaplan-Meier survival analysis was performed using a tumor diameter of 3.0 cm as the defined survival endpoint. RESULTS Differences in endpoint survival and tumor doubling time among the groups were highly significant (P<0.001). Endpoint survivals were 12.5±2.2 days for the control group, 16.6±2.9 days for tumors treated with RF alone, 15.5±2.1 days for tumors treated with liposomal quercetin alone, and 22.0±3.9 days with combined RF and quercetin. Additionally, combination quercetin/RF/doxorubicin therapy resulted in the longest survival (48.3±20.4 days), followed by RF/doxorubicin (29.9±3.8 days). CONCLUSIONS IV liposomal quercetin in combination with RF ablation reduces tumor growth rates and improves animal endpoint survival. Further increases in endpoint survival can be seen by adding an additional anti-tumor adjuvant agent liposomal doxorubicin. This suggests that targeting several post-ablation processes with multi-drug nanotherapies can increase overall ablation efficacy.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang W, Ahmed M, Tasawwar B, Levchenko T, Sawant RR, Collins M, Signoretti S, Torchilin V, Goldberg SN. Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model. Int J Hyperthermia 2011; 27:527-38. [PMID: 21846189 DOI: 10.3109/02656736.2011.582474] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate the effect of heat shock protein (HSP) modulation on tumour coagulation by combining radiofrequency (RF) ablation with adjuvant liposomal quercetin and/or doxorubicin in a rat tumour model. METHODS Sixty R3230 breast adenocarcinoma tumours/animals were used in this IACUC-approved study. Initially, 60 tumours (n=6, each subgroup) were randomised into five groups: (1) RF alone, (2) intravenous (IV) liposomal quercetin alone (1 mg/kg), (3) IV liposomal quercetin followed 24 h later with RF, (4) RF followed 15 min later by IV liposomal doxorubicin (8 mg/kg), (5) IV liposomal quercetin 24 h before RF followed by IV liposomal doxorubicin 15 min post-ablation. Animals were sacrificed 4 or 24 h post-treatment and gross coagulation diameters were compared. Next, immunohistochemistry staining was performed for Hsp70 and cleaved caspase-3 expression. Comparisons were performed by using Student t-tests or ANOVA. RESULTS Combination RF-quercetin significantly increased coagulation size compared with either RF or liposomal quercetin alone (13.1±0.7 mm vs. 8.8±1.2 mm or 2.3±1.3 mm, respectively, P<0.001 for all comparisons). Triple therapy (quercetin-RF-doxorubicin) showed larger coagulation diameter (14.5±1.0 mm) at 24 h than quercetin-RF (P=0.016) or RF-doxorubicin (13.2±1.3 mm, P=0.042). Combination quercetin-RF decreased Hsp70 expression compared with RF alone at both 4 h (percentage of stained cells/hpf 22.4±13.9% vs. 38.8±16.1%, P<0.03) and 24 h (45.2±10.5% vs. 81.1±3.6%, P<0.001). Quercetin-RF increased cleaved caspase-3 expression at both 4 h (percentage of stained cells/hpf 50.7±13.4% vs. 41.9±15.1%, P<0.03) and 24 h (37.4±7.8% vs. 33.2±6.5%, P=0.045); with, triple therapy (quercetin-RF-doxorubicin) resulting in the highest levels of apoptosis (45.1±10.7%) at 24 h. Similar trends were observed for rim thickness. CONCLUSIONS Suppression of HSP production using adjuvant liposomal quercetin can increase apoptosis and improve RF ablation-induced tumour destruction. Further increases in tumour coagulation can be seen including an additional anti-tumour adjuvant agent such as liposomal doxorubicin.
Collapse
Affiliation(s)
- Wei Yang
- Minimally Invasive Tumor Therapies Laboratory, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Road, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2822-34. [PMID: 22001349 DOI: 10.1016/j.ajpath.2011.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/16/2011] [Accepted: 08/24/2011] [Indexed: 12/13/2022]
Abstract
Peritoneal dialysis-related peritonitis causes the denudation of mesothelial cells and, ultimately, membrane integrity alterations and peritoneal dysfunction. Because heat shock protein 72 (HSP72) confers protection against apoptosis and because autophagy mediates survival in response to cellular stresses, we examined whether autophagy contributes to HSP72-mediated cytoprotection in lipopolysaccharide (LPS)-induced peritonitis. Exposure of cultured peritoneal mesothelial cells to LPS resulted first in autophagy and later, apoptosis. Inhibition of autophagy by 3-methyladenine or Beclin-1 small-interfering RNA sensitized cells to apoptosis and abolished the antiapoptotic effect of HSP72, suggesting that autophagy activation acts as a prosurvival mechanism. Overexpression of HSP72 augmented autophagy through c-Jun N-terminal kinase (JNK) phosphorylation and Beclin-1 up-regulation. Suppression of JNK activity reversed HSP72-mediated Beclin-1 up-regulation and autophagy, indicating that HSP72-mediated autophagy is JNK dependent. In a rat model of LPS-associated peritonitis, autophagy occurred before apoptosis in peritoneum. Up-regulation of HSP72 by geranylgeranylacetone increased autophagy, inhibited apoptosis, and attenuated peritoneal injury, and these effects were blunted by down-regulation of HSP72 with quercetin. Additionally, blocking autophagy by chloroquine promoted apoptosis and aggravated LPS-associated peritoneal dysfunction. Thus, HSP72 protects peritoneum from LPS-induced mesothelial cells injury, at least in part by enhancing JNK activation-dependent autophagy and inhibiting apoptosis. These findings imply that HSP72 induction might be a potential therapy for peritonitis.
Collapse
|
40
|
Farrell H, Hayes J, Laffey J, Rowan N. Studies on the relationship between pulsed UV light irradiation and the simultaneous occurrence of molecular and cellular damage in clinically-relevant Candida albicans. J Microbiol Methods 2011; 84:317-26. [DOI: 10.1016/j.mimet.2010.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
41
|
Abstract
Heat shock protein 70 (Hsp70) is a powerful chaperone whose expression is induced in response to a wide variety of physiological and environmental insults, including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Hsp70 cytoprotective properties may be explained by its anti-apoptotic function. Indeed, this protein can inhibit key effectors of the apoptotic machinery at the pre- and postmitochondrial level. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and even can cause their complete involution. But Hsp70 can also be found in the extracellular medium. Its role is then immunogenic and the term chaperokine to define the extracellular chaperones has been advanced. Hsp70 tumorigenic functions as well as the strategies that are being developed in cancer therapy in order to inhibit Hsp70 are commented in this chapter.
Collapse
|
42
|
TABUCHI YOSHIAKI, FURUSAWA YUKIHIRO, KONDO TAKASHI. Genes and Gene Networks in the Apoptosis Induced by Heat Stress in Human Leukemia U937 Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.3191/thermalmed.27.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Abstract
OBJECTIVES We previously reported that Arsenic trioxide (ATO) can inhibit glioma growth both in vitro and in vivo. While the use of ATO alone for solid tumor treatment sometimes was found to be ineffective which may be due to the protective pathways including heat shock proteins (HSPs) response induced by ATO. In this study, we modified HSPs expression to investigate whether HSPs had some effect on ATO induced glioma cell death. METHODS Trypan bule exclusion assay, mitochondrial membrane potential (MMP) Assay, and SubG1 detection were used to evaluate cell viability and western-blot was employed to detect HSPs and some apoptosis markers expression induced by ATO. Heat pre-treatment, HSPs inhibitor, or Heat Shock factor-1 (HSF1) knockdown by SiRNA was employed to modify HSPs levels. RESULTS It was showed that KNK437 (HSPs inhibitor) or HSF1 knockdown significantly enhanced cell death, MMP disruption, JNK phosphorylation and caspase-3 cleavage induced by ATO, which was accompanied by abrogation of HSPs induction, while heat pre-treatment with clear HSPs induction had strong protection on the effects mentioned above. CONCLUSION Those data suggested that HSPs play protective roles on ATO induced cell death in glioma. Inhibition of HSPs may have a synergistic effect with ATO on glioma treatment.
Collapse
|
44
|
Affiliation(s)
- Christopher G. Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Lyra Chang
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Jason E. Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| |
Collapse
|
45
|
Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010; 2010:214074. [PMID: 20182529 PMCID: PMC2825543 DOI: 10.1155/2010/214074] [Citation(s) in RCA: 893] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/20/2009] [Indexed: 12/13/2022] Open
Abstract
Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer.
Collapse
|
46
|
Bellmann K, Charette SJ, Nadeau PJ, Poirier DJ, Loranger A, Landry J. The mechanism whereby heat shock induces apoptosis depends on the innate sensitivity of cells to stress. Cell Stress Chaperones 2010; 15:101-13. [PMID: 19557548 PMCID: PMC2866974 DOI: 10.1007/s12192-009-0126-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/16/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022] Open
Abstract
The cellular response to heat shock (HS) is a paradigm for many human diseases collectively known as "protein conformation diseases" in which the accumulation of misfolded proteins induces cell death. Here, we analyzed how cells having a different apoptotic threshold die subsequent to a treatment with HS. Cells with a low apoptotic threshold mainly induced apoptosis through activation of conventional stress kinase signaling pathways. By contrast, cells with a high apoptotic threshold also died by apoptosis but likely after the accumulation of heat-aggregated proteins as revealed by the formation of aggresomes in these cells, which were associated with the generation of atypical nuclear deformations. Inhibition of the proteasome or expression of an aggregation prone protein produced similar nuclear alterations. Furthermore, elevated levels of chaperones markedly suppressed both HS-induced nuclear deformations and apoptosis induced upon protein aggregation whereas they had little effect on stress kinase-mediated apoptosis. We conclude that the relative contribution of stress signaling pathways and the accumulation of protein aggregates to cell death by apoptosis is related to the innate sensitivity of cells to deadly insults.
Collapse
Affiliation(s)
- Kerstin Bellmann
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Steve J. Charette
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Québec, QC Canada G1V 4G5
| | - Philippe J. Nadeau
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Dominic J. Poirier
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Anne Loranger
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Jacques Landry
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| |
Collapse
|
47
|
Chang W, Song BW, Lim S, Song H, Shim CY, Cha MJ, Ahn DH, Jung YG, Lee DH, Chung JH, Choi KD, Lee SK, Chung N, Lee SK, Jang Y, Hwang KC. Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells 2009; 27:2283-2292. [PMID: 19544472 DOI: 10.1002/stem.153] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mesenchymal stem cell (MSC) therapy for myocardial injury has inherent limitations due to the poor viability of MSCs after cell transplantation. In this study, we directly delivered Hsp70, a protein with protective functions against stress, into MSCs, using the Hph-1 protein transduction domain ex vivo for high transfection efficiency and low cytotoxicity. Compared to control MSCs in in vitro hypoxic conditions, MSCs delivered with Hph-1-Hsp70 (Hph-1-Hsp70-MSCs) displayed higher viability and anti-apoptotic properties, including Bcl2 increase, reduction of Bax, JNK phosphorylation and caspase-3 activity. Hsp70 delivery also attenuated cellular ATP-depleting stress. Eight animals per group were used for in vivo experiments after occlusion of the left coronary artery. Transplantation of Hph-1-Hsp70-MSCs led to a decrease in the fibrotic heart area, and significantly reduced the apoptotic positive index by 19.5 +/- 2%, compared to no-treatment controls. Hph-1-Hsp70-MSCs were well-integrated into the infarcted host myocardium. The mean microvessel count per field in the infarcted myocardium of the Hph-1-Hsp70-MSC-treated group (122.1 +/- 13.5) increased relative to the MSC-treated group (75.9 +/- 10.4). By echocardiography, transplantation of Hph-1-Hsp70-MSCs resulted in additional increases in heart function, compared to the MSCs-transplanted group. Our results may help formulate better clinical strategies for in vivo MSC cell therapy for myocardial damage.
Collapse
Affiliation(s)
- Woochul Chang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barrier M, Dix DJ, Mirkes PE. Inducible 70 kDa heat shock proteins protect embryos from teratogen-induced exencephaly: Analysis using Hspa1a/a1b knockout mice. ACTA ACUST UNITED AC 2009; 85:732-40. [DOI: 10.1002/bdra.20610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Akimoto T, Nonaka T, Harashima K, Sakurai H, Ishikawa H, Mitsuhashi N. Radicicol potentiates heat‐induced cell killing in a human oesophageal cancer cell line: the Hsp90 chaperone complex as a new molecular target for enhancement of thermosensitivity. Int J Radiat Biol 2009; 80:483-92. [PMID: 15360086 DOI: 10.1080/09553000410001725107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the ability of a heat shock protein 90 (Hsp90) chaperone complex inhibitor, radicicol, to modify thermal response and heat-induced cell killing, and to clarify the underlining mechanisms. MATERIALS AND METHODS A human oesophageal cancer cell line (TE-1), with a mutant p53 gene, was used. To examine the effect of radicicol on heat-induced cell killing, radicicol at a concentration of 100 nM was incubated with the cells for 7 h during heat treatment. Changes in the expression of proteins were examined by Western blot and immunofluorescence analysis. RESULTS Radicicol in combination with heat synergistically potentiated heat-induced cellular killing despite an increase in the expression of Hsp72 and Hsp27 caused by radicicol. Heat alone activated Raf-1 and p42/p44 extracellular signal-regulated kinase (Erk), and heat in combination with radicicol inhibited the activation of Raf-1 and p42/p44 Erk through reduced binding of Raf-1 to Hsp90. Phosphorylation of Akt was also decreased by radicicol. CONCLUSIONS The Hsp90 chaperone complex inhibitor, radicicol, potentiated heat-induced cellular killing, and inhibition of p42/p44 Erk and Akt activation rather than modification of Hsp expression might be involved in enhancing cellular thermosensitivity. Results suggest that the Hsp90 chaperone complex could be a new molecular target for the modification of the cellular response to heat.
Collapse
Affiliation(s)
- T Akimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review.
Collapse
Affiliation(s)
- V Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|