1
|
Song Y, Guo JF, Lan PS, Wang M, Du QY. Investigation of the pan-cancer property of FNDC1 and its molecular mechanism to promote lung adenocarcinoma metastasis. Transl Oncol 2024; 44:101953. [PMID: 38593585 PMCID: PMC11024379 DOI: 10.1016/j.tranon.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Fibronectin type III domain containing 1 (FNDC1) has been associated with the metastasis of many tumors, but its function in lung cancer remains uncertain. METHODS FNDC1 expression was analyzed in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), evaluate its prognostic value. Gene Set Enrichment Analysis (GSEA) enrichment analysis of differential expression of FNDC1 in lung cancer. The expression of FNDC1 was detected in five types of lung cancer cells, and screened to establish FNDC1 stable knockdown cell strains. To observe the migration and invasion ability of lung cancer cells after FNDC1 knockdown. Finally, we used rhIL-6 to interfere with the stable knockdown of FNDC1 in A549 cells and observed the recovery of migration and invasion. RESULT Our results showed that FNDC1 expression was increased in 21 tumor tissues, including lung cancer, and was associated with poor prognosis in five cancers, including lung adenocarcinoma (LUAD) (P < 0.05). GSEA enrichment analysis showed that FNDC1 was related to the pathways involved the JAK-STAT signaling pathway. Stable knockdown of FNDC1 in A549 and H292 cells resulted in decreased migration and invasion ability of both cells, accompanied by decreased expression of MMP-2 and Snail, and a significant decline in the expression of p-JAK2 and p-STAT3. The suppressive effect of FNDC1 knockdown on lung cancer cell metastasis counteracted by the JAK-STAT agonist rhIL-6 were presented in the nude mouse metastatic tumor model. CONCLUSION FNDC1 is implicated in poor prognosis of a diverse range of malignant tumors, which can promote metastasis and invasion of lung cancer through the JAK2-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Jun-Feng Guo
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Pei-Shu Lan
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Miao Wang
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Quan-Yu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, PR China.
| |
Collapse
|
2
|
Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory. J Neurosci 2017; 36:7936-45. [PMID: 27466338 DOI: 10.1523/jneurosci.4475-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. SIGNIFICANCE STATEMENT Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM.
Collapse
|
3
|
Berecki G, Motin L, Adams DJ. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits. Mol Pharmacol 2016; 89:187-96. [PMID: 26490245 DOI: 10.1124/mol.115.101154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/19/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[β-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, R-Type/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- GTP-Binding Protein beta Subunits/physiology
- GTP-Binding Protein gamma Subunits/physiology
- HEK293 Cells
- Humans
- Protein Subunits/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Géza Berecki
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Leonid Motin
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Hiller C, Kling RC, Heinemann FW, Meyer K, Hübner H, Gmeiner P. Functionally Selective Dopamine D2/D3 Receptor Agonists Comprising an Enyne Moiety. J Med Chem 2013; 56:5130-41. [DOI: 10.1021/jm400520c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Christine Hiller
- Department of Chemistry and
Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen,
Germany
| | - Ralf C. Kling
- Department of Chemistry and
Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen,
Germany
| | - Frank W. Heinemann
- Department of Chemistry
and
Pharmacy, Inorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry
and
Pharmacy, Inorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and
Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen,
Germany
| | - Peter Gmeiner
- Department of Chemistry and
Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen,
Germany
| |
Collapse
|
5
|
Ahmadiantehrani S, Ron D. Dopamine D2 receptor activation leads to an up-regulation of glial cell line-derived neurotrophic factor via Gβγ-Erk1/2-dependent induction of Zif268. J Neurochem 2013; 125:193-204. [PMID: 23373701 DOI: 10.1111/jnc.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent growth factor essential to the development, survival, and function of dopaminergic neurons (Airaksinen and Saarma 2002). The molecular mechanisms underlying GDNF expression remain elusive; thus, we set out to identify a signaling pathway that governs GDNF levels. We found that treatment of both differentiated dopaminergic-like SH-SY5Y cells and rat midbrain slices with the dopamine D2 receptor (D2R) agonist, quinpirole, triggered an increase in the expression of GDNF that was temporally preceded by an increase in the levels of zinc-finger protein 268 (Zif268), a DNA-binding transcription factor encoded by an immediate-early gene. Moreover, the D2R inhibitor raclopride blocked the increase of both GDNF and Zif268 expression following potassium-evoked dopamine release in SH-SY5Y cells. We used adenoviral delivery of small hairpin RNA (shRNA) targeting Zif268 to down-regulate its expression and found that Zif268 is specifically required for the D2R-mediated up-regulation of GDNF. Furthermore, the D2R-mediated induction of GDNF and Zif268 expression was dependent on Gβγ-mediated signaling and activation of extracellular signal-regulated kinase 1/2. Importantly, using chromatin immunoprecipitation assay, we identified a direct association of Zif268 with the GDNF promoter. These results suggest that D2R activation induces a Gβγ- and extracellular signal-regulated kinase 1/2-dependent increase in the level of Zif268, which functions to directly up-regulate the expression of GDNF.
Collapse
Affiliation(s)
- Somayeh Ahmadiantehrani
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA
| | - Dorit Ron
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Pourkhalili N, Ghahremani MH, Farsandaj N, Tavajohi S, Majdzadeh M, Parsa M, Lavasani NJ, Ostad SN. Evaluation of anti-invasion effect of cannabinoids on human hepatocarcinoma cells. Toxicol Mech Methods 2012; 23:120-6. [DOI: 10.3109/15376516.2012.730559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2012; 97:1-13. [PMID: 22387368 DOI: 10.1016/j.pneurobio.2012.02.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Cognitive dysfunction is one of the most typical characteristics in various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (advanced stage). Although several mechanisms like neuronal apoptosis and inflammatory responses have been recognized to be involved in the pathogenesis of cognitive dysfunction in these diseases, recent studies on neurodegeneration and cognitive dysfunction have demonstrated a significant impact of receptor modulation on cognitive changes. The pathological alterations in various receptors appear to contribute to cognitive impairment and/or deterioration with correlation to diversified mechanisms. This article recapitulates the present understandings and concepts underlying the modulation of different receptors in human beings and various experimental models of Alzheimer's disease and Parkinson's disease as well as a conceptual update on the underlying mechanisms. Specific roles of serotonin, adrenaline, acetylcholine, dopamine receptors, and N-methyl-D-aspartate receptors in Alzheimer's disease and Parkinson's disease will be interactively discussed. Complex mechanisms involved in their signaling pathways in the cognitive dysfunction associated with the neurodegenerative diseases will also be addressed. Substantial evidence has suggested that those receptors are crucial neuroregulators contributing to cognitive pathology and complicated correlations exist between those receptors and the expression of cognitive capacities. The pathological alterations in the receptors would, therefore, contribute to cognitive impairments and/or deterioration in Alzheimer's disease and Parkinson's disease. Future research may shed light on new clues for the treatment of cognitive dysfunction in neurodegenerative diseases by targeting specific alterations in these receptors and their signal transduction pathways in the frontal-striatal, fronto-striato-thalamic, and mesolimbic circuitries.
Collapse
Affiliation(s)
- Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Vauquelin G, Bostoen S, Vanderheyden P, Seeman P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:337-72. [PMID: 22331262 DOI: 10.1007/s00210-012-0734-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Drug-receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D(2) dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the "atypical antipsychotics", has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D(2) receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist's dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | | | | | | |
Collapse
|
9
|
Abstract
All currently efficacious antipsychotic drugs have as part of their mechanism the ability to attenuate some or all of the signaling through the dopamine D(2) receptor. More recently, the dopamine D(1) receptor has been hypothesized to be a promising target for the treatment of negative and/or cognitive aspects of schizophrenia that are not improved by current antipsychotics. Although cAMP has been presumed to be the primary messenger for signaling through the dopamine receptors, the last decade has unveiled a complexity that has provided exciting avenues for the future discovery of antipsychotic drugs (APDs). We review the signaling mechanisms of currently approved APDs at dopamine D(2) receptors, and note that aripiprazole is a compound that is clearly differentiated from other approved drugs. Although aripiprazole has been postulated to cause dopamine stabilization due to its partial D(2) agonist properties, a body of literature suggests that an alternative mechanism, functional selectivity, is of primary importance. Finally, we review the signaling at dopamine D(1) receptors, and the idea that drugs that activate D(1) receptors may have use as APDs for improving negative and cognitive symptoms. We address the current state of drug discovery in the D(1) area and its relationship to novel signaling mechanisms. Our conclusion is that although the first APD targeting dopamine receptors was discovered more than a half-century ago, recent research advances offer the possibility that novel and/or improved drugs will emerge in the next decade.
Collapse
|
10
|
Tappe-Theodor A, Constantin CE, Tegeder I, Lechner SG, Langeslag M, Lepcynzsky P, Wirotanseng RI, Kurejova M, Agarwal N, Nagy G, Todd A, Wettschureck N, Offermanns S, Kress M, Lewin GR, Kuner R. Gαq/11 signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain 2012; 153:184-196. [DOI: 10.1016/j.pain.2011.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022]
|
11
|
Laliberté B, Wilson AM, Nafisi H, Mao H, Zhou YY, Daigle M, Albert PR. TNFAIP8: a new effector for Galpha(i) coupling to reduce cell death and induce cell transformation. J Cell Physiol 2010; 225:865-74. [PMID: 20607800 DOI: 10.1002/jcp.22297] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Galpha(i)-coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)-coupled dopamine-D2short (D2S) receptor transforms Balb-D2S cells via Gαi3. To identify new Gαi effectors, a yeast two-hybrid screen was done using constitutively active Gαi3-Q204L as bait, and tumor necrosis factor-alpha (TNFα)-induced protein 8 (TNFAIP8, SCC-S2/NDED/GG2-1) was identified. In contrast, TNFAIP8-related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull-down, co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi-TNFAIP8 coupling. Over-expression or depletion of TNFAIP8 using antisense constructs in Balb-D2S cells did not affect D2S-induced signaling to Gαi-dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S-induced foci formation, consistent with a role for TNFAIP8 in Gαi-dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα-induced cell death in Balb-D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S-induced inhibition of TNFα-mediated caspase activation, suggesting that D2S/TNFAIP8-induced protection from TNFα-induced cell death is caspase-independent. The data suggest that Gαi-TNFAIP8-mediated rescue of pre-oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation.
Collapse
Affiliation(s)
- Benoit Laliberté
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Jamshidiha M, Habibollahi P, Ostad S, Ghahremani M. Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells. Daru 2010; 18:141-5. [PMID: 22615609 PMCID: PMC3304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/10/2010] [Accepted: 03/30/2010] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND AND THE PURPOSE OF THE STUDY Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. MATERIALS AND METHODS HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. RESULTS Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. CONCLUSION Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway.
Collapse
Affiliation(s)
- M. Jamshidiha
- Department of Pharmacology-Toxicology, Faculty of Pharmacy,Pharmaceutical Science Research Centre
| | - P. Habibollahi
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - S.N. Ostad
- Department of Pharmacology-Toxicology, Faculty of Pharmacy
| | - M.H. Ghahremani
- Department of Pharmacology-Toxicology, Faculty of Pharmacy,Pharmaceutical Science Research Centre,Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran,Correspondence:
| |
Collapse
|
13
|
Mailman RB, Murthy V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des 2010; 16:488-501. [PMID: 19909227 PMCID: PMC2958217 DOI: 10.2174/138161210790361461] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/12/2009] [Indexed: 11/22/2022]
Abstract
Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D(2) receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D(2) and 5-HT(2A) antagonists, and those that also bind with modest affinity to D(2), 5-HT(2A), and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D(2) partial agonism or D(2) functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D(2) functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D(2) antagonists.
Collapse
Affiliation(s)
- Richard B Mailman
- Penn State University College of Medicine - Milton S. Hershey Medical Center Department of Pharmacology. R130 500 University Dr., PO Box 850, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
14
|
Regulation of Kaposi's sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr 2008; 48:531-40. [PMID: 18645521 DOI: 10.1097/qai.0b013e31817fbdcf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) possesses two distinct life cycles, lytic replication and latency. An immediate early viral protein, Replication and transcription activator (RTA), is responsible for the virus switch from latency to active replication. METHODS To identify cellular pathways that reactivate KSHV replication, an RTA-responsive viral early promoter, PAN, coupled with an enhanced green fluorescent protein (EGFP) reporter was delivered into a KSHV latently infected B cell line. Five different chemical libraries with defined cellular targets were screened for their ability to induce the PAN promoter as an indication of lytic replication. RESULTS We identified seven chemicals that disrupted latency in KSHV latently infected B cells, five being N-acyl-dopamine derivatives. We showed that these chemicals reactivate KSHV through interacting with dopamine receptors, and that KSHV utilizes dopamine receptors and the associated PKA and MAP kinase pathways to detect and transmit stress signals for reactivation. CONCLUSION Our study identified two cellular signaling pathways that mediate KSHV reactivation and provided a chemical genetics approach to identify new endogenous activators with therapeutic potential against herpesvirus associated malignancies.
Collapse
|
15
|
Morris SJ, Van-Ham II, Daigle M, Robillard L, Sajedi N, Albert PR. Differential desensitization of dopamine D2 receptor isoforms by protein kinase C: The importance of receptor phosphorylation and pseudosubstrate sites. Eur J Pharmacol 2007; 577:44-53. [PMID: 17869243 DOI: 10.1016/j.ejphar.2007.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 12/22/2022]
Abstract
Altered regulation of dopamine D(2) receptors is implicated in addiction, schizophrenia and movement disorders, as well as lactotroph growth and regulation. Dopamine D(2S) and dopamine D(2L) receptors are alternately-spliced variants that differ by 29 amino acids in the third intracellular (i3) domain and display different sensitivity to desensitization by protein kinase C (PKC). In the present studies we determined the specific phosphorylation sites on the dopamine D(2S) receptor that confer PKC-mediated desensitization. In dopamine D(2L) receptors, we identified a PKC pseudosubstrate site responsible for the relative insensitivity of the receptor to PKC-induced uncoupling. In transiently transfected Ltk(-) fibroblast cells, 2-min preactivation of PKC with 12-O-tetradecanoyl 4beta-phorbol 13alpha-acetate (TPA) completely inhibited calcium mobilization induced by the dopamine D(2S) receptor, but not the dopamine D(2L) variant. Point mutation of i3 PKC sites Ser228/229Gly rendered the dopamine D(2S) receptor resistant to PKC action, with lesser effects of other Ser and Thr mutations. Inactivation of the PKC pseudosubstrate motif in the dopamine D(2L) receptor sensitized the receptor to PKC, and this was reversed by mutation of i3 PKC sites Ser228/229. A phospho-specific antibody generated against phospho-Ser228/229 demonstrated PKC-induced phosphorylation at these sites of dopamine D(2S), but not D(2L) receptors, in Ltk(-) cells. Conversely, the pseudosubstrate dopamine D(2L) receptor mutant displayed PKC-induced phosphorylation at Ser228/229, which was abolished when these sites were mutated. Similar phosphorylation results were observed using GH4 cells stably transfected with dopamine D(2) receptors and mutants. Thus the relative location of phosphorylation and pseudosubstrate sites provides an important determinant substrate sensitivity to PKC.
Collapse
Affiliation(s)
- Stephen J Morris
- Ottawa Health Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H-8M5
| | | | | | | | | | | |
Collapse
|
16
|
Jacobsen KX, MacDonald H, Lemonde S, Daigle M, Grimes DA, Bulman DE, Albert PR. A Nurr1 point mutant, implicated in Parkinson's disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis 2007; 29:117-22. [PMID: 17890097 DOI: 10.1016/j.nbd.2007.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/19/2007] [Accepted: 08/12/2007] [Indexed: 11/30/2022] Open
Abstract
The orphan nuclear receptor NURR1 is critical for the development of mesencephalic dopamine neurons and directly regulates tyrosine hydroxylase (TH) via specific NGFI-B response elements (NBRE). We identified a Parkinson's disease patient with a NURR1 mutation, resulting in a p.Ser125Cys change, immediately adjacent to the putative ERK1/2 phosphorylation site. Here we show, in dopaminergic SK-N-AS human neuroblastoma cells, that this substitution markedly attenuated NURR1-induced transcriptional activation through a human TH promoter NBRE. Furthermore, in SK-N-AS cells co-transfected with the dopamine-D2S receptor and NURR1, the dopamine-D2 agonist quinpirole stimulated ERK1/2 phosphorylation and enhanced transcriptional activation by wild-type NURR1 but not the p.Ser125Cys NURR1 mutant, and these actions were blocked by the specific MEK1/2 inhibitor PD98059. These results indicate that Ser125 is critical for basal and ERK1/2-induced NURR1 activity and suggest a role for this and other NURR1 mutations in the regulation of dopamine synthesis and predisposition to Parkinson's disease.
Collapse
|
17
|
Van-Ham II, Banihashemi B, Wilson AM, Jacobsen KX, Czesak M, Albert PR. Differential signaling of dopamine-D2S and -D2L receptors to inhibit ERK1/2 phosphorylation. J Neurochem 2007; 102:1796-1804. [PMID: 17767702 DOI: 10.1111/j.1471-4159.2007.04650.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although they have distinct functions, the signaling of dopamine-D(2) receptor short and long isoforms (D(2)S and D(2)L) is virtually identical. We compared inhibitory regulation of extracellular signal-regulated kinases (ERK1/2) in GH4 pituitary cells separately transfected with these isoforms. Activation of rat or human dopamine-D(2)S, muscarinic or somatostatin receptors inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation, while the D(2)L receptor failed to inhibit this response. In order to address the structural basis for the differential signaling of D(2)S and D(2)L receptors, we examined the D(2)L-SS mutant, in which a protein kinase C (PKC) pseudosubstrate site that is present in the D(2)L but not D(2)S receptor was converted to a consensus PKC site. In transfected GH4 cells, the D(2)L-SS mutant inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation almost as strongly as the D(2)S receptor. A D(2)S-triple mutant that eliminates PKC sites involved in D(2)S receptor desensitization also inhibited ERK1/2 activation. Similarly, in striatal cultures, the D(2)-selective agonist quinpirole inhibited potassium-stimulated ERK1/2 phosphorylation, indicating the presence of this pathway in neurons. In conclusion, the D(2)S and D(2)L receptors differ in inhibitory signaling to ERK1/2 due to specific residues in the D(2)L receptor alternatively spliced domain, which may account for differences in their function in vivo.
Collapse
Affiliation(s)
- Irit Itzhaki Van-Ham
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Behzad Banihashemi
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Ariel M Wilson
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Kirsten X Jacobsen
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret Czesak
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| | - Paul R Albert
- Departments of Medicine and Cellular and Molecular Medicine, and Ottawa Health Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
|
19
|
Wang C, Buck DC, Yang R, Macey TA, Neve KA. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005; 93:899-909. [PMID: 15857393 DOI: 10.1111/j.1471-4159.2005.03055.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.
Collapse
Affiliation(s)
- Chunhe Wang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, 97239, USA
| | | | | | | | | |
Collapse
|
20
|
Chapter II Signal transduction of dopamine receptors. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0924-8196(05)80006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Abstract
The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.
Collapse
Affiliation(s)
- Kim A Neve
- Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | |
Collapse
|
22
|
Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev 2004; 56:351-69. [PMID: 15317908 DOI: 10.1124/pr.56.3.2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are powerful analgesics but also drugs of abuse. Because opioid addicts are susceptible to certain infections, opioids have been suspected to suppress the immune response. This was supported by the finding that various immune-competent cells express opioid receptors and undergo apoptosis when treated with opioid alkaloids. Recent evidence suggests that opioids may also effect neuronal survival and proliferation or migrating properties of tumor cells. A multitude of signaling pathways has been suggested to be involved in these extra-analgesic effects of opioids. Growth-promoting effects were found to be mediated through Akt and Erk signaling cascades. Death-promoting effects have been ascribed to inhibition of nuclear factor-kappaB, increase of Fas expression, p53 stabilization, cytokine and chemokine release, and activation of nitric oxide synthase, p38, and c-Jun-N-terminal kinase. Some of the observed effects were inhibited with opioid receptor antagonists or pertussis toxin; others were unaffected. It is still unclear whether these properties are mediated through typical opioid receptor activation and inhibitory G-protein-signaling. The present review tries to unravel controversial findings and provides a hypothesis that may help to integrate diverse results.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Germany.
| | | |
Collapse
|
23
|
Beom S, Cheong D, Torres G, Caron MG, Kim KM. Comparative Studies of Molecular Mechanisms of Dopamine D2 and D3 Receptors for the Activation of Extracellular Signal-regulated Kinase. J Biol Chem 2004; 279:28304-14. [PMID: 15102843 DOI: 10.1074/jbc.m403899200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine D(2) and D(3) receptors (D(2)R/D(3)R), which have similar structural architecture as well as functional similarities, are expressed in the same brain dopaminergic neurons. It is intriguing that two receptor proteins with virtually the same functional roles are expressed in the same neuron. Recently we have shown that D(2)R and D(3)R possess different regulatory processes including intracellular trafficking properties, which implies that they might employ different signaling mechanisms for regulation of the same cellular processes. Here we studied the signaling pathways of ERK activation mediated by D(2)R and D(3)R in HEK-293 cells and corroborated them with concomitant studies in COS-7 cells and C6 cells. Our results show that Src, phosphatidylinositol 3-kinase, and atypical protein kinase C were commonly involved in D(2)R-/D(3)R-mediated ERK activation. However, beta-arrestin and sequestration of D(2)R/D(3)R were found not to be involved. ERK activations mediated by D(3)R, but not D(2)R, were blocked by betaARK-CT, AG1478 epidermal growth factor receptor (EGFR) inhibitor, and by dominant negative mutants of Ras and Raf, suggesting the involvement of the Gbetagamma(i) pathway. The alpha-subunit of G(o) (Galpha(o)) was able to couple with D(3)R to mediate ERK activation. We conclude that D(3)R mainly utilizes the betagamma pathway of G(i) protein, which involves the transactivation of EGFR in HEK-293 cells. In contrast, the alpha-subunit of the G(i) protein plays a main role in D(2)R-mediated ERK activation. Our study suggests one example of intricate cellular regulations in the brain, that is, dopaminergic neurons could regulate ERK activity more flexibly through alternative usage of either the D(2)R or D(3)R pathway depending on the cellular situation.
Collapse
Affiliation(s)
- SunRyeo Beom
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju, 500-757 Korea
| | | | | | | | | |
Collapse
|
24
|
An JJ, Cho SR, Jeong DW, Park KW, Ahn YS, Baik JH. Anti-proliferative effects and cell death mediated by two isoforms of dopamine D2 receptors in pituitary tumor cells. Mol Cell Endocrinol 2003; 206:49-62. [PMID: 12943989 DOI: 10.1016/s0303-7207(03)00236-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stable rat pituitary tumor cell lines expressing two isoforms of the dopamine D2 receptor, D2L (long) and D2S (short) (the GH3D2L and GH3D2S cell lines, respectively), were established, and the signaling pathway underlying the anti-proliferative and cell death effects of dopaminergic agonists was examined in these cells. After either dopamine or quinpirole treatment, the cell viability decreased significantly only in GH3D2L cells and GH3D2S cells, but not in GH3 cells where D2 receptors are absent. Treatment with haloperidol, a specific D2 receptor antagonist, rescued the dopamine-mediated decreased cell viability in both the GH3D2L and GH3D2S cells. Treatment of these cells with dopamine decreased the DNA synthesis rate, as demonstrated by the incorporation of 5-bromo-2'-deoxyuridine (BrdU). Dopamine-induced cell death was observed in the GH3D2L and GH3D2S cells, and was accompanied by DNA laddering and caspase-3 activation, which were blunted by haloperidol, indicating that dopamine-induced cell death in these cells is mediated by the dopamine D2 receptors. D2 receptor-mediated cell death in these cells correlated with the sustained and enhanced activation of p38 mitogen-activated protein kinase (MAPK) and the extracellular-signal regulated kinase (ERK)1/2 pathways. Treatment with SB203580, which is a specific p38 MAPK inhibitor and PD98059, which is an inhibitor of MEK1/ERK signaling, selectively abrogates dopamine-induced cell death. It was further shown that p38 MAPK and ERK activation was inhibited by the antioxidant, N-acetylcysteine (NAC), and that a treatment with haloperidol completely blocked the p38 and ERK activation induced by dopamine. These results suggest that dopamine induces an anti-proliferative effect and cell death via the dopamine D2 receptors, by means of the p38 MAPK and ERK pathways involving oxidative stress, in the pituitary tumor cells.
Collapse
Affiliation(s)
- Juan Ji An
- Laboratory of Molecular Biology, Medical Research Center, College of Medicine, Brain Korea 21 Project for Medical Sciences, Yonsei University, Shinchon-dong 134, Seodaemun-gu, Seoul 120-752, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Kotecha SA, MacDonald JF. Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:51-106. [PMID: 12785285 DOI: 10.1016/s0074-7742(03)54003-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Suhas A Kotecha
- Department of Physiology, Faculty of Medicine, University of Toronto, Canadian Institute of Health Research Group, The Synapse, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
26
|
Liu G, Ghahremani MH, Banihashemi B, Albert PR. Diacylglycerol and ceramide formation induced by dopamine D2S receptors via Gbeta gamma -subunits in Balb/c-3T3 cells. Am J Physiol Cell Physiol 2003; 284:C640-8. [PMID: 12431910 DOI: 10.1152/ajpcell.00190.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol (DAG) and ceramide are important second messengers affecting cell growth, differentiation, and apoptosis. Balb/c-3T3 fibroblast cells expressing dopamine-D2S (short) receptors (Balb-D2S cells) provide a model of G protein-mediated cell growth and transformation. In Balb-D2S cells, apomorphine (EC(50) = 10 nM) stimulated DAG and ceramide formation by 5.6- and 4.3-fold, respectively, maximal at 1 h and persisting over 6 h. These actions were blocked by pretreatment with pertussis toxin (PTX), implicating G(i)/G(o) proteins. To address which G proteins are involved, Balb-D2S clones expressing individual PTX-insensitive Galpha(i) proteins were treated with PTX and tested for apomorphine-induced responses. Neither PTX-insensitive Galpha(i2) nor Galpha(i3) rescued D2S-induced DAG or ceramide formation. Both D2S-induced DAG and ceramide signals required Gbetagamma-subunits and were blocked by inhibitors of phospholipase C [1-(6-[([17beta]-3-methoxyestra-1,2,3[10]-trien- 17yl)amino]hexyl)-1H-pyrrole-2,5-dione (U-73122) and partially by D609]. The similar G protein specificity of D2S-induced calcium mobilization, DAG, and ceramide formation indicates a common Gbetagamma-dependent phospholipase C-mediated pathway. Both D2 agonists and ceramide specifically induced mitogen-activated protein kinase (ERK1/2), suggesting that ceramide mediates a novel pathway of D2S-induced ERK1/2 activation, leading to cell growth.
Collapse
Affiliation(s)
- Gele Liu
- Ottawa Health Research Institute (Neuroscience), University of Ottawa, Canada K1H 8M5
| | | | | | | |
Collapse
|
27
|
Liu G, Robillard L, Banihashemi B, Albert PR. Growth hormone-induced diacylglycerol and ceramide formation via Galpha i3 and Gbeta gamma in GH4 pituitary cells. Potentiation by dopamine-D2 receptor activation. J Biol Chem 2002; 277:48427-33. [PMID: 12376552 DOI: 10.1074/jbc.m202130200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) secretion is regulated by indirect negative feedback mechanisms. To address whether GH has direct actions on pituitary cells, lipid signaling in GH(4)ZR(7) somatomammotroph cells was examined. GH (EC(50) = 5 nm) stimulated diacylglycerol (DAG) and ceramide formation in parallel by over 10-fold within 15 min and persisting for >3 h. GH-induced DAG/ceramide formation was blocked by pertussis toxin (PTX) implicating G(i)/G(o) proteins and was potentiated 1.5-fold by activation of G(i)/G(o)-coupled dopamine-D2S receptors, which had no effect alone. Following PTX pretreatment, only PTX-resistant Galpha(i)3, not Galpha(o) or Galpha(i)2, rescued GH-induced DAG/ceramide signaling. GH-induced DAG/ceramide formation was also blocked in cells expressing Gbetagamma blocker GRK-ct. In GH(4)ZR(7) cells, GH induced phosphorylation of JAK2 and STAT5, which was blocked by PTX and mimicked by ceramide analogue C2-ceramide or sphingomyelinase treatment to increase endogenous ceramide. We conclude that in GH(4) pituitary cells, GH induces formation of DAG/ceramide via a novel Galpha(i)3/Gbetagamma-dependent pathway. This novel pathway suggests a mechanism for autocrine feedback regulation by GH of pituitary function.
Collapse
Affiliation(s)
- Gele Liu
- Ottawa Health Research Institute, Neuroscience 451 Smyth Road, Room 2464, University of Ottawa, Canada K1H 8M5
| | | | | | | |
Collapse
|
28
|
Banihashemi B, Albert PR. Dopamine-D2S receptor inhibition of calcium influx, adenylyl cyclase, and mitogen-activated protein kinase in pituitary cells: distinct Galpha and Gbetagamma requirements. Mol Endocrinol 2002; 16:2393-404. [PMID: 12351703 DOI: 10.1210/me.2001-0220] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The G protein specificity of multiple signaling pathways of the dopamine-D2S (short form) receptor was investigated in GH4ZR7 lactotroph cells. Activation of the dopamine-D2S receptor inhibited forskolin-induced cAMP production, reduced BayK8644- activated calcium influx, and blocked TRH-mediated p42/p44 MAPK phosphorylation. These actions were blocked by pretreatment with pertussis toxin (PTX), indicating mediation by G(i/o) proteins. D2S stimulation also decreased TRH-induced MAPK/ERK kinase phosphorylation. TRH induced c-Raf but not B-Raf activation, and the D2S receptor inhibited both TRH-induced c-Raf and basal B-Raf kinase activity. After PTX treatment, D2S receptor signaling was rescued in cells stably transfected with individual PTX-insensitive Galpha mutants. Inhibition of adenylyl cyclase was partly rescued by Galpha(i)2 or Galpha(i)3, but Galpha(o) alone completely reconstituted D2S-mediated inhibition of BayK8644-induced L-type calcium channel activation. Galpha(o) and Galpha(i)3 were the main components involved in D2S-mediated p42/44 MAPK inhibition. In cells transfected with the carboxyl-terminal domain of G protein receptor kinase to inhibit Gbetagamma signaling, only D2S-mediated inhibition of calcium influx was blocked, but not inhibition of adenylyl cyclase or MAPK. These results indicate that the dopamine-D2S receptor couples to distinct G(i/o) proteins, depending on the pathway addressed, and suggest a novel Galpha(i)3/Galpha(o)-dependent inhibition of MAPK mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase.
Collapse
Affiliation(s)
- Behzad Banihashemi
- Ottawa Health Research Institute, Neuroscience, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H-8M5
| | | |
Collapse
|
29
|
Liu JC, Baker RE, Sun C, Sundmark VC, Elsholtz HP. Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells. A key step in the transcriptional suppression of the prolactin gene. J Biol Chem 2002; 277:35819-25. [PMID: 12121979 DOI: 10.1074/jbc.m202920200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In pituitary lactotrophs the prolactin gene is stimulated by neuropeptides and estrogen and is suppressed by dopamine via D2-type receptors. Stimulatory signals converge on activation of the mitogen-activated protein kinases ERK1/2, but dopamine regulation of this pathway is not well defined. Paradoxically, D2 agonists activate ERK1/2 in many cell types. Here we show that in prolactin-secreting GH4ZR7 cells and primary pituitary cells, dopamine treatment leads to a rapid, pronounced, and specific decrease in activated ERK1/2. The response is blocked by D2-specific antagonists and pertussis toxin. Interestingly, in stable lines expressing specific pertussis toxin-resistant Galpha subunits, toxin treatment blocks dopamine suppression of MAPK in Galpha(i2)- but not Galphao-expressing cells, demonstrating that G(o)-dependent pathways can effect the inhibitory MAPK response. At the nuclear level, the MEK1 inhibitor U0126 mimics the D2-agonist bromocryptine in suppressing levels of endogenous prolactin transcripts. Moreover, a good correlation is seen between the IC(50) values for inhibition of MEK1 and suppression of prolactin promoter function (PD184352 > U0126 > U0125). Both dopamine and U0126 enhance the nuclear localization of ERF, a MAPK-sensitive ETS repressor that inhibits prolactin promoter activity. In addition, U0126 suppression is transferred by tandem copies of the Pit-1-binding site, consistent with mapping experiments for dopamine responsiveness. Our data suggest that ERK1/2 suppression is an obligatory step in the dopaminergic control of prolactin gene transcription and that bidirectional control of ERK1/2 function in the pituitary may provide a key mechanism for endocrine gene control.
Collapse
Affiliation(s)
- Jeffrey C Liu
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto and the University Health Network, Toronto, Ontario M5G 1L5
| | | | | | | | | |
Collapse
|
30
|
Albert PR. G protein preferences for dopamine D2 inhibition of prolactin secretion and DNA synthesis in GH4 pituitary cells. Mol Endocrinol 2002; 16:1903-11. [PMID: 12145343 DOI: 10.1210/me.2001-0329] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dopamine is the primary inhibitory regulator of lactotroph proliferation and prolactin (PRL) secretion in vivo, acting via dopamine D2 receptors (short D2S and long D2L forms). In GH4C1 pituitary cells transfected with D2S or D2L receptor cDNA, dopamine inhibits PRL secretion and DNA synthesis. These actions were blocked by pertussis toxin, implicating G(i)/G(o) proteins. To address roles of specific G(i)/G(o)4 proteins in these actions a series of GH4C1 cell lines specifically depleted of individual Galpha subunits was examined. D2S-mediated inhibition of BayK8644-stimulated PRL secretion was primarily dependent on G(o) over G(i), as observed for BayK8644-induced calcium influx. By contrast, inhibitory coupling of the D2S receptor to TRH-induced PRL secretion was partially impaired by depletion of any single G protein, but especially G(i)3. Inhibitory coupling of D2L receptors to PRL secretion required G(o), but not G(i)2, muscarinic receptor coupling was resistant to depletion of any G(i)/G(o) protein, whereas the 5-HT1A and somatostatin receptors required G(i)2 or G(i)3 for coupling. The various receptors also demonstrated distinct G protein requirements for inhibition of DNA synthesis: depletion of any G(i)/G(o) subunit completely uncoupled the D2S receptor, the D2L receptor was uncoupled by depletion of G(i)2, and muscarinic and somatostatin receptors were resistant to depletion of G(i)2 only. These results demonstrate distinct receptor-G protein preferences for inhibition of TRH-induced PRL secretion and DNA synthesis.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Cell Line
- DNA/biosynthesis
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Proteins/metabolism
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Prolactin/metabolism
- Rats
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Department of Neuroscience, University of Ottawa, Ottawa, Canada K1H-8M5.
| |
Collapse
|
31
|
Massotte D, Brillet K, Kieffer B, Milligan G. Agonists activate Gi1 alpha or Gi2 alpha fused to the human mu opioid receptor differently. J Neurochem 2002; 81:1372-82. [PMID: 12068084 DOI: 10.1046/j.1471-4159.2002.00946.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As preferential coupling of opioid receptor to various inhibitory Galpha subunits is still under debate, we have investigated the selectivity of the human mu opioid receptor fused to a pertussis toxin insensitive C351I Gi1 alpha or C352I Gi2 alpha in stably transfected HEK 293 cells. Overall agonist binding affinities were increased for both fusion constructs when compared to the wild type receptor. [35 S]GTPgammaS binding was performed on pertussis toxin treated cells to monitor coupling efficiency of the fusion constructs. Upon agonist addition hMOR-C351I Gi1 a exhibited an activation profile similar to the non-fused receptor while hMOR-C352I Gi2 alpha was poorly activated. Interestingly no correlation could be drawn between agonist binding affinity and efficacy. Upon agonist addition, forskolin-stimulated cAMP production, as measured using a reporter gene assay, was inhibited by signals transduced via the fused Gi1 alpha and Gi2 alpha mainly. In contrast both fusion constructs were able to initiate ERK-MAPK phosphorylation via coupling to endogenous G proteins only. In conclusion our data indicate that hMOR couples more efficiently to Gi1 alpha than Gi2 alpha and that the coupling efficacy is clearly agonist-dependent.
Collapse
Affiliation(s)
- Dominique Massotte
- Département des Récepteurs et Protéines Membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France.
| | | | | | | |
Collapse
|
32
|
Valverde MA, Hardy SP, Díaz M. Activation of Maxi Cl(-) channels by antiestrogens and phenothiazines in NIH3T3 fibroblasts. Steroids 2002; 67:439-45. [PMID: 11960619 DOI: 10.1016/s0039-128x(01)00174-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The identification of alternative estrogen actions has been accumulating steadily over the past two decades. Typically, these novel actions are not directly related to nuclear transcriptional events but related to the interaction of estrogens with sites present at plasma membrane or cytosolic locations. These alternative effects, widely known as non-genomic effects, range from the modulation of plasma membrane ion channel activity to the regulation of different intracellular signalling cascades. In the present study we have investigated the modulation of a large conductance chloride channel (Maxi Cl(-)) by estrogens, non-steroidal triphenylethylene antiestrogens and phenothiazines in NIH3T3 fibroblasts and the dependence on guanosine triphosphate (GTP) of the Maxi Cl(-) activation. Our data identifies the non-steroidal antiestrogens toremifene and tamoxifen, and the phenothiazines chlorpromazine and triflupromazine as activators of Maxi Cl(-) channels. In contrast, 17 beta-estradiol and cAMP, added prior to the exposure to antiestrogens, prevent channel activation. The pure antiestrogen ICI 182780 did not activate the channel nor prevent its activation by non-steroidal antiestrogens. The activation of Maxi Cl(-) channels by toremifene and tamoxifen required the presence of intracellular nucleotides and was inhibited by the stable analog, GDP beta -S, suggesting the participation of a G-protein in the activation process. Little is known about the physiological relevance of Maxi Cl(-) channels. However, that fact that its regulation by estrogens and antiestrogens is shared by different cell types might imply a common role which needs to be identified.
Collapse
Affiliation(s)
- Miguel A Valverde
- Unitat de Senyalització Cel-lular, Dept. de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
33
|
Abstract
This review focuses on the coupling specificity of the Galpha and Gbetagamma subunits of pertussis toxin (PTX)-sensitive G(i/o) proteins that mediate diverse signaling pathways, including regulation of ion channels and other effectors. Several lines of evidence indicate that specific combinations of G protein alpha, beta and gamma subunits are required for different receptors or receptor-effector networks, and that a higher degree of specificity for Galpha and Gbetagamma is observed in intact systems than reported in vitro. The structural determinants of receptor-G protein specificity remain incompletely understood, and involve receptor-G protein interaction domains, and perhaps other scaffolding processes. By identifying G protein specificity for individual receptor signaling pathways, ligands targeted to disrupt individual pathways of a given receptor could be developed.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, K1H-8M5, Ottawa, ON, Canada.
| | | |
Collapse
|
34
|
Albert PR. Dopamine-D2-mediated inhibition of TRH-induced PLC activation in pituitary cells-direct or indirect? Endocrinology 2002; 143:744-6. [PMID: 11861491 DOI: 10.1210/endo.143.3.8757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Gilchrist A, Vanhauwe JF, Li A, Thomas TO, Voyno-Yasenetskaya T, Hamm HE. G alpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J Biol Chem 2001; 276:25672-9. [PMID: 11274183 DOI: 10.1074/jbc.m100914200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C termini of G protein alpha subunits are critical for binding to their cognate receptors, and peptides corresponding to the C terminus can serve as competitive inhibitors of G protein-coupled receptor-G protein interactions. This interface is quite specific as a single amino acid difference annuls the ability of a G alpha(i) peptide to bind the A(1) adenosine receptor (Gilchrist, A., Mazzoni, M., Dineen, B., Dice, A., Linden, J., Dunwiddie, T., and Hamm, H. E. (1998 ) J. Biol. Chem. 273, 14912--14919). Recently, we demonstrated that a plasmid minigene vector encoding the C-terminal sequence of G alpha(i) could specifically inhibit downstream responses to agonist stimulation of the muscarinic M(2) receptor (Gilchrist, A., Bunemann, M., Li, A., Hosey, M. M., and H. E. Hamm (1999) J. Biol. Chem. 274, 6610--6616). To selectively antagonize G protein signal transduction events and determine which G protein underlies a given thrombin-induced response, we generated minigene vectors that encode the C-terminal sequence for each family of G alpha subunits. Minigene vectors expressing G alpha C-terminal peptides (G alpha(i), G alpha(q), G alpha(12), and G alpha(13)) or the control minigene vector, which expresses the G alpha(i) peptide in random order (G(iR)), were systematically introduced into a human microvascular endothelial cell line. The C-terminal peptides serve as competitive inhibitors presumably by blocking the site on the G protein-coupled receptor that normally binds the G protein. Our results not only confirm that each G protein can control certain signaling events, they emphasize the specificity of the G protein-coupled receptor-G protein interface. In addition, the C-terminal G alpha minigenes appear to be a powerful tool for dissecting out the G protein that mediates a given physiological function following thrombin activation.
Collapse
Affiliation(s)
- A Gilchrist
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
36
|
Schwindinger WF, Robishaw JD. Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 2001; 20:1653-60. [PMID: 11313913 DOI: 10.1038/sj.onc.1204181] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric G-proteins are components of the signal transduction pathways for the soluble and cell-contact signals that regulate normal growth and differentiation. There is now a greater appreciation of the role of the Gbetagamma-dimer in the regulation of a variety of intracellular effectors, including ion channels, adenylyl cyclase, and phospholipase Cbeta. In many cases, Gbetagamma-dimers are required for the activation of mitogen activated protein kinase (MAPK) pathways that promote cellular proliferation, although the underlying mechanisms have yet to be fully elucidated. Activation of phosphotidylinositol-3-kinase (PI3K) is a critical step in the intracellular transduction of survival signals. Gbetagamma-dimers directly activate PI3Kgamma as well as the more widely distributed PI3Kbeta. The activation of PI3Kgamma by Gbetagamma-dimers likely involves direct binding of specific Gbetagamma-dimers to both subunits of PI3Kgamma. Thus, Gbetagamma-dimers transmit signals from numerous receptors to a variety of intracellular effectors in distinct cellular contexts. Five distinct Gbeta-subunits and 12 distinct Ggamma-subunits have been identified. New experimental approaches are needed to elucidate the specific roles of individual Gbetagamma-dimers in the pathways that transduce signals for proliferation and survival.
Collapse
Affiliation(s)
- W F Schwindinger
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | | |
Collapse
|
37
|
Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci U S A 2001; 98:3577-82. [PMID: 11248120 PMCID: PMC30695 DOI: 10.1073/pnas.051632598] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2000] [Indexed: 11/18/2022] Open
Abstract
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPgammaS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPgammaS to frozen brain sections, with no significant left-right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [(35)S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.
Collapse
Affiliation(s)
- M Jiang
- Department of Anesthesiology, University of California, Los Angeles, CA 90095-7115, USA
| | | | | | | | | |
Collapse
|