1
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|
2
|
Liu Y, Huang C, Zeng J, Yu H, Li Y, Yuan C. Identification of two additional plasmodesmata localization domains in the tobacco mosaic virus cell-to-cell-movement protein. Biochem Biophys Res Commun 2019; 521:145-151. [PMID: 31629470 DOI: 10.1016/j.bbrc.2019.10.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
Abstract
Despite decades of intensive studies, the failure to identify plasmodesmata (PD) localization sequences has constrained our understanding of Tobacco mosaic virus (TMV) movement. Recently, we identified the first PD localization signal (major PLS) in the TMV movement protein (MP), which encompasses the first 50 amino acid residues of the MP. Although the major PLS is sufficient for PD targeting, the efficiency is lower than the full-length TMV MP. To address this efficiency gap, we identified two additional PLS domains encompassing amino acid residues 61 to 80, and 147 to 170 of the MP and showed that these two domains target to PD, but do not transit to adjacent cells. We also demonstrated that the MP61-80 fragment interacts with Arabidopsis synaptotagmin A, which was also shown to interact with the major TMV MP PLS. Therefore, our findings have provided new insights to more fully understand the mechanism underlying plasmodesmal targeting of TMV MP.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China
| | - Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China
| | - Jianmin Zeng
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China
| | - Haiqin Yu
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China
| | - Yongping Li
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China
| | - Cheng Yuan
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
4
|
Abstract
Plant viruses cross the barrier of the plant cell wall by moving through intercellular channels, termed plasmodesmata, to invade their hosts. They accomplish this by encoding movement proteins (MPs), which act to alter plasmodesmal gating. How MPs target to plasmodesmata is not well understood. Our recent characterization of the first plasmodesmal localization signal (PLS) identified in a viral MP, namely, the MP encoded by the Tobamovirus Tobacco mosaic virus (TMV), now provides the opportunity to identify host proteins that recognize this PLS and may be important for its plasmodesmal targeting. One such candidate protein is Arabidopsis synaptotagmin A (SYTA), which is required to form endoplasmic reticulum (ER)-plasma membrane contact sites and regulates the MP-mediated trafficking of begomoviruses, tobamoviruses, and potyviruses. In particular, SYTA interacts with, and regulates the cell-to-cell transport of, both TMV MP and the MP encoded by the Tobamovirus Turnip vein clearing virus (TVCV). Using in planta bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays, we show here that the TMV PLS interacted with SYTA. This PLS sequence was both necessary and sufficient for interaction with SYTA, and the plasmodesmal targeting activity of the TMV PLS was substantially reduced in an Arabidopsis syta knockdown line. Our findings show that SYTA is one host factor that can recognize the TMV PLS and suggest that this interaction may stabilize the association of TMV MP with plasmodesmata.IMPORTANCE Plant viruses use their movement proteins (MPs) to move through host intercellular connections, plasmodesmata. Perhaps one of the most intriguing, yet least studied, aspects of this transport is the MP signal sequences and their host recognition factors. Recently, we have described the plasmodesmal localization signal (PLS) of the Tobacco mosaic virus (TMV) MP. Here, we identified the Arabidopsis synaptotagmin A (SYTA) as a host factor that recognizes TMV MP PLS and promotes its association with the plasmodesmal membrane. The significance of these findings is two-fold: (i) we identified the TMV MP association with the cell membrane at plasmodesmata as an important PLS-dependent step in plasmodesmal targeting, and (ii) we identified the plant SYTA protein that specifically recognizes PLS as a host factor involved in this step.
Collapse
|
5
|
Wang L, Lacroix B, Guo J, Citovsky V. The Agrobacterium VirE2 effector interacts with multiple members of the Arabidopsis VIP1 protein family. MOLECULAR PLANT PATHOLOGY 2018; 19:1172-1183. [PMID: 28802023 PMCID: PMC5809326 DOI: 10.1111/mpp.12595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/05/2023]
Abstract
T-DNA transfer from Agrobacterium to its host plant genome relies on multiple interactions between plant proteins and bacterial effectors. One such plant protein is the Arabidopsis VirE2 interacting protein (AtVIP1), a transcription factor that binds Agrobacterium tumefaciens C58 VirE2, potentially acting as an adaptor between VirE2 and several other host factors. It remains unknown, however, whether the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and whether VirE2 homologues encoded by different bacterial strains/species recognize AtVIP1 or its homologues. Here, we addressed these questions by systematic analysis (using the yeast two-hybrid and co-immunoprecipitation approaches) of interactions between VirE2 proteins encoded by four major representatives of known bacterial species/strains with functional T-DNA transfer machineries and eight VIP1 homologues from Arabidopsis and tobacco. We also analysed the determinants of the VirE2 sequence involved in these interactions. These experiments showed that the VirE2 interaction is degenerate: the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and different and mutually independent VirE2 domains are involved in interactions with different VIP1 homologues. Furthermore, the VIP1 functionality related to the interaction with VirE2 is independent of its function as a transcriptional regulator. These observations suggest that the ability of VirE2 to interact with VIP1 homologues is deeply ingrained into the process of Agrobacterium infection. Indeed, mutations that abolished VirE2 interaction with AtVIP1 produced no statistically significant effects on interactions with VIP1 homologues or on the efficiency of genetic transformation.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingJiangsu Province 210095China
| | - Benoît Lacroix
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingJiangsu Province 210095China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
| |
Collapse
|
6
|
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus 2018; 9:460-473. [PMID: 30196754 PMCID: PMC6244734 DOI: 10.1080/19491034.2018.1516484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Origin recognition complex (ORC), a heteromeric six-subunit complex, is the central component of the eukaryotic pre-replication complex. Recent data from yeast, frogs, flies and mammals present compelling evidence that ORC and its individual subunits have nonreplicative functions as well. The majority of these functions, such as heterochromatin formation, chromosome condensation, and segregation are dependent on ORC-DNA interactions. Furthermore, ORC is involved in the control of cell division via its participation in centrosome duplication and cytokinesis. Recent findings have also demonstrated a direct interaction between ORC and mRNPs and highlighted an essential role of ORC in mRNA nuclear export. Along with the growth of evolutionary complexity of organisms, ORC complex functions become more elaborate and new functions of the ORC sub-complexes and individual subunits have emerged.
Collapse
Affiliation(s)
- Varvara V. Popova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Brechalov
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G. Georgieva
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V. Kopytova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
8
|
Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development. Biochem Biophys Res Commun 2017; 488:547-553. [PMID: 28526410 DOI: 10.1016/j.bbrc.2017.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 11/21/2022]
Abstract
Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation.
Collapse
|
9
|
Chen YF, Chou CC, Gartenberg MR. Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 2016; 36:2039-50. [PMID: 27185881 PMCID: PMC4946433 DOI: 10.1128/mcb.00057-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Higuchi-Sanabria R, Vevea JD, Charalel JK, Sapar ML, Pon LA. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:79-88. [PMID: 28357337 PMCID: PMC5349106 DOI: 10.15698/mic2016.02.478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022]
Abstract
Increasing the stability or dynamics of the actin cytoskeleton can extend lifespan in C. elegans and S. cerevisiae. Actin cables of budding yeast, bundles of actin filaments that mediate cargo transport, affect lifespan control through effects on mitochondrial quality control. Sir2p, the founding member of the Sirtuin family of lifespan regulators, also affects actin cable dynamics, assembly, and function in mitochondrial quality control. Here, we obtained evidence for novel interactions between Sir2p and Sum1p, a transcriptional repressor that was originally identified through mutations that genetically suppress sir2∆ phenotypes unrelated to lifespan. We find that deletion of SUM1 in wild-type cells results in increased mitochondrial function and actin cable abundance. Furthermore, deletion of SUM1 suppresses defects in actin cables and mitochondria of sir2∆ yeast, and extends the replicative lifespan and cellular health span of sir2∆ cells. Thus, Sum1p suppresses Sir2p function in control of specific aging determinants and lifespan in budding yeast.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, Columbia University, New
York, NY, USA
| | - Jason D. Vevea
- Department of Pathology and Cell Biology, Columbia University, New
York, NY, USA
- Current address: Department of Neuroscience, University of
Wisconsin, Madison, WI, USA
| | - Joseph K. Charalel
- Department of Pathology and Cell Biology, Columbia University, New
York, NY, USA
- Current address: Department of Genetics, Stanford University,
Stanford, CA, USA
| | - Maria L. Sapar
- Department of Biological Sciences, Hunter College and The Graduate
Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs,
CUNY, New York, NY 10065, USA. Current address: Weill Institute for Cell and
Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University, New
York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New
York, NY, USA
| |
Collapse
|
11
|
Lacroix B, Citovsky V. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Sci Rep 2015; 5:16610. [PMID: 26586289 PMCID: PMC4653730 DOI: 10.1038/srep16610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/16/2015] [Indexed: 12/03/2022] Open
Abstract
During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.
Collapse
Affiliation(s)
- Benoît Lacroix
- Stony Brook University, Department of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, USA
| | - Vitaly Citovsky
- Stony Brook University, Department of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
12
|
García-Cano E, Magori S, Sun Q, Ding Z, Lazarowitz SG, Citovsky V. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLoS One 2015; 10:e0142128. [PMID: 26571494 PMCID: PMC4646629 DOI: 10.1371/journal.pone.0142128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/01/2023] Open
Abstract
Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Zehong Ding
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Sondra G. Lazarowitz
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
15
|
Kato M, Lin SJ. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 23:49-58. [PMID: 25096760 DOI: 10.1016/j.dnarep.2014.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
Collapse
Affiliation(s)
- Michiko Kato
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
16
|
Vega AV, Avila G, Matthews G. Interaction between the transcriptional corepressor Sin3B and voltage-gated sodium channels modulates functional channel expression. Sci Rep 2013; 3:2809. [PMID: 24077057 PMCID: PMC3786298 DOI: 10.1038/srep02809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 11/09/2022] Open
Abstract
Proteins that interact with voltage-gated sodium (Na(v)) channels are important in channel sorting and modulation. In this study, we identified the transcriptional regulator, Sin3B, as a novel binding partner of Na(v) channels in a yeast two-hybrid screen and confirmed the interaction using pull-down assays, co-immunoprecipitation, and immunofluorescence-colocalization. Because both long (~1100-residue) and short (N-terminal 293 residues) Sin3B variants interacted with Na(v) channels, binding occurred within the N-terminal region containing two paired-amphipathic helix domains. In Na(v) channels, Sin3B bound to a 132-residue portion of the cytoplasmic C-terminus. Expression of the short Sin3B variant strongly reduced native sodium current and Na(v)-channel gating charge in the neuronal cell line N1E-115, without affecting the voltage-dependence of activation. Because the total amount of channel protein was unchanged by Sin3B, binding of Sin3B likely decreases the number of channels in the plasma membrane, suggesting that interaction with Sin3B influences Na(v)-channel trafficking or stability in the membrane.
Collapse
Affiliation(s)
- Ana V Vega
- Carrera de Médico Cirujano. UBIMED. FES Iztacala, UNAM. Los Reyes Iztacala. Edo, Mex. 54090 México
| | | | | |
Collapse
|
17
|
Downey M, Knight B, Vashisht AA, Seller CA, Wohlschlegel JA, Shore D, Toczyski DP. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 2013; 23:1638-48. [PMID: 23973296 PMCID: PMC3982851 DOI: 10.1016/j.cub.2013.06.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND In eukaryotes, ribosome biosynthesis involves the coordination of ribosomal RNA and ribosomal protein (RP) production. In S. cerevisiae, the regulation of ribosome biosynthesis occurs largely at the level of transcription. The transcription factor Ifh1 binds at RP genes and promotes their transcription when growth conditions are favorable. Although Ifh1 recruitment to RP genes has been characterized, little is known about the regulation of promoter-bound Ifh1. RESULTS We used a novel whole-cell-extract screening approach to identify Spt7, a member of the SAGA transcription complex, and the RP transactivator Ifh1 as highly acetylated nonhistone species. We report that Ifh1 is modified by acetylation specifically in an N-terminal domain. These acetylations require the Gcn5 histone acetyltransferase and are reversed by the sirtuin deacetylases Hst1 and Sir2. Ifh1 acetylation is regulated by rapamycin treatment and stress and limits the ability of Ifh1 to act as a transactivator at RP genes. CONCLUSIONS Our data suggest a novel mechanism of regulation whereby Gcn5 functions to titrate the activity of Ifh1 following its recruitment to RP promoters to provide more than an all-or-nothing mode of transcriptional regulation. We provide insights into how the action of histone acetylation machineries converges with nutrient-sensing pathways to regulate important aspects of cell growth.
Collapse
Affiliation(s)
- Michael Downey
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - Britta Knight
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - Charles A. Seller
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - David Shore
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| |
Collapse
|
18
|
Sampath V, Liu B, Tafrov S, Srinivasan M, Rieger R, Chen EI, Sternglanz R. Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem 2013; 288:21506-13. [PMID: 23775086 DOI: 10.1074/jbc.m113.486274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on their sequences, the Saccharomyces cerevisiae Hpa2 and Hpa3 proteins are annotated as two closely related members of the Gcn5 acetyltransferase family. Here, we describe the biochemical characterization of Hpa2 and Hpa3 as bona fide acetyltransferases with different substrate specificities. Mutational and MALDI-TOF analyses showed that Hpa3 translation initiates primarily from Met-19 rather than the annotated start site, Met-1, with a minor product starting at Met-27. When expressed in Escherichia coli and assayed in vitro, Hpa2 and Hpa3 (from Met-19) acetylated histones and polyamines. Whereas Hpa2 acetylated histones H3 and H4 (at H3 Lys-14, H4 Lys-5, and H4 Lys-12), Hpa3 acetylated only histone H4 (at Lys-8). Additionally, Hpa2, but not Hpa3, acetylated certain small basic proteins. Hpa3, but not Hpa2, has been reported to acetylate D-amino acids, and we present results consistent with that. Overexpression of Hpa2 or Hpa3 is toxic to yeast cells. However, their deletions do not show any standard phenotypic defects. These results suggest that Hpa2 and Hpa3 are similar but distinct acetyltransferases that might have overlapping roles with other known acetyltransferases in vivo in acetylating histones and other small proteins.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 2013; 14:R48. [PMID: 23710766 PMCID: PMC4053722 DOI: 10.1186/gb-2013-14-5-r48] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sirtuins are a conserved family of NAD⁺-dependent histone/protein deacetylases that regulate numerous cellular processes, including heterochromatin formation and transcription. Multiple sirtuins are encoded by each eukaryotic genome, raising the possibility of cooperativity or functional overlap. The scope and variety of chromatin binding sites of the sirtuins in any specific organism remain unclear. RESULTS Here we utilize the ChIP-seq technique to identify and functionally characterize the genome-wide targets of the sirtuins, Sir2, Hst1 to Hst4, and the DNA binding partner of Hst1, Sum 1, in Saccharomyces cerevisiae. Unexpectedly, Sir2, Hst1 and Sum1, but not the other sirtuins, exhibit co-enrichment at several classes of chromatin targets. These include telomeric repeat clusters, tRNA genes, and surprisingly, the open reading frames (ORFs) of multiple highly expressed RNA polymerase II-transcribed genes that function in processes such as fermentation, glycolysis, and translation. Repression of these target genes during the diauxic shift is specifically dependent on Sir2/Hst1/Sum1 binding to the ORF and sufficiently high intracellular NAD⁺ concentrations. Sir2 recruitment to the ORFs is independent of the canonical SIR complex and surprisingly requires Sum1. The shared Sir2/Hst1/Sum1 targets also significantly overlap with condensin and cohesin binding sites, where Sir2, Hst1, and Sum1 were found to be important for condensin and cohesin deposition, suggesting a possible mechanistic link between metabolism and chromatin architecture during the diauxic shift. CONCLUSIONS This study demonstrates the existence of overlap in sirtuin function, and advances our understanding of conserved sirtuin-regulated functions, including the regulation of glycolytic gene expression and condensin loading.
Collapse
Affiliation(s)
- Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Veena Valsakumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| |
Collapse
|
20
|
Zalepa-King L, Citovsky V. A plasmodesmal glycosyltransferase-like protein. PLoS One 2013; 8:e58025. [PMID: 23469135 PMCID: PMC3582556 DOI: 10.1371/journal.pone.0058025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/29/2013] [Indexed: 01/04/2023] Open
Abstract
Plasmodesmata (Pd) are plant intercellular connections that represent cytoplasmic conduits for a wide spectrum of cellular transport cargoes, from ions to house-keeping proteins to transcription factors and RNA silencing signals; furthermore, Pd are also utilized by most plant viruses for their spread between host cells. Despite this central role of Pd in the plant life cycle, their structural and functional composition remains poorly characterized. In this study, we used a known Pd-associated calreticulin protein AtCRT1 as bait to isolate other Pd associated proteins in Arabidopsis thaliana. These experiments identified a beta-1,6-N-acetylglucosaminyl transferase-like enzyme (AtGnTL). Subcellular localization studies using confocal microscopy observed AtGnTL at Pd within living plant cells and demonstrated colocalization with a Pd callose-binding protein (AtPDCB1). That AtGnTL is resident in Pd was consistent with its localization within the plant cell wall following plasmolysis. Initial characterization of an Arabidopsis T-DNA insertional mutant in the AtGnTL gene revealed defects in seed germination and delayed plant growth.
Collapse
Affiliation(s)
- Lisa Zalepa-King
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Zhu Y, Teng M, Li X. Crystallization and preliminary crystallographic studies of the NAD+-dependent deacetylase HST1 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1579-81. [PMID: 22139171 DOI: 10.1107/s1744309111040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/03/2011] [Indexed: 11/10/2022]
Abstract
The Saccharomyces cerevisiae NAD(+)-dependent deacetylase HST1 belongs to the class III HDAC family; it acts as a transcriptional corepressor for the specific middle sporulation and de novo NAD(+)-biosynthesis genes and also takes part in the SET3C and SUM1-RFM1-HST1 complexes. Structural information on HST1 and its related complexes would be helpful in order to understand the structural basis of its deacetylation mechanism and the assembly of these complexes. Here, HST1(156-503) was expressed and crystallized. Crystals grown by the hanging-drop vapour-diffusion method diffracted to 2.90 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 40.2, b = 101.7, c = 43.9 Å, β = 103.9°. Both Matthews coefficient analysis and the self-rotation function suggested the presence of four molecules per asymmetric unit in the crystal, with a solvent content of 49.76% (V(M) = 2.45 Å(3) Da(-1)).
Collapse
Affiliation(s)
- Yuwei Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | |
Collapse
|
23
|
Abstract
Meiosis divides the chromosome number of the cell in half by having two rounds of chromosome segregation follow a single round of chromosome duplication. The first meiotic division is unique in that homologous pairs of sister chromatids segregate to opposite poles. Recent work in budding and fission yeast has shown that the cell cycle kinase, Cdc7-Dbf4, is required for many meiosis-specific chromosomal functions necessary for proper disjunction at meiosis I. This work reveals another role for Cdc7 in meiosis as a gene-specific regulator of the global transcription factor, Ndt80, which is required for exit from pachytene and entry into the meiotic divisions in budding yeast. Cdc7-Dbf4 promotes NDT80 transcription by relieving repression mediated by a complex of Sum1, Rfm1, and a histone deacetylase, Hst1. Sum1 exhibits meiosis-specific Cdc7-dependent phosphorylation, and mass spectrometry analysis reveals a dynamic and complex pattern of phosphorylation events, including four constitutive cyclin-dependent kinase (Cdk1) sites and 11 meiosis-specific Cdc7-Dbf4-dependent sites. Analysis of various phosphorylation site mutants suggests that Cdc7 functions with both Cdk1 and the meiosis-specific kinase Ime2 to control this critical transition point during meiosis.
Collapse
|
24
|
Involvement of KDM1C histone demethylase-OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proc Natl Acad Sci U S A 2011; 108:11157-62. [PMID: 21690391 DOI: 10.1073/pnas.1014030108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Covalent modifications of histones, such as acetylation, methylation and ubiquitination, are central for regulation of gene expression. Heterochromatic gene silencing, for example, is associated with hypoacetylation, methylation and demethylation, and deubiquitination of specific amino acid residues in histone molecules. Many of these changes can be effected by histone-modifying repressor complexes that include histone lysine demethylases, such as KDM1 in animals and KDM1C in plants. However, whereas KDM1-containing repressor complexes have been implicated in histone demethylation, methylation and deacetylation, whether or not they can also mediate histone deubiquitination remains unknown. We identify an Arabidopsis otubain-like deubiquitinase OTLD1 which directly interacts with the Arabidopsis KDM1C in planta, and use one target gene to exemplify that both OTLD1 and KDM1C are involved in transcriptional gene repression via histone deubiquitination and demethylation. We also show that OTLD1 binds plant chromatin and has enzymatic histone deubiquitinase activity, specific for the H2B histone. Thus, we suggest that, during gene repression, lysine demethylases can directly interact and function in a protein complex with histone deubiquitinases.
Collapse
|
25
|
A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae. Genetics 2011; 188:535-48. [PMID: 21546544 DOI: 10.1534/genetics.111.129197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.
Collapse
|
26
|
Li M, Petteys BJ, McClure JM, Valsakumar V, Bekiranov S, Frank EL, Smith JS. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 2010. [PMID: 20439498 DOI: 10.1128/mcb.01590-1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Genes encoding thiamine biosynthesis enzymes in microorganisms are tightly regulated such that low environmental thiamine concentrations activate transcription and high concentrations are repressive. We have determined that multiple thiamine (THI) genes in Saccharomyces cerevisiae are also regulated by the intracellular NAD(+) concentration via the NAD(+)-dependent histone deacetylase (HDAC) Hst1 and, to a lesser extent, Sir2. Both of these HDACs associate with a distal region of the affected THI gene promoters that does not overlap with a previously defined enhancer region bound by the thiamine-responsive Thi2/Thi3/Pdc2 transcriptional activators. The specificity of histone H3 and/or H4 deacetylation carried out by Hst1 and Sir2 at the distal promoter region depends on the THI gene being tested. Hst1/Sir2-mediated repression of the THI genes occurs at the level of basal expression, thus representing the first set of transcription factors shown to actively repress this gene class. Importantly, lowering the NAD(+) concentration and inhibiting the Hst1/Sum1 HDAC complex elevated the intracellular thiamine concentration due to increased thiamine biosynthesis and transport, implicating NAD(+) in the control of thiamine homeostasis.
Collapse
Affiliation(s)
- Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, School of Medicine, Jordan Hall, Box 800733, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sarkar S, Haldar S, Hajra S, Sinha P. The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly. FEMS Yeast Res 2010; 10:660-73. [PMID: 20608984 DOI: 10.1111/j.1567-1364.2010.00655.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The budding yeast protein Sum1 is a transcription factor that associates with the histone deacetylase Hst1p or, in its absence, with Sir2p to form repressed chromatin. In this study, SUM1 has been identified as an allele-specific dosage suppressor of mutations in the major alpha-tubulin-coding gene TUB1. When cloned in a 2mu vector, SUM1 suppressed the cold-sensitive and benomyl-hypersensitive phenotypes associated with the tub1-1 mutation. The suppression was Hst1p- and Sir2p-independent, suggesting that it was not mediated by deacetylation events associated with Sum1p when it functions along with its known partner histone deacetylases. This protein was confined to the nucleus, but did not colocalize with the microtubules nor did it bind to alpha- or beta-tubulin. Cells deleted of SUM1 showed hypersensitivity to benomyl and cold-sensitive growth, phenotypes exhibited by mutants defective in microtubule function and cytoskeletal defects. These observations suggest that Sum1p is a novel regulator of microtubule function. We propose that as a dosage suppressor, Sum1p promotes the formation of microtubules by increasing the availability of the alphabeta-heterodimer containing the mutant alpha-tubulin subunit.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
28
|
Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 2010; 30:3329-41. [PMID: 20439498 DOI: 10.1128/mcb.01590-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding thiamine biosynthesis enzymes in microorganisms are tightly regulated such that low environmental thiamine concentrations activate transcription and high concentrations are repressive. We have determined that multiple thiamine (THI) genes in Saccharomyces cerevisiae are also regulated by the intracellular NAD(+) concentration via the NAD(+)-dependent histone deacetylase (HDAC) Hst1 and, to a lesser extent, Sir2. Both of these HDACs associate with a distal region of the affected THI gene promoters that does not overlap with a previously defined enhancer region bound by the thiamine-responsive Thi2/Thi3/Pdc2 transcriptional activators. The specificity of histone H3 and/or H4 deacetylation carried out by Hst1 and Sir2 at the distal promoter region depends on the THI gene being tested. Hst1/Sir2-mediated repression of the THI genes occurs at the level of basal expression, thus representing the first set of transcription factors shown to actively repress this gene class. Importantly, lowering the NAD(+) concentration and inhibiting the Hst1/Sum1 HDAC complex elevated the intracellular thiamine concentration due to increased thiamine biosynthesis and transport, implicating NAD(+) in the control of thiamine homeostasis.
Collapse
|
29
|
Zaltsman A, Krichevsky A, Loyter A, Citovsky V. Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 2010; 7:197-209. [PMID: 20227663 PMCID: PMC3427693 DOI: 10.1016/j.chom.2010.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 08/24/2009] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
Agrobacterium exports DNA into plant cells, eliciting neoplastic growths on many plant species. During this process, a Skp1-Cdc53-cullin-F-box (SCF) complex that contains the bacterial virulence F-box protein VirF facilitates genetic transformation by targeting for proteolysis proteins, the Agrobacterium protein VirE2 and the host protein VIP1, that coat the transferred DNA. However, some plant species do not require VirF for transformation. Here, we show that Agrobacterium induces expression of a plant F-box protein, which we designated VBF for VIP1-binding F-box protein, that can functionally replace VirF, regulating levels of the VirE2 and VIP1 proteins via a VBF-containing SCF complex. When expressed in Agrobacterium and exported into the plant cell, VBF functionally complements tumor formation by a strain lacking VirF. VBF expression is known to be induced by diverse pathogens, suggesting that Agrobacterium has co-opted a plant defense response and that bacterial VirF and plant VBF both contribute to targeted proteolysis that promotes plant genetic transformation.
Collapse
Affiliation(s)
- Adi Zaltsman
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215
| | - Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215
| | - Abraham Loyter
- Department of Biological Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215
| |
Collapse
|
30
|
Joshi A, Van Parys T, Van de Peer Y, Michoel T. Characterizing regulatory path motifs in integrated networks using perturbational data. Genome Biol 2010; 11:R32. [PMID: 20230615 PMCID: PMC2864572 DOI: 10.1186/gb-2010-11-3-r32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/01/2009] [Accepted: 03/11/2010] [Indexed: 01/12/2023] Open
Abstract
Pathicular – a Cytoscape plugin for analysing cellular responses to transcription factor perturbations is presented We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in the perturbational data. A case study in Saccharomyces cerevisiae identifies eight regulatory path motifs and demonstrates their biological significance.
Collapse
Affiliation(s)
- Anagha Joshi
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium.
| | | | | | | |
Collapse
|
31
|
Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. PLoS One 2009; 4:e8111. [PMID: 19956593 PMCID: PMC2780329 DOI: 10.1371/journal.pone.0008111] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/28/2009] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulates many key processes in the nucleus by controlling access to the underlying DNA. SNF2-like factors are ATP-driven enzymes that play key roles in the dynamics of chromatin by remodelling nucleosomes and other nucleoprotein complexes. Even simple eukaryotes such as yeast contain members of several subfamilies of SNF2-like factors. The FUN30/ETL1 subfamily of SNF2 remodellers is conserved from yeasts to humans, but is poorly characterized. We show that the deletion of FUN30 leads to sensitivity to the topoisomerase I poison camptothecin and to severe cell cycle progression defects when the Orc5 subunit is mutated. We demonstrate a role of FUN30 in promoting silencing in the heterochromatin-like mating type locus HMR, telomeres and the rDNA repeats. Chromatin immunoprecipitation experiments demonstrate that Fun30 binds at the boundary element of the silent HMR and within the silent HMR. Mapping of nucleosomes in vivo using micrococcal nuclease demonstrates that deletion of FUN30 leads to changes of the chromatin structure at the boundary element. A point mutation in the ATP-binding site abrogates the silencing function of Fun30 as well as its toxicity upon overexpression, indicating that the ATPase activity is essential for these roles of Fun30. We identify by amino acid sequence analysis a putative CUE motif as a feature of FUN30/ETL1 factors and show that this motif assists Fun30 activity. Our work suggests that Fun30 is directly involved in silencing by regulating the chromatin structure within or around silent loci.
Collapse
Affiliation(s)
- Ana Neves-Costa
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - W. Ryan Will
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - Anna T. Vetter
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - J. Ross Miller
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| | - Patrick Varga-Weisz
- Chromatin and Gene Expression, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
32
|
Hickman MA, Rusche LN. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genet 2009; 5:e1000710. [PMID: 19893609 PMCID: PMC2762165 DOI: 10.1371/journal.pgen.1000710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/05/2009] [Indexed: 01/01/2023] Open
Abstract
Deacetylases of the Sir2 family regulate lifespan and response to stress. We have examined the evolutionary history of Sir2 and Hst1, which arose by gene duplication in budding yeast and which participate in distinct mechanisms of gene repression. In Saccharomyces cerevisiae, Sir2 interacts with the SIR complex to generate long-range silenced chromatin at the cryptic mating-type loci, HMLalpha and HMRa. Hst1 interacts with the SUM1 complex to repress sporulation genes through a promoter-specific mechanism. We examined the functions of the non-duplicated Sir2 and its partners, Sir4 and Sum1, in the yeast Kluyveromyces lactis, a species that diverged from Saccharomyces prior to the duplication of Sir2 and Hst1. KlSir2 interacts with both KlSir4 and KlSum1 and represses the same sets of target genes as ScSir2 and ScHst1, indicating that Sir2 and Hst1 subfunctionalized after duplication. However, the KlSir4-KlSir2 and KlSum1-KlSir2 complexes do not function as the analogous complexes do in S. cerevisiae. KlSir4 contributes to an extended repressive chromatin only at HMLalpha and not at HMRa. In contrast, the role of KlSum1 is broader. It employs both long-range and promoter-specific mechanisms to repress cryptic mating-type loci, cell-type-specific genes, and sporulation genes and represents an important regulator of cell identity and the sexual cycle. This study reveals that a single repressive complex can act through two distinct mechanisms to regulate gene expression and illustrates how mechanisms by which regulatory proteins act can change over evolutionary time.
Collapse
Affiliation(s)
- Meleah A. Hickman
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1567-75. [PMID: 19818879 DOI: 10.1016/j.bbapap.2009.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022]
Abstract
The Sir2 family proteins (sirtuins) are evolutionally conserved NAD(+) (nicotinamide adenine dinucleotide)-dependent protein deacetylases and ADP-ribosylases, which have been shown to play important roles in the regulation of stress response, gene transcription, cellular metabolism and longevity. Recent studies have also suggested that sirtuins are downstream targets of calorie restriction (CR), which mediate CR-induced beneficial effects including life span extension in an NAD(+)-dependent manner. CR extends life span in many species and has been shown to ameliorate many age-associated disorders such as diabetes and cancers. Understanding the mechanisms of CR as well as the regulation of sirtuins will therefore provide insights into the molecular basis of these age-associated metabolic diseases. This review focuses on discussing advances in studies of sirtuins and NAD(+) metabolism in genetically tractable model system, the budding yeast Saccharomyces cerevisiae. These studies have unraveled key metabolic longevity factors in the CR signaling and NAD(+) biosynthesis pathways, which may also contribute to the regulation of sirtuin activity. Many components of the NAD(+) biosynthesis pathway and CR signaling pathway are conserved in yeast and higher eukaryotes including humans. Therefore, these findings will help elucidate the mechanisms underlying age-associated metabolic disease and perhaps human aging.
Collapse
|
34
|
Verzijlbergen KF, Faber AW, Stulemeijer IJ, van Leeuwen F. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:76. [PMID: 19638198 PMCID: PMC2724485 DOI: 10.1186/1471-2199-10-76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/28/2009] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers. RESULT We determined that loss of H3K79 methylation results in a partial silencing defect that could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin. Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4 by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that multiple histone modifications associated with euchromatin positively modulate the function of heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects gene silencing. CONCLUSION Our genetic dissection of Dot1's role in silencing in budding yeast showed that heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative as well as positive contributions to gene silencing by competing with heterochromatin proteins within heterochromatin, within euchromatin, and at the boundary between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Kitty F Verzijlbergen
- Fred van Leeuwen, Division of Gene Regulation B4, Netherlands Cancer Institute, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Knott SRV, Viggiani CJ, Tavaré S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 2009; 23:1077-90. [PMID: 19417103 DOI: 10.1101/gad.1784309] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In higher eukaryotes, heritable gene silencing is associated with histone deacetylation and late replication timing. In Saccharomyces cerevisiae, the histone deacetylase Rpd3 regulates gene expression and also modulates replication timing; however, these mechanisms have been suggested to be independent, and no global association has been found between replication timing and gene expression levels. Using 5-Bromo-2'-deoxyuridine (BrdU) incorporation to generate genome-wide replication profiles, we identified >100 late-firing replication origins that are regulated by Rpd3L, which is specifically targeted to promoters to silence transcription. Rpd3S, which recompacts chromatin after transcription, plays a primary role at only a handful of origins, but subtly influences initiation timing globally. The ability of these functionally distinct Rpd3 complexes to affect replication initiation timing supports the idea that histone deacetylation directly influences initiation timing. Accordingly, loss of Rpd3 function results in higher levels of histone H3 and H4 acetylation surrounding Rpd3-regulated origins, and these origins show a significant association with Rpd3 chromatin binding and gene regulation, supporting a general link between histone acetylation, replication timing, and control of gene expression in budding yeast. Our results also reveal a novel and complementary genomic map of Rpd3L- and Rpd3S-regulated chromosomal loci.
Collapse
Affiliation(s)
- Simon R V Knott
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
36
|
Weber JM, Irlbacher H, Ehrenhofer-Murray AE. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol 2008; 9:100. [PMID: 18990212 PMCID: PMC2585588 DOI: 10.1186/1471-2199-9-100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/06/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Replication initiation at origins of replication in the yeast genome takes place on chromatin as a template, raising the question how histone modifications, for instance histone acetylation, influence origin firing. Initiation requires binding of the replication initiator, the Origin Recognition Complex (ORC), to a consensus sequence within origins. In addition, other proteins bind to recognition sites in the vicinity of ORC and support initiation. In previous work, we identified Sum1 as an origin-binding protein that contributes to efficient replication initiation. Sum1 is part of the Sum1/Rfm1/Hst1 complex that represses meiotic genes during vegetative growth via histone deacetylation by the histone deacetylase (HDAC) Hst1. RESULTS In this study, we investigated how Sum1 affected replication initiation. We found that it functioned in initiation as a component of the Sum1/Rfm1/Hst1 complex, implying a role for histone deacetylation in origin activity. We identified several origins in the yeast genome whose activity depended on both Sum1 and Hst1. Importantly, sum1Delta or hst1Delta caused a significant increase in histone H4 lysine 5 (H4 K5) acetylation levels, but not other H4 acetylation sites, at those origins. Furthermore, mutation of lysines to glutamines in the H4 tail, which imitates the constantly acetylated state, resulted in a reduction of origin activity comparable to that in the absence of Hst1, showing that deacetylation of H4 was important for full initiation capacity of these origins. CONCLUSION Taken together, our results demonstrate a role for histone deacetylation in origin activity and reveal a novel aspect of origin regulation by chromatin. These results suggest recruitment of the Sum1/Rfm1/Hst1 complex to a number of yeast origins, where Hst1 deacetylated H4 K5.
Collapse
Affiliation(s)
- Jan M Weber
- Zentrum für Medizinische Biotechnologie, Abteilung Genetik, Universität Duisburg-Essen, 45117 Essen, Germany.
| | | | | |
Collapse
|
37
|
Kehayova PD, Liu DR. In vivo evolution of an RNA-based transcriptional silencing domain in S. cerevisiae. ACTA ACUST UNITED AC 2008; 14:65-74. [PMID: 17254953 DOI: 10.1016/j.chembiol.2006.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/10/2006] [Accepted: 11/13/2006] [Indexed: 12/31/2022]
Abstract
Starting from a random RNA library expressed in yeast cells, we evolved an RNA-based transcriptional silencing domain with potency comparable to that observed when Sir1, a known silencing protein, is localized to a promoter. Using secondary-structure predictions and site-directed mutagenesis, we dissected the functional domains of the most active evolved RNA transcriptional silencer. Observed RNA-based silencing was general, rather than gene specific, and the origin recognition complex was required for full activity of the evolved RNA. Using genetic studies, we demonstrated that the RNA-based silencer acts through a Sir protein-dependent mechanism. Our results highlight the value of evolving RNA libraries as probes of biological processes and suggest the possible existence of natural RNA-based, RNAi-independent gene silencers.
Collapse
Affiliation(s)
- Polina D Kehayova
- Howard Hughes Medical Institute and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 01238, USA
| | | |
Collapse
|
38
|
Roshina MP, Loginova NN, Devin AB, Gvozdev VA. Heterochromatic DNA repeats in Drosophila and unusual gene silencing in yeast cells. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Evolution of new function through a single amino acid change in the yeast repressor Sum1p. Mol Cell Biol 2008; 28:2567-78. [PMID: 18268008 DOI: 10.1128/mcb.01785-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SUM1-1 mutation is an example of a single amino acid change that results in new function. Wild-type Sum1p in Saccharomyces cerevisiae is a DNA-binding repressor that acts locally, whereas mutant Sum1-1p forms an extended repressive chromatin structure. By characterizing a panel of mutations in which various amino acids replaced the critical residue, threonine 988, we found that threonine was required for wild-type function and that in the absence of threonine the association of Sum1p with DNA was reduced. Isoleucine, the amino acid in mutant Sum1-1p, was required for the novel spreading property. Thus, the SUM1-1 mutation results in both a loss and a gain of function. The presence of isoleucine caused Sum1-1p to self-associate, a property that may promote spreading. In addition, isoleucine enabled Sum1-1p to associate with the origin recognition complex (ORC) and accumulate near ORC binding sites. Thus, both threonine and isoleucine at position 988 enable Sum1p to form intermolecular interactions. We propose that interaction domains may be hotspots for gain-of-function mutations because alterations in such domains have the potential to redirect a protein to new sets of binding partners. In addition, self-association of chromatin proteins may promote the formation of extended chromatin structures.
Collapse
|
40
|
Darst RP, Garcia SN, Koch MR, Pillus L. Slx5 promotes transcriptional silencing and is required for robust growth in the absence of Sir2. Mol Cell Biol 2008; 28:1361-72. [PMID: 18086879 PMCID: PMC2258744 DOI: 10.1128/mcb.01291-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/09/2007] [Accepted: 12/05/2007] [Indexed: 12/13/2022] Open
Abstract
The broadly conserved Sir2 NAD(+)-dependent deacetylase is required for chromatin silencing. Here we report the discovery of physical and functional links between Sir2 and Slx5 (Hex3), a RING domain protein and subunit of the Slx5/8 complex, [corrected] which is a ubiquitin E3 ligase that targets sumoylated proteins. Slx5 interacted with Sir2 by two-hybrid and glutathione S-transferase-binding assays and was found to promote silencing of genes at telomeric or ribosomal DNA (rDNA) loci. However, deletion of SLX5 had no detectable effect on the distribution of silent chromatin components and only slightly altered the deacetylation of histone H4 lysine 16 at the telomere. In vivo assays indicated that Sir2-dependent silencing was functionally intact in the absence of Slx5. Although no previous reports suggest that Sir2 contributes to the fitness of yeast populations, we found that Sir2 was required for maximal growth in slx5Delta mutant cells. A similar requirement was observed for mutants of the SUMO isopeptidase Ulp2/Smt4. The contribution of Sir2 to optimal growth was not due to known Sir2 roles in mating-type determination or rDNA maintenance but was connected to a role of sumoylation in transcriptional silencing. These results indicate that Sir2 and Slx5 jointly contribute to transcriptional silencing and robust cellular growth.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA
| | | | | | | |
Collapse
|
41
|
Mead J, McCord R, Youngster L, Sharma M, Gartenberg MR, Vershon AK. Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mol Cell Biol 2007; 27:2466-75. [PMID: 17242192 PMCID: PMC1899883 DOI: 10.1128/mcb.01641-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/09/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022] Open
Abstract
Sir2 and Hst1 are NAD(+)-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes. Sir2 interacts with Sir3 and Sir4 to silence genes contained within the silent-mating-type loci and telomere chromosomal regions. To identify the determinants of gene-specific versus regional repression, we created a series of Hst1::Sir2 hybrids. Our analysis yielded two dual-specificity chimeras that were able to perform both regional and gene-specific repression. Regional silencing by the chimeras required Sir3 and Sir4, whereas gene-specific repression required Rfm1 and Sum1. Our findings demonstrate that the nonconserved N-terminal region and two amino acids within the enzymatic core domain account for cofactor specificity and proper targeting of these proteins. These results suggest that the differences in the silencing and repression functions of Sir2 and Hst1 may not be due to differences in enzymatic activities of the proteins but rather may be the result of distinct cofactor specificities.
Collapse
Affiliation(s)
- Janet Mead
- Waksman Institute, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
42
|
Paterou A, Walrad P, Craddy P, Fenn K, Matthews K. Identification and stage-specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life-cycle development. J Biol Chem 2006; 281:39002-13. [PMID: 17043361 PMCID: PMC2688685 DOI: 10.1074/jbc.m604280200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-transcriptional control of gene expression is becoming increasingly important in the understanding of regulated events in eukaryotic cells. The parasitic kinetoplastids have a unique reliance on such processes, because their genome is organized into polycistronic transcription units in which adjacent genes are not coordinately regulated. Indeed, the number of RNA-binding proteins predicted to be encoded in the genome of kinetoplastids is unusually large, invoking the presence of unique RNA regulators dedicated to gene expression in these evolutionarily ancient organisms. Here, we report that a small CCCH zinc finger protein, TbZFP3, enhances development between life-cycle stages in Trypanosoma brucei. Moreover, we demonstrate that this protein interacts both with the translational machinery and with other small CCCH proteins previously implicated in trypanosome developmental control. Antibodies to this protein also co-immunoprecipitate EP procyclin mRNA and encode the major surface antigen of insect forms of T. brucei. Strikingly, although TbZFP3 is constitutively expressed, it exhibits developmentally regulated association with polyribosomes, and mutational analysis demonstrates that this association is essential for the expression of phenotype. TbZFP3 is therefore a novel regulator of developmental events in kinetoplastids that acts at the level of the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
| | | | - Paul Craddy
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Katelyn Fenn
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Keith Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| |
Collapse
|
43
|
Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 2006; 303:259-69. [PMID: 17224141 PMCID: PMC1831845 DOI: 10.1016/j.ydbio.2006.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/20/2006] [Accepted: 11/06/2006] [Indexed: 01/29/2023]
Abstract
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying activities. In plants, information about the composition of such co-repressor complexes is just beginning to emerge. Here, we report that two Arabidopsis thaliana factors, a SWIRM domain polyamine oxidase protein, AtSWP1, and a plant-specific C2H2 zinc finger-SET domain protein, AtCZS, interact with each other in plant cells and repress expression of a negative regulator of flowering, FLOWERING LOCUS C (FLC) via an autonomous, vernalization-independent pathway. Loss-of-function of either AtSWP1 or AtCZS results in reduced dimethylation of lysine 9 and lysine 27 of histone H3 and hyperacetylation of histone H4 within the FLC locus, in elevated FLC mRNA levels, and in moderately delayed flowering. Thus, AtSWP1 and AtCZS represent two main components of a co-repressor complex that fine tunes flowering and is unique to plants.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs. BMC Mol Biol 2006; 7:40. [PMID: 17094803 PMCID: PMC1660544 DOI: 10.1186/1471-2199-7-40] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/09/2006] [Indexed: 11/20/2022] Open
Abstract
Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.
Collapse
|
45
|
Ramachandran L, Burhans DT, Laun P, Wang J, Liang P, Weinberger M, Wissing S, Jarolim S, Suter B, Madeo F, Breitenbach M, Burhans WC. Evidence for ORC-dependent repression of budding yeast genes induced by starvation and other stresses. FEMS Yeast Res 2006; 6:763-76. [PMID: 16879427 DOI: 10.1111/j.1567-1364.2006.00077.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The highly conserved origin recognition complex (ORC) is required for repressing genes in the silent mating type loci of budding yeast. Here we report that at a non-permissive temperature, the temperature-sensitive orc2-1 mutation induces the expression of more than 500 genes, the majority of which are also induced during starvation of wild-type cells. Many genes induced by starvation or by the orc2-1 mutation are also induced by inactivation of proteins required for chromatin-mediated repression of transcription. Genes induced by the orc2-1 mutation, starvation, or inactivation of repressor proteins, map near ORC-binding loci significantly more frequently compared to all genes. Genes repressed by starvation map near ORC-binding sites less frequently compared to all genes, which suggests they have been evolutionarily excluded from regions of repressive chromatin near ORC-binding sites. Deletion of sequences containing ORC-binding sites near the DAL2 and DAL4 genes in the DAL gene cluster, which are induced by either the orc2-1 mutation or by starvation, constitutively activates these genes and abolishes their activation by the orc2-1 mutation. Our findings suggest a role for ORC in the repression of a large number of budding yeast genes induced by starvation or other aspects of a deleterious environment.
Collapse
Affiliation(s)
- Lakshmi Ramachandran
- Department of Cell Stress Biology and Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006; 124:1069-81. [PMID: 16487579 DOI: 10.1016/j.cell.2005.12.036] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/31/2005] [Accepted: 12/02/2005] [Indexed: 12/25/2022]
Abstract
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians against lethal spontaneous DNA damage, efficient repair of which requires the functions of the DNA-damage checkpoint signaling and multiple DNA-repair pathways. This genome-wide genetic interaction network also identified novel components (DIA2, NPT1, HST3, HST4, and the CSM1 module) that potentially contribute to mitotic DNA replication and genomic stability and revealed novel functions of well-studied genes (the CTF18 module) in DRC signaling. This network will guide more detailed characterization of mechanisms governing DNA integrity in yeast and other organisms.
Collapse
Affiliation(s)
- Xuewen Pan
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
47
|
Valenzuela L, Gangadharan S, Kamakaka RT. Analyses of SUM1-1-mediated long-range repression. Genetics 2006; 172:99-112. [PMID: 16272409 PMCID: PMC1456157 DOI: 10.1534/genetics.105.050427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022] Open
Abstract
In Saccharomyces cerevisiae, local repression is promoter specific and localized to a small region on the DNA, while silencing is promoter nonspecific, encompasses large domains of chromatin, and is stably inherited for multiple generations. Sum1p is a local repressor protein that mediates repression of meiosis-specific genes in mitotic cells while the Sir proteins are long-range repressors that stably silence genes at HML, HMR, and telomeres. The SUM1-1 mutation is a dominant neomorphic mutation that enables the mutant protein to be recruited to the HMR locus and repress genes, even in the absence of the Sir proteins. In this study we show that the mutation in Sum1-1p enabled it to spread, and the native HMR barrier blocked it from spreading. Thus, like the Sir proteins, Sum1-1p was a long-range repressor, but unlike the Sir proteins, Sum1-1p-mediated repression was more promoter specific, repressing certain genes better than others. Furthermore, repression mediated by Sum1-1p was not stably maintained or inherited and we therefore propose that Sum1-1p-mediated long-range repression is related but distinct from silencing.
Collapse
Affiliation(s)
- Lourdes Valenzuela
- Unit on Chromatin and Transcription, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
Yu Q, Elizondo S, Bi X. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae. J Mol Biol 2005; 356:1082-92. [PMID: 16406069 DOI: 10.1016/j.jmb.2005.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, transcriptional silencing of the cryptic mating loci HML and HMR is established by the combined actions of cis-acting silencers and trans-acting proteins, including Sir2p, Sir3p and Sir4p. The Sir proteins serve as an integral part of a special silent chromatin at the HM loci. Deletion of any of the SIR2-SIR4 genes leads to a complete loss of silencing. However, the SUM1-1 mutation can restore silencing at the HM loci. Recently, it has been shown that Sum1-1p is directed to the silencers and internal regions of the HM loci, and interacts with the Hst1p histone deacetylase that is a paralog of the Sir2p histone deacetylase. Like Sir-dependent silent chromatin, Sum1-1p-dependent chromatin is hypoacetylated. These suggest that Sum1-1p and Hst1p play roles similar to those of the Sir proteins in promoting transcriptional silencing. Here, we examine whether Sum1-1p-dependent chromatin is similar to Sir-dependent silent chromatin, which is characterized by densely and precisely positioned nucleosomes. We demonstrate that Sum1-1p-dependent primary chromatin structure at HMR largely resembles, but is not identical with, Sir-dependent silent chromatin, whereas Sum1-1p-dependent HML chromatin largely resembles, but is not identical with, derepressed chromatin found in a sir- background. This correlates with the previous finding that SUM1-1 restores silencing more efficiently at HMR than at HML. We show also that DNA in Sum1-1p-dependent silent chromatin assumes a distinct topology. Moreover, we present evidence indicating that Sum1-1p can increase the stability of Sir-dependent silent chromatin, thereby providing an explanation for the finding that SUM1-1 enhances HML/HMR silencing in a SIR+ background.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biology University of Rochester Rochester, NY 14627, USA
| | | | | |
Collapse
|
49
|
Yu Q, Sandmeier J, Xu H, Zou Y, Bi X. Mechanism of the long range anti-silencing function of targeted histone acetyltransferases in yeast. J Biol Chem 2005; 281:3980-8. [PMID: 16368686 DOI: 10.1074/jbc.m510140200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptionally silent chromatin in Saccharomyces cerevisiae is associated with histone hypoacetylation and is formed through the action of the Sir histone deacetylase complex. A histone acetyltransferase (HAT) targeted near silent chromatin can overcome silencing at a distance by increasing histone acetylation in a sizable region. However, how a tethered HAT acetylates distant nucleosomes has not been resolved. We demonstrate here that targeting the histone H3-specific HAT Gcn5p promotes acetylation of not only histone H3 but also histone H4 in a broad region. We also show that long range anti-silencing and histone acetylation by targeted HATs can be blocked by nucleosome-excluding sequences. These results are consistent with the contention that a tethered HAT promotes stepwise propagation of histone acetylation along the chromatin. Because histone hypoacetylation is key to the formation and maintenance of transcriptionally silent chromatin, it is believed that acetylation promoted by a targeted HAT disrupts silent chromatin thereby overcoming silencing. However, we show that the acetylated and transcriptionally active region created by a tethered HAT retains structural hallmarks of Sir-dependent silent chromatin and remains associated with Sir proteins indicating that tethered HATs overcome silencing without completely dismantling silent chromatin.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biology, University of Rochester, New York 14627, USA
| | | | | | | | | |
Collapse
|
50
|
Ueki S, Citovsky V. Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proc Natl Acad Sci U S A 2005; 102:12089-94. [PMID: 16103368 PMCID: PMC1189354 DOI: 10.1073/pnas.0505927102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Indexed: 11/18/2022] Open
Abstract
Cadmium-induced glycine-rich protein (cdiGRP) is a cell wall-associated factor that increases callose levels in plant vasculature. To better understand the cdiGRP/callose regulation system, we identified a tobacco protein, GrIP (cdiGRP-interacting protein, GrIP), that associates with cdiGRP and localizes at the plant cell wall. Constitutive overexpression of GrIP enhanced the accumulation of the cdiGRP protein and callose in vasculature-associated cells with or without treatment with cadmium ions. That GrIP gene expression was not affected by cadmium ions indicated that GrIP does not directly modulate the callose levels induced by the treatment. Instead, GrIP most likely functions by further elevating the accumulated amount of cdiGRP, the expression of which is up-regulated by the cadmium ions. Interestingly, the levels of cdiGRP mRNA were not affected by constitutive expression of GrIP, demonstrating that the enhancement in cdiGRP protein accumulation by GrIP overexpression occurs posttranslationally. Collectively, these observations suggest that GrIP interacts with cdiGRP and increases its level of accumulation; in turn, the elevated amounts of cdiGRP induce callose deposits in the plant cell walls. Therefore, GrIP and cdiGRP represent sequentially acting factors in a biochemical pathway that regulates callose accumulation in the plant vasculature.
Collapse
Affiliation(s)
- Shoko Ueki
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|