1
|
Johansson J, Lidéus S, Frykholm C, Gunnarsson C, Mihalic F, Gudmundsson S, Ekvall S, Molin AM, Pham M, Vihinen M, Lagerstedt-Robinson K, Nordgren A, Jemth P, Ameur A, Annerén G, Wilbe M, Bondeson ML. Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions. Eur J Hum Genet 2024; 32:333-341. [PMID: 37277488 PMCID: PMC10923852 DOI: 10.1038/s41431-023-01392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Filip Mihalic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mai Pham
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden
| | - Kristina Lagerstedt-Robinson
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Matsuno A, Sumida H, Nakanishi H, Ikeyama Y, Ishii T, Omori I, Saito H, Iwasawa O, Sugimori A, Yoshizaki A, Katoh H, Ishikawa S, Sato S. Keratinocyte proline-rich protein modulates immune and epidermal response in imiquimod-induced psoriatic skin inflammation. Exp Dermatol 2023; 32:2121-2130. [PMID: 37926955 DOI: 10.1111/exd.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis is a persistent inflammatory skin disease thought to arise as a result of the infiltration of inflammatory cells and activation of keratinocytes. Recent advances in basic research and clinical experience revealed that the interleukin (IL)-23/IL-17 axis has been identified as a major immune pathway in psoriasis. However, it remains unclear how keratinocyte factors contribute to the pathology of psoriasis. Keratinocyte proline-rich protein (KPRP) is a proline-rich insoluble protein, which is present in the epidermis and is likely to be involved in the skin barrier function. Here, to investigate the potential roles of KPRP in psoriatic skin inflammation, Kprp-modified mice were applied in the imiquimod (IMQ)-induced skin inflammation model, which develops psoriasis-like epidermal hyperplasia and cutaneous inflammation features. Then, heterozygous knockout (Kprp+/- ) but not homozygous knockout (Kprp-/- ) mice displayed attenuated skin erythema compared to control wild-type mice. In addition, RNA sequencing, quantitative PCR and/or histological analysis detected changes in the expression of several molecules related to psoriatic inflammation or keratinocyte differentiation in Kprp+/- mice, but not Kprp-/- mice. Further analysis exhibited reduced IL-17-producing γδlow T cells and amplified epidermal hyperplasia in Kprp+/- mice, which were implied to be related to decreased expression of β-defensins and increased expression of LPAR1 (Lysophosphatidic acid receptor 1), respectively. Thus, our results imply that KPRP has the potential as a therapeutic target in psoriatic skin inflammation.
Collapse
Affiliation(s)
- Ai Matsuno
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
- SLE Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirofumi Nakanishi
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Yoshifumi Ikeyama
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Tsuyoshi Ishii
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Sugimori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Zheng S, Wang WX. Physiological and immune profiling of tilapia Oreochromis niloticus gills by high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109070. [PMID: 37709178 DOI: 10.1016/j.fsi.2023.109070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The physiological and immune functions of fish gills are largely recognized, but their following functional heterogeneity at the single cell scale has been rarely reported. Here, we performed single cell RNA sequencing (scRNA-seq) on the gills of tilapia fish Oreochromis niloticus. We identified a total of 12 cell populations and analyzed their functional heterogeneity. To investigate the physiological function of O. niloticus gills, expression patterns of genes encoding ion transporters were selected from the identified H+-ATPase-rich cells (HR cells), Na+/K+-ATPase-rich cells (NaR cells), and pavement cells. Specific enrichment of ca4a, slc9a1a, and LOC100692482 in the HR cells of O. niloticus gills explained their functions in acid-base regulation. Genes encoding Ca2+ transporters, including atp2b1, LOC100696627, and LOC 100706765, were specifically expressed in the NaR cells. Pavement cells were presumably the main sites responsible for ammonia and urea transports in O. niloticus gills with specific enrichment of Rhbg and LOC100693008, respectively. The expression patterns of the four immune cell subtypes varied greatly, with B cells being enriched with the most immune-related GO terms. KEGG enrichment analysis showed that MAPK signaling pathway was the most enriched pathway among the four types of immune cells in O. niloticus gills. Our results are important in understanding the physiological and immune responses of fish gills at the cellular resolution.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Inaba Y, Chauhan V, van Loon AP, Choudhury LS, Sagasti A. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions. eLife 2020; 9:58149. [PMID: 32894222 PMCID: PMC7535935 DOI: 10.7554/elife.58149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments.
Collapse
Affiliation(s)
- Yasuko Inaba
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Aaron Paul van Loon
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lamia Saiyara Choudhury
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
6
|
Duit R, Hawkins TJ, Määttä A. Depilatory chemical thioglycolate affects hair cuticle and cortex, degrades epidermal cornified envelopes and induces proliferation and differentiation responses in keratinocytes. Exp Dermatol 2018; 28:76-79. [PMID: 30417461 DOI: 10.1111/exd.13838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Thioglycolate is a potent depilatory agent. In addition, it has been proposed to be useful as a penetration enhancer for transepidermal drug delivery. However, the effects on hair structure and stress responses it elicits in epidermal keratinocytes have not been fully characterised. We have used label-free confocal and fluorescence lifetime imaging supported by electron microscopy to demonstrate how thioglycolate damages hair cuticle cells by generating breakages along the endocuticle and leading to swelling of cortex cells. Maleimide staining of free SH-groups and a decrease in the average fluorescence lifetime of endogenous fluorophores demonstrate a specific change in protein structure in both hair cuticle and cortex. We found that the thioglycolate damages cornified envelopes isolated from the stratum corneum of the epidermis. However, thioglycolate-treated epidermal equivalent cultures recover within 48 hours, which highlights the reversibility of the damage. HaCaT keratinocytes respond to thioglycolate by increased proliferation, onset of differentiation and expression of the chaperone protein Hsp 70, but not Hsp 27. Up-regulation of involucrin can be blocked by an application of c-Jun N-terminal kinase (JNK) inhibitor, but the up-regulation of Hsp 70 takes place regardless of the presence of the JNK inhibitor.
Collapse
Affiliation(s)
- Rebecca Duit
- Department of Biosciences, Durham University, Durham, UK
| | - Tim J Hawkins
- Department of Biosciences, Durham University, Durham, UK
| | - Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
7
|
Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int 2018; 67:3-11. [PMID: 29153780 DOI: 10.1016/j.alit.2017.10.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022] Open
Abstract
The skin is continuously exposed to external pathogens, and its barrier function is critical for skin homeostasis. Previous studies have shown that the barrier dysfunction is one of the most predisposing factors for the development of skin allergic diseases such as atopic dermatitis. In this article, we summarize how the physical barrier of the skin is organized and review its link to the pathomechanism of skin allergic diseases. We describe the formation of the SC barrier in terms of the following five categories: 1) filaggrin metabolism; 2) cornified envelope; 3) intercellular lipids; 4) corneodesmosome; and 5) corneocyte desquamation. New approaches to restoring the skin barrier function are also discussed.
Collapse
|
8
|
Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J Allergy Clin Immunol 2016; 138:350-358.e1. [PMID: 27497277 DOI: 10.1016/j.jaci.2016.06.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function.
Collapse
Affiliation(s)
- Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
9
|
Two Ancient Gene Families Are Critical for Maintenance of the Mammalian Skin Barrier in Postnatal Life. J Invest Dermatol 2016; 136:1438-1448. [PMID: 26975724 DOI: 10.1016/j.jid.2016.02.806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/16/2023]
Abstract
The skin barrier is critical for mammalian survival in the terrestrial environment, affording protection against fluid loss, microbes, toxins, and UV exposure. Many genes indispensable for barrier formation in the embryo have been identified, but loss of these genes in adult mice does not induce barrier regression. We describe a complex regulatory network centered on two ancient gene families, the grainyhead-like (Grhl) transcription factors and the protein cross-linking enzymes (tissue transglutaminases [Tgms]), which are essential for skin permeability barrier maintenance in adult mice. Embryonic deletion of Grhl3 induces loss of Tgm1 expression, which disrupts the cornified envelope, thus preventing permeability barrier formation leading to neonatal death. However, gene deletion of Grhl3 in adult mice does not disrupt the preformed barrier, with cornified envelope integrity maintained by Grhl1 and Tgm5, which are up-regulated in response to postnatal loss of Grhl3. Concomitant deletion of both Grhl factors in adult mice induced loss of Tgm1 and Tgm5 expression, perturbation of the cornified envelope, and complete permeability barrier regression that was incompatible with life. These findings define the molecular safeguards for barrier function that accompany the transition from intrauterine to terrestrial life.
Collapse
|
10
|
Pearson HB, McGlinn E, Phesse TJ, Schlüter H, Srikumar A, Gödde NJ, Woelwer CB, Ryan A, Phillips WA, Ernst M, Kaur P, Humbert P. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer 2015; 14:169. [PMID: 26376988 PMCID: PMC4574215 DOI: 10.1186/s12943-015-0440-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The establishment and maintenance of polarity is vital for embryonic development and loss of polarity is a frequent characteristic of epithelial cancers, however the underlying molecular mechanisms remain unclear. Here, we identify a novel role for the polarity protein Scrib as a mediator of epidermal permeability barrier acquisition, skeletal morphogenesis, and as a potent tumor suppressor in cutaneous carcinogenesis. METHODS To explore the role of Scrib during epidermal development, we compared the permeability of toluidine blue dye in wild-type, Scrib heterozygous and Scrib KO embryonic epidermis at E16.5, E17.5 and E18.5. Mouse embryos were stained with alcian blue and alizarin red for skeletal analysis. To establish whether Scrib plays a tumor suppressive role during skin tumorigenesis and/or progression, we evaluated an autochthonous mouse model of skin carcinogenesis in the context of Scrib loss. We utilised Cre-LoxP technology to conditionally deplete Scrib in adult epidermis, since Scrib KO embryos are neonatal lethal. RESULTS We establish that Scrib perturbs keratinocyte maturation during embryonic development, causing impaired epidermal barrier formation, and that Scrib is required for skeletal morphogenesis in mice. Analysis of conditional transgenic mice deficient for Scrib specifically within the epidermis revealed no skin pathologies, indicating that Scrib is dispensable for normal adult epidermal homeostasis. Nevertheless, bi-allelic loss of Scrib significantly enhanced tumor multiplicity and progression in an autochthonous model of epidermal carcinogenesis in vivo, demonstrating Scrib is an epidermal tumor suppressor. Mechanistically, we show that apoptosis is the critical effector of Scrib tumor suppressor activity during skin carcinogenesis and provide new insight into the function of polarity proteins during DNA damage repair. CONCLUSIONS For the first time, we provide genetic evidence of a unique link between skin carcinogenesis and loss of the epithelial polarity regulator Scrib, emphasizing that Scrib exerts a wide-spread tumor suppressive function in epithelia.
Collapse
Affiliation(s)
- Helen B Pearson
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Edwina McGlinn
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Toby J Phesse
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Present address: Olivia Newton-John Cancer Research Institute and School of Cancer Medicine at La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Holger Schlüter
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Present address: National Center for Tumor Diseases Heidelberg (NCT), German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Anuratha Srikumar
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Nathan J Gödde
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Christina B Woelwer
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia
| | - Andrew Ryan
- TissuPath Laboratories, Mount Waverley, VIC, 3149, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Surgery (St. Vincent's Hospital), The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthias Ernst
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Present address: Olivia Newton-John Cancer Research Institute and School of Cancer Medicine at La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Patrick Humbert
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC, 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Functional Analysis of Periplakin and Envoplakin, Cytoskeletal Linkers, and Cornified Envelope Precursor Proteins. Methods Enzymol 2015; 569:309-29. [PMID: 26778565 DOI: 10.1016/bs.mie.2015.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Envoplakin and periplakin are the two smallest plakin family cytoskeletal linker proteins that connect intermediate filaments to cellular junctions and other membrane locations. These two plakins have a structural role in the assembly of the cornified envelope (CE), the terminal stage of epidermal differentiation. Analysis of gene-targeted mice lacking both these plakins and the third initial CE scaffold protein, involucrin, demonstrate the importance of the structural integrity of CE for a proper epidermal barrier function. It has emerged that periplakin, which also has a wider tissue distribution than envoplakin, has additional, independent roles. Periplakin participates in the cytoskeletal organization also in other tissues and interacts with a wide range of membrane-associated proteins such as kazrin and butyrophilin BTN3A1. This review covers methods used to understand periplakin and envoplakin functions in cell culture models, including siRNA ablation of periplakin expression and the use of tagged protein domain constructs to study localization and interactions. In addition, assays that can be used to analyze CEs and epidermal barrier function in gene-targeted mice are described and discussed.
Collapse
|
12
|
Cipolat S, Hoste E, Natsuga K, Quist SR, Watt FM. Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. eLife 2014; 3:e01888. [PMID: 24843010 PMCID: PMC4007207 DOI: 10.7554/elife.01888] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis can result from loss of structural proteins in the outermost epidermal layers, leading to a defective epidermal barrier. To test whether this influences tumour formation, we chemically induced tumours in EPI−/− mice, which lack three barrier proteins—Envoplakin, Periplakin, and Involucrin. EPI−/− mice were highly resistant to developing benign tumours when treated with 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The DMBA response was normal, but EPI−/− skin exhibited an exaggerated atopic response to TPA, characterised by abnormal epidermal differentiation, a complex immune infiltrate and elevated serum thymic stromal lymphopoietin (TSLP). The exacerbated TPA response could be normalised by blocking TSLP or the immunoreceptor NKG2D but not CD4+ T cells. We conclude that atopy is protective against skin cancer in our experimental model and that the mechanism involves keratinocytes communicating with cells of the immune system via signalling elements that normally protect against environmental assaults. DOI:http://dx.doi.org/10.7554/eLife.01888.001 Skin cancer is a common and growing problem—according to the World Health Organization, skin cancers account for one in every three cancers diagnosed world wide. There is some evidence from epidemiological studies that patients with certain allergies might be protected against cancer and, in particular, that the allergic skin condition atopic dermatitis is associated with reduced levels of various skin cancers. However, it is difficult to know if this reduction is due to the atopic dermatitis itself or to the drugs used to treat this allergy. Genetically engineered mice that are lacking three proteins that are involved in the formation of the cornified envelope—the protective layer that replaces the normal plasma membrane in the cells of the outermost skin layers—can be used to study atopic dermatitis. These ‘triple knockout mice’ have a defective epidermal barrier and altered levels of immune T-cells in the skin. Now Cipolat et al. have investigated whether defects in the epidermal barrier protect against skin cancer. Knockout mice and wild-type mice were treated with two chemicals: DMBA, which causes mutations in a gene called HRas, and TPA, which promotes the formation of tumours from cells that contain HRas mutations. After about 16 weeks almost all of the wild-type mice had at least one benign tumour, whereas half of the knockout mice had no tumours. Overall, the average number of benign tumours per mouse was six times higher in the wild-type mice. This shows that the mutations that cause the epidermal barrier defects in knockout mice also protect them against the tumours caused by the combined effects of DMBA and TPA. Cipolat et al. then compared how the mice responded to DMBA or TPA alone. The knockout mice and the wild-type mice responded to DMBA in the same way; however, the knockout mice showed an exaggerated response to TPA, including a strong inflammatory reaction. This response comprised the production of higher levels of various proteins that are involved in communications between skin cells and the immune system. Cipolat et al. propose that the immune reaction caused by this exaggerated response could help to prevent tumour formation by eliminating tumour-forming cells in the skin. DOI:http://dx.doi.org/10.7554/eLife.01888.002
Collapse
Affiliation(s)
- Sara Cipolat
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Esther Hoste
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom Department of Dermatology, Hokkaido University, Sapporo, Japan
| | - Sven R Quist
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom Department of Dermatology and Venereology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development.
Collapse
|
14
|
Bouameur JE, Favre B, Borradori L. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol 2013; 134:885-894. [PMID: 24352042 DOI: 10.1038/jid.2013.498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Abstract
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bertrand Favre
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Luca Borradori
- Departments of Dermatology and Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Amniotic fluid activates the nrf2/keap1 pathway to repair an epidermal barrier defect in utero. Dev Cell 2013; 23:1238-46. [PMID: 23237955 DOI: 10.1016/j.devcel.2012.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2012] [Accepted: 11/05/2012] [Indexed: 12/27/2022]
Abstract
The loss of loricrin, a major component of the cornified envelope, results in a delay of epidermal barrier formation. Therefore, the living layers of the epidermis are aberrantly exposed to late-stage amniotic fluid, which may serve as the signal to upregulate genes that functionally compensate for the loss of loricrin. Consistent with this hypothesis, metabolomic studies revealed marked changes in amniotic fluid between E14.5 and E16.5 days postcoitum. In addition, we discovered that the Nrf2/Keap1 pathway detects these compositional changes and directly upregulates the expression of genes involved in the compensatory response, thus ensuring postnatal survival. In support of this finding, we demonstrate that genetically blocking the Nrf2 pathway abolishes the compensatory response and that preemptively activating Nrf2 pharmacologically rescues the delay in barrier formation in utero. Our findings reveal that the functions of Nrf2 and the composition of amniotic fluid have coevolved to ensure the formation of a functional barrier.
Collapse
|
16
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
17
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
18
|
Gruber R, Elias PM, Crumrine D, Lin TK, Brandner JM, Hachem JP, Presland RB, Fleckman P, Janecke AR, Sandilands A, McLean WHI, Fritsch PO, Mildner M, Tschachler E, Schmuth M. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2252-63. [PMID: 21514438 DOI: 10.1016/j.ajpath.2011.01.053] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 12/16/2022]
Abstract
Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.
Collapse
Affiliation(s)
- Robert Gruber
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
20
|
Lie PPY, Cheng CY, Mruk DD. The biology of the desmosome-like junction a versatile anchoring junction and signal transducer in the seminiferous epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:223-69. [PMID: 21199783 PMCID: PMC4381909 DOI: 10.1016/b978-0-12-385859-7.00005-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian spermatogenesis, a complex process that involves the movement of developing germ cells across the seminiferous epithelium, entails extensive restructuring of Sertoli-Sertoli and Sertoli-germ cell junctions. Presently, it is not entirely clear how zygotene spermatocytes gain entry into the adluminal compartment of the seminiferous epithelium, which is sealed off from the systemic circulation by the Sertoli cell component of the blood-testis barrier, without compromising barrier integrity. To begin to address this question, it is critical that we first have a good understanding of the biology and the regulation of different types of Sertoli-Sertoli and Sertoli-germ cell junctions in the testis. Supported by recent studies in the field, we discuss how crosstalk between different types of junctions contributes to their restructuring during germ cell movement across the blood-testis barrier. We place special emphasis on the emerging role of desmosome-like junctions as signal transducers during germ cell movement across the seminiferous epithelium.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
21
|
Tetreault MP, Yang Y, Travis J, Yu QC, Klein-Szanto A, Tobias JW, Katz JP. Esophageal squamous cell dysplasia and delayed differentiation with deletion of krüppel-like factor 4 in murine esophagus. Gastroenterology 2010; 139:171-81.e9. [PMID: 20347813 PMCID: PMC3265336 DOI: 10.1053/j.gastro.2010.03.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/26/2010] [Accepted: 03/18/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Krüppel-like factor 4 (Klf; previously known a gut-enriched Krüppel-like factor) is a DNA-binding transcriptional regulator highly expressed in skin and gastrointestinal epithelia, specifically in regions of cellular differentiation. Homozygous null mice for Klf4 die shortly after birth from skin defects, precluding their analysis at later stages. The aim of this study was to analyze the function of Klf4 in keratinocyte biology and epithelial homeostasis in the adult by focusing on the squamous lined esophagus. METHODS By using the ED-L2 promoter of Epstein-Barr virus to drive Cre, we obtained tissue-specific ablation of Klf4 in the squamous epithelia of the tongue, esophagus, and forestomach. RESULTS Mice with loss of Klf4 in esophageal epithelia survived to adulthood, bypassing the early lethality. Tissue-specific Klf4 knockout mice had increased basal cell proliferation and a delay in cellular maturation; these mice developed epithelial hypertrophy and subsequent dysplasia by 6 months of age. Moreover, loss of Klf4 in vivo was associated with increased expression of the pro-proliferative Klf5, and Klf4 down-regulated Klf5 both transcriptionally and posttranscriptionally. By using gene expression profiling, we also showed decreased expression of critical late-stage differentiation factors and identified alterations of several genes important in cellular differentiation. CONCLUSIONS Klf4 is essential for squamous epithelial differentiation in vivo and interacts with Klf5 to maintain normal epithelial homeostasis.
Collapse
Affiliation(s)
- Marie-Pier Tetreault
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yizeng Yang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jenna Travis
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Qian-Chun Yu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John W. Tobias
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P. Katz
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,Correspondence: Jonathan P. Katz, M.D., Department of Medicine, Gastroenterology Division, University of Pennsylvania School of Medicine, 600 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6144 USA; Tel.: 215-746-7780; Fax: 215-573-2024;
| |
Collapse
|
22
|
Ahuero AE, Jakobiec FA, Bhat P, Ciralsky JB, Papaliodis GN. Paraneoplastic conjunctival cicatrization: two different pathogenic types. Ophthalmology 2010; 117:659-64. [PMID: 20045572 DOI: 10.1016/j.ophtha.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/31/2009] [Accepted: 09/08/2009] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To describe the clinical and immunopathologic features of patients with 2 different types of paraneoplastic conjunctival cicatrization. DESIGN Retrospective observational case analyses with a review of the literature. PARTICIPANTS One patient with paraneoplastic ocular cicatricial pemphigoid (POCP) and 1 patient with paraneoplastic pemphigus (PNP) with ocular involvement. METHODS Critical review of clinical history, diagnostic studies, and immunopathologic results of biopsies in the 2 cases, together with a review of the literature. MAIN OUTCOME MEASURES Ability to recognize paraneoplastic conjunctival cicatrization and to diagnose the conditions accurately. RESULTS The first patient, 46 years of age, presented with conjunctival scarring and symblephara, cough, oral lesions, and chest rash. Concurrently, a diagnosis of pulmonary squamous cell carcinoma was made. Conjunctival biopsy revealed a subepithelial bulla, an inflammatory infiltrate of T and B lymphocytes, and basement membrane zone deposition of immunoglobulin (Ig)-G and C3 consistent with POCP. The second patient, 54 years of age, had a recently diagnosed B-cell chronic lymphocytic leukemia, followed 1 month later with ocular irritation and bilateral extensive symblephara. Extensive oral lesions and skin involvement of the lower half of the body were seen. Skin biopsy disclosed subepidermal bullae and mostly T cells with virtually no B cells in the dermal infiltrate (the patient was being treated with rituximab). Linear subepithelial deposition of IgG and C3 and deposition within the epidermis were consistent with PNP. Further indirect immunofluorescence and immunoprecipitation studies with the patient's serum-derived antibodies established PNP as the definitive diagnosis. CONCLUSIONS Underlying malignancy is an important consideration in younger patients with puzzling bilateral cicatrizing conjunctivitis, and a paraneoplastic condition can be established from either a conjunctival or a skin biopsy. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Audrey E Ahuero
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
23
|
Nachat R, Cipolat S, Sevilla LM, Chhatriwala M, Groot KR, Watt FM. KazrinE is a desmosome-associated liprin that colocalises with acetylated microtubules. J Cell Sci 2009; 122:4035-41. [PMID: 19843585 PMCID: PMC2776498 DOI: 10.1242/jcs.047266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2009] [Indexed: 11/20/2022] Open
Abstract
Kazrin is a widely expressed, evolutionarily conserved cytoplasmic protein that binds the cytolinker protein periplakin. Multiple functions of kazrin have been reported, including regulation of desmosome assembly, embryonic tissue morphogenesis and epidermal differentiation. Here, we identify kazrinE as a kazrin isoform that contains a liprin-homology domain (LHD) and forms complexes with kazrinA, kazrinB and kazrinC. As predicted from the presence of the LHD, kazrinE can associate with the leukocyte common antigen-related (LAR) protein tyrosine phosphatase in a phosphorylation-dependent manner. When overexpressed in epidermal keratinocytes, kazrinE induces changes in cell shape and stimulates terminal differentiation. Like the other kazrin isoforms, kazrinE localises to the nucleus and desmosomes. However, in addition, kazrinE associates with stabilised microtubules via its LHD. During terminal differentiation, the keratinocyte microtubule network undergoes extensive reorganisation; in differentiating keratinocytes, endogenous kazrinE colocalises with microtubules, but periplakin does not. We speculate that the kazrinE-microtubule interaction contributes to the mechanism by which kazrin regulates desmosome formation and epidermal differentiation.
Collapse
Affiliation(s)
- Rachida Nachat
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson
Way, Cambridge, CB2 0RE, UK
| | - Sara Cipolat
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson
Way, Cambridge, CB2 0RE, UK
| | - Lisa M. Sevilla
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson
Way, Cambridge, CB2 0RE, UK
- Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2
1QR, UK
| | - Mariya Chhatriwala
- Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2
1QR, UK
| | - Karen R. Groot
- National Cancer Research Institute, 61 Lincoln's Inn Fields, PO Box 123,
London, WC2A 3PX, UK
| | - Fiona M. Watt
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson
Way, Cambridge, CB2 0RE, UK
- Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2
1QR, UK
| |
Collapse
|
24
|
Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 2009; 119:1837-48. [PMID: 19587458 DOI: 10.1172/jci38277] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous polymers in establishing the optical properties of the eye lens and in maintaining its transparency. For instance, mutations in both BFSP1 and BFSP2 cause cataract in humans. We also explore the potential role of BFSP1 and BFSP2 in aging processes in the lens.
Collapse
Affiliation(s)
- Shuhua Song
- Center for Ophthalmic Research/Surgery, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
25
|
Smyth I, Hacking DF, Hilton AA, Mukhamedova N, Meikle PJ, Ellis S, Satterley K, Collinge JE, de Graaf CA, Bahlo M, Sviridov D, Kile BT, Hilton DJ. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet 2008; 4:e1000192. [PMID: 18802465 PMCID: PMC2529452 DOI: 10.1371/journal.pgen.1000192] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/06/2008] [Indexed: 11/19/2022] Open
Abstract
Harlequin Ichthyosis (HI) is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.
Collapse
Affiliation(s)
- Ian Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sevilla LM, Nachat R, Groot KR, Klement JF, Uitto J, Djian P, Määttä A, Watt FM. Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. ACTA ACUST UNITED AC 2008; 179:1599-612. [PMID: 18166659 PMCID: PMC2373502 DOI: 10.1083/jcb.200706187] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cornified envelope is assembled from transglutaminase cross-linked proteins and lipids in the outermost epidermal layers and is essential for skin barrier function. Involucrin, envoplakin, and periplakin form the protein scaffold on which the envelope assembles. To examine their combined function, we generated mice deficient in all three genes. The triple knockouts have delayed embryonic barrier formation and postnatal hyperkeratosis (abnormal accumulation of cornified cells) resulting from impaired desquamation. Cornified envelopes form but are ultrastructurally abnormal, with reduced lipid content and decreased mechanical integrity. Expression of proteases is reduced and the protease inhibitor, serpina1b, is highly upregulated, resulting in defective filaggrin processing and delayed degradation of desmoglein 1 and corneodesmosin. There is infiltration of CD4+ T cells and a reduction in resident γδ+ T cells, reminiscent of atopic dermatitis. Thus, combined loss of the cornified envelope proteins not only impairs the epidermal barrier, but also changes the composition of T cell subpopulations in the skin.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Ojeh N, Hiilesvuo K, Wärri A, Salmivirta M, Henttinen T, Määttä A. Ectopic expression of syndecan-1 in basal epidermis affects keratinocyte proliferation and wound re-epithelialization. J Invest Dermatol 2007; 128:26-34. [PMID: 17625591 DOI: 10.1038/sj.jid.5700967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidermal proliferation and differentiation can be regulated by soluble morphogens and growth factors. Heparan sulfate proteoglycans (HSPGs) modulate the action of several of these effector molecules, such as members of the fibroblast growth factor (FGF) and Wnt families. Syndecan-1 is a cell-surface proteoglycan that is expressed in differentiating keratinocytes and transiently upregulated in all layers of the epidermis upon tissue injury. To address the role of syndecan-1 in the regulation of keratinocyte proliferation and differentiation, we generated transgenic mice that overexpress syndecan-1 under K14 keratin promoter in the basal layer of the epidermis. We observed epidermal hyperproliferation in newborn transgenic mice, as evidenced by increased number of suprabasal cell layers, elevated proliferating cell nuclear antigen (PCNA) expression in both basal and suprabasal cell layers and by expression of keratin 6 in the interfollicular epidermis. Compared to both wild-type and syndecan-1-null animals, the transgene expression interfered with skin wound healing in adult mice by decreasing cell proliferation in the re-epithelialized epidermis. Thus, syndecan-1 regulates keratinocyte proliferation differently during skin development and in healing wounds.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | | | | | | | | | | |
Collapse
|
29
|
Sonnenberg A, Liem RKH. Plakins in development and disease. Exp Cell Res 2007; 313:2189-203. [PMID: 17499243 DOI: 10.1016/j.yexcr.2007.03.039] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022]
Abstract
Plakins are large multi-domain molecules that have various functions to link cytoskeletal elements together and to connect them to junctional complexes. Plakins were first identified in epithelial cells where they were found to connect the intermediate filaments to desmosomes and hemidesmosomes [Ruhrberg, C., and Watt, F.M. (1997). The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7, 392-397.]. They were subsequently found to be important for the integrity of muscle cells. Most recently, they have been found in the nervous system, where their functions appear to be more complex, including cross-linking of microtubules (MTs) and actin filaments [Leung, C.L., Zheng, M., Prater, S.M., and Liem, R.K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154, 691-697., Leung, C.L., Sun, D., Zheng, M., Knowles, D.R., and Liem, R.K. (1999). Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147, 1275-1286.]. These plakins have also indicated their relationship to the spectrin superfamily of proteins and the plakins appear to be evolutionarily related to the spectrins, but have diverged to perform different specialized functions. In invertebrates, a single plakin is present in both Drosophila melanogaster and Caenorhabditis elegans, which resemble the more complex plakins found in mammals [Roper, K., Gregory, S.L., and Brown, N.H. (2002). The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115, 4215-4225.]. In contrast, there are seven plakins found in mammals and most of them have alternatively spliced forms leading to a very complex group of proteins with potential tissue specific functions [Jefferson, J.J., Leung, C.L., and Liem, R.K. (2004). Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5, 542-553.]. In this review, we will first describe the plakins, desmoplakin, plectin, envoplakin and periplakin and then describe two other mammalian plakins, Bullous pemphigoid antigen 1 (BPAG1) and microtubule actin cross-linking factor 1 (MACF1), that are expressed in multiple isoforms in different tissues. We will also describe the relationship of these two proteins to the invertebrate plakins, shortstop (shot) in Drosophila and VAB-10 in C. elegans. Finally, we will describe an unusual mammalian plakin, called epiplakin.
Collapse
Affiliation(s)
- Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Inst., Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
de Guzman Strong C, Wertz PW, Wang C, Yang F, Meltzer PS, Andl T, Millar SE, Ho IC, Pai SY, Segre JA. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. ACTA ACUST UNITED AC 2007; 175:661-70. [PMID: 17116754 PMCID: PMC2064601 DOI: 10.1083/jcb.200605057] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin lies at the interface between the complex physiology of the body and the external environment. This essential epidermal barrier, composed of cornified proteins encased in lipids, prevents both water loss and entry of infectious or toxic substances. We uncover that the transcription factor GATA-3 is required to establish the epidermal barrier and survive in the ex utero environment. Analysis of Gata-3 mutant transcriptional profiles at three critical developmental stages identifies a specific defect in lipid biosynthesis and a delay in differentiation. Genomic analysis identifies highly conserved GATA-3 binding sites bound in vivo by GATA-3 in the first intron of the lipid acyltransferase gene AGPAT5. Skin from both Gata-3-/- and previously characterized barrier-deficient Kruppel-like factor 4-/- newborns up-regulate antimicrobial peptides, effectors of innate immunity. Comparison of these animal models illustrates how impairment of the skin barrier by two genetically distinct mechanisms leads to innate immune responses, as observed in the common human skin disorders psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Cristina de Guzman Strong
- National Human Genome Research Institute and 2National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tan YF, Sun XY, Li FX, Tang S, Piao YS, Wang YL. Gene expression pattern and hormonal regulation of small proline-rich protein 2 family members in the female mouse reproductive system during the estrous cycle and pregnancy. ACTA ACUST UNITED AC 2006; 46:641-55. [PMID: 17169311 DOI: 10.1051/rnd:2006037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 07/07/2006] [Indexed: 01/15/2023]
Abstract
Small proline-rich proteins (SPRR) are known to construct the cornified cell envelope (CE) in the stratified squamous epithelial cell. Their functions in the simple epithelium such as the uterine epithelium are not clear hitherto. In the present study, the mRNA expression patterns of sprr2 family members in the mouse uterus and vagina during the estrous cycle and pregnancy as well as their regulation by steroids were investigated. Using semi-quantitative RT-PCR, it was revealed that the transcripts of sprr2b, 2e and 2g genes were up-regulated in the proestrous and estrous uteri, and sprr2d was up-regulated only in the estrous uterus. In the vagina, transcription of sprr2a, 2b, 2d, 2e and 2k genes were up-regulated at the metestrous stage. Northern blot analysis demonstrated that the overall expression of sprr2 was highly up-regulated in the estrous uterus and the metestrous vagina. During pregnancy, the sprr2 mRNA in the uterus was sharply repressed from day 3 postcoitus on, and began to be induced around labor time. In situ hybridization showed that the sprr2 transcripts were localized in uterine luminal and glandular epithelial cells as well as vaginal stratified epithelial cells. In ovariectomized mice, the expression of sprr2a, 2d, 2e and 2f genes in the uterus were induced by estrogen, and the effect of estrogen on sprr2d and 2e expression could be partly abolished by progesterone. The data indicate that the sprr2 genes have unique regulation patterns in different reproductive tissues under different physiological conditions, and the encoded proteins might play diverse functions in the female reproductive system.
Collapse
Affiliation(s)
- Yin-fei Tan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
32
|
Long HA, Boczonadi V, McInroy L, Goldberg M, Määttä A. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J Cell Sci 2006; 119:5147-59. [PMID: 17158917 DOI: 10.1242/jcs.03304] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial sheets requires maintenance of cell-cell junctions and co-ordination of the movement of the migrating front. We have investigated the role of keratin intermediate filaments and periplakin, a cytoskeletal linker protein, in the migration of simple epithelial cells. Scratch wounding induces bundling of keratins into a cable of tightly packed filaments adjacent to the free wound edge. Keratin re-organisation is preceded by a re-distribution of periplakin away from the free wound edge. Periplakin participates with dynamic changes in the keratin cytoskeleton via its C-terminal linker domain that co-localises with okadaic-acid-treated keratin granules. Stable expression of the periplakin C-terminal domain increases keratin bundling and Ser431 keratin phosphorylation at wound edge resulting in a delay in wound closure. Ablation of periplakin by siRNA inhibits keratin cable formation and impairs wound closure. Knockdown of keratin 8 with siRNA results in (1) a loss of desmoplakin localisation at cell borders, (2) a failure of MCF-7 epithelial sheets to migrate as a collective unit and (3) accelerated wound closure in vimentin-positive HeLa and Panc-1 cell lines. Thus, keratin 8 is required for the maintenance of epithelial integrity during migration and periplakin participates in the re-organisation of keratins in migrating cells.
Collapse
Affiliation(s)
- Heather A Long
- Centre for Stem Cell Research and Regenerative Medicine, School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
33
|
Spazierer D, Fuchs P, Reipert S, Fischer I, Schmuth M, Lassmann H, Wiche G. Epiplakin is dispensable for skin barrier function and for integrity of keratin network cytoarchitecture in simple and stratified epithelia. Mol Cell Biol 2006; 26:559-68. [PMID: 16382147 PMCID: PMC1346901 DOI: 10.1128/mcb.26.2.559-568.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epiplakin, a giant epithelial protein of >700 kDa, belongs to the plakin family of cytolinker proteins. It represents an atypical family member, however, as it consists entirely of plakin repeat domains but lacks any of the other domains commonly shared by plakins. Hence, its putative function as a cytolinker protein remains to be shown. To investigate epiplakin's biological role, we generated epiplakin-deficient mice by gene targeting in embryonic stem cells. Epiplakin-deficient mice were viable and fertile, without developing any discernible phenotype. Ultrastructurally, their epidermis revealed no differences compared to wild-type littermates, and cornified envelopes isolated from skin showed no alterations in shape or stability. Furthermore, neither embryonal formation nor later function of the epithelial barrier was affected. In primary cultures of epiplakin-deficient keratinocytes, the organization of actin filaments, microtubules, and keratin networks was found to be normal. Similarly, no alterations in keratin network organization were observed in simple epithelia of small intestine and liver or in primary hepatocytes. We conclude that, despite epiplakin's abundant and highly specific expression in stratified and simple epithelia, its absence in mice does not lead to severe skin dysfunctions, nor has it detectable consequences for keratin filament organization and cytoarchitecture of cells.
Collapse
Affiliation(s)
- Daniel Spazierer
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
34
|
Baden HP, Champliaud MF, Sundberg JP, Viel A. Targeted deletion of the sciellin gene resulted in normal development and maturation. Genesis 2005; 42:219-28. [PMID: 16028229 DOI: 10.1002/gene.20133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sciellin, together with other precursor proteins, was cross-linked by transglutaminase 1 to form the cornified envelope, an essential component of the physical barrier of the epidermis and stratified squamous epithelia. To more fully understand the function of sciellin in cornified envelope formation, we generated sciellin null mice. The mice appeared normal in their development and maturation and there were no structural features that distinguished them from littermate controls. Isolated cornified envelopes appeared normal in structure and were not more fragile to mechanical stress. There was no evidence of decreased barrier function or altered expression of other cornified envelope components. Transgenic mice expressing the repeat domain appeared to have a normal phenotype, like the null, and did not alter endogenous sciellin expression. We conclude that sciellin null mice had no structural anomalies and the transgenic mice did not act as a dominant-negative mutation.
Collapse
Affiliation(s)
- Howard P Baden
- Department of Dermatology, Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
35
|
Osada M, Park HL, Nagakawa Y, Yamashita K, Fomenkov A, Kim MS, Wu G, Nomoto S, Trink B, Sidransky D. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 2005; 25:6077-89. [PMID: 15988020 PMCID: PMC1168821 DOI: 10.1128/mcb.25.14.6077-6089.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p63 is a member of the p53 tumor suppressor gene family, which regulates downstream target gene expression by binding to sequence-specific response elements similar to those of p53. By using oligonucleotide expression microarray analysis and analyzing the promoters of p63-induced genes, we have identified novel p63-specific response elements (p63-REs) in the promoter regions of EVPL and SMARCD3. These p63-REs exhibit characteristic differences from the canonical p53-RE (RRRCWWGYYY) in both the core-binding element (CWWG) as well as the RRR and/or YYY stretches. Luciferase assays on mutagenized promoter constructs followed by electromobility shift analysis showed that p53 preferentially activates and binds to the RRRCATGYYY sequence, whereas p63 preferentially activates RRRCGTGYYY. Whereas EVPL protein is highly expressed in epithelial cells of the skin and pharynx in the p63+/+ mouse, it is undetectable in these tissues in the p63-/- mouse. Our results indicate that p63 can regulate expression of specific target genes such as those involved in skin, limb, and craniofacial development by preferentially activating distinct p63-specific response elements.
Collapse
Affiliation(s)
- Motonobu Osada
- Department of Otolaryngology, Division of Head and Neck Surgery, Johns Hopkins University School of Medicine, 818 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Dermatological diseases range from minor cosmetic problems to life-threatening conditions, as seen in some severe disorders of keratinization and cornification. These disorders are commonly due to abnormal epidermal differentiation processes, which result in disturbed barrier function of human skin. Elucidation of the cellular differentiation programs that regulate the formation and homeostasis of the epidermis is therefore of great importance for the understanding and therapy of these disorders. Much of the barrier function of human epidermis against the environment is provided by the cornified cell envelope (CE), which is assembled by transglutaminase (TGase)-mediated cross-linking of several structural proteins and lipids during the terminal stages of normal keratinocyte differentiation. The major constituents of the stratum corneum and the current knowledge on the formation of the stratum corneum will be briefly reviewed here. The discovery of mutations that underlie several human diseases caused by genetic defects in the protein or lipid components of the CE, and recent analyses of mouse mutants with defects in the structural components of the CE, catalyzing enzymes, and lipid processing, have highlighted their essential function in establishing the epidermal barrier. In addition, recent findings have provided evidence that a disturbed protease-antiprotease balance could cause faulty differentiation processes in the epidermis and hair follicle. The importance of regulated proteolysis in epithelia is well demonstrated by the recent identification of the SPINK5 serine proteinase inhibitor as the defective gene in Netherton syndrome, cathepsin C mutations in Papillon-Lefevre syndrome, cathepsin L deficiency infurless mice, targeted ablation of the serine protease Matriptase/MTSP1, targeted ablation of the aspartate protease cathepsin D, and the phenotype of targeted epidermal overexpression of stratum corneum chymotryptic enzyme in mice. Notably, our recent findings on the role of cystatin M/E and legumain as a functional dyad in skin and hair follicle cornification, a paradigm example of the regulatory functions exerted by epidermal proteases, will be discussed.
Collapse
Affiliation(s)
- Patrick L J M Zeeuwen
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Raymond K, Kreft M, Janssen H, Calafat J, Sonnenberg A. Keratinocytes display normal proliferation, survival and differentiation in conditional β4-integrin knockout mice. J Cell Sci 2005; 118:1045-60. [PMID: 15731010 DOI: 10.1242/jcs.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The α6β4 integrin is located at the basal surface of keratinocytes, in hemidesmosomal structures that mediate stable adhesion of epidermal cells to the underlying basement membrane component laminin-5. The absence of α6β4 integrin causes junctional epidermolysis bullosa, a severe blistering disease of the skin leading to perinatal death, confirming its essential role in mediating strong keratinocyte adhesion. Several studies have suggested that α6β4 integrin can also regulate signaling cascades that control cell proliferation, survival and migration through a mechanism independent of its adhesive function. We have generated a conditional knockout mouse strain, in which the gene encoding the β4 integrin subunit (Itgb4) was inactivated only in small stretches of the skin. These mice were viable and permitted an accurate analysis of the consequences of the loss of β4 on various biological processes by comparing β4-positive and -negative parts of the skin in the same animal. Despite the complete loss of hemidesmosomes in regions lacking α6β4 integrin, the distribution of a range of adhesion receptors and basement membrane proteins was unaltered. Moreover, loss of α6β4 did not affect squamous differentiation, proliferation or survival, except for areas in which keratinocytes had detached from the basement membrane. These in vivo observations were confirmed in vitro by using immortalized keratinocytes – derived from β4-subunit conditional knockout mice – from which the gene encoding β4 had been deleted by Cre-mediated recombination. Consistent with the established role of α6β4 in adhesion strengthening, its loss from cells was found to increase their motility. Our findings clearly demonstrate that, after birth, epidermal differentiation, proliferation and survival all proceed normally in the absence of α6β4, provided that cell adhesion is not compromised.
Collapse
Affiliation(s)
- Karine Raymond
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Jang SI, Kalinin A, Takahashi K, Marekov LN, Steinert PM. Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. J Cell Sci 2005; 118:781-93. [PMID: 15671067 DOI: 10.1242/jcs.01647] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epiplakin is a member of the plakin family with multiple copies of the plakin repeat domain (PRD). We studied the subcellular distribution and interactions of human epiplakin by immunostaining, overlay assays and RNAi knockdown. Epiplakin decorated the keratin intermediate filaments (IF) network and partially that of vimentin. In the binding assays, the repeat unit (PRD plus linker) showed strong binding and preferentially associated with assembled IF over keratin monomers. Epiplakin knockdown revealed disruption of IF networks in simple epithelial but not in epidermal cells. In rescue experiments, the repeat unit was necessary to prevent the collapse of IF networks in transient knockdown; however, it could only partially restore the keratin but not the vimentin IF network in stably knocked down HeLa cells. We suggest that epiplakin is a cytolinker involved in maintaining the integrity of IF networks in simple epithelial cells. Furthermore, we observed an increase of epiplakin expression in keratinocytes after the calcium switch, suggesting the involvement of epiplakin in the process of keratinocyte differentiation.
Collapse
Affiliation(s)
- Shyh-Ing Jang
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892-8023, USA
| | | | | | | | | |
Collapse
|
39
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
40
|
Aho S, Li K, Ryoo Y, McGee C, Ishida-Yamamoto A, Uitto J, Klement JF. Periplakin gene targeting reveals a constituent of the cornified cell envelope dispensable for normal mouse development. Mol Cell Biol 2004; 24:6410-8. [PMID: 15226441 PMCID: PMC434234 DOI: 10.1128/mcb.24.14.6410-6418.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the plakin family of proteins serve as epidermal cytolinkers and components of cell-cell and cell-matrix adhesion complexes, i.e., desmosomes and hemidesmosomes, respectively. Periplakin is a recently characterized member of this family. Human and mouse periplakin genomic loci are conserved, and the proteins are highly homologous, suggesting a role for periplakin in vertebrate physiology. In order to evaluate the functional role of periplakin, we generated periplakin null mice through targeted homologous recombination of mouse embryonic stem cells, followed by development of Ppl(-/-) mice. Mice homozygous for the targeted allele were born in the expected Mendelian frequency, developed normally, possessed grossly normal epidermis and hair, and were healthy and fertile. The epidermal barrier appeared to develop normally during fetal days E15.5 to E16.5, and the cornified envelope and desmosomes in the newborn mice were ultrastructurally normal. No compensatory increase in the expression of other epithelial proteins was detected in the neonatal mouse epidermis lacking periplakin. Consequently, the primary role of periplakin may not relate to the physiology of the cornified cell envelope in epidermal keratinocytes but may reside in the challenges, which normal laboratory mice do not encounter.
Collapse
Affiliation(s)
- Sirpa Aho
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
To survive the transition from an aqueous in utero to a terrestrial ex utero environment, mice and humans must construct an epidermal permeability barrier in utero. Terminally differentiated epidermal cells, lipids and tight junctions are all essential to achieve this barrier. Recent analyses of mouse mutants with defects in structural components of the terminally differentiated epidermal cell, catalyzing enzymes, lipid processing, transcriptional regulators and the intercellular junctions have highlighted their essential function in establishing the epidermal permeability barrier. Particularly interesting examples include modulation of the expression of transglutaminase 1 enzyme, the transcription factor Klf4 and the claudin tight junction proteins. However, careful analysis of the various mutant phenotypes during embryonic development, as neonates and either as adults or transplanted skin, has revealed much more about the redundancy and compensatory mechanisms of the system. Molecular analysis of the various mouse mutants has demonstrated common pathways to compensate for loss of the epidermal barrier.
Collapse
Affiliation(s)
- Julie Segre
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Building 49, Room 4A26, MSC 4442, Bethesda, MD 20892-4442, USA.
| |
Collapse
|
42
|
Jefferson JJ, Leung CL, Liem RKH. Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 2004; 5:542-53. [PMID: 15232572 DOI: 10.1038/nrm1425] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julius J Jefferson
- Department of Pathology, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York 10032, USA
| | | | | |
Collapse
|
43
|
Kalinin AE, Idler WW, Marekov LN, McPhie P, Bowers B, Steinert PM, Steven AC. Co-assembly of Envoplakin and Periplakin into Oligomers and Ca2+-dependent Vesicle Binding. J Biol Chem 2004; 279:22773-80. [PMID: 15033990 DOI: 10.1074/jbc.m313660200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plakin family members envoplakin and periplakin have been shown to be part of the cornified cell envelope in terminally differentiating stratified squamous epithelia. In the present study, purified recombinant human envoplakin and periplakin were used to investigate their properties and interactions. We found that envoplakin was insoluble at physiological conditions in vitro, and co-assembly with periplakin was required for its solubility. Envoplakin and periplakin formed soluble complexes with equimolar stoichiometry. Chemical cross-linking revealed that the major soluble form of all periplakin constructs and of envoplakin/periplakin rod domains was a dimer, although co-assembly of the full-length proteins resulted in formation of higher order oligomers. Electron microscopy of rotary-shadowed periplakin demonstrated thin flexible molecules with an average contour length of 88 nm for the rod-plus-tail fragment, and immunolabeling EM confirmed the molecule as a parallel, in-register, dimer. Both periplakin and envoplakin/periplakin oligomers were able to bind synthetic lipid vesicles whose composition mimicked the cytoplasmic side of the plasma membrane of eukaryotic cells. This binding was dependent on anionic phospholipids and Ca(2+). These findings raise the possibility that envoplakin and periplakin bind to the plasma membrane upon elevation of intracellular [Ca(2+)] in differentiating keratinocytes, where they serve as a scaffold for cornified cell envelope assembly.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology and Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Getsios S, Huen AC, Green KJ. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 2004; 5:271-81. [PMID: 15071552 DOI: 10.1038/nrm1356] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Spiro Getsios
- Department of Pathology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
45
|
Koster J, Borradori L, Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. Handb Exp Pharmacol 2004:243-280. [PMID: 20455096 DOI: 10.1007/978-3-540-68170-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the skin, basal epithelial cells constantly divide to renew the epidermis. The newly formed epithelial cells then differentiate in a process called keratinization, ultimately leading to the death of these cells and a pile-up of cell material containing vast amounts of keratins. The basal keratinocytes in skin are attached to their underlying basement membrane via specialized adhesion complexes termed hemidesmosomes (HDs). These complexes ascertain stable adhesion of the epidermis to the dermis, and mutations in components of these complexes often result in tissue fragility and blistering of the skin. In this review, we will describe the various hemidesmosomal proteins in detail as well as, briefly, the protein families to which they belong. Specifically, we will report the protein-protein interactions involved in the assembly of hemidesmosomes and their molecular organization. Some signaling pathways involving primarily the alpha6beta4 integrin will be discussed, since they appear to profoundly modulate the assembly and function of hemidesmosomes. Furthermore, the importance of these hemidesmosomal components for the maintenance of tissue homeostasis and their involvement in various clinical disorders will be emphasized. Finally, we will present a model for the assembly of HDs, based on our present knowledge.
Collapse
Affiliation(s)
- J Koster
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Spazierer D, Fuchs P, Pröll V, Janda L, Oehler S, Fischer I, Hauptmann R, Wiche G. Epiplakin gene analysis in mouse reveals a single exon encoding a 725-kDa protein with expression restricted to epithelial tissues. J Biol Chem 2003; 278:31657-66. [PMID: 12791695 DOI: 10.1074/jbc.m303055200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on cDNA cloning and sequencing, human epiplakin has been classified as a member of the plakin protein family of cytolinkers. We report here the characterization of the mouse epiplakin gene locus and the isolation of full-length mouse epiplakin cDNA using BAC vectors. We found that the protein is encoded by a single remarkably large exon (>20 kb) that consists of a series of 0.8-1.5-kb-long DNA repeats, eight of which are virtually identical. Consequently, mouse epiplakin contains 16 plakin repeat domains, three more than reported for the human protein and eight more than predicted for the mouse protein based on the contig characterized by the Mouse Genome Sequencing Consortium. Using antibodies raised to a highly conserved repeating epiplakin sequence domain, we show that the protein in cells is expressed in its full length (725 kDa), and we provide evidence that the size of human epiplakin previously may have been underestimated. In addition we show on transcript and protein levels that epiplakin is restricted to epithelial tissues and that its gene maps to mouse chromosome 15 (human chromosome 8). This study lays the groundwork for future genetic approaches aimed at defining the biological role of this unique protein.
Collapse
Affiliation(s)
- Daniel Spazierer
- Vienna Biocenter, Institute of Biochemistry and Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Park GT, Lim SE, Jang SI, Morasso MI. Suprabasin, a novel epidermal differentiation marker and potential cornified envelope precursor. J Biol Chem 2002; 277:45195-202. [PMID: 12228223 PMCID: PMC1283087 DOI: 10.1074/jbc.m205380200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The suprabasin gene is a novel gene expressed in mouse and human differentiating keratinocytes. We identified a partial cDNA encoding suprabasin using a suppression subtractive hybridization method between the proliferative basal and differentiating suprabasal populations of the mouse epidermis. A 3' gene-specific probe hybridized to transcripts of 0.7- and 2.2-kb pairs on Northern blots with specific detection in differentiated keratinocytes of stratified epithelia. The mouse gene was mapped to chromosome 7 by fluorescence in situ hybridization. This region is syntenic to human chromosome band 19q13.1, which contained the only region in the data bases with homology to the mouse suprabasin sequence. During embryonic mouse development, suprabasin mRNA was detected at day 15.5, coinciding with epidermal stratification. Suprabasin was detected in the suprabasal layers of the epithelia in the tongue, stomach, and epidermis. Differentiation of cultured primary epidermal keratinocytes with 0.12 mm Ca(2+) or 12-O-tetradecanoylphorbol-13-acetate treatment resulted in the induction of suprabasin. The 2.2-kb cDNA transcript encodes a protein of 72 kDa with a predicted isoelectric point of 6.85. The translated sequence has an amino-terminal domain, a central domain composed of repeats rich in glycine and alanine, and a carboxyl-terminal domain. The alternatively spliced 0.7-kb transcript encodes a smaller protein that shares the NH(2)- and COOH-terminal regions but lacks the repeat domain region. Cross-linking experiments indicate that suprabasin is a substrate for transglutaminase 2 and 3 activity. Altogether, these results indicate that the suprabasin protein potentially plays a role in the process of epidermal differentiation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Base Sequence
- Cell Differentiation/physiology
- Cells, Cultured
- Chromosomes, Human, Pair 7
- Culture Media, Serum-Free
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Epidermal Cells
- Epidermis/chemistry
- Epidermis/physiology
- GTP-Binding Proteins/metabolism
- Green Fluorescent Proteins
- Humans
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Keratinocytes/cytology
- Keratinocytes/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Molecular Sequence Data
- Protein Glutamine gamma Glutamyltransferase 2
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Transglutaminases/metabolism
- Tripartite Motif Proteins
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
| | | | - Shyh-Ing Jang
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I. Morasso
- From the Developmental Skin Biology Unit of the
- ¶ To whom correspondence should be addressed: Developmental Skin Biology Unit, Bldg. 50, Rm. 1525, NIAMS, National Institutes of Health, Bethesda, MD 20892. Tel.: 301-402-2888; Fax: 301-435-7910; E-mail:
| |
Collapse
|
48
|
Kazerounian S, Uitto J, Aho S. Unique role for the periplakin tail in intermediate filament association: specific binding to keratin 8 and vimentin. Exp Dermatol 2002; 11:428-38. [PMID: 12366696 DOI: 10.1034/j.1600-0625.2002.110506.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plectin, desmoplakin, and the 230-kDa bullous pemphigoid antigen (BPAG1), members of the plakin family of proteins, are multifunctional cytolinkers, connecting the cytoskeletal structures to the cell adhesion complexes. Envoplakin and periplakin are components of the cornified envelope, but less is known about their role in tissues other than the stratified epithelium. Our tissue-wide survey utilizing RT-PCR revealed that periplakin, like plectin and desmoplakin, has a wide tissue distribution, but envoplakin expression is limited to certain tissues only, and BPAG1 is clearly specific for epidermal keratinocytes. Plectin, desmoplakin and BPAG1 are known to bind to the intermediate filaments through their C-terminal domains. The short C-terminal domain of periplakin is composed only of the linker domain, a region highly homologous between the plakin proteins. Here we demonstrate, through the use of yeast two-hybrid assay, a specific interaction of the periplakin linker domain with keratin 8 and vimentin. Co-expression of each plakin linker domain with keratin 8 revealed that periplakin and BPAG1 linkers co-localize with keratin signals in HaCaT cells, plectin and desmoplakin linkers were detected both in the nucleus and in cytoplasm together with the overexpressed keratin 8, while envoplakin linker localized independently into the nucleus. These results suggest that, in spite of its high homology and structural similarity with envoplakin, periplakin is functionally closer to the well-characterized plakin proteins plectin and desmoplakin, and thus may function tissue-wide as a scaffolding protein in intermediate filament assembly.
Collapse
Affiliation(s)
- Shideh Kazerounian
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
49
|
Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 2002; 24:789-800. [PMID: 12210515 DOI: 10.1002/bies.10144] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Terminally differentiating stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery termed the cornified cell envelope (CE). It is composed of numerous structural proteins that become cross-linked by several transglutaminase enzymes into an insoluble macromolecular assembly. Several proteins are involved in the initial stages of CE assembly, but only certain proteins from a choice of more than 20 different proteins are used in the final stages of CE reinforcement, apparently to meet tissue-specific requirements. In addition, a variable selection of proteins may be upregulated in response to genetic defects of one of the CE proteins or tissue injury, in an effort to maintain an effective barrier. Additionally, in the epidermis and hair fiber cuticle, a layer of lipids is covalently attached to the proteins, which provides essential water barrier properties. Here we describe our current understanding of CE structure, a possible mechanism of its assembly, and various disorders that cause a defective barrier.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
50
|
Abstract
By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.
Collapse
Affiliation(s)
- Conrad L Leung
- Dept of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|