1
|
Mickus R, Raškevičius V, Sarapinienė I, Mikalayeva V, Prekeris R, Skeberdis VA. Phosphorylation-dependent allosteric regulation of Cx43 gap junction inhibitor potency. Biomed Pharmacother 2024; 174:116550. [PMID: 38593702 DOI: 10.1016/j.biopha.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca2+, Mg2+, and phosphorylation. Chemical modulators of GJIC are being used in cases of various intercellular communication-dependent diseases. In this study, we used molecular docking, dual whole-cell patch-clamp, and Western blotting to investigate the impact of connexin phosphorylation on GJ chemical gating by α-pinene and other GJ inhibitors (octanol, carbenoxolone, mefloquine, intracellular pH, glycyrrhetinic acid, and sevoflurane) in HeLa cells expressing exogenous Cx43 (full length and truncated at amino acid 258) and other connexins typical of heart and/or nervous system (Cx36, Cx40, Cx45, and Cx47), and in cells expressing endogenous Cx43 (Novikoff and U-87). We found that Ca2+-regulated kinases, such as Ca2+/calmodulin-dependent kinase II, atypical protein kinase C, cyclin-dependent kinase, and Pyk2 kinase may allosterically modulate the potency of α-pinene through phosphorylation of Cx43 C-terminus. The identified new phenomenon was Cx isoform-, inhibitor-, and cell type-dependent. Overall, these results suggest that compounds, the potency of which depends on receptor phosphorylation, might be of particular interest in developing targeted therapies for diseases accompanied by high kinase activity, such as cardiac arrhythmias, epilepsy, stroke, essential tremor, inflammation, and cancer.
Collapse
Affiliation(s)
- Rokas Mickus
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Vytautas Raškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Ieva Sarapinienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015, USA
| | | |
Collapse
|
2
|
Cobbaut M, Parker PJ, McDonald NQ. Into the fold: advances in understanding aPKC membrane dynamics. Biochem J 2023; 480:2037-2044. [PMID: 38100320 PMCID: PMC10754278 DOI: 10.1042/bcj20230390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Atypical protein kinase Cs (aPKCs) are part of the PKC family of protein kinases and are atypical because they don't respond to the canonical PKC activators diacylglycerol (DAG) and Ca2+. They are central to the organization of polarized cells and are deregulated in several cancers. aPKC recruitment to the plasma membrane compartment is crucial to their encounter with substrates associated with polarizing functions. However, in contrast with other PKCs, the mechanism by which atypical PKCs are recruited there has remained elusive until recently. Here, we bring aPKC into the fold, summarizing recent reports on the direct recruitment of aPKC to membranes, providing insight into seemingly discrepant findings and integrating them with existing literature.
Collapse
Affiliation(s)
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, NW1 1AT London, U.K
- School of Cancer and Pharmaceutical Sciences, King's College London, London, U.K
| | - Neil Q. McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, NW1 1AT London, U.K
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, U.K
| |
Collapse
|
3
|
Cobbaut M, McDonald NQ, Parker PJ. Control of atypical PKCι membrane dissociation by tyrosine phosphorylation within a PB1-C1 interdomain interface. J Biol Chem 2023; 299:104847. [PMID: 37211093 PMCID: PMC10333572 DOI: 10.1016/j.jbc.2023.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial β-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK.
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2020; 67:109497. [PMID: 31830556 PMCID: PMC6957738 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
5
|
Experiments with Snails Add to Our Knowledge about the Role of aPKC Subfamily Kinases in Learning. Int J Mol Sci 2019; 20:ijms20092117. [PMID: 31035721 PMCID: PMC6539039 DOI: 10.3390/ijms20092117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Protein kinase Mζ is considered important for memory formation and maintenance in different species, including invertebrates. PKMζ participates in multiple molecular pathways in neurons, regulating translation initiation rate, AMPA receptors turnover, synaptic scaffolding assembly, and other processes. Here, for the first time, we established the sequence of mRNA encoding PKMζ homolog in land snail Helix lucorum. We annotated important features of this mRNA: domains, putative capping sites, translation starts, and splicing sites. We discovered that this mRNA has at least two isoforms, and one of them lacks sequence encoding C1 domain. C1 deletion may be unique for snail because it has not been previously found in other species. We performed behavioral experiments with snails, measured expression levels of identified isoforms, and confirmed that their expression correlates with one type of learning.
Collapse
|
6
|
Martín MJ, Gigola G, Zwenger A, Carriquiriborde M, Gentil F, Gentili C. Potential therapeutic targets for growth arrest of colorectal cancer cells exposed to PTHrP. Mol Cell Endocrinol 2018; 478:32-44. [PMID: 30009852 DOI: 10.1016/j.mce.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Although PTHrP is implicated in several cancers, its role in chemoresistance is not fully elucidated. We found that in CRC cells, PTHrP exerts proliferative and protective effects and induces cell migration. The aim of this work was to further study the effects of PTHrP in CRC cells. Herein we evidenced, for the first time, that PTHrP induces resistance to CPT-11 in Caco-2 and HCT116 cells; although both cell lines responded to the drug through different molecular mechanisms, the chemoresistance by PTHrP in these models is mediated through ERK, which in turn is activated by PCK, Src and Akt. Moreover, continue administration of PTHrP in nude mice xenografts increased the protein levels of this MAPK and of other markers related to tumorigenic events. The understanding of the molecular mechanisms leading to ERK 1/2 activation and the study of ERK targets may facilitate the development of new therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- María Julia Martín
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Zwenger
- Dept. de Oncología, Hospital Provincial de Neuquén, Neuquén, Argentina
| | | | - Florencia Gentil
- Fac. de Cs. Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia Gentili
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Drummond ML, Li M, Tarapore E, Nguyen TTL, Barouni BJ, Cruz S, Tan KC, Oro AE, Atwood SX. Actin polymerization controls cilia-mediated signaling. J Cell Biol 2018; 217:3255-3266. [PMID: 29945904 PMCID: PMC6122990 DOI: 10.1083/jcb.201703196] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 03/29/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023] Open
Abstract
Actin polymerization is important to generate primary cilia. Drummond et al. show that upstream actin regulators are necessary for this process by controlling aPKC and Src kinase activity to promote Hedgehog signaling and restrict primary cilia. Primary cilia are polarized organelles that allow detection of extracellular signals such as Hedgehog (Hh). How the cytoskeleton supporting the cilium generates and maintains a structure that finely tunes cellular response remains unclear. Here, we find that regulation of actin polymerization controls primary cilia and Hh signaling. Disrupting actin polymerization, or knockdown of N-WASp/Arp3, increases ciliation frequency, axoneme length, and Hh signaling. Cdc42, a potent actin regulator, recruits both atypical protein pinase C iota/lambda (aPKC) and Missing-in-Metastasis (MIM) to the basal body to maintain actin polymerization and restrict axoneme length. Transcriptome analysis implicates the Src pathway as a major aPKC effector. aPKC promotes whereas MIM antagonizes Src activity to maintain proper levels of primary cilia, actin polymerization, and Hh signaling. Hh pathway activation requires Smoothened-, Gli-, and Gli1-specific activation by aPKC. Surprisingly, longer axonemes can amplify Hh signaling, except when aPKC is disrupted, reinforcing the importance of the Cdc42–aPKC–Gli axis in actin-dependent regulation of primary cilia signaling.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Mischa Li
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Eric Tarapore
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Baina J Barouni
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Shaun Cruz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Kevin C Tan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA
| | - Anthony E Oro
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA .,Department of Dermatology, University of California, Irvine, Irvine, CA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA
| |
Collapse
|
8
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
9
|
Matsuoka H, Inoue M. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol 2015; 309:C251-63. [DOI: 10.1152/ajpcell.00354.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels produce background K+ currents. We elucidated that TASK1 channels in rat adrenal medullary cells and PC12 cells are internalized in a clathrin-dependent manner in response to nerve growth factor (NGF). Here, the molecular mechanism for this internalization in PC12 cells was explored. The combination of enzyme inhibitors with tropomyosin receptor kinase A mutants revealed that the internalization was mediated by both phospholipase C and phosphatidylinositol 3-kinase pathways that converge on protein kinase C with the consequent activation of Src, a nonreceptor tyrosine kinase. The NGF-induced endocytosis of TASK1 channels did not occur in the presence of the Src inhibitor or with the expression of a kinase-dead Src mutant. Additionally, NGF induced a transient colocalization of Src with the TASK1 channel, but not the TASK1 mutant, in which tyrosine at 370 was replaced with phenylalanine. This TASK1 mutant showed no increase in tyrosine phosphorylation and markedly diminished internalization in response to NGF. We concluded that NGF induces endocytosis of TASK1 channels via tyrosine phosphorylation in its carboxyl terminus.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
10
|
Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD, Errasti AE, Gibbs D, Berens ME, Loftus JC, Hulme C, Yang W, Lu Z, Aldape K, Sanai N, Rothlin CV, Ghosh S. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Sci Signal 2014; 7:ra75. [PMID: 25118327 PMCID: PMC4486020 DOI: 10.1126/scisignal.2005196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grade IV glioblastoma is characterized by increased kinase activity of epidermal growth factor receptor (EGFR); however, EGFR kinase inhibitors have failed to improve survival in individuals with this cancer because resistance to these drugs often develops. We showed that tumor necrosis factor-α (TNFα) produced in the glioblastoma microenvironment activated atypical protein kinase C (aPKC), thereby producing resistance to EGFR kinase inhibitors. Additionally, we identified that aPKC was required both for paracrine TNFα-dependent activation of the transcription factor nuclear factor κB (NF-κB) and for tumor cell-intrinsic receptor tyrosine kinase signaling. Targeting aPKC decreased tumor growth in mouse models of glioblastoma, including models of EGFR kinase inhibitor-resistant glioblastoma. Furthermore, aPKC abundance and activity were increased in human glioblastoma tumor cells, and high aPKC abundance correlated with poor prognosis. Thus, targeting aPKC might provide an improved molecular approach for glioblastoma therapy.
Collapse
Affiliation(s)
- Yael Kusne
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Anthony S. Perry
- Department of Pathology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | | | - Edward K. Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Andrea E. Errasti
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael E. Berens
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | | | | | - Weiwei Yang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nader Sanai
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sourav Ghosh
- Neuroscience Graduate Program, Arizona State University, Phoenix, AZ 85287, USA
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
11
|
Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 2014; 35:8425-38. [DOI: 10.1007/s13277-014-2262-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 02/03/2023] Open
|
12
|
Tisdale EJ, Shisheva A, Artalejo CR. Overexpression of atypical protein kinase C in HeLa cells facilitates macropinocytosis via Src activation. Cell Signal 2014; 26:1235-42. [PMID: 24582589 PMCID: PMC4149413 DOI: 10.1016/j.cellsig.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/08/2023]
Abstract
Atypical protein kinase C (aPKC) is the first recognized kinase oncogene. However, the specific contribution of aPKC to cancer progression is unclear. The pseudosubstrate domain of aPKC is different from the other PKC family members, and therefore a synthetic peptide corresponding to the aPKC pseudosubstrate (aPKC-PS) sequence, which specifically blocks aPKC kinase activity, is a valuable tool to assess the role of aPKC in various cellular processes. Here, we learned that HeLa cells incubated with membrane permeable aPKC-PS peptide displayed dilated heterogeneous vesicles labeled with peptide that were subsequently identified as macropinosomes. A quantitative membrane binding assay revealed that aPKC-PS peptide stimulated aPKC recruitment to membranes and activated Src. Similarly, aPKC overexpression in transfected HeLa cells activated Src and induced macropinosome formation. Src-aPKC interaction was essential; substitution of the proline residues in aPKC that associate with the Src-SH3 binding domain rendered the mutant kinase unable to induce macropinocytosis in transfected cells. We propose that aPKC overexpression is a contributing factor to cell transformation by interacting with and consequently promoting Src activation and constitutive macropinocytosis, which increases uptake of extracellular factors, required for altered cell growth and accelerated cell migration.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA.
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Ave., 5374 Scott Hall, Detroit, MI 48201, USA
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Linch M, Sanz-Garcia M, Rosse C, Riou P, Peel N, Madsen CD, Sahai E, Downward J, Khwaja A, Dillon C, Roffey J, Cameron AJ, Parker PJ. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis 2014; 35:396-406. [PMID: 24072773 PMCID: PMC3908745 DOI: 10.1093/carcin/bgt313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/07/2013] [Accepted: 08/24/2013] [Indexed: 12/20/2022] Open
Abstract
Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.
Collapse
Affiliation(s)
- Mark Linch
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Sarcoma Unit, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Marta Sanz-Garcia
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Carine Rosse
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Philippe Riou
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Nick Peel
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | | | | | - Julian Downward
- Department of Signal Transduction Laboratories, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Asim Khwaja
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK and
| | - Jon Roffey
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK and
| | - Angus J.M. Cameron
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Peter J. Parker
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Division of Cancer Studies, King’s College London, London SE1 1UL, UK
| |
Collapse
|
14
|
Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 2013; 6:638-48. [PMID: 24466366 DOI: 10.1593/tlo.13640] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/25/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanometer-sized lipid vesicles released ubiquitously by cells, which have been shown to have a normal physiological role, as well as influence the tumor microenvironment and aid metastasis. Recent studies highlight the ability of exosomes to convey tumor-suppressive and oncogenic mRNAs, microRNAs, and proteins to a receiving cell, subsequently activating downstream signaling pathways and influencing cellular phenotype. Here, we show that radiation increases the abundance of exosomes released by glioblastoma cells and normal astrocytes. Exosomes derived from irradiated cells enhanced the migration of recipient cells, and their molecular profiling revealed an abundance of molecules related to signaling pathways important for cell migration. In particular, connective tissue growth factor (CTGF) mRNA and insulin-like growth factor binding protein 2 (IGFBP2) protein levels were elevated, and coculture of nonirradiated cells with exosomes isolated from irradiated cells increased CTGF protein expression in the recipient cells. Additionally, these exosomes enhanced the activation of neurotrophic tyrosine kinase receptor type 1 (TrkA), focal adhesion kinase, Paxillin, and proto-oncogene tyrosine-protein kinase Src (Src) in recipient cells, molecules involved in cell migration. Collectively, our data suggest that radiation influences exosome abundance, specifically alters their molecular composition, and on uptake, promotes a migratory phenotype.
Collapse
|
15
|
Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD, Grady WM. NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 2013; 9:e1003552. [PMID: 23874207 PMCID: PMC3708790 DOI: 10.1371/journal.pgen.1003552] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/23/2013] [Indexed: 12/03/2022] Open
Abstract
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3. NTRK3 is a neurotrophin receptor and appears to be a dependence receptor in certain tissues. NTRK3 has been previously shown to be an oncogene in breast cancer and possibly hepatocellular carcinoma. Through a genome-wide methylation screen, we unexpectedly found that NTRK3 is commonly methylated in colorectal cancers but not in normal colon samples, which led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. We now demonstrate that NTRK3 is frequently methylated in colorectal adenomas and cancers. Induced NTRK3 expression in the absence of its ligand, NT-3, causes apoptosis and suppresses in vitro anchorage-independent colony formation and in vivo tumor growth. Reintroduction of NT-3 releases colon cancer cells from NTRK3-mediated apoptosis, which is consistent with NTRK3 being a dependence receptor in the colon. Finally, somatic mutations of NTRK3 have been observed in primary human colorectal cancer. We provide evidence that a subset of these mutations inactivate tumor suppressor activities of NTRK3. These findings suggest that NTRK3 is a conditional tumor suppressor gene in the colon that is inactivated by both genetic and epigenetic mechanisms and whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.
Collapse
Affiliation(s)
- Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew M. Kaz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Research and Development Service, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Samornmas Kanngurn
- Tumor Biology Research Unit and Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Piri Welsch
- Division of Medical Genetics, University of Washington Medical School, Seattle, Washington, United States of America
| | - Shelli M. Morris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - James D. Lutterbaugh
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio, United States of America
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Geetha T, Zheng C, Unroe B, Sycheva M, Kluess H, Babu JR. Polyubiquitination of the neurotrophin receptor p75 directs neuronal cell survival. Biochem Biophys Res Commun 2012; 421:286-90. [PMID: 22503986 DOI: 10.1016/j.bbrc.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023]
Abstract
Specific binding of nerve growth factor (NGF) to p75 neurotrophin receptor (p75(NTR)) leads to p75(NTR) polyubiquitination and its subsequent interaction with TRAF6 resulting in neuronal cell survival. However, when the binding of NGF to p75(NTR) was blocked with p75 antiserum, p75(NTR) polyubiquitination and neuronal cell survival were impaired. Results showed that tyrosine phosphorylation of p75(NTR) increased the polyubiquitination of p75(NTR) and contributed to the observed apparent neuroprotective effects. Similar to p75(NTR) polyubiquitination, interaction of TRAF6 with p75(NTR) was NGF/tyrosine phosphorylation dependent suggesting that TRAF6 might function as an E3 ubiquitin ligase. In sum, the results show that specific binding of NGF to p75(NTR) mediates neuronal cell survival.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
17
|
Shen J, Xu L, Owonikoko TK, Sun SY, Khuri FR, Curran WJ, Deng X. NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCι/FAK loop. Cancer Lett 2011; 318:106-13. [PMID: 22178655 DOI: 10.1016/j.canlet.2011.12.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Cigarette smoking, either active or passive, is the most important risk factor in the development of human lung cancer. Mounting evidence indicates that cigarette smoke constituents not only contribute to tumorigenesis but also may increase the spread of cancer in the body. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen. NNK, an important component in cigarette smoke, may also promote tumor metastasis by regulating cell motility. Here we found that NNK can induce activation of a functionally interdependent protein kinase cascade, including c-Src, PKCι and FAK, in association with increased migration and invasion of human lung cancer cells. c-Src, PKCι and FAK are extensively co-localized in the cytoplasm. Treatment of cells with α(7) nAChR specific inhibitor α-bungarotoxin (α-BTX) blocks NNK-stimulated activation of c-Src, PKCι and FAK and suppresses cell migration and invasion. Intriguingly, NNK enhances c-Src/PKCι and PKCι/FAK bindings, indicating a potential mechanism by which these kinases activate each other. Specific disruption of c-Src, PKCι or FAK expression by RNA interference significantly reduces NNK-induced cell migration and invasion. These findings suggest that NNK-induced migration and invasion may occur in a mechanism through activation of a c-Src/PKCι/FAK loop, which can contribute to metastasis and/or development of human lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA 30322, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X, Chen T. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. ACTA ACUST UNITED AC 2011; 208:2099-112. [PMID: 21911421 PMCID: PMC3182058 DOI: 10.1084/jem.20102667] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In mouse macrophages and dendritic cells, the CHIP E3 ubiquitin ligase is needed for transduction of signals initiated by TLR4 and TLR9 stimulation. The carboxyl terminus of constitutive heat shock cognate 70 (HSC70)–interacting protein (CHIP, also known as Stub1) is a U box–containing E3 ubiquitin ligase that is important for protein quality control. The role of CHIP in innate immunity is not known. Here, we report that CHIP knockdown inhibits Toll-like receptor (TLR) 4– and TLR9-driven signaling, but not TLR3-driven signaling; proinflammatory cytokine and type 1 interferon (IFN) production; and maturation of antigen-presenting cells, including macrophages and dendritic cells. We demonstrate that CHIP can recruit the tyrosine kinase Src and atypical protein kinase C ζ (PKCζ) to the TLR complex, thereby leading to activation of IL-1 receptor–associated kinase 1, TANK-binding kinase 1, and IFN regulatory factors 3 and 7. CHIP acts as an E3 ligase for Src and PKCζ during TLR signaling. CHIP-mediated enhancement of TLR signaling is inhibited by IFNAR deficiency or expression of ubiquitination resistant mutant forms of Src or PKCζ. These findings suggest that CHIP facilitates the formation of a TLR signaling complex by recruiting, ubiquitinating, and activating Src and PKCζ.
Collapse
Affiliation(s)
- Mingjin Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai200433, China
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factor system plays multiple roles in the function of the nervous system during development and postnatal physiology. In the developing nervous system, neurite outgrowth could be regulated by both canonical and alternative NF-kappaB signaling pathways. The degree and site of NF-kappaB activation could promote or inhibit neuronal survival in a complex, signal and subunit-dependent manner. The significance and mechanistic basis of some of NF-kappaB activity in neurons have remained controversial. We discuss our current understanding and recent findings with regard to the roles of NF-kappaB in the neurite outgrowth and neuronal survival, and how NF-kappaB activation is associated with the pathophysiology of ischemic/ traumatic injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University ofSingapore, 8 Medical Drive, Singapore 117597
| | | |
Collapse
|
21
|
Li L, Zhou Y, Wang C, Zhao YL, Zhang ZG, Fan D, Cui XB, Wu LL. Src tyrosine kinase regulates angiotensin II-induced protein kinase Czeta activation and proliferation in vascular smooth muscle cells. Peptides 2010; 31:1159-64. [PMID: 20307614 DOI: 10.1016/j.peptides.2010.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/25/2022]
Abstract
Protein kinase Czeta (PKCzeta) isoform plays a critical role in angiotensin II (AngII)-elicited extracellular signal-regulated kinase 1/2 (ERK1/2) activation and proliferation in vascular smooth muscle cells (VSMCs). However, the exact signal transduction mechanism by which AngII activates PKCzeta has not been clarified. In this study, we investigated the role of Src in PKCzeta activation and VSMCs proliferation induced by AngII. AngII-induced rapid activation of PKCzeta, which was associated with its phosphorylation and nuclear translocation. AngII not only induced Src activation but also promoted the physical association between Src and PKCzeta, which was abolished by Src inhibition with PP2. Src inhibition also abrogated AngII-stimulated PKCzeta activation, ERK1/2 phosphorylation and VSMCs proliferation. In conclusion, Src kinase plays an important role in AngII-elicited PKCzeta activation and the subsequent downstream signaling including ERK1/2 activation and VSMCs proliferation.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Valkova C, Mertens C, Weisheit S, Imhof D, Liebmann C. Activation by Tyrosine Phosphorylation as a Prerequisite for Protein Kinase Cζ to Mediate Epidermal Growth Factor Receptor Signaling to ERK. Mol Cancer Res 2010; 8:783-97. [DOI: 10.1158/1541-7786.mcr-09-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Farese RV, Sajan MP. Metabolic functions of atypical protein kinase C: "good" and "bad" as defined by nutritional status. Am J Physiol Endocrinol Metab 2010; 298:E385-94. [PMID: 19996389 PMCID: PMC3774273 DOI: 10.1152/ajpendo.00608.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atypical protein kinase C (aPKC) isoforms mediate insulin effects on glucose transport in muscle and adipose tissues and lipid synthesis in liver and support other metabolic processes, expression of enzymes needed for islet insulin secretion and hepatic glucose production/release, CNS appetite suppression, and inflammatory responses. In muscle, selective aPKC deficiency impairs glucose uptake and produces insulin resistance and hyperinsulinemia, which, by activating hepatic aPKC, provokes inordinate increases in lipid synthesis and produces typical "metabolic syndrome" features. In contrast, hepatic aPKC deficiency diminishes lipid synthesis and protects against metabolic syndrome features. Unfortunately, aPKC is deficient in muscle but paradoxically conserved in liver in obesity and type 2 diabetes mellitus; this combination is particularly problematic because it promotes lipid and carbohydrate abnormalities. Accordingly, metabolic effects of aPKCs can be "good" or "bad," depending upon nutritional status; thus, muscle glucose uptake, islet insulin secretion, hepatic glucose and lipid production/release, and adipose fat synthesis/storage would be important for survival during periods of limited food availability and therefore be "good." However, during times of food surfeit, excessive activation of hepatic aPKC, whether caused by overnutrition or impairments in extrahepatic effects of insulin, would lead to inordinate increases in hepatic lipid synthesis and metabolic syndrome features and therefore be "bad." In keeping with these ideas, the inhibition of hepatic aPKC markedly ameliorates lipid and carbohydrate abnormalities in experimental models of obesity and type 2 diabetes. We postulate that a similar approach may be useful for treating humans.
Collapse
Affiliation(s)
- Robert V Farese
- James A. Haley Veteran's Administration Medical Center, Tampa, FL 33612, USA.
| | | |
Collapse
|
24
|
Rodriguez EM, Dunham EE, Martin GS. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells. J Cell Physiol 2009; 221:171-82. [PMID: 19492416 DOI: 10.1002/jcp.21841] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix.
Collapse
Affiliation(s)
- Elena M Rodriguez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
25
|
Tso PH, Morris CJ, Yung LY, Ip NY, Wong YH. Multiple Gi Proteins Participate in Nerve Growth Factor-Induced Activation of c-Jun N-terminal Kinases in PC12 Cells. Neurochem Res 2008; 34:1101-12. [DOI: 10.1007/s11064-008-9880-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2008] [Indexed: 01/21/2023]
|
26
|
Abstract
Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
27
|
Yung LY, Tso PH, Wu EH, Yu JC, Ip NY, Wong YH. Nerve growth factor-induced stimulation of p38 mitogen-activated protein kinase in PC12 cells is partially mediated via Gi/o proteins. Cell Signal 2008; 20:1538-44. [DOI: 10.1016/j.cellsig.2008.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/21/2022]
|
28
|
Mori T, Inamori K, Inoue Y, Han X, Yamanouchi G, Niidome T, Katayama Y. Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging. Anal Biochem 2008; 375:223-31. [DOI: 10.1016/j.ab.2007.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 12/14/2022]
|
29
|
Condello S, Caccamo D, Currò M, Ferlazzo N, Parisi G, Ientile R. Transglutaminase 2 and NF-kappaB interplay during NGF-induced differentiation of neuroblastoma cells. Brain Res 2008; 1207:1-8. [PMID: 18374307 DOI: 10.1016/j.brainres.2008.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 02/06/2008] [Accepted: 02/13/2008] [Indexed: 11/27/2022]
Abstract
NGF treatment of neuroblastoma cells stimulates outgrowth of neurite processes associated with the expression of TrkA receptor and several differentiation markers. In this study, a 6 DIV exposure to NGF (50 ng/ml) increased immunostaining for alpha-tubulin, and expression of both alpha-tubulin and protein kinase C in the neuroblastoma cell line Neuro2a. Further, up-regulation of transglutaminase 1 and transglutaminase 2 expression, and reduction of transglutaminase 3 levels, were also observed in NGF-treated cells in comparison to untreated cells. Moreover, when Neuro2a cells were treated with the specific NF-kappaB inhibitor SN-50, the strong reduction of NF-kappaB activation was concomitant with a significant decrease of transglutaminase 2 expression, suggesting that NGF-evoked transglutaminase 2 induction could be related to NF-kappaB activation. To characterize the possible transglutaminase 2/NF-kappaB interplay, NGF treatment was carried out in Neuro2a cells which already over-expressed transglutaminase 2 after retinoic acid treatment. An additive effect of NGF was observed on the retinoic acid-induced transglutaminase 2 expression and enzyme activity, and NF-kappaB activation. However, a cystamine-mediated significant inhibition of transglutaminase activity (70%) was accompanied by a drastically reduced NF-kappaB activation only in cells exposed to NGF following retinoic acid treatment. We hypothesize that NF-kappaB activation was dependent on the transamidating activity related to high levels of TG2, and NGF enhanced NF-kappaB activation by a different, synergistically acting, pathway. These data suggest that the combined use of NGF and retinoic acid, or mimicking drugs, may provide the basics for the development of novel strategies in the therapeutic management of neuroblastomas.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Policlinico Universitario, Via Consolare Valeria, 98125 Messina, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Mattson MP, Wan R. Neurotrophic factors in autonomic nervous system plasticity and dysfunction. Neuromolecular Med 2008; 10:157-68. [PMID: 18172785 DOI: 10.1007/s12017-007-8021-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/20/2007] [Indexed: 01/26/2023]
Abstract
During development, neurotrophic factors are known to play important roles in regulating the survival of neurons in the autonomic nervous system (ANS) and the formation of their synaptic connectivity with their peripheral targets in the cardiovascular, digestive, and other organ systems. Emerging findings suggest that neurotrophic factors may also affect the functionality of the ANS during adult life and may, in part, mediate the effects of environmental factors such as exercise and dietary energy intake on ANS neurons and target cells. In this article, we describe the evidence that ANS neurons express receptors for multiple neurotrophic factors, and data suggesting that activation of those receptors can modify plasticity in the ANS. Neurotrophic factors that may regulate ANS function include brain-derived neurotrophic factor, nerve growth factor, insulin-like growth factors, and ciliary neurotrophic factor. The possibility that perturbed neurotrophic factor signaling is involved in the pathogenesis of ANS dysfunction in some neurological disorders is considered, together with implications for neurotrophic factor-based therapeutic interventions.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD. USA.
| | | |
Collapse
|
31
|
Han X, Shigaki S, Yamaji T, Yamanouchi G, Mori T, Niidome T, Katayama Y. A quantitative peptide array for evaluation of protein kinase activity. Anal Biochem 2008; 372:106-15. [DOI: 10.1016/j.ab.2007.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/16/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
|
32
|
Abstract
Biliverdin reductase (BVR) was characterized some 25 years ago as a unique dual-cofactor/pH-dependent enzyme that catalyzes the reduction of biliverdin-IXa. Our knowledge of functions of BVR has increased enormously in recent years. hBVR functions in the IR/IGF-1-controlled regulation of the MAPK and PI3K cascades that are linked by the PKC enzymes. The first of the two culminates in the activation of transcription factors for oxidative stress-responsive genes, including ho-1, where BVR functions as both a bZip (basic leucine zipper) transcription factor and a kinase. The second pathway amplifies the insulin/growth-factor signal for protein/DNA synthesis and glucose transport downstream of PI3K. hBVR is a transactivator of PKC-betaII, and thus an integral component of the "activation loop" linking MAPK, PKC-betaII, and PI3K to insulin/growth-factor signaling. The emergence of biliverdin and bilirubin as a newly defined category of modulators of cell signaling and kinase activity further underscores the critical input of hBVR in the response of intracellular pathways into the external environment. Structural features of BVR and recent findings relevant to its function in cell-signaling pathways are reviewed here and are intended to complement a recent commentary on the role of BVR in linking heme metabolism and cell signaling.
Collapse
Affiliation(s)
- Mahin D Maines
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| |
Collapse
|
33
|
Lerner-Marmarosh N, Miralem T, Gibbs PEM, Maines MD. Regulation of TNF-alpha-activated PKC-zeta signaling by the human biliverdin reductase: identification of activating and inhibitory domains of the reductase. FASEB J 2007; 21:3949-62. [PMID: 17639074 DOI: 10.1096/fj.07-8544com] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human biliverdin reductase (hBVR) is a dual function enzyme: a catalyst for bilirubin formation and a S/T/Y kinase that shares activators with protein kinase C (PKC) -zeta, including cytokines, insulin, and reactive oxygen species (ROS). Presently, we show that hBVR increases PKC-zeta autophosphorylation, stimulation by TNF-alpha, as well as cytokine stimulation of NF-kappaB DNA binding and promoter activity. S149 in hBVR S/T kinase domain and S230 in YLS230F in hBVR's docking site for the SH2 domain of signaling proteins are phosphorylation targets of PKC-zeta. Two hBVR-based peptides, KRNRYLS230F (#1) and KKRILHC281 (#2), but not their S-->A or C-->A derivatives, respectively, blocked PKC-zeta stimulation by TNF-alpha and its membrane translocation. The C-terminal-based peptide KYCCSRK296 (#3), enhanced PKC-zeta stimulation by TNF-alpha; for this, Lys296 was essential. In metabolically 32P-labeled HEK293 cells transfected with hBVR or PKC-zeta, TNF-alpha increased hBVR phosphorylation. TNF-alpha did not stimulate PKC-zeta in cells infected with small interfering RNA for hBVR or transfected with hBVR with a point mutation in the nucleotide-binding loop (G17), S149, or S230; this was similar to the response of "kinase-dead" PKC-zeta(K281R). We suggest peptide #1 blocks PKC-zeta-docking site interaction, peptide #2 disrupts function of the PKC-zeta C1 domain, and peptide #3 alters ATP presentation to the kinase. The findings are of potential significance for development of modulators of PKC-zeta activity and cellular response to cytokines.
Collapse
Affiliation(s)
- Nicole Lerner-Marmarosh
- University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
34
|
Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55:487-97. [PMID: 17570678 PMCID: PMC2705893 DOI: 10.1016/j.phrs.2007.04.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly 30 years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKC iota) is a bonafide human oncogene. PKC iota is required for the transformed growth of human cancer cells and the PKC iota gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKC iota participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKC iota is a human oncogene, review mechanisms controlling PKC iota expression in human cancers, and describe the molecular details of PKC iota-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKC iota signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Amplification
- Gold Sodium Thiomalate/pharmacology
- Gold Sodium Thiomalate/therapeutic use
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Oncogenes
- Ovarian Neoplasms/enzymology
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
35
|
Tisdale EJ, Artalejo CR. A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic 2007; 8:733-41. [PMID: 17488287 PMCID: PMC3775588 DOI: 10.1111/j.1600-0854.2007.00569.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple intracellular activities in addition to its role in gluconeogenesis. Indeed, we have reported that GAPDH is required for Rab2-mediated retrograde transport from vesicular tubular clusters (VTCs). These diverse GAPDH activities are the result of posttranslational modifications that confer a new function to the enzyme. In that regard, GAPDH is tyrosine phosphorylated by Src. To establish the functional significance of this modification for GAPDH activity in Rab2-dependent events, an amino acid substitution was made at tyrosine 41 (GAPDH Y41F). The inability of Src to phosphorylate purified recombinant GAPDH Y41F was confirmed in an in vitro kinase assay. The mutant was then employed in a quantitative membrane-binding assay that measures Rab2 recruitment of soluble components to VTCs. As we observed with GAPDH wild type, Rab2 promoted GAPDH Y41F binding to membranes in a dose-dependent manner, indicating that GAPDH tyrosine phosphorylation is not required for VTC association. However, GAPDH was tyrosine phosphorylated on VTCs. Importantly, GAPDH Y41F blocked vesicular stomatitis virus-G transport in an assay that reconstitutes endoplasmic reticulum to Golgi trafficking, indicating that phosphorylation of tyrosine 41 is essential for GAPDH activity in the early secretory pathway. The block in transport is because of the decreased binding of atypical protein kinase C iota/lambda to GAPDH Y41F, which reduces beta-coat protein association with the VTC and subsequent formation of Rab2-mediated retrograde vesicles. Our results suggest that Src plays a pivotal role in regulating the interaction of Rab2 effectors on the VTC.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, 6374 Scott Hall, Detroit, MI 48201, USA.
| | | |
Collapse
|
36
|
Kanayasu-Toyoda T, Suzuki T, Oshizawa T, Uchida E, Hayakawa T, Yamaguchi T. Granulocyte colony-stimulating factor promotes the translocation of protein kinase Ciota in neutrophilic differentiation cells. J Cell Physiol 2007; 211:189-96. [PMID: 17133348 DOI: 10.1002/jcp.20930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, we suggested that the phosphatidylinositol 3-kinase (PI3K)-p70 S6 kinase (p70 S6K) pathway plays an important role in granulocyte colony-stimulating factor (G-CSF)-dependent enhancement of the neutrophilic differentiation and proliferation of HL-60 cells. While atypical protein kinase C (PKC) has been reported to be a regulator of p70 S6K, abundant expression of PKCiota was observed in myeloid and lymphoid cells. Therefore, we analyzed the participation of PKCiota in G-CSF-dependent proliferation. The maximum stimulation of PKCiota was observed from 15 to 30 min after the addition of G-CSF. From 5 to 15 min into this lag time, PKCiota was found to translocate from the nucleus to the membrane. At 30 min it re-translocated to the cytosol. This dynamic translocation of PKCiota was also observed in G-CSF-stimulated myeloperoxidase-positive cells differentiated from cord blood cells. Small interfering RNA for PKCiota inhibited G-CSF-induced proliferation and the promotion of neutrophilic differentiation of HL-60 cells. These data indicate that the G-CSF-induced dynamic translocation and activation processes of PKCiota are important to neutrophilic proliferation.
Collapse
Affiliation(s)
- Toshie Kanayasu-Toyoda
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Yang T, Massa SM, Longo FM. LAR protein tyrosine phosphatase receptor associates with TrkB and modulates neurotrophic signaling pathways. ACTA ACUST UNITED AC 2007; 66:1420-36. [PMID: 17013927 DOI: 10.1002/neu.20291] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The identities of receptor protein tyrosine phosphatases (PTPs) that associate with Trk protein tyrosine kinase (PTK) receptors and modulate neurotrophic signaling are unknown. The leukocyte common antigen-related (LAR) receptor PTP is present in neurons expressing TrkB, and like TrkB is associated with caveolae and regulates survival and neurite outgrowth. We tested the hypothesis that LAR associates with TrkB and regulates neurotrophic signaling in embryonic hippocampal neurons. Coimmunoprecipitation and coimmunostaining demonstrated LAR interaction with TrkB that is increased by BDNF exposure. BDNF neurotrophic activity was reduced in LAR-/- and LAR siRNA-treated LAR+/+ neurons and was augmented in LAR-transfected neurons. In LAR-/- neurons, BDNF-induced activation of TrkB, Shc, AKT, ERK, and CREB was significantly decreased; while in LAR-transfected neurons, BDNF-induced CREB activation was augmented. Similarly, LAR+/+ neurons treated with LAR siRNA demonstrated decreased activation of Trk and AKT. LAR is known to activate the Src PTK by dephosphorylation of its negative regulatory domain and Src transactivates Trk. In LAR-/- neurons, or neurons treated with LAR siRNA, phosphorylation of the Src regulatory domain was increased (indicating Src inactivation), consistent with a role for Src in mediating LAR's ability to up-regulate neurotrophic signaling. Interactions between LAR, TrkB, and Src were further confirmed by the findings that Src coimmunoprecipitated with LAR, that the Src inhibitor PP2 blocked the ability of LAR to augment TrkB signaling, and that siRNA-induced depletion of Src decreased LAR interaction with TrkB. These studies demonstrate that receptor PTPs can associate with Trk complexes and promote neurotrophic signaling and point to receptor PTP-based strategies as a novel approach for modulating neurotrophin function.
Collapse
MESH Headings
- Animals
- Blotting, Western/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Survival/drug effects
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Hippocampus/cytology
- Immunoprecipitation/methods
- Mice
- Mice, Knockout
- Mutation/physiology
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/physiology
- Neurons/drug effects
- Neurons/metabolism
- Phosphorylation/drug effects
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/deficiency
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/immunology
- Protein Tyrosine Phosphatases/physiology
- Pyrimidines/pharmacology
- RNA, Small Interfering/pharmacology
- Receptor, trkB/physiology
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Receptor-Like Protein Tyrosine Phosphatases, Class 4
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Signal Transduction/physiology
- Time Factors
- Transfection/methods
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
38
|
Abstract
BACKGROUND The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. RESULTS Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. CONCLUSION Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data.
Collapse
Affiliation(s)
- Ivan Arisi
- European Brain Research Institute, Via Fosso del Fiorano 64, Roma, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Via Fosso del Fiorano 64, Roma, Italy
- Lay Line Genomics SpA, S.Raffaele Science Park, Castel Romano, Italy
- International School of Advanced Studies (SISSA/ISAS), Biophysics Dept., Via Beirut 2-4, Trieste, Italy
| | - Vittorio Rosato
- ENEA, Casaccia Research Center, Computing and Modelling Unit, Via Anguillarese 301, S.Maria di Galeria, Italy
- Ylichron Srl, c/o ENEA, Casaccia Research Center, Via Anguillarese 301, S.Maria di Galeria, Italy
| |
Collapse
|
39
|
Wooten MW, Geetha T. The role of ubiquitin in neurotrophin receptor signalling and sorting. Biochem Soc Trans 2006; 34:757-60. [PMID: 17052191 DOI: 10.1042/bst0340757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NGF (nerve growth factor) binding to TrkA (tropomyosin receptor kinase A) induces dimerization, autophosphorylation and internalization of the receptor to signalling vesicles for delivery of differentiation signals. TrkA interacts with p75 receptor through the p62–TRAF-6 (tumour-necrosis-factor-receptor-associated factor 6) complex bridging the two receptors. The atypical protein kinase C is activated and recruited to the receptor complex as well. TrkA is Lys63-polyubiquitinated on Lys485 by the E3 (ubiquitin ligase), TRAF-6, and E2 (ubiquitin-conjugating enzyme), UbcH7. Inhibition of polyubiquitination has been observed to interrupt signalling and internalization. Furthermore, an absence of p62 prevents endosomal localization and signalling. Altogether, these findings reveal Lys63-linked polyubiquitin chains and the shuttling protein p62 co-ordinately regulate TrkA internalization, trafficking and sorting.
Collapse
Affiliation(s)
- M W Wooten
- Program in Cellular and Molecular Biosciences, Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA.
| | | |
Collapse
|
40
|
Toyoshiba H, Sone H, Yamanaka T, Parham FM, Irwin RD, Boorman GA, Portier CJ. Gene interaction network analysis suggests differences between high and low doses of acetaminophen. Toxicol Appl Pharmacol 2006; 215:306-16. [PMID: 16701773 DOI: 10.1016/j.taap.2006.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/14/2006] [Accepted: 03/21/2006] [Indexed: 11/16/2022]
Abstract
Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity.
Collapse
Affiliation(s)
- Hiroyoshi Toyoshiba
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen YL, Law PY, Loh HH. Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 2006; 1:270-9. [PMID: 18040804 PMCID: PMC3446243 DOI: 10.1007/s11481-006-9028-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Opiates are the most powerful of all known analgesics. The prototype opiate morphine has been used as a painkiller for several thousand years. Chronic usage of opiates not only causes drug tolerance, dependence, and addiction, but also suppresses immune functions and affects cell proliferation and cell survival. The diverse functions of opiates underscore the complexity of opioid receptor signaling. Several downstream signaling effector systems, including adenylyl cyclase, mitogen-activated protein kinase, Ca2+ channels, K+ channels, and phosphatidylinositol 3-kinase/Akt, have been identified to be critical in opioid functions. Nuclear factor-kappaB (NF-kappaB), one of the most diverse and critical transcription factors, is one of the downstream molecules that may either directly or indirectly transmit the receptor-mediated upstream signals to the nucleus, resulting in the regulation of the NF-kappaB-dependent genes, which are critical for the opioid-induced biological responses of neuronal and immune cells. In this minireview, we focus on current understanding of the involvement of NF-kappaB signaling in opioid functions and receptor gene expression in cells.
Collapse
Affiliation(s)
- Yulong L Chen
- Department of Pharmacology, the University of Minnesota School of Medicine, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
42
|
Liu H, Nakazawa T, Tezuka T, Yamamoto T. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 2006; 281:23611-9. [PMID: 16777849 DOI: 10.1074/jbc.m511205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.
Collapse
Affiliation(s)
- Hui Liu
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
43
|
Rebholz H, Panasyuk G, Fenton T, Nemazanyy I, Valovka T, Flajolet M, Ronnstrand L, Stephens L, West A, Gout IT. Receptor association and tyrosine phosphorylation of S6 kinases. FEBS J 2006; 273:2023-36. [PMID: 16640565 DOI: 10.1111/j.1742-4658.2006.05219.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomal protein S6 kinase (S6K) is activated by an array of mitogenic stimuli and is a key player in the regulation of cell growth. The activation process of S6 kinase involves a complex and sequential series of multiple Ser/Thr phosphorylations and is mainly mediated via phosphatidylinositol 3-kinase (PI3K)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and mTor-dependent pathways. Upstream regulators of S6K, such as PDK1 and protein kinase B (PKB/Akt), are recruited to the membrane via their pleckstrin homology (PH) or protein-protein interaction domains. However, the mechanism of integration of S6K into a multi-enzyme complex around activated receptor tyrosine kinases is not clear. In the present study, we describe a specific interaction between S6K with receptor tyrosine kinases, such as platelet-derived growth factor receptor (PDGFR). The interaction with PDGFR is mediated via the kinase or the kinase extension domain of S6K. Complex formation is inducible by growth factors and leads to S6K tyrosine phosphorylation. Using PDGFR mutants, we have shown that the phosphorylation is exerted via a PDGFR-src pathway. Furthermore, src kinase phosphorylates and coimmunoprecipitates with S6K in vivo. Inhibitors towards tyrosine kinases, such as genistein and PP1, or src-specific SU6656, but not PI3K and mTor inhibitors, lead to a reduction in tyrosine phosphorylation of S6K. In addition, we mapped the sites of tyrosine phosphorylation in S6K1 and S6K2 to Y39 and Y45, respectively. Mutational and immunofluorescent analysis indicated that phosphorylation of S6Ks at these sites does not affect their activity or subcellular localization. Our data indicate that S6 kinase is recruited into a complex with RTKs and src and becomes phosphorylated on tyrosine/s in response to PDGF or serum.
Collapse
|
44
|
Tisdale EJ, Artalejo CR. Src-dependent aprotein kinase C iota/lambda (aPKCiota/lambda) tyrosine phosphorylation is required for aPKCiota/lambda association with Rab2 and glyceraldehyde-3-phosphate dehydrogenase on pre-golgi intermediates. J Biol Chem 2006; 281:8436-42. [PMID: 16452474 PMCID: PMC3742308 DOI: 10.1074/jbc.m513031200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab2 is required for membrane transport between the endoplasmic reticulum (ER) and the Golgi complex. Rab2 associates with pre-Golgi intermediates (also termed vesicular tubular clusters; VTCs) that sort cargo to the anterograde pathway from recycling proteins retrieved to the ER. Our previous studies have shown that Rab2 stimulates atypical protein kinase C iota/lambda (aPKCiota/lambda) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) recruitment to VTCs. Both aPKCiota/lambda and GAPDH bind directly to Rab2 and aPKCiota/lambda and GAPDH interact. Based on the reports demonstrating aPKCiota-Src interaction and Src activity in the retrograde pathway (Golgi-ER), studies were initiated to learn whether Rab2 also promoted Src recruitment to VTCs. Using a quantitative membrane binding assay, we found that Rab2-stimulated Src membrane association in a dose-dependent manner. The recruited Src binds to aPKCiota/lambda and GAPDH on the membrane; however, Src does not interact with Rab2. The membrane-associated Src tyrosine phosphorylates aPKCiota/lambda on the VTC. To determine the consequence of aPKCiota/lambda tyrosine phosphorylation, the membrane binding assay was supplemented with the Src-specific tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP2). Although Rab2, Src, and GAPDH recruitment was not affected, the Rab2-PP2-treated membranes contained a negligible amount of aPKCiota/lambda. Since Rab2 requires aPKCiota/lambda for the downstream recruitment of beta-coat protein (beta-COP) to VTCs, the Rab2-PP2-treated membranes were evaluated for the presence of beta-COP. Like aPKCiota/lambda, the membranes contained a negligible amount of beta-COP that was reflected by the drastic reduction in Rab2-dependent vesicle formation. These data suggest that Src-mediated tyrosine phosphorylation of aPKCiota/lambda facilitates aPKCiota/lambda association with Rab2-Src-GAPDH on VTCs, which is ultimately necessary for the downstream recruitment of beta-COP and release of Rab2-mediated retrograde-directed vesicles.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
45
|
Xu L, Deng X. Protein Kinase Cι Promotes Nicotine-induced Migration and Invasion of Cancer Cells via Phosphorylation of μ- and m-Calpains. J Biol Chem 2006; 281:4457-66. [PMID: 16361262 DOI: 10.1074/jbc.m510721200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.
Collapse
Affiliation(s)
- Lijun Xu
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, Gainesville, 32610-0232, USA
| | | |
Collapse
|
46
|
Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG, Schlisio S. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005; 8:155-67. [PMID: 16098468 DOI: 10.1016/j.ccr.2005.06.015] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/29/2005] [Accepted: 06/07/2005] [Indexed: 01/11/2023]
Abstract
Germline NF1, c-RET, SDH, and VHL mutations cause familial pheochromocytoma. Pheochromocytomas derive from sympathetic neuronal precursor cells. Many of these cells undergo c-Jun-dependent apoptosis during normal development as NGF becomes limiting. NF1 encodes a GAP for the NGF receptor TrkA, and NF1 mutations promote survival after NGF withdrawal. We found that pheochromocytoma-associated c-RET and VHL mutations lead to increased JunB, which blunts neuronal apoptosis after NGF withdrawal. We also found that the prolyl hydroxylase EglN3 acts downstream of c-Jun and is specifically required among the three EglN family members for apoptosis in this setting. Moreover, EglN3 proapoptotic activity requires SDH activity because EglN3 is feedback inhibited by succinate. These studies suggest that failure of developmental apoptosis plays a role in pheochromocytoma pathogenesis.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shi GX, Andres DA. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol 2005; 25:830-46. [PMID: 15632082 PMCID: PMC543422 DOI: 10.1128/mcb.25.2.830-846.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, Room MS639, Chandler Medical Center, University of Kentucky College of Medicine, 800 Rose St., Lexington, KY 40536-0298, USA
| | | |
Collapse
|
48
|
Jin Z, Xin M, Deng X. Survival function of protein kinase C{iota} as a novel nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-activated bad kinase. J Biol Chem 2005; 280:16045-52. [PMID: 15705582 DOI: 10.1074/jbc.m413488200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen in cigarette smoke. NNK cannot only induce DNA damage but also promotes the survival of human lung cancer cells. Protein kinase C (PKC)iota is an atypical PKC isoform and plays an important role in cell survival, but the downstream survival substrate(s) is not yet identified. Bad, a proapoptotic BH3-only member of Bcl2 family, is co-expressed with PKCiota in both small cell lung cancer and non-small cell lung cancer cells. We discovered that NNK potently induces multisite Bad phosphorylation at Ser-112, Ser-136, and Ser-155 via activation of PKCiota in association with increased survival of human lung cancer cells. Purified, active PKCiota can directly phosphorylate both endogenous and recombinant Bad at these three sites and disrupt Bad/Bcl-XL binding in vitro. Overexpression of PKCiota results in an enhancement of Bad phosphorylation. NNK also stimulates activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the PKC inhibitor (staurosporine) or a Src-specific inhibitor (PP2) can block NNK-induced Bad phosphorylation and promote apoptotic cell death. The beta-adrenergic receptor inhibitor propranolol blocks both NNK-induced activation of PKCiota and Bad phosphorylation, indicating that NNK-induced Bad phosphorylation occurs at least in part through the upstream beta-adrenergic receptor. Mechanistically, NNK-induced Bad phosphorylation prevents its interaction with Bcl-XL. Because the specific depletion of PKCiota by RNA interference inhibits both NNK-induced Bad phosphorylation and survival, this confirms that PKCiota is a necessary component in NNK-mediated survival signaling. Collectively, these findings reveal a novel role for PKCiota as an NNK-activated physiological Bad kinase that can directly phosphorylate and inactivate this proapoptotic BH3-only protein, which leads to enhanced survival and chemoresistance of human lung cancer cells.
Collapse
Affiliation(s)
- Zhaohui Jin
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, Gainesville, Florida 32610-0232, USA
| | | | | |
Collapse
|
49
|
Tucker BA, Rahimtula M, Mearow KM. Integrin activation and neurotrophin signaling cooperate to enhance neurite outgrowth in sensory neurons. J Comp Neurol 2005; 486:267-80. [PMID: 15844170 DOI: 10.1002/cne.20518] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurite growth is influenced by many factors, including the availability of trophic support as well as the extracellular environment. In this study, we have investigated whether attachment to a permissive culture substrate such as laminin is sufficient to promote neurite outgrowth from dorsal root ganglion neurons in the absence of added nerve growth factor (NGF) and whether this attachment can enhance the response of these neurons to NGF. Adult dorsal root ganglia neurons plated on surfaces coated with a thin film of laminin exhibited increased neurite outgrowth. This effect was integrin-dependent as it was attenuated by treatment with RGD (arginine-glycine-aspartate) peptides and by a beta1-integrin blocking antibody. The addition of NGF resulted in a significant increase in the integrin-dependent outgrowth. We have correlated this increase in growth with increased expression of integrin subunits and activation of known downstream signaling intermediates such as focal adhesion kinase, Src, and Akt. We have also examined pathway cooperation through the use of an Src-specific inhibitor, PP2, and a beta1-integrin blocking antibody, beta1i, by observing downstream signaling intermediates in both integrin and growth factor signaling pathways. These results are among the first to detail the importance of interactions between neurotrophin- and integrin-activated signaling in adult primary neurons.
Collapse
Affiliation(s)
- Budd A Tucker
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | | | | |
Collapse
|
50
|
|