1
|
Ji WT, Cui CG, Wang Y. EAF2: a tumor suppressor gene with multi-aspect functions. Front Pharmacol 2024; 15:1440511. [PMID: 39588149 PMCID: PMC11586179 DOI: 10.3389/fphar.2024.1440511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Since ELL-associated factor 2 (EAF2) was identified in 1997 as an androgen response gene, it has been of medical and scientific interest. Early studies demonstrated the tumor-suppressing function of EAF2 in the prostate. Sequencing studies indicated an association between EAF2 and several other malignant diseases and multiple physiological processes, such as transcription, apoptosis, embryogenesis, and DNA repair. Further understanding of EAF2 will provide new opportunities and therapeutic approaches for cancers, especially prostate cancer. This narrative review summarizes the existing knowledge of EAF2 and outlines its potential significance. To our knowledge, this is the first review of the role of this novel tumor suppressor gene and its possible functions.
Collapse
Affiliation(s)
- Wen-Tong Ji
- Urology 2nd Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chun-Guo Cui
- Galactophore Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Wang
- Urology 2nd Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Key Laboratory of Molecular Diagnosis of Urologic Neoplasms, Urology 2nd Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Zhang Z, Xu J, Liu J, Wang J, Lei L. SEC: A core hub during cell fate alteration. FASEB J 2024; 38:e23680. [PMID: 38758186 DOI: 10.1096/fj.202400514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.
Collapse
Affiliation(s)
- Zhijing Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingyi Xu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Guarnera L, Ottone T, Fabiani E, Divona M, Savi A, Travaglini S, Falconi G, Panetta P, Rapanotti MC, Voso MT. Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Front Oncol 2022; 12:871590. [PMID: 35494081 PMCID: PMC9039303 DOI: 10.3389/fonc.2022.871590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Acute promyelocytic leukemia (APL) accounts for 10–15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Biomedicine and Prevention, UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Paola Panetta
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Cristina Rapanotti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
4
|
Sequence, structural and functional conservation among the human and fission yeast ELL and EAF transcription elongation factors. Mol Biol Rep 2021; 49:1303-1320. [PMID: 34807377 DOI: 10.1007/s11033-021-06958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.
Collapse
|
5
|
Wang Z, Pascal LE, Chandran UR, Chaparala S, Lv S, Ding H, Qi L, Wang Z. ELL2 Is Required for the Growth and Survival of AR-Negative Prostate Cancer Cells. Cancer Manag Res 2020; 12:4411-4427. [PMID: 32606936 PMCID: PMC7294050 DOI: 10.2147/cmar.s248854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Elongation factor for RNA polymerase II 2 (ELL2) was reported as a putative tumor suppressor in the prostate. ELL2 is frequently down-regulated in prostatic adenocarcinoma specimens, and loss of ELL2 induced murine prostatic intraepithelial neoplasia and enhanced AR-positive prostate cancer cell proliferation. However, the ELL2 gene appears to be amplified in AR-negative neuroendocrine prostate tumors, suggesting a potential oncogenic role for ELL2 in AR-negative prostate cancer cells. In this study, we explored the potential function of ELL2 in PC-3 and DU145, two AR-negative prostate cancer cell lines. Materials and Methods The role of ELL2 in PC-3 and DU145 cells was studied using siRNA-mediated ELL2 knockdown. Genes regulated by ELL2 knockdown in PC-3 cells were identified and analyzed using RNA-Seq and bioinformatics. The expression of representative genes was confirmed by Western blot and/or quantitative PCR. Cell growth was determined by BrdU, MTT and colony formation assays. Cell death was analyzed by 7-AAD/Annexin V staining and trypan blue exclusion staining. Cell cycle was determined by PI staining and flow cytometry. Results ELL2 knockdown inhibited the proliferation of PC-3 and DU145 cells. RNA-Seq analysis showed an enrichment in genes associated with cell death and survival following ELL2 knockdown. The interferon-γ pathway was identified as the top canonical pathway comprising of 55.6% of the genes regulated by ELL2. ELL2 knockdown induced an increase in STAT1 and IRF1 mRNA and an induction of total STAT1 and phosphorylated STAT1 protein. Inhibition of cell proliferation by ELL2 knockdown was partly abrogated by STAT1 knockdown. ELL2 knockdown inhibited colony formation and induced apoptosis in both PC-3 and DU145 cells. Furthermore, knockdown of ELL2 caused S-phase cell cycle arrest, inhibition of CDK2 phosphorylation and cyclin D1 expression, and increased expression of cyclin E. Conclusion ELL2 knockdown in PC-3 and DU145 cells induced S-phase cell cycle arrest and profound apoptosis, which was accompanied by the induction of genes associated with cell death and survival pathways. These observations suggest that ELL2 is a potential oncogenic protein required for survival and proliferation in AR-negative prostate cancer cells.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shidong Lv
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Ding
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Qiu L, Chang G, Bi Y, Liu X, Chen G. Circular RNA and mRNA profiling reveal competing endogenous RNA networks during avian leukosis virus, subgroup J-induced tumorigenesis in chickens. PLoS One 2018; 13:e0204931. [PMID: 30286182 PMCID: PMC6171863 DOI: 10.1371/journal.pone.0204931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can induce myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. Here, we generated ribominus RNA sequencing data from three normal chicken spleen tissues and three ALV-J-infected chicken spleen tissues. Structure analysis of transcripts showed that, compared to mRNAs and lncRNAs, chicken circRNAs shared relatively shorter transcripts and similar GC content. Differentially expression analysis showed 152 differentially expressed circRNAs with 106 circRNAs up regulated and 46 circRNAs down regulated. Through comparing differentially expressed circRNA host genes and mRNAs and performed ceRNA network analysis, we found several tumor or immune-related genes, in which, there were four genes existed in both differentially expressed mRNAs and circRNA host genes (Dock4, Fmr1, Zfhx3, Ralb) and two genes (Mll, Aoc3) involved in ceRNA network. We further characterized one exon-intron circRNA derived from HRH4 gene in the ceRNA network, termed circHRH4, which is an abundant and stable circRNA expressed in various tissues and cells in chicken and localizes in cytoplasm. Our results provide new insight into the pathology of ALV-J infection and circRNAs may also mediate tumorigenesis in chicken.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, PR, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| |
Collapse
|
7
|
Jiang J, Thalamuthu A, Ho JE, Mahajan A, Ek WE, Brown DA, Breit SN, Wang TJ, Gyllensten U, Chen MH, Enroth S, Januzzi JL, Lind L, Armstrong NJ, Kwok JB, Schofield PR, Wen W, Trollor JN, Johansson Å, Morris AP, Vasan RS, Sachdev PS, Mather KA. A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood. Front Genet 2018; 9:97. [PMID: 29628937 PMCID: PMC5876753 DOI: 10.3389/fgene.2018.00097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/08/2018] [Indexed: 01/12/2023] Open
Abstract
Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer E Ho
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Weronica E Ek
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - David A Brown
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia.,Westmead Institute for Medical Research, The Institute for Clinical Pathology and Medical Research and Westmead Hospital, Westmead, NSW, Australia
| | - Samuel N Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Thomas J Wang
- Division of Cardiology, Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA, United States.,The Framingham Heart Study, Framingham, MA, United States
| | - Stefan Enroth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - James L Januzzi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Mathematics and Statistics, Murdoch University, Perth, WA, Australia
| | - John B Kwok
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Åsa Johansson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, and Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.,National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Boston University, Boston, MA, United States
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Sweta K, Dabas P, Jain K, Sharma N. The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2017; 163:1641-1653. [PMID: 29043956 DOI: 10.1099/mic.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1+ exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Kamal Jain
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| |
Collapse
|
9
|
Alexander LEMM, Watters J, Reusch JA, Maurin M, Nepon-Sixt BS, Vrzalikova K, Alexandrow MG, Murray PG, Wright KL. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Mol Immunol 2017; 91:8-16. [PMID: 28858629 DOI: 10.1016/j.molimm.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
B cell activation is dependent on a large increase in transcriptional output followed by focused expression on secreted immunoglobulin as the cell transitions to an antibody producing plasma cell. The rapid transcriptional induction is facilitated by the release of poised RNA pol II into productive elongation through assembly of the super elongation complex (SEC). We report that a SEC component, the Eleven -nineteen Lysine-rich leukemia (ELL) family member 3 (ELL3) is dynamically up-regulated in mature and activated human B cells followed by suppression as B cells transition to plasma cells in part mediated by the transcription repressor PRDM1. Burkitt's lymphoma and a sub-set of Diffuse Large B cell lymphoma cell lines abundantly express ELL3. Depletion of ELL3 in the germinal center derived lymphomas results in severe disruption of DNA replication and cell division along with increased DNA damage and cell death. This restricted utilization and survival dependence reveal a key step in B cell activation and indicate a potential therapeutic target against B cell lymphoma's with a germinal center origin.
Collapse
Affiliation(s)
- Lou-Ella M M Alexander
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - January Watters
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Jessica A Reusch
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Michelle Maurin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Brook S Nepon-Sixt
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark G Alexandrow
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
10
|
Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, Zhang D, Wang J, Liu X, Ouyang G, Zhou J, Xiao W. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7:11057. [PMID: 27009366 PMCID: PMC4820845 DOI: 10.1038/ncomms11057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.
Collapse
Affiliation(s)
- Yu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Chi Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Ji
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Zhichao Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Dawei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jiangang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| |
Collapse
|
11
|
Keita M, Wang ZQ, Pelletier JF, Bachvarova M, Plante M, Gregoire J, Renaud MC, Mes-Masson AM, Paquet ÉR, Bachvarov D. Global methylation profiling in serous ovarian cancer is indicative for distinct aberrant DNA methylation signatures associated with tumor aggressiveness and disease progression. Gynecol Oncol 2012; 128:356-63. [PMID: 23219462 DOI: 10.1016/j.ygyno.2012.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To characterize at high resolution the DNA methylation changes which occur in the genome of serous epithelial ovarian cancer (EOC) in association with tumor aggressiveness. METHODS Methylated DNA immunoprecipitation in combination with CpG island-tiling arrays was used to compare the methylation profiles of five borderline, five grade 1/stage III/IV, five grade 3/stage I and five grade 3/stage III/IV serous EOC tumors, to those of five normal human ovarian tissue samples. RESULTS We found widespread DNA hypermethylation that occurs even in low-malignant potential (borderline) tumors and which predominantly includes key developmental/homeobox genes. Contrary to DNA hypermethylation, significant DNA hypomethylation was observed only in grade 3 serous EOC tumors. The latter observation was further confirmed when comparing the DNA methylation profiles of primary cell cultures derived from matched tumor samples obtained prior to, and following chemotherapy treatment from two serous EOC patients with advanced disease. To our knowledge this is the first report that has shown the presence of massive DNA hypomethylation in advanced serous EOC, associated with tumor malignancy and disease progression. CONCLUSIONS Our data raise the concern that demethylating drugs that are currently being used in advanced EOC disease (representing the majority of serous EOC cases) might have adverse effects due to activation of oncogenes and prometastatic genes. Understanding the relative roles of hypomethylation and hypermethylation in cancer could have clear implications on the therapeutic use of agents targeting the DNA methylation machinery.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ahn HJ, Cha Y, Moon SH, Jung JE, Park KS. Ell3 enhances differentiation of mouse embryonic stem cells by regulating epithelial-mesenchymal transition and apoptosis. PLoS One 2012; 7:e40293. [PMID: 22768269 PMCID: PMC3386972 DOI: 10.1371/journal.pone.0040293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/06/2012] [Indexed: 01/27/2023] Open
Abstract
Ell3 is a testis-specific RNA polymerase II elongation factor whose cellular function is not clear. The present study shows that Ell3 is activated during the differentiation of mouse embryonic stem cells (mESCs). Furthermore, Ell3 plays a critical role in stimulating lineage differentiation of mESCs by promoting epithelial-mesenchymal transition (EMT) and suppressing apoptosis. Mouse ESCs engineered to stably express Ell3 were rapidly differentiated compared with control cells either under spontaneous differentiation or neural lineage-specific differentiation conditions. Gene expression profile and quantitative RT-PCR analysis showed that the expression of EMT markers, such as Zeb1 and Zeb2, two major genes that regulate EMT, was upregulated in Ell3-overexpressing mESCs. Remarkably, knockdown of Zeb1 attenuated the enhanced differentiation capacity of Ell3-overexpressing mESCs, which indicates that Ell3 plays a role in the induction of mESC differentiation by inducing EMT. In contrast to Ell3-overexpressing mESCs, Ell3-knock down mESCs could not differentiate under differentiation conditions and, instead, underwent caspase-dependent apoptosis. In addition, apoptosis of differentiating Ell3-knock out mESCs was associated with enhanced expression of p53. The present results suggest that Ell3 promotes the differentiation of mESCs by activating the expression of EMT-related genes and by suppressing p53 expression.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Young Cha
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Seok-Ho Moon
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Jee-Eun Jung
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- * E-mail:
| |
Collapse
|
13
|
Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc Natl Acad Sci U S A 2012; 109:10903-8. [PMID: 22711835 DOI: 10.1073/pnas.1118641109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circadian clocks govern a wide range of cellular and physiological functions in various organisms. Recent evidence suggests distinct functions of local clocks in peripheral mammalian tissues such as immune responses and cell cycle control. However, studying circadian action in peripheral tissues has been limited so far to mouse models, leaving the implication for human systems widely elusive. In particular, circadian rhythms in human skin, which is naturally exposed to strong daytime-dependent changes in the environment, have not been investigated to date on a molecular level. Here, we present a comprehensive analysis of circadian gene expression in human epidermis. Whole-genome microarray analysis of suction-blister epidermis obtained throughout the day revealed a functional circadian clock in epidermal keratinocytes with hundreds of transcripts regulated in a daytime-dependent manner. Among those, we identified a circadian transcription factor, Krüppel-like factor 9 (Klf9), that is substantially up-regulated in a cortisol and differentiation-state-dependent manner. Gain- and loss-of-function experiments showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include proliferation/differentiation markers that also show circadian expression in vivo, suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling the expression of target genes in a daytime-dependent manner.
Collapse
|
14
|
Nohara K, Tateishi Y, Suzuki T, Okamura K, Murai H, Takumi S, Maekawa F, Nishimura N, Kobori M, Ito T. Late-onset Increases in Oxidative Stress and Other Tumorigenic Activities and Tumors With a Ha-ras Mutation in the Liver of Adult Male C3H Mice Gestationally Exposed to Arsenic. Toxicol Sci 2012; 129:293-304. [DOI: 10.1093/toxsci/kfs203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:92-103. [PMID: 21853533 DOI: 10.1002/wrna.106] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human 7SK small nuclear RNA (snRNA) is an abundant noncoding RNA whose function has been conserved in evolution from invertebrates to humans. It is transcribed by RNA polymerase III (RNAPIII) and is located in the nucleus. Together with associated cellular proteins, 7SK snRNA regulates the activity of the positive transcription elongation factor b (P-TEFb). In humans, this regulation is accomplished by the recruitment of P-TEFb by the 7SK snRNA-binding proteins, hexamethylene bisacetamide (HMBA)-induced mRNA 1/2 (HEXIM1 or HEXIM2), which inhibit the kinase activity of P-TEFb. P-TEFb regulates the transition of promoter proximally paused RNA polymerase II (RNAPII) into productive elongation, thereby, allowing efficient mRNA production. The protein composition of the 7SK small nuclear ribonucleoprotein (snRNP) is regulated dynamically. While the Lupus antigen (La)-related protein 7 (LARP7) is a constitutive component, the methylphosphate capping enzyme (MePCE) associates secondarily to phosphorylate the 5' end of 7SK snRNA. The release of active P-TEFb is closely followed by release of HEXIM proteins and both are replaced by heterogeneous nuclear ribonucleoproteins (hnRNPs). The released P-TEFb activates the expression of most cellular and viral genes. Regulated release of P-TEFb determines the expression pattern of many of the genes that respond to environmental stimuli and regulate growth, proliferation, and differentiation of cells.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russel Medical Research Center, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
16
|
Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol Cell Biol 2011; 31:1624-36. [PMID: 21300782 DOI: 10.1128/mcb.00470-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase, a ribonucleoprotein enzyme that maintains telomere length, is crucial for cellular immortalization and cancer progression. Telomerase activity is attributed primarily to the expression of telomerase reverse transcriptase (TERT). Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line B16F10, we previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression (H. Kugoh, K. Shigenami, K. Funaki, J. Barrett, and M. Oshimura, Genes Chromosome Cancer 36:37-47, 2003). To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase-negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here, we report the identification of PITX1, whose expression leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We show that three and one binding site within the hTERT and mtert promoters, respectively, that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.
Collapse
|
17
|
Liu L, Ai J, Xiao W, Liu J, Wang Y, Xin D, He Z, Guo Y, Wang Z. ELL is an HIF-1alpha partner that regulates and responds to hypoxia response in PC3 cells. Prostate 2010; 70:797-805. [PMID: 20166137 PMCID: PMC2857586 DOI: 10.1002/pros.21113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Eleven-nineteen lysine-rich leukemia (ELL) plays an important role in tumorigenesis and animal development. HIF-1 is a transcriptional factor that functions as a master regulator of O(2) homeostasis. Our previous studies showed that a binding partner of ELL, U19/Eaf2, can modulate HIF-1alpha activity and hypoxia response, suggesting that ELL may also influence HIF-1alpha pathway and hypoxia response. METHODS Co-localization and co-immunoprecipitation were performed to test the interaction between ELL and HIF-1alpha. PC3 cells with stable ELL knockdown and PC3 cells with stable ELL overexpression, along with their controls, were established using lentiviral expression system. Western blot and real-time PCR were performed to test the effect of ELL on HIF-1alpha protein and its down-stream gene transcription. To elucidate potential effect of hypoxia on ELL, cell growth and colony formation assays were performed using PC3 subline with stable ELL overexpression. RESULTS ELL is associated with HIF-1alpha in transfected cells. In PC3 prostate cancer cells, ELL inhibited HIF-1alpha protein level and down-stream gene expression. As expected, ELL inhibited cell growth and colony formation under normoxia. Interestingly, the inhibition was alleviated under hypoxia. CONCLUSIONS Our findings suggest that ELL and HIF-1alpha are binding partners and can modulate the functions of each other in hypoxia.
Collapse
Affiliation(s)
- Lingqi Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wuhan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - June Liu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yujuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dianqi Xin
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yinglu Guo
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
- Requests for reprints: Yinglu Guo, Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China. . Zhou Wang, University of Pittsburgh Medical College, Suite G40, 5200 Centre Avenue, Pittsburgh, PA 15232. Phone: 412-623-3903; Fax: 412-623-3904;
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Requests for reprints: Yinglu Guo, Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China. . Zhou Wang, University of Pittsburgh Medical College, Suite G40, 5200 Centre Avenue, Pittsburgh, PA 15232. Phone: 412-623-3903; Fax: 412-623-3904;
| |
Collapse
|
18
|
Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010; 37:429-37. [PMID: 20159561 DOI: 10.1016/j.molcel.2010.01.026] [Citation(s) in RCA: 462] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 02/08/2023]
Abstract
Chromosomal translocations involving the MLL gene are associated with infant acute lymphoblastic and mixed lineage leukemia. There are a large number of translocation partners of MLL that share very little sequence or seemingly functional similarities; however, their translocations into MLL result in the pathogenesis of leukemia. To define the molecular reason why these translocations result in the pathogenesis of leukemia, we purified several of the commonly occurring MLL chimeras. We have identified super elongation complex (SEC) associated with all chimeras purified. SEC includes ELL, P-TEFb, AFF4, and several other factors. AFF4 is required for SEC stability and proper transcription by poised RNA polymerase II in metazoans. Knockdown of AFF4 in leukemic cells shows reduction in MLL chimera target gene expression, suggesting that AFF4/SEC could be a key regulator in the pathogenesis of leukemia through many of the MLL partners.
Collapse
Affiliation(s)
- Chengqi Lin
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth-factor-mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV-1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT-facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT-modulating proteins and how they influence ESCRT-dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT-mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady-state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.
Collapse
|
20
|
Tashiro H, Mizutani-Noguchi M, Shirasaki R, Shirafuji N. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts. Biochem Biophys Res Commun 2009; 391:592-7. [PMID: 19932689 DOI: 10.1016/j.bbrc.2009.11.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/26/2022]
Abstract
Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.
Collapse
Affiliation(s)
- Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8606, Japan
| | | | | | | |
Collapse
|
21
|
Mathews A, Holland L, Yankulov K. The interaction between EAP30 and ELL is modulated by MCM2. FEBS Lett 2009; 583:3431-6. [PMID: 19819239 DOI: 10.1016/j.febslet.2009.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/17/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.
Collapse
Affiliation(s)
- Amit Mathews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
22
|
Zhou J, Feng X, Ban B, Liu J, Wang Z, Xiao W. Elongation factor ELL (Eleven-Nineteen Lysine-rich Leukemia) acts as a transcription factor for direct thrombospondin-1 regulation. J Biol Chem 2009; 284:19142-52. [PMID: 19447890 DOI: 10.1074/jbc.m109.010439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the transactivation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.
Collapse
Affiliation(s)
- Jiangang Zhou
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
23
|
Jiang F, Ai J, Xiao W, Wang Z. FB1, an E2A fusion partner in childhood leukemia, interacts with U19/EAF2 and inhibits its transcriptional activity. Cancer Lett 2007; 253:265-72. [PMID: 17395368 PMCID: PMC1989770 DOI: 10.1016/j.canlet.2007.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND U19/EAF2 is a potential tumor suppressor exhibiting frequent down-regulation and allelic loss in advanced human prostate cancer specimens. U19/EAF2 has also been identified as ELL-associated factor 2 (EAF2) based on its binding to ELL, a fusion partner of MLL in acute myeloid leukemia. U19/EAF2 is a putative transcription factor with a transactivation domain and capability of sequence-specific DNA binding. METHODS Yeast-two-hybrid-screening was used to identify U19/EAF2-binding partners. Co-immunoprecipitation and mammalian 1-hybrid assay were used to characterize a U19/EAF2-binding partner. RESULTS FB1, an E2A fusion partner in childhood leukemia, was identified as a binding-partner of U19/EAF2. FB1 also binds to EAF1, the only homologue of U19/EAF2. FB1 also interacts and co-localizes with ELL in the nucleus. Interestingly, FB1 inhibited the transcriptional activity of U19/EAF2 but not EAF1. CONCLUSIONS FB1 is an important binding partner and a functional regulator of U19/EAF2, EAF1, and/or ELL.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Wuhan Xiao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Urology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhou Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Urology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
- To whom correspondence should be addressed, at Department of Urology, Phone: (412)623-3903; Fax: (412)623-3904; E-mail:
| |
Collapse
|
24
|
Erickson KK, Sundstrom JM, Antonetti DA. Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 2007; 10:103-17. [PMID: 17340211 DOI: 10.1007/s10456-007-9067-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 01/24/2007] [Indexed: 12/26/2022]
Abstract
Vascular permeability is closely linked with angiogenesis in a number of pathologies. In the retina, the normally well-developed blood-retinal barrier is altered in a host of eye diseases preceding or commensurate with angiogenesis. This review examines the literature regarding the tight junction complex that establishes the blood-retinal barrier focusing on the transmembrane proteins occludin and the claudin family and the membrane associated protein zonula occludens. The changes observed in these proteins associated with vascular and epithelial permeability is discussed. Finally, novel literature addressing the link between the tight junction complex and angiogenesis is considered.
Collapse
Affiliation(s)
- Kathryn K Erickson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
25
|
Hahn J, Xiao W, Jiang F, Simone F, Thirman MJ, Wang Z. Apoptosis induction and growth suppression by U19/Eaf2 is mediated through its ELL-binding domain. Prostate 2007; 67:146-53. [PMID: 17044034 PMCID: PMC2801832 DOI: 10.1002/pros.20481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND U19/Eaf2 is an androgen-response gene and its downregulation is frequently observed in advanced human prostate cancer. U19/Eaf2 interacts with ELL, a fusion partner of MLL in the (11;19) (q23;p13.1) translocation in acute myeloid leukemia. U19/Eaf2 overexpression induces apoptosis and suppresses xenograft tumor growth. METHODS Transfection and colony formation were used to assay for apoptosis and growth suppression of various U19/Eaf2 mutants. Co-immunoprecipitation was performed to test the interaction between the U19/Eaf2 constructs and ELL. RESULTS The region of U19/Eaf2 essential for apoptosis and growth suppression was mapped to amino acids 68-113. This region was necessary and sufficient for binding ELL. Co-expression of U19/Eaf2 and ELL in 293 cells lead to significant increase in cell death and growth suppression. CONCLUSIONS These observations argue that the interaction with ELL is essential for the induction of apoptosis and growth suppression by U19/Eaf2.
Collapse
Affiliation(s)
- Junghyun Hahn
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wuhan Xiao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Feng Jiang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Federico Simone
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Michael J. Thirman
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Zhou Wang
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Correspondence to: Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232.
| |
Collapse
|
26
|
Gerber MA, Shilatifard A, Eissenberg JC. Mutational analysis of an RNA polymerase II elongation factor in Drosophila melanogaster. Mol Cell Biol 2005; 25:7803-11. [PMID: 16107725 PMCID: PMC1190276 DOI: 10.1128/mcb.25.17.7803-7811.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ELL family of proteins function in vitro as elongation factors for RNA polymerase II. Deletion studies have defined domains in mammalian ELL required for transcription elongation activity and RNA polymerase binding in vitro, for transformation of cultured cells when overexpressed, and for leukemogenesis and cell proliferation as part of a leukemic fusion protein. The goal of this study was to identify domains required for chromosome targeting and viability in the unique Drosophila ELL (dELL) protein. Here, we show that an N-terminal domain of dELL is necessary and sufficient for targeting to transcriptionally active puff sites in chromatin, supporting a role for this domain in recruiting dELL to elongating RNA polymerase II. We demonstrate that a central domain of dELL is required for rapid mobilization of ELL during the heat shock response, suggesting a regulatory function for this domain. Unexpectedly, transgenic dELL in which the N-terminal chromosome binding domain is deleted can complement the recessive lethality of mutations in ELL, suggesting that Drosophila ELL has an essential activity in development distinct from its role as an RNA polymerase II elongation factor.
Collapse
Affiliation(s)
- Mark A Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
27
|
Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombès M. The Elongation Factor ELL (Eleven-Nineteen Lysine-Rich Leukemia) Is a Selective Coregulator for Steroid Receptor Functions. Mol Endocrinol 2005; 19:1158-69. [PMID: 15650021 DOI: 10.1210/me.2004-0331] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dynamic and coordinated recruitment of coregulators by steroid receptors is critical for specific gene transcriptional activation. To identify new cofactors of the human (h) mineralocorticoid receptor (MR), its highly specific N-terminal domain was used as bait in a yeast two-hybrid approach. We isolated ELL (eleven-nineteen lysine-rich leukemia), a RNA polymerase II elongation factor which, when fused to MLL (mixed lineage leukemia) contributes to the pathogenesis of acute leukemia. Specific interaction between hMR and ELL was confirmed by glutathione-S-transferase pull-down and coimmunoprecipitation experiments. Transient transfections demonstrated that ELL increased receptor transcriptional potency and hormonal efficacy, indicating that ELL behaves as a bona fide MR coactivator. Of major interest, ELL differentially modulates steroid receptor responses, with striking opposite effects on hMR and glucocorticoid receptor-mediated transactivation, without affecting that of androgen and progesterone receptors. Furthermore, the MLL-ELL fusion protein, as well as several ELL truncated mutants and the ELL L214V mutant, lost their ability to potentiate MR transcriptional activities, suggesting that both the elongation domain and the ELL-associated factor 1 interaction domains are required for ELL to fulfill its selector activity on steroid receptors. This study is the first direct demonstration of a functional interaction between a nuclear receptor and an elongation factor. These results provide further evidence that the selectivity of the mineralo vs. glucocorticoid signaling pathways also occurs at the transcriptional complex level and may have major pathophysiological implications, most notably in leukemogenesis and corticosteroid-induced apoptosis. These findings allow us to propose the concept of "transcriptional selector" for ELL on steroid receptor transcriptional functions.
Collapse
Affiliation(s)
- Laurent Pascual-Le Tallec
- Institut National de la Santé et de la Recherche Médicale, Unité 693, Faculté de Médecine Paris-Sud, 63 rue Gabriel Peri, 94276 Le Kremlin Bicetre cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Li M, Wu X, Zhuang F, Jiang S, Jiang M, Liu YH. Expression of murine ELL-associated factor 2 (Eaf2) is developmentally regulated. Dev Dyn 2004; 228:273-80. [PMID: 14517999 DOI: 10.1002/dvdy.10367] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eaf2, ELL-associated factor 2, encodes a protein that is homologous to the human EAF1, which was shown to interact with the transcriptional elongation factor MEN/ELL. During mouse embryogenesis, Eaf2 is preferentially expressed in the central nervous system and in sensory and neuroendocrine organs, including the brain, spinal cord, cranial and spinal ganglia, developing otocyst, the retina, and the pituitary. Eaf2 transcripts were also found in sites where active epithelium-mesenchymal interactions are occurring. These included the invaginating tooth buds, mammary gland anlage, submandibular glands, the lung, the pancreas, and the kidney. Other sites of expression included bladder and intestine. In the developing lens, Eaf2 transcripts were absent in the proliferating anterior lens epithelial cells but were present in the terminally differentiated primary lens fiber cells and also in nonproliferating lens fiber cells in the equatorial zone where lens epithelial cells withdraw from cell cycle and terminally differentiate into secondary lens fiber cells. This spatially restricted pattern of Eaf2 expression in the developing lens suggests that Eaf2 may play an important role in regulating lens maturation.
Collapse
Affiliation(s)
- Min Li
- Center for Craniofacial Molecular Biology, Division of Craniofacial Sciences and Therapeutics, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
29
|
Eissenberg JC, Ma J, Gerber MA, Christensen A, Kennison JA, Shilatifard A. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc Natl Acad Sci U S A 2002; 99:9894-9. [PMID: 12096188 PMCID: PMC125055 DOI: 10.1073/pnas.152193699] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several eukaryotic proteins increase RNA polymerase II (Pol II) transcription rates in vitro. The relative contributions of these factors to gene expression in vivo is unknown. The ELL family of proteins promote Pol II elongation in vitro, and the Drosophila ELL homolog (dELL) is associated with Pol II at sites of transcription in vivo. The purpose of this study was to test whether an ELL family protein is required for gene expression in vivo. We show that dELL is encoded by the Suppressor of Triplo-lethal locus [Su(Tpl)]. We have characterized seven distinct mutant alleles of Su(Tpl) and show that a dELL transgene rescues recessive lethality of Su(Tpl). Su(Tpl) mutations cause abnormal embryonic segmentation and dominantly modify expression of diverse genes during development. These data show that an ELL family elongation factor is essential, acts broadly in development, and is not functionally redundant to other elongation factors in vivo.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Alcalay M, Orleth A, Sebastiani C, Meani N, Chiaradonna F, Casciari C, Sciurpi MT, Gelmetti V, Riganelli D, Minucci S, Fagioli M, Pelicci PG. Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 2001; 20:5680-94. [PMID: 11607818 DOI: 10.1038/sj.onc.1204642] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of acute myeloid leukemia is associated with the appearance of oncogenic fusion proteins generated as a consequence of specific chromosome translocations. Of the two components of each fusion protein, one is generally a transcription factor, whereas the other partner is more variable in function, but often involved in the control of cell survival and apoptosis. As a consequence, AML-associated fusion proteins function as aberrant transcriptional regulators that interfere with the process of myeloid differentiation, determine a stage-specific arrest of maturation and enhance cell survival in a cell-type specific manner. The abnormal regulation of transcriptional networks occurs through common mechanisms that include recruitment of aberrant co-repressor complexes, alterations in chromatin remodeling, and disruption of specific subnuclear compartments. The identification and analysis of common and specific target genes regulated by AML fusion proteins will be of fundamental importance for the full understanding of acute myeloid leukemogenesis and for the implementation of disease-specific drug design.
Collapse
MESH Headings
- Cell Differentiation
- Cell Survival
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Homozygote
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- M Alcalay
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Poling A, Sewell RG, Gallus JA, Nearchou NI. Lethality of opioid and antihistaminic combinations in mice. Oncol Lett 1985; 13:4173-4179. [PMID: 28588704 PMCID: PMC5452875 DOI: 10.3892/ol.2017.5996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Ell3 is an RNA polymerase II transcription elongation factor that acts as a negative regulator of p53 expression, and regulates cell proliferation and survival. Recent studies by our group have demonstrated that ectopic expression of Ell3 in breast cancer cell lines enhances cell proliferation, potentiates cancer stem cell properties, and promotes 5-Fluorouracil (5-FU) resistance. In the present study, the underlying mechanism for the induction of 5-FU resistance was investigated in Ell3 over-expressing MCF-7 cells (Ell3 OE cells). By comparing the gene expression profiles of Ell3 OE cells with control cells, the present data revealed that Lipocalin2 (LCN2) and Wnt signaling activity are associated with 5-FU resistance of Ell3 OE. siRNA-mediated suppression of LCN2 reversed 5-FU resistance in Ell3 OE cells. Chemical inhibition of Wnt signaling also reversed 5-FU resistance in Ell3 OE cells. Furthermore, the expression levels of survivin, which is a direct transcriptional target of Wnt/β-catenin and an inhibitor of apoptosis, were markedly elevated when Ell3 OE cells were treated with 5-FU, as detected by western blot analysis. These findings suggest that enhanced expression of LCN2 and activation of the Wnt signaling pathway may induce 5-FU resistance in Ell3 OE cells as a means of evading apoptosis.
Collapse
|