1
|
Siang S, Patel U, Chaves-Mejía M, Purslow JA, Potoyan D, Roche J. Fine-Tuning of ATF4 DNA Binding Activity by a Secondary Basic Motif Unique to the ATF-X Subfamily of bZip Transcription Factors. Biochemistry 2025; 64:1257-1265. [PMID: 39993237 PMCID: PMC11924230 DOI: 10.1021/acs.biochem.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
The fine-tuning of transcription factor DNA-binding activity is often governed by transient intramolecular interactions between the transactivation domain and the DNA-binding domain. An example of such interaction is found in the transcription factor ATF4, a central regulator of the Integrated Stress Response. In ATF4, dynamic coupling between the transactivation domain and the basic-leucine zipper (bZip) domain modulates the phosphorylation levels of the disordered transactivation domain by casein kinase 2. However, the structural and molecular basis of these interdomain interactions remains poorly understood. This study focuses on a secondary basic motif at the C-terminus of ATF4, which is shared exclusively with its closest paralogue, ATF5. Through a combination of solution NMR spectroscopy, fluorescence polarization assays, and long-timescale molecular simulations, we demonstrate that this secondary basic motif is the primary driver of interdomain coupling between the transactivation and bZip domains of ATF4. Moreover, this motif enhances ATF4's DNA-binding specificity via interaction with the transactivation domain while also potentially facilitating rapid DNA scanning. Our findings reveal the pivotal role of a conserved motif in establishing disorder-mediated interactions that critically modulate ATF4's DNA-binding activity.
Collapse
Affiliation(s)
- Steven Siang
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Urval Patel
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Manuela Chaves-Mejía
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jeffrey A. Purslow
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Davit Potoyan
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Julien Roche
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
3
|
Von Ruff ZD, Miller MJ, Moro T, Reidy PT, Ebert SM, Volpi E, Adams CM, Rasmussen BB. Resistance exercise training in older men reduces ATF4-activated and senescence-associated mRNAs in skeletal muscle. GeroScience 2025:10.1007/s11357-025-01564-2. [PMID: 40011348 DOI: 10.1007/s11357-025-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Sarcopenia increases the risk of frailty, morbidity, and mortality in older adults. Resistance exercise training improves muscle size and function; however, the response to exercise training is variable in older adults. The objective of our study was to determine both the age-independent and age-dependent changes to the transcriptome following progressive resistance exercise training. Skeletal muscle biopsies were obtained before and after 12 weeks of resistance exercise training in 8 young (24 ± 3.3 years) and 10 older (72 ± 4.9 years) men. RNA was extracted from each biopsy and prepared for analysis via RNA sequencing. We performed differential mRNA expression, gene ontology, and gene set enrichment analyses. We report that when comparing post-training vs pre-training 226 mRNAs and 959 mRNAs were differentially expressed in the skeletal muscle of young and older men, respectively. Additionally, 94 mRNAs increased, and 17 mRNAs decreased in both young and old, indicating limited overlap in response to resistance exercise training. Furthermore, the differential gene expression was larger in older skeletal muscle. Finally, we report three novel findings: 1) resistance exercise training decreased the abundance of ATF4-activated and senescence-associated skeletal muscle mRNAs in older men; 2) resistance exercise-induced increases in lean mass correlate with increased mRNAs encoding mitochondrial proteins; and 3) increases in muscle strength following resistance exercise positively correlate with increased mRNAs involved in translation, rRNA processing, and polyamine metabolism. We conclude that resistance exercise training elicits a differential gene expression response in young and old skeletal muscle, including reduced ATF-4 activated and senescence-associated gene expression.
Collapse
Affiliation(s)
| | - Matthew J Miller
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- University of Iowa, Iowa City, IA, USA
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Paul T Reidy
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, USA
| | - Scott M Ebert
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Elena Volpi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Blake B Rasmussen
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Crotty Alexander LE, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Liao L, Yang P, Zhang W, Yu S, Jing H, Zheng X. CD98hc promotes drug resistance in extranodal natural killer/T cell lymphoma through tumor cell-derived small extracellular vesicles. Sci Signal 2024; 17:eadf9388. [PMID: 39255338 DOI: 10.1126/scisignal.adf9388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/15/2023] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Extranodal natural killer/T cell lymphoma (ENKTL) shows a high rate of recurrence after chemoradiotherapy. Drug resistance can be mediated by the cargo of small extracellular vesicles (sEVs). Here, we show that high abundance of the transmembrane glycoprotein CD98hc in tumor cells and serum sEVs was associated with ENKTL progression and drug resistance. Mechanistically, PEGylated-asparaginase (PEG-asp) treatment, a common therapy against ENKTL, promoted the translocation of the transcription factor ATF4 to the nucleus, where it was stabilized by USP1 and subsequently increased CD98hc expression. CD98hc delivered in tumor cell-derived sEVs increased tumor cell proliferation and drug resistance in a cultured human NK lymphoma cell line, animal models, and samples from patients with refractory/relapse ENKTL. Moreover, inhibiting both USP1 and EV secretion synergistically enhanced the cytotoxicity of PEG-asp. These data suggest that targeting CD98hc in the treatment of ENKTL may be beneficial in overcoming drug resistance.
Collapse
Affiliation(s)
- Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Shuyu Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Wathieu C, Lavergne A, Xu X, Rolot M, Nemazanyy I, Shostak K, El Hachem N, Maurizy C, Leemans C, Close P, Nguyen L, Desmet C, Tielens S, Dewals BG, Chariot A. Loss of Elp3 blocks intestinal tuft cell differentiation via an mTORC1-Atf4 axis. EMBO J 2024; 43:3916-3947. [PMID: 39085648 PMCID: PMC11405396 DOI: 10.1038/s44318-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Intestinal tuft cells are critical for anti-helminth parasite immunity because they produce IL-25, which triggers IL-13 secretion by activated group 2 innate lymphoid cells (ILC2s) to expand both goblet and tuft cells. We show that epithelial Elp3, a tRNA-modifying enzyme, promotes tuft cell differentiation and is consequently critical for IL-25 production, ILC2 activation, goblet cell expansion and control of Nippostrongylus brasiliensis helminth infection in mice. Elp3 is essential for the generation of intestinal immature tuft cells and for the IL-13-dependent induction of glycolytic enzymes such as Hexokinase 1 and Aldolase A. Importantly, loss of epithelial Elp3 in the intestine blocks the codon-dependent translation of the Gator1 subunit Nprl2, an mTORC1 inhibitor, which consequently enhances mTORC1 activation and stabilizes Atf4 in progenitor cells. Likewise, Atf4 overexpression in mouse intestinal epithelium blocks tuft cell differentiation in response to intestinal helminth infection. Collectively, our data define Atf4 as a negative regulator of tuft cells and provide insights into promotion of intestinal type 2 immune response to parasites through tRNA modifications.
Collapse
Affiliation(s)
- Caroline Wathieu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | | | - Xinyi Xu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Marion Rolot
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Najla El Hachem
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Chloé Maurizy
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Charlotte Leemans
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Christophe Desmet
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cellular and Molecular Immunology, University of Liege, Liege, GIGA-I3, Belgium
| | - Sylvia Tielens
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Benjamin G Dewals
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium.
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium.
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
7
|
Li J, Lv A, Chen M, Xu L, Huang H. Activating transcription factor 4 in erythroid development and β -thalassemia: a powerful regulator with therapeutic potential. Ann Hematol 2024; 103:2659-2670. [PMID: 37906269 DOI: 10.1007/s00277-023-05508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. β -Thalassemia is a blood disorder arising from mutations in the β -globin gene. Reactivating the expression of the γ -globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with β -thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated γ -globin transcription and its effects on erythroid development may unveil novel targets for β -thalassemia treatment.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Meihuan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
8
|
Zhou Q, Yu H, Chen Y, Ren J, Lu Y, Sun Y. The CRL3 KCTD10 ubiquitin ligase-USP18 axis coordinately regulates cystine uptake and ferroptosis by modulating SLC7A11. Proc Natl Acad Sci U S A 2024; 121:e2320655121. [PMID: 38959043 PMCID: PMC11252818 DOI: 10.1073/pnas.2320655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou310009, China
| | - Hongfei Yu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310053, China
| | - Yongxia Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jiayi Ren
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Yan Lu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310053, China
| |
Collapse
|
9
|
Patibandla C, van Aalten L, Dinkova-Kostova AT, Honda T, Cuadrado A, Fernández-Ginés R, McNeilly AD, Hayes JD, Cantley J, Sutherland C. Inhibition of glycogen synthase kinase-3 enhances NRF2 protein stability, nuclear localisation and target gene transcription in pancreatic beta cells. Redox Biol 2024; 71:103117. [PMID: 38479223 PMCID: PMC10950707 DOI: 10.1016/j.redox.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances β-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or β-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the β-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and β-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or β-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.
Collapse
Affiliation(s)
- Chinmai Patibandla
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | - Lidy van Aalten
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alison D McNeilly
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - John D Hayes
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - James Cantley
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Calum Sutherland
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
10
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
11
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Fu HY, Li Y, Cui H, Li JZ, Xu WX, Wang X, Fan RF. miR-15b-5p promotes HgCl 2-induced chicken embryo kidney cells ferroptosis by targeting β-TrCP-mediated ATF4 ubiquitin degradation. Toxicology 2024; 503:153742. [PMID: 38325558 DOI: 10.1016/j.tox.2024.153742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Mercuric chloride (HgCl2), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl2-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl2-induced ferroptosis. Our results revealed that ATF4 was downregulated during HgCl2-induced ferroptosis in CEK cells. Surprisingly, HgCl2 exposure has no significant impact on ATF4 mRNA level. Further investigation indicated that HgCl2 enhanced the expression of the E3 ligase beta-transducin repeat-containing protein (β-TrCP) and increased ATF4 ubiquitination. Subsequent findings identified that miR-15b-5p as an upstream modulator of β-TrCP, with miR-15b-5p downregulation observed in HgCl2-exposed CEK cells. Importantly, miR-15b-5p mimics suppressed β-TrCP expression and reversed HgCl2-induced cellular ferroptosis. Mechanistically, HgCl2 inhibited miR-15b-5p, and promoted β-TrCP-mediated ubiquitin degradation of ATF4, thereby inhibited the expression of antioxidant-related target genes and promoted ferroptosis. In conclusion, our study highlighted the crucial role of the miR-15b-5p/β-TrCP/ATF4 axis in HgCl2-induced nephrotoxicity, offering a new therapeutic target for understanding the mechanism of HgCl2 nephrotoxicity.
Collapse
Affiliation(s)
- Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xi Wang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
13
|
Yang S, Xie J, Pan Z, Guan H, Tu Y, Ye Y, Huang S, Fu S, Li K, Huang Z, Li X, Shi Z, Li L, Zhang Y. Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop. Exp Mol Med 2024; 56:630-645. [PMID: 38424194 PMCID: PMC10985079 DOI: 10.1038/s12276-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.
Collapse
Affiliation(s)
- Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, 920 Hospital of the Joint Logistic Support Force, Kunming, Yunnan, China
| | - JiaJun Xie
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiJie Pan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, China
| | - HongMei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - YueSheng Tu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YuanJian Ye
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShouBin Huang
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShiQiang Fu
- Huizhou First Maternal and Child Health Care Hospital, Huizhou, Guangdong, China
| | - KangXian Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiWei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - XiaoQi Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhanJun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Le Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yang Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
16
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
17
|
Torrens JN, Hetzer SM, Evanson NK. Brief Oxygen Exposure after Traumatic Brain Injury Hastens Recovery and Promotes Adaptive Chronic Endoplasmic Reticulum Stress Responses. Int J Mol Sci 2023; 24:9831. [PMID: 37372978 PMCID: PMC10298247 DOI: 10.3390/ijms24129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern, particularly in adolescents who have a higher mortality and incidence of visual pathway injury compared to adult patients. Likewise, we have found disparities between adult and adolescent TBI outcomes in rodents. Most interestingly, adolescents suffer a prolonged apneic period immediately post-injury, leading to higher mortality; therefore, we implemented a brief oxygen exposure paradigm to circumvent this increased mortality. Adolescent male mice experienced a closed-head weight-drop TBI and were then exposed to 100% O2 until normal breathing returned or recovered in room air. We followed mice for 7 and 30 days and assessed their optokinetic response; retinal ganglion cell loss; axonal degeneration; glial reactivity; and retinal ER stress protein levels. O2 reduced adolescent mortality by 40%, improved post-injury visual acuity, and reduced axonal degeneration and gliosis in optical projection regions. ER stress protein expression was altered in injured mice, and mice given O2 utilized different ER stress pathways in a time-dependent manner. Finally, O2 exposure may be mediating these ER stress responses through regulation of the redox-sensitive ER folding protein ERO1α, which has been linked to a reduction in the toxic effects of free radicals in other animal models of ER stress.
Collapse
Affiliation(s)
- Jordyn N. Torrens
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shelby M. Hetzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nathan K. Evanson
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
18
|
Zerbato B, Gobbi M, Ludwig T, Brancato V, Pessina A, Brambilla L, Wegner A, Chiaradonna F. PGM3 inhibition shows cooperative effects with erastin inducing pancreatic cancer cell death via activation of the unfolded protein response. Front Oncol 2023; 13:1125855. [PMID: 37260977 PMCID: PMC10227458 DOI: 10.3389/fonc.2023.1125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor patient prognosis. Remarkably, PDAC is one of the most aggressive and deadly tumor types and is notorious for its resistance to all types of treatment. PDAC resistance is frequently associated with a wide metabolic rewiring and in particular of the glycolytic branch named Hexosamine Biosynthetic Pathway (HBP). Methods Transcriptional and bioinformatics analysis were performed to obtain information about the effect of the HBP inhibition in two cell models of PDAC. Cell count, western blot, HPLC and metabolomics analyses were used to determine the impact of the combined treatment between an HBP's Phosphoglucomutase 3 (PGM3) enzyme inhibitor, named FR054, and erastin (ERA), a recognized ferroptosis inducer, on PDAC cell growth and survival. Results Here we show that the combined treatment applied to different PDAC cell lines induces a significant decrease in cell proliferation and a concurrent enhancement of cell death. Furthermore, we show that this combined treatment induces Unfolded Protein Response (UPR), NFE2 Like BZIP Transcription Factor 2 (NRF2) activation, a change in cellular redox state, a greater sensitivity to oxidative stress, a major dependence on glutamine metabolism, and finally ferroptosis cell death. Conclusion Our study discloses that HBP inhibition enhances, via UPR activation, the ERA effect and therefore might be a novel anticancer mechanism to be exploited as PDAC therapy.
Collapse
Affiliation(s)
- Barbara Zerbato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Maximilian Gobbi
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Tobias Ludwig
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Virginia Brancato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan, Italy
| | - Alex Pessina
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Luca Brambilla
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Andre Wegner
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ferdinando Chiaradonna
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
19
|
Torrens JN, Hetzer SM, Evanson NK. Brief oxygen exposure after traumatic brain injury speeds recovery and promotes adaptive chronic endoplasmic reticulum stress responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540060. [PMID: 37214818 PMCID: PMC10197672 DOI: 10.1101/2023.05.09.540060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Traumatic brain injury (TBI) is a major public health concern particularly in adolescents who have a higher mortality and incidence of visual pathway injury compared to adult patients. Likewise, we have found disparities between adult and adolescent TBI outcomes in rodents. Most interestingly, adolescents suffer a prolonged apneic period immediately post injury leading to higher mortality; so, we implemented a brief oxygen exposure paradigm to circumvent this increased mortality. Adolescent male mice experienced a closed-head weight-drop TBI then were exposed to 100% O 2 until normal breathing returned or recovered in room air. We followed mice for 7- and 30-days and assessed their optokinetic response; retinal ganglion cell loss; axonal degeneration; glial reactivity; and retinal ER stress protein levels. O 2 reduced adolescent mortality by 40%, improved post-injury visual acuity, and reduced axonal degeneration and gliosis in optic projection regions. ER stress protein expression was altered in injured mice, and mice given O 2 utilized different ER-stress pathways in a time dependent manner. Finally, O 2 exposure may be mediating these ER stress responses through regulation of the redox-sensitive ER folding protein ERO1α, which has been linked to a reduction in the toxic effects of free radicals in other animal models of ER stress.
Collapse
|
20
|
Kartha N, Gianopulos JE, Schrank Z, Cavender SM, Dobersch S, Kynnap BD, Wallace-Povirk A, Wladyka CL, Santana JF, Kim JC, Yu A, Bridgwater CM, Fuchs K, Dysinger S, Lampano AE, Notta F, Price DH, Hsieh AC, Hingorani SR, Kugel S. Sirtuin 6 is required for the integrated stress response and resistance to inhibition of transcriptional cyclin-dependent kinases. Sci Transl Med 2023; 15:eabn9674. [PMID: 37134154 DOI: 10.1126/scitranslmed.abn9674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.
Collapse
Affiliation(s)
- Nithya Kartha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessica E Gianopulos
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98105, USA
| | - Zachary Schrank
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah M Cavender
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stephanie Dobersch
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Bryan D Kynnap
- Physician Assistant Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Juan F Santana
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jaeseung C Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Angela Yu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Kathrin Fuchs
- Department of Experimental Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Nuremberg 91054, Germany
| | - Sarah Dysinger
- Department of Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron E Lampano
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Gouveia Roque C, Chung KM, McCurdy EP, Jagannathan R, Randolph LK, Herline-Killian K, Baleriola J, Hengst U. CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer's disease gene expression linked to neuropathology. SCIENCE ADVANCES 2023; 9:eadd2671. [PMID: 36867706 PMCID: PMC9984184 DOI: 10.1126/sciadv.add2671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing β-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ethan P. McCurdy
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Radhika Jagannathan
- Division of Aging and Dementia, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa K. Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Krystal Herline-Killian
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jimena Baleriola
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
23
|
Nwosu GO, Powell JA, Pitson SM. Targeting the integrated stress response in hematologic malignancies. Exp Hematol Oncol 2022; 11:94. [DOI: 10.1186/s40164-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWhile numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.
Collapse
|
24
|
Nagao Y, Amo-Shiinoki K, Nakabayashi H, Hatanaka M, Kondo M, Matsunaga K, Emoto M, Okuya S, Tanizawa Y, Tanabe K. Gsk-3-Mediated Proteasomal Degradation of ATF4 Is a Proapoptotic Mechanism in Mouse Pancreatic β-Cells. Int J Mol Sci 2022; 23:13586. [PMID: 36362372 PMCID: PMC9657557 DOI: 10.3390/ijms232113586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 03/14/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a key pathogenic factor in type 1 and 2 diabetes. Glycogen synthase kinase 3 (Gsk-3) contributes to β-cell loss in mice. However, the mechanism by which Gsk-3 leads β-cell death remains unclear. ER stress was pharmacologically induced in mouse primary islets and insulinoma cells. We used insulinoma cells derived from Akita mice as a model of genetic ER stress. Gsk-3 activity was blocked by treating with Gsk-3 inhibitors or by introducing catalytically inactive Gsk-3β. Gsk-3 inhibition prevented proteasomal degradation of activating transcriptional factor 4 (ATF4) and alleviated apoptosis. We found that ATF4-S214 was phosphorylated by Gsk-3, and that this was required for a binding of ATF4 with βTrCP, which mediates polyubiquitination. The anti-apoptotic effect of Gsk-3 inhibition was attenuated by introducing DN-ATF4 or by knockdown of ATF4. Mechanistically, Gsk-3 inhibition modulated transcription targets of ATF4 and in turn facilitated dephosphorylation of eIF2α, altering the protein translational dynamism under ER stress. These observations were reproduced in the Akita mouse-derived cells. Thus, these results reveal the role of Gsk-3 in the regulation of the integrated stress response, and provide a rationale for inhibiting this enzyme to prevent β-cell death under ER stress conditions.
Collapse
Affiliation(s)
- Yuko Nagao
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
- Department of Diabetes Research, School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Hiroko Nakabayashi
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Masayuki Hatanaka
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Manabu Kondo
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Kimie Matsunaga
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Masahiro Emoto
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Shigeru Okuya
- Health Administration Centre, Organisation for University Education, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Haematological Sciences and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| |
Collapse
|
25
|
Retrovirology Editorial. The KT Jeang Retrovirology prize 2022: Florence Margottin-Goguet. Retrovirology 2022; 19:20. [PMID: 36068604 PMCID: PMC9446835 DOI: 10.1186/s12977-022-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Elucidation of an mTORC2-PKC-NRF2 pathway that sustains the ATF4 stress response and identification of Sirt5 as a key ATF4 effector. Cell Death Dis 2022; 8:357. [PMID: 35963851 PMCID: PMC9376072 DOI: 10.1038/s41420-022-01156-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Proliferating cancer cells are dependent on glutamine metabolism for survival when challenged with oxidative stresses caused by reactive oxygen species, hypoxia, nutrient deprivation and matrix detachment. ATF4, a key stress responsive transcription factor, is essential for cancer cells to sustain glutamine metabolism when challenged with these various types of stress. While it is well documented how the ATF4 transcript is translated into protein as a stress response, an important question concerns how the ATF4 message levels are sustained to enable cancer cells to survive the challenges of nutrient deprivation and damaging reactive oxygen species. Here, we now identify the pathway in triple negative breast cancer cells that provides a sustained ATF4 response and enables their survival when encountering these challenges. This signaling pathway starts with mTORC2, which upon sensing cellular stresses arising from glutamine deprivation or an acute inhibition of glutamine metabolism, initiates a cascade of events that triggers an increase in ATF4 transcription. Surprisingly, this signaling pathway is not dependent on AKT activation, but rather requires the mTORC2 target, PKC, which activates the transcription factor Nrf2 that then induces ATF4 expression. Additionally, we identify a sirtuin family member, the NAD+-dependent de-succinylase Sirt5, as a key transcriptional target for ATF4 that promotes cancer cell survival during metabolic stress. Sirt5 plays fundamental roles in supporting cancer cell metabolism by regulating various enzymatic activities and by protecting an enzyme essential for glutaminolysis, glutaminase C (GAC), from degradation. We demonstrate that ectopic expression of Sirt5 compensates for knockdowns of ATF4 in cells exposed to glutamine deprivation-induced stress. These findings provide important new insights into the signaling cues that lead to sustained ATF4 expression as a general stress-induced regulator of glutamine metabolism, as well as highlight Sirt5 an essential effector of the ATF4 response to metabolic stress.
Collapse
|
27
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
28
|
Lopez NH, Li B, Palani C, Siddaramappa U, Takezaki M, Xu H, Zhi W, Pace BS. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS One 2022; 17:e0261799. [PMID: 35639781 PMCID: PMC9154101 DOI: 10.1371/journal.pone.0261799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.
Collapse
Affiliation(s)
- Nicole H. Lopez
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Chithra Palani
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Umapathy Siddaramappa
- Department of Medicine, Division of Hematology/Oncology Augusta University, Augusta GA, United States of America
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, United States of America
| | - Wenbo Zhi
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States of America
| | - Betty S. Pace
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
29
|
Szewczyk MM, Luciani GM, Vu V, Murison A, Dilworth D, Barghout SH, Lupien M, Arrowsmith CH, Minden MD, Barsyte-Lovejoy D. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol 2022; 51:102282. [PMID: 35305370 PMCID: PMC8933703 DOI: 10.1016/j.redox.2022.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.
Collapse
Affiliation(s)
| | - Genna M Luciani
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
Ebert SM, Rasmussen BB, Judge AR, Judge SM, Larsson L, Wek RC, Anthony TG, Marcotte GR, Miller MJ, Yorek MA, Vella A, Volpi E, Stern JI, Strub MD, Ryan Z, Talley JJ, Adams CM. Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy. J Nutr 2022; 152:926-938. [PMID: 34958390 PMCID: PMC8970988 DOI: 10.1093/jn/nxab440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is a multifunctional transcription regulatory protein in the basic leucine zipper superfamily. ATF4 can be expressed in most if not all mammalian cell types, and it can participate in a variety of cellular responses to specific environmental stresses, intracellular derangements, or growth factors. Because ATF4 is involved in a wide range of biological processes, its roles in human health and disease are not yet fully understood. Much of our current knowledge about ATF4 comes from investigations in cultured cell models, where ATF4 was originally characterized and where further investigations continue to provide new insights. ATF4 is also an increasingly prominent topic of in vivo investigations in fully differentiated mammalian cell types, where our current understanding of ATF4 is less complete. Here, we review some important high-level concepts and questions concerning the basic biology of ATF4. We then discuss current knowledge and emerging questions about the in vivo role of ATF4 in one fully differentiated cell type, mammalian skeletal muscle fibers.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Blake B Rasmussen
- Emmyon, Inc., Rochester, MN, USA
- Department of Nutrition, Metabolism and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew R Judge
- Emmyon, Inc., Rochester, MN, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska, Stockholm, Sweden
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - George R Marcotte
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew J Miller
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, Iowa City VA Medical Center, Iowa City, IA, USA
| | - Adrian Vella
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Elena Volpi
- Department of Nutrition, Metabolism and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer I Stern
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Matthew D Strub
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Zachary Ryan
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | | | - Christopher M Adams
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
- Department of Internal Medicine, Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
31
|
Chang M, Huhn S, Nelson L, Betenbaugh M, Du Z. Significant impact of mTORC1 and ATF4 pathways in CHO cell recombinant protein production induced by CDK4/6 inhibitor. Biotechnol Bioeng 2022; 119:1189-1206. [PMID: 35112712 DOI: 10.1002/bit.28050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
The CDK4/6 inhibitor has been shown to increase recombinant protein productivity in Chinese hamster ovary cells (CHO). Therefore, we investigated the mechanism that couples cell cycle inhibitor (CCI) treatment with protein productivity utilizing proteomics and phosphoproteomics. We identified mTORC1 as a critical early signaling event that preceded boosted productivity. Following CCI treatment, mTOR exhibited a transient increase in phosphorylation at a novel site that is also conserved in human and mouse. Upstream of mTORC1, increased phosphorylation of AKT1S1 and decreased phosphorylation of RB1 may provide molecular links between CDK4/6 inhibition and mTORC1. Downstream, increased EIF4EBP phosphorylation was observed, which can mediate cap-dependent translation. In addition, the collective effect of increased phosphorylation of RPS6, increased phosphorylation of regulators of RNA polymerase I, and increased protein expression in tRNA-aminoacylation pathway may contribute to enhancing the translational apparatus for increased productivity. In concert, an elevated stress response via GCN2/EIF2AK4-ATF4 axis persisted over the treatment course, which may link mTOR to downstream responses including the unfolded protein response (UPR) and autophagy to enhance proper protein folding and secretion. Together, this comprehensive proteomics and phosphoproteomics characterization of CCI treated CHO cells offers insights into understanding multiple aspects of signaling events resulting from CDK4/CDK6 inhibition. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiping Chang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven Huhn
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Luke Nelson
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhimei Du
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
32
|
Intricate coupling between the transactivation and basic-leucine zipper domains governs phosphorylation of transcription factor ATF4 by casein kinase 2. J Biol Chem 2022; 298:101633. [PMID: 35077711 PMCID: PMC8881488 DOI: 10.1016/j.jbc.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Most transcription factors possess at least one long intrinsically disordered transactivation domain that binds to a variety of coactivators and corepressors and plays a key role in modulating the transcriptional activity. Despite the crucial importance of these domains, the structural and functional basis of transactivation remains poorly understood. Here, we focused on activating transcription factor 4 (ATF4)/cAMP response element-binding protein-2, an essential transcription factor for cellular stress adaptation. Bioinformatic sequence analysis of the ATF4 transactivation domain sequence revealed that the first 125 amino acids have noticeably less propensity for structural disorder than the rest of the domain. Using solution nuclear magnetic resonance spectroscopy complemented by a range of biophysical methods, we found that the isolated transactivation domain is predominantly yet not fully disordered in solution. We also observed that a short motif at the N-terminus of the transactivation domain has a high helical propensity. Importantly, we found that the N-terminal region of the transactivation domain is involved in transient long-range interactions with the basic-leucine zipper domain involved in DNA binding. Finally, in vitro phosphorylation assays with the casein kinase 2 show that the presence of the basic-leucine zipper domain is required for phosphorylation of the transactivation domain. This study uncovers the intricate coupling existing between the transactivation and basic-leucine zipper domains of ATF4, highlighting its potential regulatory significance.
Collapse
|
33
|
Bahamondes Lorca VA, Bastidas Mayorga BD, Tong L, Wu S. UVB-induced eIF2α phosphorylation in keratinocytes depends on decreased ATF4, GADD34 and CReP expression levels. Life Sci 2021; 286:120044. [PMID: 34637792 DOI: 10.1016/j.lfs.2021.120044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
AIM To elucidate the mechanism behind the sustained high levels of phosphorylated eIF2α in HaCaT cells post-UVB. MAIN METHODS In this study, expression levels of the machinery involved in the dephosphorylation of eIF2α (GADD34, CReP and PP1), as well as the PERK-eIF2α-ATF4-CHOP, IRE1α/XBP1s and ATF6α signaling cascades, were analyzed by western blot and fluorescence microscope. KEY FINDINGS Our data showed that UVB induces the phosphorylation of eIF2α, which induces the translation of ATF4 and consequently the expression of CHOP and GADD34. Nevertheless, UVB also suppresses the translation of ATF4 and GADD34 in HaCaT cells via a p-eIF2α independent mechanism. Therefore, the lack of ATF4, GADD34 and CReP is responsible for the sustained phosphorylation of eIF2α. Finally, our data also showed that UVB selectively modifies PERK and downregulates ATF6α expression but does not induce activation of the IRE1α/XBP1s pathway in HaCaT cells. SIGNIFICANCE Novel mechanism to explain the prolonged phosphorylation of eIF2α post-UVB irradiation.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bernardo D Bastidas Mayorga
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Lingying Tong
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
34
|
Miles RR, Amin PH, Diaz MB, Misra J, Aukerman E, Das A, Ghosh N, Guith T, Knierman MD, Roy S, Spandau DF, Wek RC. The eIF2 kinase GCN2 directs keratinocyte collective cell migration during wound healing via coordination of reactive oxygen species and amino acids. J Biol Chem 2021; 297:101257. [PMID: 34597669 PMCID: PMC8554533 DOI: 10.1016/j.jbc.2021.101257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Healing of cutaneous wounds requires the collective migration of epithelial keratinocytes to seal the wound bed from the environment. However, the signaling events that coordinate this collective migration are unclear. In this report, we address the role of phosphorylation of eukaryotic initiation factor 2 (eIF2) and attendant gene expression during wound healing. Wounding of human keratinocyte monolayers in vitro led to the rapid activation of the eIF2 kinase GCN2. We determined that deletion or pharmacological inhibition of GCN2 significantly delayed collective cell migration and wound closure. Global transcriptomic, biochemical, and cellular analyses indicated that GCN2 is necessary for maintenance of intracellular free amino acids, particularly cysteine, as well as coordination of RAC1-GTP-driven reactive oxygen species (ROS) generation, lamellipodia formation, and focal adhesion dynamics following keratinocyte wounding. In vivo experiments using mice deficient for GCN2 validated the role of the eIF2 kinase during wound healing in intact skin. These results indicate that GCN2 is critical for appropriate induction of collective cell migration and plays a critical role in coordinating the re-epithelialization of cutaneous wounds.
Collapse
Affiliation(s)
- Rebecca R Miles
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Parth H Amin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Miguel Barriera Diaz
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jagannath Misra
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erica Aukerman
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nandini Ghosh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tanner Guith
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael D Knierman
- Laboratory for Experimental Medicine, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dan F Spandau
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
35
|
Feng L, Li M, Hu X, Li Y, Zhu L, Chen M, Wei Q, Xu W, Zhou Q, Wang W, Chen D, Wang X, Jin H. CK1δ stimulates ubiquitination-dependent proteasomal degradation of ATF4 to promote chemoresistance in gastric Cancer. Clin Transl Med 2021; 11:e587. [PMID: 34709767 PMCID: PMC8516343 DOI: 10.1002/ctm2.587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Chemoresistance remains a major obstacle to successful cancer therapy, especially for advanced cancers. It used to be recognised as a stable outcome resulting from genetic changes. However, recent studies showed that chemoresistance can also be unstable and reversible with the involvement of non-genetic alterations. In the present study, we found that activating transcription factor 4 (ATF4) is downregulated in chemoresistant gastric cancer cells. The over-expression of ATF4 reversed chemoresistance by activating CHOP transcription to enhance drug-induced apoptosis, and vice versa. Moreover, casein kinase 1 delta (CK1δ) was identified as the kinase responsible for ATF4-S219 phosphorylation, which triggered βTrCP-mediated ATF4 polyubiquitination to promote its proteasomal degradation subsequently. Interestingly, drug withdrawal gradually restored chemosensitivity as well as ATF4 expression in chemoresistant cells, highlighting the dependence of dynamic drug resistance on ATF4 protein expression. In line with these findings, the inhibition of ATF4 protein degradation by CK1δ or proteasome inhibitors overcame chemoresistance both in vitro and in vivo. Taken together, these results indicate that CK1δ stimulates βTrCP-dependent ATF4 polyubiquitination and subsequent proteasomal degradation to promote chemoresistance in gastric cancer. Stabilisation of the ATF4 protein with bortezomib (BTZ), an anticancer drug that inhibits proteasomal degradation, might be a rational strategy to improve chemotherapeutic efficacy in gastric cancer.
Collapse
Affiliation(s)
- Lifeng Feng
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Muchun Li
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Xinyang Hu
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Yiling Li
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Liyuan Zhu
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Miaoqin Chen
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Qi Wei
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Wenxia Xu
- Central LaboratoryAffiliated Jinhua HospitalMedical School of Zhejiang UniversityJinhuaZhejiangChina
| | - Qiyin Zhou
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Weikai Wang
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Dingwei Chen
- Department of General SurgerySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Xian Wang
- Department of Medical OncologySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| | - Hongchuan Jin
- Laboratory of Cancer BiologyKey Lab of Biotherapy in ZhejiangCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalMedical School of Zhejiang UniversityHangzhouChina
| |
Collapse
|
36
|
Alfred N, Qian B, Qin X, Yin X, Prajapati M, Dou Y, Li Y, Zhang Z. Inhibition of eIF2α Phosphorylation by Peste des Petits Ruminant Virus Phosphoprotein Facilitates Viral Replication. Front Vet Sci 2021; 8:645571. [PMID: 34295932 PMCID: PMC8290123 DOI: 10.3389/fvets.2021.645571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminant virus (PPRV) causes a highly contagious disease in small ruminants. The molecular mechanism of PPRV replication and its interactions with hosts are poorly studied. In other paramyxoviruses, the viral phosphoprotein (P) has been associated with multiple functions for key biological processes such as the regulation of transcription, translation, and the control of cell cycle. Phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is an important process for gene regulation in host cells under stress, including viral infection. In the present study, molecular mechanisms associated with PPRV replication and viral interaction with host cells were investigated. We describe the ability of PPRV to dephosphorylate eIF2α and the potential of PPRV P protein to induce the host cellular growth arrest DNA damage protein (GADD34), which is known to be associated with eIF2α dephosphorylation. Furthermore, we observed that PPRV P protein alone could block PERK/eIF2α phosphorylation. We speculate that PPRV exploits eIF2α dephosphorylation to facilitate viral replication and that PPRV P protein is involved in this molecular mechanism. This work provides new insights into further understanding PPRV pathobiology and its viral/host interactions.
Collapse
Affiliation(s)
- Niyokwishimira Alfred
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Bang Qian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meera Prajapati
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
37
|
Zika Virus Induces an Atypical Tripartite Unfolded Protein Response with Sustained Sensor and Transient Effector Activation and a Blunted BiP Response. mSphere 2021; 6:e0036121. [PMID: 34106769 PMCID: PMC8265652 DOI: 10.1128/msphere.00361-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To study how the Zika virus (ZIKV) interacts with the host unfolded protein response (UPR), we undertook a kinetics study. We show that ZIKV infection triggers an atypical tripartite UPR in A549 cells involving transient activation of the effectors X-box-binding protein 1, activating transcription factor 4 (ATF4), CCAAT enhancer-binding protein-homologous protein, and growth arrest and DNA damage-inducible protein 34 during early infection and sustained activation of all three UPR sensors: RNA-activated protein kinase-like endoplasmic reticulum-resident kinase (PERK), inositol-requiring kinase-1α (IRE1α), and ATF6. Sustained phosphorylation of the eukaryotic translation initiation factor 2α and rRNA degradation coincide with host translational shutoff, cell lysis, and virus release during late infection. We show a blunted response of the master negative regulator, the immunoglobulin heavy-chain-binding protein (BiP), by chemical UPR inducers, and we show that ZIKV suppresses BiP transcription and translation, suggesting that it may be necessary to blunt the BiP response to sustain UPR sensor activation. The PERK inhibitor GSK2606414 alone has no effects but synergizes with the ATF6 inhibitor Ceapin-A7 to inhibit early and late infection, whereas Ceapin-A7 alone inhibits late infection. Likewise, 4-phenylbutyric acid inhibits ZIKV replication by attenuating the PERK and ATF6 pathways and potentiating the IRE1α pathway, suggesting that ZIKV infection is differentially and temporally regulated by different UPR arms. ZIKV infection is inhibited by pretreatment of chemical UPR inducers but is refractory to the inhibitory activity of chemical inducers once infection has been established, suggesting that ZIKV has anti-UPR mechanisms that may be able to modulate and co-opt the UPR in its life cycle. IMPORTANCE The Zika virus originates from Africa and Asia but is emerging in other parts of the world. It usually causes an asymptomatic or mild, acute infection but can cause serious neurological complications, such as microcephaly and Guillain-Barré syndromes. Therefore, there is a pressing need for an antiviral. Viruses are obligative parasites and are dependent on the hosts for their propagation. As a result, we can target viruses by targeting host dependency. The host unfolded protein response is a cellular homeostatic response to stresses but can also be triggered by virus infections. We show here that Zika virus infection can cause stress and trigger the unfolded protein response. The Zika virus is able to manipulate, subvert, and co-opt the host unfolded protein response to aid its own replication. Understanding host dependency is important in the quest of a new class of antivirals called host-targeting agents.
Collapse
|
38
|
Tan YY, Zhang Y, Li B, Ou YW, Xie SJ, Chen PP, Mei SQ, Huang QJ, Zheng LL, Qu LH. PERK Signaling Controls Myoblast Differentiation by Regulating MicroRNA Networks. Front Cell Dev Biol 2021; 9:670435. [PMID: 34124052 PMCID: PMC8193987 DOI: 10.3389/fcell.2021.670435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
The unfolded protein response (UPR) plays important roles in various cells that have a high demand for protein folding, which are involved in the process of cell differentiation and development. Here, we separately knocked down the three sensors of the UPR in myoblasts and found that PERK knockdown led to a marked transformation in myoblasts from a fusiform to a rounded morphology, which suggests that PERK is required for early myoblast differentiation. Interestingly, knocking down PERK induced reprogramming of C2C12 myoblasts into stem-like cells by altering the miRNA networks associated with differentiation and stemness maintenance, and the PERK-ATF4 signaling pathway transactivated muscle differentiation-associated miRNAs in the early stage of myoblast differentiation. Furthermore, we identified Ppp1cc as a direct target gene of miR-128 regulated by the PERK signaling pathway and showed that its repression is critical for a feedback loop that regulates the activity of UPR-associated signaling pathways, leading to cell migration, cell fusion, endoplasmic reticulum expansion, and myotube formation during myoblast differentiation. Subsequently, we found that the RNA-binding protein ARPP21, encoded by the host gene of miR-128-2, antagonized miR-128 activity by competing with it to bind to the 3' untranslated region (UTR) of Ppp1cc to maintain the balance of the differentiation state. Together, these results reveal the crucial role of PERK signaling in myoblast maintenance and differentiation and identify the mechanism underlying the role of UPR signaling as a major regulator of miRNA networks during early differentiation of myoblasts.
Collapse
Affiliation(s)
- Ye-Ya Tan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang-Wen Ou
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Shu-Juan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-Pei Chen
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, China
| | - Shi-Qiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiao-Juan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Kitajima S, Sun W, Lee KL, Ho JC, Oyadomari S, Okamoto T, Masai H, Poellinger L, Kato H. A KDM6 inhibitor potently induces ATF4 and its target gene expression through HRI activation and by UTX inhibition. Sci Rep 2021; 11:4538. [PMID: 33633164 PMCID: PMC7907191 DOI: 10.1038/s41598-021-83857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
UTX/KDM6A encodes a major histone H3 lysine 27 (H3K27) demethylase, and is frequently mutated in various types of human cancers. Although UTX appears to play a crucial role in oncogenesis, the mechanisms involved are still largely unknown. Here we show that a specific pharmacological inhibitor of H3K27 demethylases, GSK-J4, induces the expression of transcription activating factor 4 (ATF4) protein as well as the ATF4 target genes (e.g. PCK2, CHOP, REDD1, CHAC1 and TRIB3). ATF4 induction by GSK-J4 was due to neither transcriptional nor post-translational regulation. In support of this view, the ATF4 induction was almost exclusively dependent on the heme-regulated eIF2α kinase (HRI) in mouse embryonic fibroblasts (MEFs). Gene expression profiles with UTX disruption by CRISPR-Cas9 editing and the following stable re-expression of UTX showed that UTX specifically suppresses the expression of the ATF4 target genes, suggesting that UTX inhibition is at least partially responsible for the ATF4 induction. Apoptosis induction by GSK-J4 was partially and cell-type specifically correlated with the activation of ATF4-CHOP. These findings highlight that the anti-cancer drug candidate GSK-J4 strongly induces ATF4 and its target genes via HRI activation and raise a possibility that UTX might modulate cancer formation by regulating the HRI-ATF4 axis.
Collapse
Affiliation(s)
- Shojiro Kitajima
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore ,grid.26091.3c0000 0004 1936 9959Institute for Advanced Biosciences, Keio University, Kakuganji 246-2, Mizukami, Tsuruoka, Yamagata 997-0052 Japan
| | - Wendi Sun
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore
| | - Kian Leong Lee
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore ,grid.428397.30000 0004 0385 0924Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Republic of Singapore
| | - Jolene Caifeng Ho
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore
| | - Seiichi Oyadomari
- grid.267335.60000 0001 1092 3579Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503 Japan
| | - Takashi Okamoto
- grid.260433.00000 0001 0728 1069Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, 467-8601 Japan
| | - Hisao Masai
- grid.272456.0Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506 Japan
| | - Lorenz Poellinger
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore ,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hiroyuki Kato
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Republic of Singapore ,grid.260433.00000 0001 0728 1069Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Science, Mizuho-ku, Nagoya, 467-8601 Japan ,grid.272456.0Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506 Japan
| |
Collapse
|
40
|
Tajan M, Hennequart M, Cheung EC, Zani F, Hock AK, Legrave N, Maddocks ODK, Ridgway RA, Athineos D, Suárez-Bonnet A, Ludwig RL, Novellasdemunt L, Angelis N, Li VSW, Vlachogiannis G, Valeri N, Mainolfi N, Suri V, Friedman A, Manfredi M, Blyth K, Sansom OJ, Vousden KH. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun 2021; 12:366. [PMID: 33446657 PMCID: PMC7809039 DOI: 10.1038/s41467-020-20223-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Many tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Nathalie Legrave
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Robert L Ludwig
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Nikolaos Angelis
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vivian S W Li
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Georgios Vlachogiannis
- Gastrointestinal Cancer Biology and Genomics Team, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nicola Valeri
- Gastrointestinal Cancer Biology and Genomics Team, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Vipin Suri
- Raze Therapeutics, Inc., Cambridge, MA, USA
| | | | | | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
41
|
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 2020; 295:18390-18405. [PMID: 33122193 PMCID: PMC7939465 DOI: 10.1074/jbc.ra120.014248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ganesh Kadamur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India; School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
42
|
Pavlova NN, King B, Josselsohn RH, Violante S, Macera VL, Vardhana SA, Cross JR, Thompson CB. Translation in amino-acid-poor environments is limited by tRNA Gln charging. eLife 2020; 9:62307. [PMID: 33289483 PMCID: PMC7744096 DOI: 10.7554/elife.62307] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino-acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core-binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino-acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rachel H Josselsohn
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Victoria L Macera
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Santosha A Vardhana
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Justin R Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Craig B Thompson
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
43
|
Smith SG, Haynes KA, Hegde AN. Degradation of Transcriptional Repressor ATF4 during Long-Term Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21228543. [PMID: 33198401 PMCID: PMC7697267 DOI: 10.3390/ijms21228543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of long-term synaptic plasticity requires gene expression mediated by cAMP-responsive element binding protein (CREB). Gene expression driven by CREB can commence only if the inhibition by a transcriptional repressor activating transcription factor 4 (ATF4; also known as CREB2) is relieved. Previous research showed that the removal of ATF4 occurs through ubiquitin-proteasome-mediated proteolysis. Using chemically induced hippocampal long-term potentiation (cLTP) as a model system, we investigate the mechanisms that control ATF4 degradation. We observed that ATF4 phosphorylated at serine-219 increases upon induction of cLTP and decreases about 30 min thereafter. Proteasome inhibitor β-lactone prevents the decrease in ATF4. We found that the phosphorylation of ATF4 is mediated by cAMP-dependent protein kinase. Our initial experiments towards the identification of the ligase that mediates ubiquitination of ATF4 revealed a possible role for β-transducin repeat containing protein (β-TrCP). Regulation of ATF4 degradation is likely to be a mechanism for determining the threshold for gene expression underlying maintenance of long-term synaptic plasticity and by extension, long-term memory.
Collapse
Affiliation(s)
| | | | - Ashok N. Hegde
- Correspondence: ; Tel.: +(478)-445-3464; Fax: +(478)-445-5290
| |
Collapse
|
44
|
Zhang Q, Yin X, Zhang Y. MicroRNA-221 Promotes Cell Proliferation and Inhibits Apoptosis in Osteosarcoma Cells by Directly Targeting FBXW11 and Regulating Wnt Signaling. Arch Med Res 2020; 52:191-199. [PMID: 33131925 DOI: 10.1016/j.arcmed.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs play a crucial role in the progression of various cancers, and microRNA-221 (miR-221) has been observed to be significantly overexpressed in osteosarcoma (OS) cells. FBXW11, a vital F-box protein of the ubiquitin-proteasome system, mediates the proliferation and survival of cancer cells by targeting multiple substrates for degradation. FBXW11 inhibits OS growth and metastasis by antagonizing the β-catenin/Wnt signaling pathway. Therefore, we hypothesized that miR-221 targets FBXW11 to mediate Wnt signaling and promote OS proliferation. METHODS In this study, we demonstrated the increased expression of miR-221 and FBXW11 in OS tissues and cell lines by real-time polymerase chain reaction (RT-PCR). Moreover, to elucidate the regulatory mechanism(s) of miR-221 and FBXW11 in progression, cell viability and apoptosis were analyzed by the MTT assay and flow cytometry, respectively. RESULTS The results showed that the overexpression of miR-221 in OS cells dramatically promoted cell growth and cell cycle progression, and inhibited apoptosis, whereas miR-221 inhibitors conversely inhibited proliferation and promoted apoptosis in OS cells. The data also showed that FBXW11 directly targeted miR-221 and miR-221 regulated OS cell proliferation and apoptosis by binding to FBXW11. We further confirmed that miR-221 targeted FBXW11 to promote proliferation and inhibit apoptosis in OS cell lines by inhibiting Wnt signaling. INTERPRETATION AND CONCLUSIONS Overall, our study revealed a functional mechanism for miR-221 in OS. Further studies will elucidate its role in the progression of OS and inhibiting miR-221 may represent a useful treatment strategy.
Collapse
Affiliation(s)
- Qingzhu Zhang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xuelian Yin
- Department of Stomatology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yi Zhang
- Department of Orthopedic Trauma, Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
45
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
47
|
Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends Cancer 2020; 6:960-973. [PMID: 32540455 DOI: 10.1016/j.trecan.2020.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Understanding genetic and epigenetic changes that underlie abnormal proliferation of hematopoietic stem and progenitor cells is critical for development of new approaches to monitor and treat leukemia. The unfolded protein response (UPR) is a conserved adaptive signaling pathway that governs protein folding, secretion, and energy production and serves to maintain protein homeostasis in various cellular compartments. Deregulated UPR signaling, which often occurs in hematopoietic stem cells and leukemia, defines the degree of cellular toxicity and perturbs protein homeostasis, and at the same time, offers a novel therapeutic target. Here, we review current knowledge related to altered UPR signaling in leukemia and highlight possible strategies for exploiting the UPR as treatment for this disease.
Collapse
Affiliation(s)
- Ali Khateb
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Journiac N, Gilabert-Juan J, Cipriani S, Benit P, Liu X, Jacquier S, Faivre V, Delahaye-Duriez A, Csaba Z, Hourcade T, Melinte E, Lebon S, Violle-Poirsier C, Oury JF, Adle-Biassette H, Wang ZQ, Mani S, Rustin P, Gressens P, Nardelli J. Cell Metabolic Alterations due to Mcph1 Mutation in Microcephaly. Cell Rep 2020; 31:107506. [DOI: 10.1016/j.celrep.2020.03.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/21/2019] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
|
49
|
Ebert SM, Bullard SA, Basisty N, Marcotte GR, Skopec ZP, Dierdorff JM, Al-Zougbi A, Tomcheck KC, DeLau AD, Rathmacher JA, Bodine SC, Schilling B, Adams CM. Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPβ. J Biol Chem 2020; 295:2787-2803. [PMID: 31953319 PMCID: PMC7049960 DOI: 10.1074/jbc.ra119.012095] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is a highly-prevalent and debilitating condition that remains poorly understood at the molecular level. Previous work found that aging, fasting, and immobilization promote skeletal muscle atrophy via expression of activating transcription factor 4 (ATF4) in skeletal muscle fibers. However, the direct biochemical mechanism by which ATF4 promotes muscle atrophy is unknown. ATF4 is a member of the basic leucine zipper transcription factor (bZIP) superfamily. Because bZIP transcription factors are obligate dimers, and because ATF4 is unable to form highly-stable homodimers, we hypothesized that ATF4 may promote muscle atrophy by forming a heterodimer with another bZIP family member. To test this hypothesis, we biochemically isolated skeletal muscle proteins that associate with the dimerization- and DNA-binding domain of ATF4 (the bZIP domain) in mouse skeletal muscle fibers in vivo Interestingly, we found that ATF4 forms at least five distinct heterodimeric bZIP transcription factors in skeletal muscle fibers. Furthermore, one of these heterodimers, composed of ATF4 and CCAAT enhancer-binding protein β (C/EBPβ), mediates muscle atrophy. Within skeletal muscle fibers, the ATF4-C/EBPβ heterodimer interacts with a previously unrecognized and evolutionarily conserved ATF-C/EBP composite site in exon 4 of the Gadd45a gene. This three-way interaction between ATF4, C/EBPβ, and the ATF-C/EBP composite site activates the Gadd45a gene, which encodes a critical mediator of muscle atrophy. Together, these results identify a biochemical mechanism by which ATF4 induces skeletal muscle atrophy, providing molecular-level insights into the etiology of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California 94945
| | - George R Marcotte
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Zachary P Skopec
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Asma Al-Zougbi
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Kristin C Tomcheck
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Austin D DeLau
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jacob A Rathmacher
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Sue C Bodine
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Emmyon, Inc., Coralville, Iowa 52241
| | | | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241.
| |
Collapse
|
50
|
Fu YX, Wang FM, Ou-Yang XE, Yang HM, Hu T, Wang YF, Wang YF, Wang H, Hu R. Anti-Müllerian Hormone Regulates Stem Cell Factor via cAMP/PKA Signaling Pathway in Human Granulosa Cells by Inhibiting the Phosphorylation of CREB. Reprod Sci 2020; 27:325-333. [PMID: 32046389 DOI: 10.1007/s43032-019-00033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/03/2019] [Indexed: 10/25/2022]
Abstract
Anti-Müllerian hormone (AMH) downregulates the level of stem cell factor (SCF) via the cAMP/PKA signaling pathway in human granulosa cells (GCs). Little information is available on the molecular mechanism underlying the interaction. This study is aimed at determining whether AMH regulates expression of SCF via the cAMP-PKA-CREB signaling pathway in human GCs. In the present study, we verified the binding of cAMP-response element-binding protein (CREB) to promoter of SCF in human GCs. Furthermore, the effect of CREB was tested on the SCF promoter, and the site of CREB binding to SCF promoter was identified using truncations as well as assays of SCF-promoted mutation and CREB mutation. To investigate the correlation among AMH, SCF promoter, and CREB, pGL-Basic-SCF+CREB was transfected into overexpressed AMH GCs (AMH-high GCs), low expressed AMH GCs (AMH-low GCs), and normal GCs (GCs), respectively. Finally, immunofluorescence, double immunostaining, and Western blot were carried out in AMH-high and AMH-low GCs to confirm the AMH-mediated regulation of SCF expression by inhibiting the phosphorylation of CREB (pCREB) in GCs. Results indicated CREB interacted with SCF promoter and significantly enhanced the transcription level of SCF. The CREB binding site was localized at 318-321 bp of SCF gene promote. AMH inhibits the expression of SCF by phosphorylation of CREB via the PKA signaling pathway in GCs. These findings provide an in-depth understanding of the molecular mechanism underlying AMH suppressing the follicle growth, which would aid in the development of a novel therapy.
Collapse
Affiliation(s)
- Yun-Xing Fu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fei-Miao Wang
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | | | - Hui-Min Yang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Hu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ya-Fei Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Fei Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|