1
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Safi S, Badshah Y, Shabbir M, Zahra K, Khan K, Dilshad E, Afsar T, Almajwal A, Alruwaili NW, Al-disi D, Abulmeaty M, Razak S. Predicting 3D Structure, Cross Talks, and Prognostic Significance of KLF9 in Cervical Cancer. Front Oncol 2022; 11:797007. [PMID: 35047407 PMCID: PMC8761731 DOI: 10.3389/fonc.2021.797007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to identify the new blood-based biomarkers for the diagnosis and prognosis of cervical cancer. Moreover, the three-dimensional (3D) structure of Kruppel-like factor 9 (KLF9) was also determined in order to better understand its function, and a signaling pathway was constructed to identity its upstream and downstream targets. In the current study, the co-expressions of tumor protein D52 (TPD52), KLF9, microRNA 223 (miR-223), and protein kinase C epsilon (PKCϵ) were evaluated in cervical cancer patients and a possible relation with disease outcome was revealed. The expressions of TPD52, KLF9, miR-223, and PKCϵ were studied in the blood of 100 cervical cancer patients and 100 healthy controls using real-time PCR. The 3D structure of KLF9 was determined through homology modeling via the SWISS-MODEL and assessed using the Ramachandran plot. The predicted 3D structure of KLF9 had a similarity index of 62% with its template (KLF4) with no bad bonds in it. In order to construct a genetic pathway, depicting the crosstalk between understudied genes, STRING analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and DAVID software were used. The constructed genetic pathway showed that all the understudied genes are linked to each other and involved in the PI3K/Akt signaling pathway. There was a 23-fold increase in TPD52 expression, a 2-fold increase in miR-223 expression, a 0.14-fold decrease in KLF9 expression, and a 0.05-fold decrease of PKCϵ expression in cervical cancer. In the present study, we observed an association of the expressions of TPD52, KLF9, miR-223, and PKCϵ with tumor stage, metastasis, and treatment status of cervical cancer patients. Elevated expressions of TPD52 and miR-223 and reduced expressions of KLF9 and PKCϵ in peripheral blood of cervical cancer patients may serve as predictors of disease diagnosis and prognosis. Nevertheless, further in vitro and tissue-level studies are required to strengthen their role as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Al-disi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Klaassen K, Stankovic B, Kotur N, Djordjevic M, Zukic B, Nikcevic G, Ugrin M, Spasovski V, Srzentic S, Pavlovic S, Stojiljkovic M. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro. J Appl Genet 2016; 58:79-85. [PMID: 27447460 DOI: 10.1007/s13353-016-0359-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 11/28/2022]
Abstract
Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.
Collapse
Affiliation(s)
- Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Djordjevic
- Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", School of Medicine, University of Belgrade, Radoja Dakića 6-8, 11070, Belgrade, Serbia
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Gordana Nikcevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Sanja Srzentic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia.
| |
Collapse
|
5
|
Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 2016; 127:1856-62. [PMID: 26903544 DOI: 10.1182/blood-2016-01-694331] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Until recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thus a larger panel of genes can be analyzed and whole exome and/or whole genome sequencing can be used when no variants are found in the candidate genes. By using such approaches in patients with unexplained anemias, we have discovered that a broad range of hitherto unrelated human red cell disorders are caused by variants in KLF1, a master regulator of erythropoiesis, which were previously considered to be extremely rare causes of human genetic disease.
Collapse
|
6
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Sorolla A, Tallack MR, Oey H, Harten SK, Daxinger LC, Magor GW, Combes AN, Ilsley M, Whitelaw E, Perkins AC. Identification of novel hypomorphic and null mutations in Klf1 derived from a genetic screen for modifiers of α-globin transgene variegation. Genomics 2015; 105:116-22. [DOI: 10.1016/j.ygeno.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
|
8
|
Deng W, Vanderbilt DB, Lin CC, Martin KH, Brundage KM, Ruppert JM. SOX9 inhibits β-TrCP-mediated protein degradation to promote nuclear GLI1 expression and cancer stem cell properties. J Cell Sci 2015; 128:1123-38. [PMID: 25632159 DOI: 10.1242/jcs.162164] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The high mobility group box protein SOX9 and the GLI1 transcription factor play protumorigenic roles in pancreatic ductal adenocarcinoma (PDA). In Kras transgenic mice, each of these factors are crucial for the development of PDA precursor lesions. SOX9 transcription is directly regulated by GLI1, but how SOX9 functions downstream of GLI1 is unclear. We observed positive feedback, such that SOX9-deficient PDA cells have severely repressed levels of endogenous GLI1, attributed to loss of GLI1 protein stability. SOX9 associated with the F-box domain of the SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase component, β-TrCP (also known as F-box/WD repeat-containing protein 1A), and suppressed its association with SKP1 and GLI1, a substrate of SCF-β-TrCP. SOX9 also tethered β-TrCP within the nucleus and promoted its degradation. SOX9 bound to β-TrCP through the SOX9 C-terminal PQA/S domain that mediates transcriptional activation. Suppression of β-TrCP in SOX9-deficient PDA cells restored GLI1 levels and promoted SOX9-dependent cancer stem cell properties. These studies identify SOX9-GLI1 positive feedback as a major determinant of GLI1 protein stability and implicate β-TrCP as a latent SOX9-bound tumor suppressor with the potential to degrade oncogenic proteins in tumor cells.
Collapse
Affiliation(s)
- Wentao Deng
- The Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506 The Mary Babb Randolph Cancer Center, West Virginia University, West Virginia 26506
| | - Daniel B Vanderbilt
- Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Chen-Chung Lin
- The Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506 The Mary Babb Randolph Cancer Center, West Virginia University, West Virginia 26506
| | - Karen H Martin
- The Mary Babb Randolph Cancer Center, West Virginia University, West Virginia 26506
| | - Kathleen M Brundage
- The Mary Babb Randolph Cancer Center, West Virginia University, West Virginia 26506
| | - J Michael Ruppert
- The Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506 The Mary Babb Randolph Cancer Center, West Virginia University, West Virginia 26506 Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
9
|
A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev Biol 2014; 385:433-47. [DOI: 10.1016/j.ydbio.2013.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
|
10
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
11
|
Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 2013; 20:193-200. [PMID: 23474875 DOI: 10.1097/moh.0b013e32835f59ba] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Krüppel-like factor 1 (KLF1) regulates most aspects of erythropoiesis. Many years ago, transgenic mouse studies implicated KLF1 in the control of the human γ-globin to β-globin switch. In this review, we will integrate these initial studies with recent developments in human genetics to discuss our present understanding of how KLF1 and its target genes direct the switch. RECENT FINDINGS Recent studies have shown that human mutations in KLF1 are common and mostly asymptomatic, but lead to significant increases in levels of fetal hemoglobin (HbF) (α2γ2) and adult HbA2 (α2δ2). Genome-wide association studies (GWAS) have demonstrated that three primary loci are associated with increased HbF levels in the population: the β-globin locus itself, the BCL11A locus, and a site between MYB and HBS1L. We discuss evidence that KLF1 directly regulates BCL11A, MYB and other genes, which are involved directly or indirectly in γ-globin silencing, thus providing a link between GWAS and KLF1 in hemoglobin switching. SUMMARY KLF1 regulates the γ-globin to β-globin genetic switch by many mechanisms. Firstly, it facilitates formation of an active chromatin hub (ACH) at the β-globin gene cluster. Specifically, KLF1 conscripts the adult-stage β-globin gene to replace the γ-globin gene within the ACH in a stage-specific manner. Secondly, KLF1 acts as a direct activator of genes that encode repressors of γ-globin gene expression. Finally, KLF1 is a regulator of many components of the cell cycle machinery. We suggest that dysregulation of these genes leads to cell cycle perturbation and 'erythropoietic stress' leading to indirect upregulation of HbF.
Collapse
|
12
|
Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 2013; 33:2976-87. [PMID: 23716600 DOI: 10.1128/mcb.00074-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.
Collapse
|
13
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Zhang W, Wang X, Xia X, Liu X, Suo S, Guo J, Li M, Cao W, Cai Z, Hui Z, Subramaniam M, Spelsberg TC, Wang J, Wang L. Klf10 inhibits IL-12p40 production in macrophage colony-stimulating factor-induced mouse bone marrow-derived macrophages. Eur J Immunol 2013; 43:258-269. [PMID: 23065757 PMCID: PMC3842096 DOI: 10.1002/eji.201242697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/06/2012] [Accepted: 10/09/2012] [Indexed: 11/06/2022]
Abstract
Bone marrow-derived macrophages (BMMs) treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), differentiate into GM-CSF-induced mouse bone marrow-derived macrophages (GM-BMMs) or M-CSF-induced mouse bone marrow-derived macrophages (M-BMMs), which have an M1 or M2 profile, respectively. GM-BMMs produce large amounts of proinflammatory cytokines and mediate resistance to pathogens, whereas M-BMMs produce antiinflammatory cytokines that contribute to tissue repair and remodeling. M-BMMs stimulated with lipopolysaccharide (LPS) are in an antiinflammatory state, with an IL-12(low) IL-10(high) phenotype. However, the regulation of this process remains unclear. Klf10 belongs to the family of Krüppel-like transcription factors and was initially described as a TGF-β inducible early gene 1. IL-12p40 is upregulated in LPS-stimulated M-BMMs from Klf10-deficient mice, but downregulated during Klf10 overexpression. Klf11, another member of the Krüppel-like factor family, can also repress the production of IL-12p40. Furthermore, Klf10 binds to the CACCC element of the IL-12p40 promoter and inhibits its transcription. We have therefore identified Klf10 as a transcription factor that regulates the expression of IL-12p40 in M-BMMs.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuelian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Xia
- Clinical Laboratory of Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Suo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqiang Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoyuan Hui
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Thomas C. Spelsberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Tallack MR, Magor GW, Dartigues B, Sun L, Huang S, Fittock JM, Fry SV, Glazov EA, Bailey TL, Perkins AC. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res 2012; 22:2385-98. [PMID: 22835905 PMCID: PMC3514668 DOI: 10.1101/gr.135707.111] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KLF1 (formerly known as EKLF) regulates the development of erythroid cells from bi-potent progenitor cells via the transcriptional activation of a diverse set of genes. Mice lacking Klf1 die in utero prior to E15 from severe anemia due to the inadequate expression of genes controlling hemoglobin production, cell membrane and cytoskeletal integrity, and the cell cycle. We have recently described the full repertoire of KLF1 binding sites in vivo by performing KLF1 ChIP-seq in primary erythroid tissue (E14.5 fetal liver). Here we describe the KLF1-dependent erythroid transcriptome by comparing mRNA-seq from Klf1+/+ and Klf1−/− erythroid tissue. This has revealed novel target genes not previously obtainable by traditional microarray technology, and provided novel insights into the function of KLF1 as a transcriptional activator. We define a cis-regulatory module bound by KLF1, GATA1, TAL1, and EP300 that coordinates a core set of erythroid genes. We also describe a novel set of erythroid-specific promoters that drive high-level expression of otherwise ubiquitously expressed genes in erythroid cells. Our study has identified two novel lncRNAs that are dynamically expressed during erythroid differentiation, and discovered a role for KLF1 in directing apoptotic gene expression to drive the terminal stages of erythroid maturation.
Collapse
Affiliation(s)
- Michael R Tallack
- Mater Medical Research Institute, Mater Hospital, Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kotur N, Stankovic B, Kassela K, Georgitsi M, Vicha A, Leontari I, Dokmanovic L, Janic D, Krstovski N, Klaassen K, Radmilovic M, Stojiljkovic M, Nikcevic G, Simeonidis A, Sivolapenko G, Pavlovic S, Patrinos GP, Zukic B. 6-mercaptopurine influences TPMT gene transcription in a TPMT gene promoter variable number of tandem repeats-dependent manner. Pharmacogenomics 2012; 13:283-95. [DOI: 10.2217/pgs.11.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: TPMT activity is characterized by a trimodal distribution, namely low, intermediate and high methylator. TPMT gene promoter contains a variable number of GC-rich tandem repeats (VNTRs), namely A, B and C, ranging from three to nine repeats in length in an AnBmC architecture. We have previously shown that the VNTR architecture in the TPMT gene promoter affects TPMT gene transcription. Materials, methods & results: Here we demonstrate, using reporter assays, that 6-mercaptopurine (6-MP) treatment results in a VNTR architecture-dependent decrease of TPMT gene transcription, mediated by the binding of newly recruited protein complexes to the TPMT gene promoter, upon 6-MP treatment. We also show that acute lymphoblastic leukemia patients undergoing 6-MP treatment display a VNTR architecture-dependent response to 6-MP. Conclusion: These data suggest that the TPMT gene promoter VNTR architecture can be potentially used as a pharmacogenomic marker to predict toxicity due to 6-MP treatment in acute lymphoblastic leukemia patients. Original submitted 27 July 2011; Revision submitted 24 October 2011
Collapse
Affiliation(s)
- Nikola Kotur
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Biljana Stankovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Katerina Kassela
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Marianthi Georgitsi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Anna Vicha
- Hematology Division, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, GR-26504, Greece
| | - Iliana Leontari
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Lidija Dokmanovic
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Dragana Janic
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Nada Krstovski
- University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Milena Radmilovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Gordana Nikcevic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - Argiris Simeonidis
- Hematology Division, School of Health Sciences, Faculty of Medicine, University of Patras, Patras, GR-26504, Greece
| | - Gregory Sivolapenko
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Sonja Pavlovic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, GR-26504, Greece
| | - Branka Zukic
- Institute of Molecular Genetics & Genetic Engineering, University of Belgrade, Laboratory for Molecular Hematology, Belgrade, 11010, Serbia
| |
Collapse
|
17
|
Abstract
The cellular events that lead to terminal erythroid differentiation rely on the controlled interplay of extra- and intracellular regulatory factors. Their downstream effects are highly coordinated and result in the structural/morphologic and metabolic changes that uniquely characterize a maturing red blood cell. Erythroid Krüppel-like factor (EKLF/KLF1) is one of a very small number of intrinsic transcription factors that play a major role in regulating these events. This review covers 3 major aspects of erythropoiesis in which EKLF plays crucial functions: (1) at the megakaryocyte-erythroid progenitor stage, where it is involved in erythroid lineage commitment; (2) during the global expansion of erythroid gene expression in primitive and definitive lineages, where it plays a direct role in globin switching; and (3) during the terminal maturation of red cells, where it helps control exit from the cell cycle. We conclude by describing recent studies of mammalian EKLF/KLF1 mutations that lead to altered red cell phenotypes and disease.
Collapse
Affiliation(s)
- Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
18
|
Tallack MR, Perkins AC. KLF1 directly coordinates almost all aspects of terminal erythroid differentiation. IUBMB Life 2011; 62:886-90. [PMID: 21190291 DOI: 10.1002/iub.404] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The molecular events and transcriptional mechanisms that underlie erythropoiesis are of great interest to biologists and hematologists since disorders of erythrocytes are common and remain relatively poorly understood. Kruppel-like factor 1 (KLF1) is a critical transcription factor for erythropoiesis in mice and man. Recently the use of chromatin immunoprecipitation (ChIP) coupled to next-generation DNA sequencing (ChIP-seq) has led to an updated understanding of how KLF1 functions in vivo. The full extent of KLF1 target genes have provided new insights into erythropoiesis, and have established that KLF1 controls almost all aspects of erythroid cell development and maturation.
Collapse
Affiliation(s)
- Michael R Tallack
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
19
|
Abstract
Erythroid cells and megakaryocytes are derived from a common precursor, the megakaryocyte-erythroid progenitor. Although these 2 closely related hematopoietic cell types share many transcription factors, there are several key differences in their regulatory networks that lead to differential gene expression downstream of the megakaryocyte-erythroid progenitor. With the advent of next-generation sequencing and our ability to precisely define transcription factor chromatin occupancy in vivo on a global scale, we are much closer to understanding how these 2 lineages are specified and in general how transcription factor complexes govern hematopoiesis.
Collapse
|
20
|
Kalra IS, Alam MM, Choudhary PK, Pace BS. Krüppel-like Factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol 2011; 154:248-59. [PMID: 21539536 DOI: 10.1111/j.1365-2141.2011.08710.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SP1/Krüppel-like Factor (SP1/KLF) family of transcription factors plays a role in diverse cellular processes, including proliferation, differentiation and control of gene transcription. The discovery of KLF1 (EKLF), a key regulator of HBB (β-globin) gene expression, expanded our understanding of the role of KLFs in erythropoiesis. In this study, we investigated a mechanism of HBG (γ-globin) regulation by KLF4. siRNA-mediated gene silencing and enforced expression of KLF4 in K562 cells substantiated the ability of KLF4 to positively regulate endogenous HBG gene transcription. The physiological significance of this finding was confirmed in primary erythroid cells, where KLF4 knockdown at day 11 significantly attenuated HBG mRNA levels and enforced expression at day 28 stimulated the silenced HBG genes. In vitro binding characterization using the γ-CACCC and β-CACCC probes demonstrated KLF4 preferentially binds the endogenous γ-CACCC, while CREB binding protein (CREBBP) binding was not selective. Co-immunoprecipitation studies confirmed protein-protein interaction between KLF4 and CREBBP. Furthermore, sequential chromatin immunoprecipitation assays showed co-localization of both factors in the γ-CACCC region. Subsequent luciferase reporter studies demonstrated that KLF4 trans-activated HBG promoter activity and that CREBBP enforced expression resulted in gene repression. Our data supports a model of antagonistic interaction of KLF4/CREBBP trans-factors in HBG regulation.
Collapse
Affiliation(s)
- Inderdeep S Kalra
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
22
|
Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW. Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 2010; 10:935-54. [PMID: 20553216 DOI: 10.1586/era.10.62] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein-protein and protein-DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
23
|
Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood 2010; 116:3972-80. [PMID: 20720183 DOI: 10.1182/blood-2010-04-281196] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The primitive erythroid (EryP) lineage is the first to differentiate during mammalian embryogenesis. Eklf/Klf1 is a transcriptional regulator that is essential for definitive erythropoiesis in the fetal liver. Dissection of the role(s) of Eklf within the EryP compartment has been confounded by the simultaneous presence of EryP and fetal liver-derived definitive erythroid (EryD) cells in the blood. To address this problem, we have distinguished EryP from their definitive counterparts by crossing Eklf(+/-) mutant and ε-globin::histone H2B-GFP transgenic mice. Eklf-deficient EryP exhibit membrane ruffling and a failure to acquire the typical discoidal erythroid shape but they can enucleate. Flow cytometric analyses of H2B-GFP(+) EryP revealed that Eklf heterozygosity results in the loss of Ter119 surface expression on EryP but not on EryD. Null mutation of Eklf resulted in abnormal expression of a range of surface proteins by EryP. In particular, several megakaryocyte markers were ectopically expressed by maturing Eklf-null EryP. Unexpectedly, the platelet tetraspanin CD9 was detected on nucleated wild-type EryP but not on mature EryD and thus provides a useful marker for purifying circulating EryP. We conclude that Eklf gene dosage is crucial for regulating the surface phenotype and molecular identity of maturing primitive erythroid cells.
Collapse
|
24
|
EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 2010; 30:2811-22. [PMID: 20368355 DOI: 10.1128/mcb.01016-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The switch from proliferation to differentiation during the terminal stages of erythropoiesis is a tightly controlled process that relies in part on transcription factor-mediated activation of cell cycle components. EKLF is a key transcription factor that is necessary for the initial establishment of the red cell phenotype. Here, we find that EKLF also plays a role during the subsequent differentiation process, as it induces p21(WAF1/CIP1) expression independent of p53 to regulate the changes in the cell cycle underlying erythroid maturation. EKLF activates p21 not only by directly binding to an EKLF site within a previously characterized GC-rich region in the p21 proximal promoter but also by occupancy at a novel, phylogenetically conserved region that contains consensus CACCC core motifs located downstream from the p21 TATA box. Our findings demonstrate that EKLF, likely in coordination with other transcription factors, directly contributes to the complex set of events that occur at the final erythroid cell divisions and accentuates terminal differentiation directly by activation of CDK inhibitors such as p21.
Collapse
|
25
|
Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol 2010; 149:181-94. [PMID: 20201948 DOI: 10.1111/j.1365-2141.2010.08105.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of haemoglobin switching has represented a focus in haematology due in large part to the clinical relevance of the fetal to adult haemoglobin switch for developing targeted approaches to ameliorate the severity of the beta-haemoglobinopathies. Additionally, the process by which this switch occurs represents an important paradigm for developmental gene regulation. In this review, we provide an overview of both the embryonic primitive to definitive switch in haemoglobin expression, as well as the fetal to adult switch that is unique to humans and old world monkeys. We discuss the nature of these switches and models of their regulation. The factors that have been suggested to regulate this process are then discussed. With the increased understanding and discovery of molecular regulators of haemoglobin switching, such as BCL11A, new avenues of research may lead ultimately to novel therapeutic, mechanism-based approaches to fetal haemoglobin reactivation in patients.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
26
|
Porcine KLF gene family: Structure, mapping, and phylogenetic analysis. Genomics 2010; 95:111-9. [DOI: 10.1016/j.ygeno.2009.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 11/20/2022]
|
27
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
28
|
Ross J, Bottardi S, Bourgoin V, Wollenschlaeger A, Drobetsky E, Trudel M, Milot E. Differential requirement of a distal regulatory region for pre-initiation complex formation at globin gene promoters. Nucleic Acids Res 2009; 37:5295-308. [PMID: 19567738 PMCID: PMC2760785 DOI: 10.1093/nar/gkp545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although distal regulatory regions are frequent throughout the genome, the molecular mechanisms by which they act in a promoter-specific manner remain to be elucidated. The human β-globin locus constitutes an extremely well-established multigenic model to investigate this issue. In erythroid cells, the β-globin locus control region (LCR) exerts distal regulatory function by influencing local chromatin organization and inducing high-level expression of individual β-like globin genes. Moreover, in transgenic mice expressing the entire human β-globin locus, deletion of LCR-hypersensitive site 2 (HS2) can alter β-like globin gene expression. Here, we show that abnormal expression of human β-like globin genes in the absence of HS2 is associated with decreased efficacy of pre-initiation complex formation at the human ɛ- and γ-promoters, but not at the β-promoter. This promoter-specific phenomenon is associated with reduced long-range interactions between the HS2-deleted LCR and human γ-promoters. We also find that HS2 is dispensable for high-level human β-gene transcription, whereas deletion of this hypersensitive site can alter locus chromatin organization; therefore the functions exerted by HS2 in transcriptional enhancement and locus chromatin organization are distinct. Overall, our data delineate one mechanism whereby a distal regulatory region provides promoter-specific transcriptional enhancement.
Collapse
Affiliation(s)
- Julie Ross
- Faculty of Medicine, University of Montreal, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Perrine SP, Mankidy R, Boosalis MS, Bieker JJ, Faller DV. Erythroid Kruppel-like factor (EKLF) is recruited to the gamma-globin gene promoter as a co-activator and is required for gamma-globin gene induction by short-chain fatty acid derivatives. Eur J Haematol 2009; 82:466-76. [PMID: 19220418 DOI: 10.1111/j.1600-0609.2009.01234.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for beta-type globin gene switching, and specifically activates transcription of the adult beta-globin gene promoter. We sought to determine if EKLF is also required for activation of the gamma-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. METHODS The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. RESULTS AND CONCLUSIONS Knockdown of EKLF prevents SCFA-induced expression of the gamma-globin promoter in a stably expressed microLCRbeta(pr)R(luc) (A)gamma(pr)F(luc) cassette, and prevents induction of the endogenous gamma-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous gamma-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for gamma-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous gamma-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes.
Collapse
Affiliation(s)
- Susan P Perrine
- Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
30
|
EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 2008; 112:576-84. [DOI: 10.1182/blood-2007-07-098996] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Previous observations suggested that functional antagonism between FLI-1 and EKLF might be involved in the commitment toward erythrocytic or megakaryocytic differentiation. We show here, using inducible shRNA expression, that EKLF knockdown in mouse erythroleukemia (MEL) cells decreases erythrocytic and increases megakaryocytic as well as Fli-1 gene expression. Chromatin immunoprecipitation analyses revealed that the increase in megakaryocytic gene expression is associated with a marked increase in RNA pol II and FLI-1 occupancy at their promoters, albeit FLI-1 protein levels are only minimally affected. Similarly, we show that human CD34+ progenitors infected with shRNA lentivirus allowing EKLF knockdown generate an increased number of differentiated megakaryocytic cells associated with increased levels of megakaryocytic and Fli-1 gene transcripts. Single-cell progeny analysis of a cell population enriched in bipotent progenitors revealed that EKLF knockdown increases the number of megakaryocytic at the expense of erythrocytic colonies. Taken together, these data indicate that EKLF restricts megakaryocytic differentiation to the benefit of erythrocytic differentiation and suggest that this might be at least partially mediated by the inhibition of FLI-1 recruitment to megakaryocytic and Fli-1 gene promoters.
Collapse
|
31
|
Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
|
32
|
Krüppeling megakaryopoiesis. Blood 2007. [DOI: 10.1182/blood-2007-09-110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
34
|
Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol 2007; 27:8547-60. [PMID: 17938210 DOI: 10.1128/mcb.00589-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF [KLF1]) is a transcriptional regulator that plays a critical role within a specific subset of hematopoietic cells, particularly in the erythroid lineage and its immediate precursor, the megakaryocyte-erythroid progenitor (MEP). We find that EKLF is posttranslationally modified by sumoylation at a single site near its amino terminus and that PIAS1 plays a critical role in this process. Mutation of this site has little effect on EKLF's ability to function as a transcriptional activator; however, it has a dramatic effect on its repressive abilities. The mechanism of repression likely involves a novel small ubiquitin-related modifier (SUMO)-dependent EKLF interaction with the Mi-2beta component of the NuRD repression complex. Mutated EKLF is attenuated in its ability to repress megakaryocyte differentiation, implicating EKLF sumoylation status in differentiative decisions emanating from the MEP. These studies demonstrate a novel mechanism by which transcription factor sumoylation can alter protein-protein interactions and bipotential lineage decisions.
Collapse
|
35
|
Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev 2007; 124:762-74. [PMID: 17709232 DOI: 10.1016/j.mod.2007.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 01/21/2023]
Abstract
There are two waves of erythropoiesis, known as primitive and definitive waves in mammals and lower vertebrates including zebrafish. The founding member of the Kruppel-like factor (KLF) family of CACCC-box binding proteins, EKLF/Klf1, is essential for definitive erythropoiesis in mammals but only plays a minor role in primitive erythropoiesis. Morpholino knockdown experiments have shown a role for zebrafish klf4 in primitive erythropoiesis and hatching gland formation. In order to generate a global understanding of how klf4 might influence gene expression and differentiation, we have performed expression profiling of klf4 morphants, and then performed validation of many putative target genes by qRT-PCR and whole mount in situ hybridization. We found a critical role for klf4 in embryonic globin, heme synthesis and hatching gland gene expression. In contrast, there was an increase in expression of definitive hematopoietic specific genes such as larval globin genes, runx1 and c-myb from 24 hpf, suggesting a selective role for klf4 in primitive rather than definitive erythropoiesis. In addition, we show klf4 preferentially binds CACCC box elements in the primitive zebrafish beta-like globin gene promoters. These results have global implications for primitive erythroid gene regulation by KLF-CACCC box interactions.
Collapse
Affiliation(s)
- M R Gardiner
- Institute for Molecular Bioscience, University of Queensland, Australia
| | | | | | | |
Collapse
|
36
|
Frontelo P, Manwani D, Galdass M, Karsunky H, Lohmann F, Gallagher PG, Bieker JJ. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110:3871-80. [PMID: 17715392 PMCID: PMC2190608 DOI: 10.1182/blood-2007-03-082065] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Megakaryocytes and erythroid cells are thought to derive from a common progenitor during hematopoietic differentiation. Although a number of transcriptional regulators are important for this process, they do not explain the bipotential result. We now show by gain- and loss-of-function studies that erythroid Krüppel-like factor (EKLF), a transcription factor whose role in erythroid gene regulation is well established, plays an unexpected directive role in the megakaryocyte lineage. EKLF inhibits the formation of megakaryocytes while at the same time stimulating erythroid differentiation. Quantitative examination of expression during hematopoiesis shows that, unlike genes whose presence is required for establishment of both lineages, EKLF is uniquely down-regulated in megakaryocytes after formation of the megakaryocyte-erythroid progenitor. Expression profiling and molecular analyses support these observations and suggest that megakaryocytic inhibition is achieved, at least in part, by EKLF repression of Fli-1 message levels.
Collapse
|
37
|
Zhou M, McPherson L, Feng D, Song A, Dong C, Lyu SC, Zhou L, Shi X, Ahn YT, Wang D, Clayberger C, Krensky AM. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:5496-504. [PMID: 17442931 PMCID: PMC2664650 DOI: 10.4049/jimmunol.178.9.5496] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Krüppel-like transcription factor (KLF)13, previously shown to regulate RANTES expression in vitro, is a member of the Krüppel- like family of transcription factors that controls many growth and developmental processes. To ascertain the function of KLF13 in vivo, Klf13-deficient mice were generated by gene targeting. As expected, activated T lymphocytes from Klf13(-/-) mice show decreased RANTES expression. However, these mice also exhibit enlarged thymi and spleens. TUNEL, as well as spontaneous and activation-induced death assays, demonstrated that prolonged survival of Klf13(-/-) thymocytes was due to decreased apoptosis. Microarray analysis suggests that protection from apoptosis-inducing stimuli in Klf13(-/-) thymocytes is due in part to increased expression of BCL-X(L), a potent antiapoptotic factor. This finding was confirmed in splenocytes and total thymocytes by real-time quantitative PCR and Western blot as well as in CD4+CD8- single-positive thymocytes by real-time quantitative PCR. Furthermore, EMSA and luciferase reporter assays demonstrated that KLF13 binds to multiple sites within the Bcl-X(L) promoter and results in decreased Bcl-X(L) promoter activity, making KLF13 a negative regulator of BCL-X(L).
Collapse
Affiliation(s)
- Meixia Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lisa McPherson
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Dongdong Feng
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - An Song
- Genentech, South San Francisco, CA 94080
| | - Chen Dong
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Shu-Chen Lyu
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lu Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Xiaoyan Shi
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Yong-Tae Ahn
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Carol Clayberger
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
- Address correspondence and reprint requests to Dr. Alan M. Krensky, Department of Pediatrics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305. E-mail address:
| |
Collapse
|
38
|
Shyu YC, Wen SC, Lee TL, Chen X, Hsu CT, Chen H, Chen RL, Hwang JL, Shen CKJ. Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci. Cell Res 2006; 16:347-55. [PMID: 16617330 DOI: 10.1038/sj.cr.7310045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
EKLF is an erythroid-specific, zinc finger-containing transcription factor essential for the activation of the mammalian beta globin gene in erythroid cells of definitive lineage. We have prepared a polyclonal anti-mouse EKLF antibody suitable for Western blotting and immunoprecipitation (IP) qualities, and used it to define the expression patterns of the EKLF protein during mouse erythroid development. We have also used this antibody for the chromatin-immunoprecipitation (ChIP) assay. EKLF was found to bind in vivo at both the mouse beta-major-globin promoter and the HS2 site of beta-LCR in the mouse erythroleukemia cells (MEL) in a DMSO-inducible manner. The DMSO-induced bindings of EKLF as well as three other proteins, namely, RNA polymerase II, acetylated histone H3, and methylated histone H3, were not abolished but significantly lowered in CB3, a MEL-derived cell line with null-expression of p45/NF-E2, an erythroid-enriched factor needed for activation of the mammalian globin loci. Interestingly, binding of EKLF in vivo was also detected in the mouse alpha-like globin locus, at the adult alpha globin promoter and its far upstream regulatory element alpha-MRE (HS26). This study provides direct evidence for EKLF-binding in vivo at the major regulatory elements of the mouse beta-like globin gene clusters the data also have interesting implications with respect to the role of EKLF-chromatin interaction in mammalian globin gene regulation.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pilon AM, Nilson DG, Zhou D, Sangerman J, Townes TM, Bodine DM, Gallagher PG. Alterations in expression and chromatin configuration of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 2006; 26:4368-77. [PMID: 16705186 PMCID: PMC1489081 DOI: 10.1128/mcb.02216-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an erythroid zinc finger protein identified by its interaction with a CACCC sequence in the beta-globin promoter, where it establishes local chromatin structure permitting beta-globin gene transcription. We sought to identify other EKLF target genes and determine the chromatin status of these genes in the presence and absence of EKLF. We identified alpha hemoglobin-stabilizing protein (AHSP) by subtractive hybridization and demonstrated a 95 to 99.9% reduction in AHSP mRNA and the absence of AHSP in EKLF-deficient cells. Chromatin at the AHSP promoter from EKLF-deficient cells lacked a DNase I hypersensitive site and exhibited histone hypoacetylation across the locus compared to hyperacetylation of wild-type chromatin. Wild-type chromatin demonstrated a peak of EKLF binding over a promoter region CACCC box that differs from the EKLF consensus by a nucleotide. In mobility shift assays, the AHSP promoter CACCC site bound EKLF in a manner comparable to the beta-globin promoter CACCC site, indicating a broader recognition sequence for the EKLF consensus binding site. The AHSP promoter was transactivated by EKLF in K562 cells, which lack EKLF. These results support the hypothesis that EKLF acts as a transcription factor and a chromatin modulator for the AHSP and beta-globin genes and indicate that EKLF may play similar roles for other erythroid genes.
Collapse
Affiliation(s)
- Andre M Pilon
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wei H, Wang X, Gan B, Urvalek AM, Melkoumian ZK, Guan JL, Zhao J. Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem 2006; 281:16664-71. [PMID: 16617055 DOI: 10.1074/jbc.m513135200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
KLF8 (Krüppel-like factor 8) is a member of the Krüppel transcription factor family that binds CACCC elements in DNA and activates or represses their target genes in a context-dependent manner. Here we present sumoylation as a novel mechanism that regulates KLF8 post-translationally. We found that KLF8 can be covalently modified by small ubiqitin-like modifier (SUMO)-1, SUMO-2, and SUMO-3 in vivo. We showed that KLF8 interacted with the PIAS family of SUMO E3 ligases PIAS1, PIASy, and PIASxalpha but not with E2 SUMO-conjugating enzyme Ubc9. Furthermore, we demonstrated that the E2 and E3 ligases enhanced the sumoylation of KLF8. In addition, site-directed mutagenesis identified lysine 67 as the major sumoylation site on KLF8. Lysine 67 to arginine mutation strongly enhanced activity of KLF8 as a repressor or activator to its physiological target promoters and as an inducer of the G(1) cell cycle progression. Taken together, our results demonstrated that sumoylation of KLF8 negatively regulates its transcriptional activity and cellular functions.
Collapse
Affiliation(s)
- Huijun Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhou D, Pawlik KM, Ren J, Sun CW, Townes TM. Differential binding of erythroid Krupple-like factor to embryonic/fetal globin gene promoters during development. J Biol Chem 2006; 281:16052-7. [PMID: 16606611 DOI: 10.1074/jbc.m601182200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The competition model for beta-like globin gene switching during development predicts that differential binding of transcription factors to globin gene promoters and/or proximal enhancers regulate the competitive interactions of globin gene family members with the powerful locus control region (LCR). Direct interactions of individual genes with the LCR are essential for high level expression in erythroid cells. In this paper, we have demonstrated, by chromatin immunoprecipitation, that erythroid-Krupple-like factor (EKLF) binds to embryonic/fetal globin gene promoters in primitive (but not in definitive) erythroid cells. EKLF binds strongly to adult globin gene promoters and to LCR sequences HS4, HS3, HS2, and HS1 in both primitive and definitive erythroid cells. Trimethylation of histone H3K4 and H3K27 at the embryonic/fetal and adult globin gene promoters is equivalent in definitive cells; therefore, the differential binding of EKLF to these promoters does not appear to result from changes in chromatin configuration. Interestingly, the level of EKLF in definitive cells is 3-fold higher than the level in primitive cells. These results suggest that temporal-specific changes in EKLF abundance result in differential binding of this essential erythroid transcription factor to embryonic/fetal globin gene promoters during development and that these changes in EKLF binding specificity mediate the competitive interactions of globin gene family members with the LCR.
Collapse
Affiliation(s)
- Dewang Zhou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
42
|
Quadrini KJ, Bieker JJ. EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett 2006; 580:2285-93. [PMID: 16579989 DOI: 10.1016/j.febslet.2006.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/15/2006] [Accepted: 03/10/2006] [Indexed: 01/30/2023]
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) is an erythroid specific, C(2)H(2) zinc finger transcription factor that is essential for the proper chromatin structure and expression of the adult beta-globin gene. Herein, we determine that 26S proteasome inhibitors lead to an accumulation of EKLF protein in murine erythroleukemia (MEL) cells. In addition, EKLF half-life in both MEL cells (<3h) and fetal liver cells (between 6 and 9h) is stabilized in the presence of these inhibitors. EKLF is ubiquitinated in vivo, however its modification does not rely on a particular internal lysine. Finally, EKLF contains two PEST sequences within its N-terminus that have no effect on the ability of EKLF to be ubiquitinated but contribute to its destabilization.
Collapse
Affiliation(s)
- Karen J Quadrini
- The Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
43
|
Abstract
Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.
Collapse
Affiliation(s)
- Gwen Lomberk
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
| | - Raul Urrutia
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
- †Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, U.S.A
- ‡Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005; 363:15-23. [PMID: 16289629 DOI: 10.1016/j.gene.2005.09.010] [Citation(s) in RCA: 1233] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/18/2005] [Indexed: 12/11/2022]
Abstract
Since the first report of p53 as a non-histone target of a histone acetyltransferase (HAT), there has been a rapid proliferation in the description of new non-histone targets of HATs. Of these, transcription factors comprise the largest class of new targets. The substrates for HATs extend to cytoskeletal proteins, molecular chaperones and nuclear import factors. Deacetylation of these non-histone proteins by histone deacetylases (HDACs) opens yet another exciting new field of discovery in the role of the dynamic acetylation and deacetylation on cellular function. This review will focus on these non-histone targets of HATs and HDACs and the consequences of their modification.
Collapse
Affiliation(s)
- Michele A Glozak
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, SRB 23011, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
45
|
Liu J, Cao S, Kim S, Chung EY, Homma Y, Guan X, Jimenez V, Ma X. Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression. CURRENT IMMUNOLOGY REVIEWS 2005; 1:119-137. [PMID: 21037949 DOI: 10.2174/1573395054065115] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-12 (IL-12) is a heterodimeric cytokine composed of the p35 and p40 subunits. It is produced by antigen-presenting cells and plays a critical role in host defense against intracellular microbial infection and control of malignancy via its ability to stimulate both innate and adaptive immune effector cells. The potency of IL-12 renders itself to stringent regulation of the timing, locality and magnitude of its production during an immune response. Subversion of the delicate control and balance frequently leads to immunologic disorders. In this article, we provide an update, since our last review of the subject four years ago, on recent advances in: (1) uncovering of novel activities of IL-12 and related molecules in various immunological settings and models; and (2) dissection of the physiological pathways involved in the modulation of IL-12 production by pathogens and immune regulators. The increased understanding of IL-12 immunobiology and expression will likely benefit the development of therapeutic modalities to correct immune dysfunctions.
Collapse
|
46
|
Huo X, Zhang J. Important roles of reversible acetylation in the function of hematopoietic transcription factors. J Cell Mol Med 2005; 9:103-12. [PMID: 15784168 PMCID: PMC6741356 DOI: 10.1111/j.1582-4934.2005.tb00340.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hematopoiesis is a very complex process whose proper functioning requires the regulated action of a number of transcription factors. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) play significant roles in the regulation of hematopoietic transcription factors activity. Transcription factors such as GATA-1, EKLF, NF-E2, GATA-1, PU.1 recruit HATs and HDACs to chromatin, leading to histone acetylation and deacetylation, that affect chromatin structure and result in gene expression changes. On the other hand, transcription factors themselves can be acetylated and deacetylated by HATs and HDACs, respectively. Consequently, some important functions of these transcription factors are influenced, including DNA binding, transcription activation, repressor activity and proteinprotein interactions. The regulation of hematopoietic transcription factors activity by HATs and HDACs may serve as a good model for studying how tissue-specific and lineage-specific gene expression is controlled through acetylation/ deacetylation of histone/nonhistone proteins.
Collapse
Affiliation(s)
- Xiaofang Huo
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Dan San Tiao 5, Beijing 100005, China
| | | |
Collapse
|
47
|
Noti JD, Johnson AK, Dillon JD. The Leukocyte Integrin Gene CD11d Is Repressed by Gut-enriched Kruppel-like Factor 4 in Myeloid Cells. J Biol Chem 2005; 280:3449-57. [PMID: 15561714 DOI: 10.1074/jbc.m412627200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myeloid-specific leukocyte integrin CD11d encodes the alphaD subunit for the alphaDbeta2 receptor. A yeast one-hybrid screen showed that a longer isoform of gut-enriched Kruppel-like factor 4 (GKLF) we term GKLFa interacts with the CD11d promoter. Purified GST-GKLFa protein was shown to bind within the -61 to -44 region that overlaps a binding site for the CD11d transcriptional activators Sp1 and transforming growth factor beta-inducible early gene-1 (TIEG1). Transfection of GKLF/GKLFa in myeloid cells reduced CD11d promoter activity, whereas, down-regulation of GKLF/GKLFa with small interfering RNAs led to up-regulation of CD11d expression. Differentiation of myeloid cells with phorbol ester led to activation of the CD11d promoter and reduced occupancy of the promoter by GKLF/GKLFa but an increased occupancy by TIEG1 in vivo. Binding of GKLF/GKLFa, Sp1, and TIEG1 to the CD11d promoter in vivo is dependent on their zinc finger DNA binding domains. GKLFa physically associates with the histone deacetylases (HDAC) 1 and 2, and both HDACs are bound to the CD11d promoter in vivo but released after exposure of myeloid cells to phorbol ester suggesting that GKLF/GKLFa recruits HDACs to effect repression.
Collapse
Affiliation(s)
- John D Noti
- Guthrie Foundation for Education and Research, Sayre, Pennsylvania 18840, USA.
| | | | | |
Collapse
|
48
|
Abstract
Dynamic changes in transcription factor function can be mediated by switching its interaction with coactivators and corepressors. Erythroid Kruppel-like factor (EKLF) is an erythroid cell-specific transcription factor that plays a critical role in beta-globin gene activation via its interactions with CBP/p300 and SWI/SNF proteins. Unexpectedly, it also interacts with Sin3A and histone deacetylase 1 (HDAC1) corepressors via its zinc finger domain. We now find that selected point mutants can uncouple activation and repression and that an intact finger structure is not required for interactions with Sin3A/HDAC1 or for transrepression. Most intriguingly, EKLF repression exhibits stage specificity, with reversible EKLF-Sin3A interactions playing a key role in this process. Finally, we have located a key lysine residue that is both a substrate for CBP acetylation and required for Sin3A interaction. These data suggest a model whereby the stage of the erythroid cell alters the acetylation status of EKLF and plays a critical role in directing its coactivator-corepressor interactions and downstream transcriptional effects.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
49
|
Otteson DC, Liu Y, Lai H, Wang C, Gray S, Jain MK, Zack DJ. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci 2004; 45:2522-30. [PMID: 15277472 PMCID: PMC2660604 DOI: 10.1167/iovs.04-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify novel transcriptional regulators of rhodopsin expression as a model for understanding photoreceptor-specific gene regulation. METHODS A bovine retinal cDNA library was screened in a yeast one-hybrid assay, with a 29-bp bovine rhodopsin promoter fragment as bait. Expression studies used RT-PCR and beta-galactosidase (LacZ) histochemistry of retinas from transgenic mice heterozygous for a targeted LacZ replacement of KLF15. Promoter transactivation assays measured luciferase expression in HEK293 cells transiently transfected with bovine rhodopsin or IRBP promoter-reporter constructs and expression constructs containing cDNAs for full or truncated KLF15, Crx (cone rod homeobox), and/or Nrl (neural retina leucine zipper). Data were analyzed with general linear models. RESULTS The zinc-finger transcription factor KLF15 was identified as a rhodopsin-promoter-binding protein in a yeast one-hybrid screen. Expression was detected by RT-PCR in multiple tissues, including the retina, where KLF15-LacZ was observed in the inner nuclear layer, ganglion cell layer, and pigmented epithelial cells, but not in photoreceptors. KLF15 repressed transactivation of rhodopsin and IRBP promoters alone and in combination with the transcriptional activators Crx and/or Nrl. Repressor activity required both a 198-amino-acid element in the N-terminal domain and the C-terminal zinc finger DNA-binding domains. CONCLUSIONS The zinc finger containing transcription factor KLF15 is a transcriptional repressor of the rhodopsin and IRBP promoters in vitro and, in the retina, is a possible participant in repression of photoreceptor-specific gene expression in nonphotoreceptor cells.
Collapse
Affiliation(s)
- Deborah C. Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuhui Liu
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Hong Lai
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - ChenWei Wang
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan Gray
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mukesh K. Jain
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald J. Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Luo Q, Ma X, Wahl SM, Bieker JJ, Crossley M, Montaner LJ. Activation and repression of interleukin-12 p40 transcription by erythroid Kruppel-like factor in macrophages. J Biol Chem 2004; 279:18451-6. [PMID: 14976188 PMCID: PMC2965204 DOI: 10.1074/jbc.m400320200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of interleukin (IL)-12 p40 in myeloid cells is attributed to the recruitment of multiple activated transcription factors such as nuclear factor kappaB (NFkappaB), CCAAT enhancer-binding protein beta, ets-2, PU.1, and so forth. We now provide the first description of the human erythroid Kruppel-like factor (EKLF) in human primary macrophages and identify the role of EKLF in IL-12 p40 expression. EKLF-specific binding to the CACCC element (-224 to -220) on the human IL-12 p40 promoter was observed in resting human primary macrophages. Functional analysis of the CACCC element revealed a dependent role for EKLF binding in activating IL-12 p40 transcription in resting RAW264.7 cells, whereas EKLF overexpression in the presence or absence of this element repressed IL-12 p40 transcription in interferon gamma/lipopolysaccharide-stimulated RAW264.7 cells. Murine endogenous IL-12 p40 mRNA was consistently induced by overexpressed EKLF in resting RAW264.7 cells, whereas EKLF suppressed IL-12 p40 expression in activated RAW264.7 cells. Modulation of nuclear binding activities at the IL-12 p40 NFkappaB half-site was induced by EKLF for down-regulation of IL-12 p40 transcription in activated RAW264.7 cells, but no effect of EKLF on NFkappaB activity was observed in resting RAW264.7 cells. Taken together, we identify EKLF as a transcription factor in macrophages able to regulate IL-12 p40 transcription depending on the cellular activation status. The bifunctional control of IL-12 p40 by EKLF and its modulation of NFkappaB support a potential function for this factor in orchestrating IL-12 p40 production in macrophages.
Collapse
Affiliation(s)
- Qi Luo
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York 10012
| | - Sharon M. Wahl
- Cellular Immunology Section, National Institutes of Health, Bethesda, Maryland 20892
| | - James J. Bieker
- Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Merlin Crossley
- Department of Biochemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luis J. Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104
- To whom correspondence should be addressed: The Wistar Institute, Philadelphia, PA 19104. Tel.: 215-898-9143; Fax: 215-573-9272;
| |
Collapse
|