1
|
Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation. Biochem Pharmacol 2025; 233:116761. [PMID: 39855429 DOI: 10.1016/j.bcp.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
Collapse
Affiliation(s)
- Kenly Wuputra
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Chen Ku
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Han Yang
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Kung-Kai Kuo
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kyosuke Nagata
- Professor, Insitutte of Medicine, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Superintendant in Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Kazunari K Yokoyama
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
3
|
Kim DK, Lee CY, Han YJ, Park SY, Han H, Na K, Kim MH, Yang SM, Baek S, Kim Y, Hwang JY, Lee S, Kang SS, Hong MH, Lim SM, Lee JB, Kim JH, Cho BC, Pyo KH. Exploring aryl hydrocarbon receptor expression and distribution in the tumor microenvironment, with a focus on immune cells, in various solid cancer types. Front Immunol 2024; 15:1330228. [PMID: 38680496 PMCID: PMC11045933 DOI: 10.3389/fimmu.2024.1330228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Aryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers. Methods Here, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression. Results Our findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC). Discussion These findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies.
Collapse
Affiliation(s)
- Dong Kwon Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-san Kang
- Jeuk Institute for Cancer Research, Jeuk Co. Ltd., Gumi, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Rojas BL, Vazquez-Rivera E, Partch CL, Bradfield CA. Dimerization Rules of Mammalian PAS Proteins. J Mol Biol 2024; 436:168406. [PMID: 38109992 PMCID: PMC10922841 DOI: 10.1016/j.jmb.2023.168406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The PAS (PER, ARNT, SIM) protein family plays a vital role in mammalian biology and human disease. This analysis arose from an interest in the signaling mechanics by the Ah receptor (AHR) and the Ah receptor nuclear translocator (ARNT). After more than fifty years by studying this and related mammalian sensor systems, describing the role of PAS domains in signal transduction is still challenging. In this perspective, we attempt to interpret recent studies of mammalian PAS protein structure and consider how this new insight might explain how these domains are employed in human signal transduction with an eye towards developing strategies to target and engineer these molecules for a new generation of therapeutics. Our approach is to integrate our understanding of PAS protein history, cell biology, and molecular biology with recent structural discoveries to help explain the mechanics of mammalian PAS protein signaling. As a learning set, we focus on sequences and crystal structures of mammalian PAS protein dimers that can be visualized using readily available software.
Collapse
Affiliation(s)
- Brenda L Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA
| | | | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA; McArdle Laboratory for Cancer Research. University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
7
|
Hu J, Ding Y, Liu W, Liu S. When AHR signaling pathways meet viral infections. Cell Commun Signal 2023; 21:42. [PMID: 36829212 PMCID: PMC9951170 DOI: 10.1186/s12964-023-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.,Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.
| |
Collapse
|
8
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
9
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
10
|
Edwards HE, Gorelick DA. The evolution and structure/function of bHLH-PAS transcription factor family. Biochem Soc Trans 2022; 50:1227-1243. [PMID: 35695677 PMCID: PMC10584024 DOI: 10.1042/bst20211225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription. Class I bHLH-PAS proteins are typically activated in response to specific stimuli, while class II proteins are expressed more ubiquitously. Here, we discuss the general structure and functions of bHLH-PAS proteins throughout the animal kingdom, including family members that do not fit neatly into the class I-class II organization. We review heterodimerization between class I and class II bHLH-PAS proteins, binding partner selectivity and functional redundancy. Finally, we discuss the evolution of bHLH-PAS proteins, and why a class I protein essential for cardiovascular development in vertebrates like chicken and fish is absent from mammals.
Collapse
Affiliation(s)
- Hailey E Edwards
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
11
|
Patil NY, Tang H, Rus I, Zhang K, Joshi AD. Decoding Cinnabarinic Acid-Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor. Mol Pharmacol 2022; 101:45-55. [PMID: 34764210 PMCID: PMC8969126 DOI: 10.1124/molpharm.121.000376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-mediated transcription factor known for regulating response to xenobiotics, including prototypical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the activation of CYP1A1 expression. Upon ligand-binding, AhR translocates to the nucleus, interacts with the AhR nuclear translocator, and binds to xenobiotic response elements (XREs; GCGTG) present in the promoter region of AhR-regulated genes. Recently, we identified a novel tryptophan catabolite, cinnabarinic acid (CA), as an endogenous AhR agonist capable of activating expression of AhR target gene stanniocalcin 2 (stc2). The CA-driven stc2 induction bestowed cytoprotection against hepatotoxicity in an AhR-dependent manner. Interestingly, only CA but not TCDD was able to induce stc2 expression in liver, and CA was unable to upregulate the TCDD responsive cyp1a1 gene. In this report, we identified CA-specific histone H4 lysine 5 acetylation and H3 lysine 79 methylation at the AhR-bound stc2 promoter. Moreover, histone H4 lysine 5 acetylation writer, activating transcription factor 2 (Atf2), and H3 lysine 79 methylation writer, disruptor of telomeric silencing 1-like histone lysine methyltransferase (Dot1l), were interacting with the AhR complex at the stc2 promoter exclusively in response to CA treatment concurrent with the histone epigenetic marks. Suppressing Atf2 and Dot1l expression using RNA interference confirmed their role in stc2 expression. CRISPR/Cas9-assisted replacement of cyp1a1 promoter-encompassing XREs with stc2 promoter XREs resulted in CA-dependent induction of cyp1a1, underlining a fundamental role of quaternary structure of XRE sequence in agonist-specific gene regulation. In conclusion, CA-driven recruitment of specific chromatin regulators to the AhR complex and resulting histone epigenetic modifications may serve as a molecular basis for agonist-specific stc2 regulation by AhR. SIGNIFICANCE STATEMENT: Results reported here provide a mechanistic explanation for the agonist-specific differential gene regulation by identifying interaction of aryl hydrogen receptor with specific chromatin regulators concomitant with unique histone epigenetic marks. This study also demonstrated that the agonist-specific target-gene expression can be transferred with the gene-specific promoter xenobiotic response element-sequence in the context of chromatin architecture.
Collapse
Affiliation(s)
- Nikhil Y Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Hui Tang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Iulia Rus
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Kangling Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Aditya D Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| |
Collapse
|
12
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
13
|
TCF-1 controls T reg cell functions that regulate inflammation, CD8 + T cell cytotoxicity and severity of colon cancer. Nat Immunol 2021; 22:1152-1162. [PMID: 34385712 PMCID: PMC8428683 DOI: 10.1038/s41590-021-00987-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.
Collapse
|
14
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
15
|
Su KM, Gao HW, Chang CM, Lu KH, Yu MH, Lin YH, Liu LC, Chang CC, Li YF, Chang CC. Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis. Biomedicines 2021; 9:866. [PMID: 34440070 PMCID: PMC8389648 DOI: 10.3390/biomedicines9080866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority. Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway consistently influenced progression-free survival and overall survival, and immunohistochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is important during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed targets together with precise detection to improve therapeutic effects and patient survival rates.
Collapse
Affiliation(s)
- Kuo-Min Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Ming Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Mu-Hsien Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Chia-Ching Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cheng-Chang Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| |
Collapse
|
16
|
Bungsu I, Kifli N, Ahmad SR, Ghani H, Cunningham AC. Herbal Plants: The Role of AhR in Mediating Immunomodulation. Front Immunol 2021; 12:697663. [PMID: 34249001 PMCID: PMC8264659 DOI: 10.3389/fimmu.2021.697663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
The prevalence of chronic inflammatory diseases including inflammatory bowel disease (IBD), autoimmunity and cancer have increased in recent years. Herbal-based compounds such as flavonoids have been demonstrated to contribute to the modulation of these diseases although understanding their mechanism of action remains limited. Flavonoids are able to interact with cellular immune components in a distinct way and influence immune responses at a molecular level. In this mini review, we highlight recent progress in our understanding of the modulation of immune responses by the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor whose activity can be regulated by diverse molecules including flavonoids. We focus on the role of AhR in integrating signals from flavonoids to modulate inflammatory responses using in vitro and experimental animal models. We also summarize the limitations of these studies. Medicinal herbs have been widely used to treat inflammatory disorders and may offer a valuable therapeutic strategy to treat aberrant inflammatory responses by modulation of the AhR pathway.
Collapse
Affiliation(s)
- Izzah Bungsu
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Nurolaini Kifli
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Siti Rohaiza Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Hazim Ghani
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Anne Catherine Cunningham
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB), Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
17
|
Wang L, Xue J, Wei F, Zheng G, Cheng M, Liu S. Chemopreventive effect of galangin against benzo(a)pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice. Hum Exp Toxicol 2021; 40:1434-1444. [PMID: 33663268 DOI: 10.1177/0960327121997979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was aimed to evaluate the chemopreventive potential of galangin against benzo(a)pyrene (BaP)-induced stomach carcinogenesis in Swiss albino mice. Stomach cancer was induced in experimental mice using BaP oral administration. The mice were treated with galangin (10 mg/kg b.wt.) before and during BaP administration. Oral administration of galangin at a dose of 10 mg/kg b.wt. significantly (p < 0.05) prevented the tumor incidence, tumor volume in the experimental animals. Further, galangin pretreatment prevents BaP-induced lipid peroxidation and restores BaP-mediated loss of cellular antioxidants status. It has also been found that galangin prevents BaP-induced activation of phase I detoxification enzymes. Furthermore, galangin pretreatment prevented the BaP-induced overexpression of cytochrome P450s isoform genes (CYP1A1, CYP1B1), aryl hydrocarbon receptor system (AhR, ARNT), transcriptional activators (CBP/p300, NF-kB), tumor growth factors, proto-oncogenes, invasion markers (TGFB, SRC-1, MYC, iNOS, MMP2, MMP9) and Phase II metabolic isoenzyme genes (GST) in the stomach tissue homogenate when compared to the control groups. The western blot results confirm that galangin (10 mg/kg. b.wt.) treatment significantly prevented the BaP-mediated expression of ArR, ARNT, and CYP1A1 proteins in the mouse stomach tissue. Therefore, the present results confirm that galangin prevents BaP-induced stomach carcinogenesis probably through modulating ArR and ARNT expression in the experimental mice.
Collapse
Affiliation(s)
- L Wang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of 91593Xinjiang Medical University, Urumqi, Xinjiang, China.,Contributed equally
| | - J Xue
- Department of Blood Transfusion, The Fifth Affiliated Hospital, 26469Sun Yat-sen University, Zhuhai, Guangdong, China.,Contributed equally
| | - F Wei
- Department of Gastroenterology, Central Hospital of Haining, Haining City, Zhejiang, China
| | - G Zheng
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of 91593Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M Cheng
- Department of General Surgery, Shanghai Tianyou Hospital, 12476Tongji University, Shanghai, China
| | - S Liu
- Department of Gastrointestinal Surgery, 499782Shengli Oilfield Central Hospital, Dongying City, Shandong, China
| |
Collapse
|
18
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
19
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
20
|
Abstract
Increasing evidence suggests a significant role for microbiota dependent metabolites and co-metabolites, acting as aryl hydrocarbon receptor (AHR) ligands, to facilitate bidirectional communication between the host and the microbiota and thus modulate physiology. Such communication is particularly evident within the gastrointestinal tract. Through binding to or activating the AHR, these metabolites play fundamental roles in various physiological processes and likely contribute to the maintenance of intestinal homeostasis. In recent years, tryptophan metabolites were screened to identify physiologically relevant AHR ligands or activators. The discovery of specific microbiota-derived indole-based metabolites as AHR ligands may provide insight concerning how these metabolites affect interactions between gut microbiota and host intestinal homeostasis and how this relates to chronic GI disease and overall health. A greater understanding of the mechanisms that modulate the production of such metabolites and associated AHR activity may be utilized to effectively treat inflammatory diseases and promote human health. Here, we review microbiota-derived AHR ligands generated from tryptophan that modulate host-gut microbiota interactions and discuss possible intervention strategies for potential therapies in the future.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA,CONTACT Gary H. Perdew The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
21
|
Kawanishi M, Mori K, Yamada R, Ito-Harashima S, Yagi T. Improvement of reporter gene assay for highly sensitive dioxin detection using protoplastic yeast with inactivation of CWP and PDR genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9227-9235. [PMID: 31916168 DOI: 10.1007/s11356-019-07484-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
A yeast reporter gene assay system with improved performance for dioxin detection was established. Since yeast reporter gene assays are relatively simple, easy to handle, and inexpensive, they have been used for various assessments of environmental contaminants. We previously constructed a yeast assay strain expressing the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) carrying the lacZ reporter gene, for detection of dioxins. In the present study, genes encoding cell wall mannoproteins and ATP-binding cassette transporters in the yeast assay strains were deleted in order to increase the substance influx and prevent its efflux. We also established an assay procedure for protoplasts of these yeasts. These modifications improved the detection limit 40-fold and reduced the duration of the assay by 40%. By combining the yeast protoplast and a rapid sample preparation technique using disposal multilayer solid-phase extraction columns to remove unintended aryl hydrocarbons, this yeast reporter gene assay system detected the ligand activities of dioxins and related compounds in 1 g of forest soil containing dioxins at a concentration 10 times lower than the Japanese environmental standard for dioxins in soil.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| | - Kentaro Mori
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Rina Yamada
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Sayoko Ito-Harashima
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Takashi Yagi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
22
|
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019; 19:184-197. [PMID: 30718831 DOI: 10.1038/s41577-019-0125-8] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environment, diet, microbiota and body's metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut-brain axis and the therapeutic potential of targeting AHR in neurological disorders.
Collapse
|
23
|
Zhang X, Jie D, Liu J, Zhang J, Zhang T, Zhang J, Ma E. Aryl hydrocarbon receptor regulates the expression of LmGSTd7 and is associated with chlorpyrifos susceptibility in Locusta migratoria. PEST MANAGEMENT SCIENCE 2019; 75:2916-2924. [PMID: 31465149 DOI: 10.1002/ps.5600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) belongs to the bHLH-PAS (basic Helix-Loop-Helix - Period/ARNT/Single minded) family of transcription factors. AhR is a ligand-activated transcription factor, which participates in the sensing and transmitting stimuli of endogenous and exogenous chemicals, and subsequently activates the transcription of genes related to various physiological and detoxification functions. RESULT In this study, a single full-length LmAhR sequence was cloned and characterized. RNA interference (RNAi) and insecticide bioassays showed that LmAhR plays a vital role in chlorpyrifos susceptibility. To better identify aryl hydrocarbon receptor from locusta migratoria (LmAhR)-regulated genes involved in chlorpyrifos susceptibility, a comparative transcriptome analysis was performed using double-stranded (ds)GFP- and dsLmAhR-injected Locusta migratoria. Differential gene expression analysis identified 145 down-regulated and 67 up-regulated genes (P ≤ 0.05 and fold change ≥2) in dsLmAhR-knockdown insects. We selected 27 down-regulated genes and verified their expression levels using reverse transcription quantitative PCR. Finally, one glutathione S-transferase (GST) gene (LmGSTd7) was selected as a candidate detoxification gene and was further validated via RNAi and chlorpyrifos bioassays. CONCLUSION Our data suggest that AhR is associated with chlorpyrifos susceptibility via the regulation of LmGSTd7 expression in L. migratoria. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Dong Jie
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jiao Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianqin Zhang
- Modern Research Center For Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Aichinger G, Krüger F, Puntscher H, Preindl K, Warth B, Marko D. Naturally occurring mixtures of Alternaria toxins: anti-estrogenic and genotoxic effects in vitro. Arch Toxicol 2019; 93:3021-3031. [PMID: 31559443 DOI: 10.1007/s00204-019-02545-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/14/2019] [Indexed: 10/25/2022]
Abstract
Alternaria molds can produce a variety of different mycotoxins, often resulting in food contamination with chemical mixtures, posing a challenge for risk assessment. Some of these metabolites possess estrogenic properties, an effect whose toxicological relevance is questioned in the light of the strong genotoxic and cytotoxic properties of co-occurring toxins. Thus, we tested a complex extract from A. alternata for estrogenic properties in Ishikawa cells. By assessing alkaline phosphatase activity, we did not observe estrogen receptor (ER) activation at non-cytotoxic concentrations (≤ 10 µg/ml). Furthermore, an extract stripped of highly genotoxic perylene quinones also did not mediate estrogenic effects, despite diminished genotoxic properties in the comet assay (≥ 10 µg/ml). Interestingly, both extracts impaired the estrogenicity of 17β-estradiol (E2) at non-cytotoxic concentrations (5-10 µg/ml), indicating anti-estrogenic effects which could not be explained by the presence of known mycoestrogens. A mechanism for this unexpected result might be the activation of the aryl hydrocarbon receptor (AhR) by Alternaria metabolites, as indicated by the induction of CYP1A1 transcription. While a direct influence on the metabolism of E2 could not be confirmed by LC-MS/MS, literature describing a direct interplay of the AhR with estrogenic pathways points to a corresponding mode of action. Taken together, the present study indicates AhR-mediated anti-estrogenic effects as a novel mechanism of naturally co-occurring Alternaria toxin mixtures. Furthermore, our results confirm their genotoxic activity and raise questions about the contribution of still undiscovered metabolites to toxicological properties.
Collapse
Affiliation(s)
- Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Franziska Krüger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Karin Preindl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Tan D, Zhang W, Tao Y, Galiya Y, Wang M. PZR promotes metastasis of colorectal cancer through increasing FAK and Src phosphorylation. Acta Biochim Biophys Sin (Shanghai) 2019; 51:356-364. [PMID: 30877754 DOI: 10.1093/abbs/gmz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
Metastasis is the main cause of death in patients with colorectal cancer (CRC), but the molecular mechanism is not yet fully understood. Previous studies have shown that P zero-related protein (PZR), a member of the immunoglobulin family, can promote fibronectin-dependent migration of mouse embryonic fibroblasts as well as invasion and metastasis of hepatic carcinoma cells. However, the role of PZR in CRC remains unclear. In this study, we determined the ectopic expression of PZR in CRC tissues, and results showed that PZR expression was increased not only in tumors with higher pathological stage, but also in tumors with distant metastasis. Through PZR-knockdown and overexpression in CRC cell lines, we found that the expression of PZR had significant effect on the invasion and migration of CRC cells as well as the phosphorylation of pro-metastasis proteins including focal adhesion kinase (FAK) and Src. Taken together, this study indicates that PZR may promote the invasion and migration of CRC cells through increasing the phosphorylation of FAK and Src, which provides a new theoretical basis and a possible marker for the diagnosis or prognosis of CRC metastasis.
Collapse
Affiliation(s)
- Dan Tan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenpeng Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yesseyeva Galiya
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed Pharmacother 2019; 109:2054-2061. [DOI: 10.1016/j.biopha.2018.09.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
27
|
Shinde R, McGaha TL. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol 2018; 39:1005-1020. [PMID: 30409559 DOI: 10.1016/j.it.2018.10.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and transcription factor activated through cognate ligand binding. It is an important factor in immunity and tissue homeostasis, and structurally diverse compounds from the environment, diet, microbiome, and host metabolism can induce AhR activity. Emerging evidence suggests that AhR is a key sensor allowing immune cells to adapt to environmental conditions and changes in AhR activity have been associated with autoimmune disorders and cancer. Furthermore, AhR agonists or antagonists can impact immune disease outcomes identifying AhR as a potentially actionable target for immunotherapy. In this review, we describe known ligands stimulating AhR activity, downstream proinflammatory and suppressive mechanisms potentiated by AhR, and how this understanding is being applied to immunopathology to help control disease outcomes.
Collapse
Affiliation(s)
- Rahul Shinde
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Ghotbaddini M, Moultrie V, Powell JB. Constitutive Aryl Hydrocarbon Receptor Signaling in Prostate Cancer Progression. ACTA ACUST UNITED AC 2018; 2:11-16. [PMID: 31328183 PMCID: PMC6641558 DOI: 10.29245/2578-2967/2018/5.1136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Research on the aryl hydrocarbon receptor (AhR) has largely focused on its activation by various environmental toxins. Consequently, only limited inferences have been made regarding its constitutive activity in the absence of an exogenous ligands. Evidence has shown that AhR is constitutively active in advanced prostate cancer cell lines which model castration resistant prostate cancer (CRPC). CRPC cells can thrive in an androgen depleted environment. However, AR signaling still plays a major role. Although several mechanisms have been suggested for the sustained AR signaling, much is still unknown. Recent studies suggest that crosstalk between constitutive AhR and Src kinase may sustained AR signaling in CRPC. AhR forms a protein complex with Src and plays a role in regulating Src activity. Several groups have reported that tyrosine phosphorylation of AR protein by Src leads to AR activation, thereby promoting the development of CRPC. This review evaluates reports that implicate constitutive AhR as a key regulator of AR signaling in CRPC by utilizing Src as a signaling intermediate.
Collapse
Affiliation(s)
- Maryam Ghotbaddini
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| | - Vivian Moultrie
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| | - Joann B Powell
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| |
Collapse
|
29
|
Gutiérrez-Vázquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018; 48:19-33. [PMID: 29343438 DOI: 10.1016/j.immuni.2017.12.012] [Citation(s) in RCA: 650] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease. As its activity is regulated by small molecules, AhR also constitutes a potential target for therapeutic immunomodulation. In this review we discuss the role of AhR in the regulation of the immune response in the context of autoimmunity, infection, and cancer, as well as the potential opportunities and challenges of developing AhR-targeted therapeutics.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
31
|
Labrecque MP, Takhar MK, Nason R, Santacruz S, Tam KJ, Massah S, Haegert A, Bell RH, Altamirano-Dimas M, Collins CC, Lee FJS, Prefontaine GG, Cox ME, Beischlag TV. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells. Oncotarget 2018; 7:24284-302. [PMID: 27015368 PMCID: PMC5029701 DOI: 10.18632/oncotarget.8301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies.
Collapse
Affiliation(s)
- Mark P Labrecque
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mandeep K Takhar
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rebecca Nason
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie Santacruz
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin J Tam
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shabnam Massah
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anne Haegert
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert H Bell
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manuel Altamirano-Dimas
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank J S Lee
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gratien G Prefontaine
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael E Cox
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy V Beischlag
- The Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
32
|
Beischlag TV, Prefontaine GG, Hankinson O. ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation. Methods Mol Biol 2018; 1689:103-112. [PMID: 29027168 DOI: 10.1007/978-1-4939-7380-4_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatin immunoprecipitation (ChIP) exploits the specific interactions between DNA and DNA-associated proteins. It can be used to examine a wide range of experimental parameters. A number of proteins bound at the same genomic location can identify a multi-protein chromatin complex where several proteins work together to regulate gene transcription or chromatin configuration. In many instances, this can be achieved using sequential ChIP; or simply, ChIP-re-ChIP. Whether it is for the examination of specific transcriptional or epigenetic regulators, or for the identification of cistromes, the ability to perform a sequential ChIP adds a higher level of power and definition to these analyses. In this chapter, we describe a simple and reliable method for the sequential ChIP assay.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6.
| | - Gratien G Prefontaine
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Oliver Hankinson
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Ash PEA, Stanford EA, Al Abdulatif A, Ramirez-Cardenas A, Ballance HI, Boudeau S, Jeh A, Murithi JM, Tripodis Y, Murphy GJ, Sherr DH, Wolozin B. Dioxins and related environmental contaminants increase TDP-43 levels. Mol Neurodegener 2017; 12:35. [PMID: 28476168 PMCID: PMC5420162 DOI: 10.1186/s13024-017-0177-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative condition that is characterized by progressive loss of motor neurons and the accumulation of aggregated TAR DNA Binding Protein-43 (TDP-43, gene: TARDBP). Increasing evidence indicates that environmental factors contribute to the risk of ALS. Dioxins, related planar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that activate the aryl hydrocarbon receptor (AHR), a ligand-activated, PAS family transcription factor. Recently, exposure to these toxicants was identified as a risk factor for ALS. Methods We examined levels of TDP-43 reporter activity, transcript and protein. Quantification was done using cell lines, induced pluripotent stem cells (iPSCs) and mouse brain. The target samples were treated with AHR agonists, including 6-Formylindolo[3,2-b]carbazole (FICZ, a potential endogenous ligand, 2,3,7,8-tetrachlorodibenzo(p)dioxin, and benzo(a)pyrene, an abundant carcinogen in cigarette smoke). The action of the agonists was inhibited by concomitant addition of AHR antagonists or by AHR-specific shRNA. Results We now report that AHR agonists induce up to a 3-fold increase in TDP-43 protein in human neuronal cell lines (BE-M17 cells), motor neuron differentiated iPSCs, and in murine brain. Chronic treatment with AHR agonists elicits over 2-fold accumulation of soluble and insoluble TDP-43, primarily because of reduced TDP-43 catabolism. AHR antagonists or AHR knockdown inhibits agonist-induced increases in TDP-43 protein and TARDBP transcription demonstrating that the ligands act through the AHR. Conclusions These results provide the first evidence that environmental AHR ligands increase TDP-43, which is the principle pathological protein associated with ALS. These results suggest novel molecular mechanisms through which a variety of prevalent environmental factors might directly contribute to ALS. The widespread distribution of dioxins, PCBs and PAHs is considered to be a risk factor for cancer and autoimmune diseases, but could also be a significant public health concern for ALS. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Ali Al Abdulatif
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | | | - Heather I Ballance
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Samantha Boudeau
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Amanda Jeh
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - James M Murithi
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA. .,Department of Neurology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA.
| |
Collapse
|
34
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
35
|
Denison MS, Faber SC. And Now for Something Completely Different: Diversity in Ligand-Dependent Activation of Ah Receptor Responses. CURRENT OPINION IN TOXICOLOGY 2017; 2:124-131. [PMID: 28845473 PMCID: PMC5570615 DOI: 10.1016/j.cotox.2017.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ligand-dependent activation of the Ah receptor (AhR) can result in an extremely diverse spectrum of biological and toxic effects that occur in a ligand-, species- and tissue-specific manner. While the classical mechanism of AhR-dependent signal transduction is directly related to its ability to modulate gene expression, the dramatic diversity in responses observed following AhR activation or inhibition is inconsistent with a single molecular mechanism of AhR action. Recent studies have revealed that key molecular events underlying the AhR signaling pathway are significantly more varied and complex than previously established, and the specificity and diversity in AhR response can be selectively modulated by a variety of factors. Here we describe new insights into the mechanistic diversity in AhR signal transduction that can contribute to ligand-, species- and tissue-specific differences in AhR reponse.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Samantha C Faber
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
36
|
Chubb LS, Andersen ME, Broccardo CJ, Legare ME, Billings RE, Dean CE, Hanneman WH. Regional Induction of CYP1A1 in Rat Liver Following Treatment with Mixtures of PCB 126 and PCB 153. Toxicol Pathol 2016; 32:467-73. [PMID: 15223772 DOI: 10.1080/01926230490483306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Liver enzyme induction has been shown previously to be regional with clear borders between induced and uninduced regions in vivo, and cells either fully induced or not induced in vitro. The current study examined this phenomenon in vivo by evaluating enzyme induction after exposure to PCB 126 and PCB 153 in female Fisher 344 (F344) and male Sprague—Dawley (SD) rats. IHC revealed a regional induction of CYP1A1 after exposure to PCB 126, apparent in the centrilobular region at lower doses and progressing to panlobular with higher doses. PCB 153 exposure induced CYP2B1/2 in the centrilobular region, which spread to the midzonal region as the dose increased, but never became panlobular even at the highest dosage tested. In rats treated with PCB 126 in combination with high doses of PCB 153, induction of CYP1A1 occurred preferentially in the periportal region, a reversal from the pattern seen with PCB 126 alone. This CYP1A1 induction pattern reversal is a unique example of complex biological interactions between coplanar (PCB 126) and noncoplanar (PCB 153) halogenated aromatic hydrocarbons.
Collapse
Affiliation(s)
- Laura S Chubb
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Park JH, Choi AJ, Kim SJ, Cheong SW, Jeong SY. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:44-53. [PMID: 26950395 DOI: 10.1016/j.etap.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea.
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Seon-Woo Cheong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| |
Collapse
|
38
|
Tomblin JK, Arthur S, Primerano DA, Chaudhry AR, Fan J, Denvir J, Salisbury TB. Aryl hydrocarbon receptor (AHR) regulation of L-Type Amino Acid Transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells. Biochem Pharmacol 2016; 106:94-103. [PMID: 26944194 DOI: 10.1016/j.bcp.2016.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset obtained in this study with a published TCDD-ChIP-seq dataset identified LAT1 as a primary target of AHR-dependent TCDD induction. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR expression. TCDD-stimulated increases in LAT1 mRNA were also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MCF-7 and MDA-MB-231 cells, endogenous levels of LAT1 mRNA and protein were reduced in response to knockdown of AHR expression. Knockdown experiments demonstrated that proliferation of MCF-7 and MDA-MB-231 cells is dependent on both LAT1 and AHR. Collectively, these findings confirm the dependence of cancer cells on leucine uptake and establish a mechanism for extrinsic and intrinsic regulation of LAT1 by AHR.
Collapse
Affiliation(s)
- Justin K Tomblin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Subha Arthur
- Department of Clinical & Translational Science, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Donald A Primerano
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Ateeq R Chaudhry
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Jun Fan
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - James Denvir
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Travis B Salisbury
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
39
|
Szwarc MM, Lydon JP, O'Malley BW. Steroid receptor coactivators as therapeutic targets in the female reproductive system. J Steroid Biochem Mol Biol 2015; 154:32-8. [PMID: 26151740 PMCID: PMC5201167 DOI: 10.1016/j.jsbmb.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
The steroid receptor coactivators (SRCs/p160/NCOA) are a family of three transcriptional coregulators initially discovered to transactivate the transcriptional potency of steroid hormone receptors. Even though SRCs were also found to modulate the activity of multiple other transcription factors, their function is still strongly associated with regulation of steroid hormone action and many studies have found that they are critical for the regulation of reproductive biology. In the case of the female reproductive tract, SRCs have been found to play crucial roles in its physiology, ranging from ovulation, implantation, to parturition. Not surprisingly, SRCs' action has been linked to numerous abnormalities and debilitating disorders of female reproductive tissues, including infertility, cancer, and endometriosis. Many of these pathologies are still in critical need of therapeutic intervention and "proof-of-principle" studies have found that SRCs are excellent targets in pathological states. Therefore, small molecule modulators of SRCs' activity could be applied in the future in the treatment of many diseases of the female reproductive system.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
40
|
Tsai CH, Li CH, Liao PL, Cheng YW, Lin CH, Huang SH, Kang JJ. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR. Toxicol Sci 2015; 148:517-30. [PMID: 26350169 DOI: 10.1093/toxsci/kfv199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine; Graduate Institute of Medical Sciences, College of Medicine, and
| | - Po-Lin Liao
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
41
|
Szwarc MM, Lydon JP, O'Malley BW. Reprint of "Steroid receptor coactivators as therapeutic targets in the female reproductive system". J Steroid Biochem Mol Biol 2015; 153:144-50. [PMID: 26291832 DOI: 10.1016/j.jsbmb.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
Abstract
The steroid receptor coactivators (SRCs/p160/NCOA) are a family of three transcriptional coregulators initially discovered to transactivate the transcriptional potency of steroid hormone receptors. Even though SRCs were also found to modulate the activity of multiple other transcription factors, their function is still strongly associated with regulation of steroid hormone action and many studies have found that they are critical for the regulation of reproductive biology. In the case of the female reproductive tract, SRCs have been found to play crucial roles in its physiology, ranging from ovulation, implantation, to parturition. Not surprisingly, SRCs' action has been linked to numerous abnormalities and debilitating disorders of female reproductive tissues, including infertility, cancer, and endometriosis. Many of these pathologies are still in critical need of therapeutic intervention and "proof-of-principle" studies have found that SRCs are excellent targets in pathological states. Therefore, small molecule modulators of SRCs' activity could be applied in the future in the treatment of many diseases of the female reproductive system.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
42
|
Simon TW, Budinsky RA, Rowlands JC. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators. PLoS One 2015; 10:e0127952. [PMID: 26039703 PMCID: PMC4454675 DOI: 10.1371/journal.pone.0127952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and subsequent binding the activated AHR to xenobiotic response elements (XREs) on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism’s ability to respond on a phenotypic level to various stimuli within an inconstant environment.
Collapse
Affiliation(s)
- Ted W. Simon
- Ted Simon LLC, Winston, GA, United States of America
- * E-mail:
| | - Robert A. Budinsky
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| | - J. Craig Rowlands
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| |
Collapse
|
43
|
Cho SH, Park SY, Lee EJ, Cho YH, Park HS, Hong SH, Kim WJ. Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation. Tuberc Respir Dis (Seoul) 2015; 78:99-105. [PMID: 25861343 PMCID: PMC4388907 DOI: 10.4046/trd.2015.78.2.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/10/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Regional Center for Respiratory Diseases, Kangwon National University Hospital, Chuncheon, Korea
| | - Shin Young Park
- Regional Center for Respiratory Diseases, Kangwon National University Hospital, Chuncheon, Korea
| | - Eun Jeong Lee
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yo Han Cho
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun Sun Park
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Woo Jin Kim
- Regional Center for Respiratory Diseases, Kangwon National University Hospital, Chuncheon, Korea. ; Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
44
|
Baldridge MG, Marks GT, Rawlins RG, Hutz RJ. Very low-dose (femtomolar) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disrupts steroidogenic enzyme mRNAs and steroid secretion by human luteinizing granulosa cells. Reprod Toxicol 2015; 52:57-61. [PMID: 25697571 DOI: 10.1016/j.reprotox.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 01/15/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic congener of the polyhalogenated aromatic hydrocarbons (PAH), which causes anatomical abnormalities and developmental defects, impairs ovulation and reduces fertility. TCDD's endocrine-disrupting effects are, in part, caused by a direct action at the ovary. Herein we investigated the in-vitro effects of environmentally relevant doses of TCDD on estradiol-17β (E2) production by human luteinizing granulosa cells (hLGC) obtained from women stimulated for in-vitro fertilization (IVF). TCDD at all concentrations tested (3.1fM, 3.1pM and 3.1nM) significantly decreased E2 secretion when assayed for by radioimmunoassay (RIA). Herein we confirm that TCDD alters E2 secretion by hLGC in a time-, not dose-dependent fashion and are the first to show decreases in E2 secretion with fM concentrations of TCDD. Using real-time quantitative PCR (RT-qPCR), the decreased E2 secretion correlates with a decrease in the mRNA expression levels two enzymes in the estrogen biosynthesis pathway: CYP11A1 and CYP19A1.
Collapse
Affiliation(s)
- M G Baldridge
- College of Natural Sciences and Health Sciences, Department of Health and Medicine, Carroll University, Waukesha, WI 53186, United States.
| | - G T Marks
- College of Natural Sciences and Health Sciences, Department of Physical Sciences, Carroll University, Waukesha, WI 53186, United States
| | - R G Rawlins
- Rush Copley Center for Reproductive Health, Aurora, IL 60504, United States
| | - R J Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 5321, United States; Department of OB/GYN, Medical College of Wisconsin, United States
| |
Collapse
|
45
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 680] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
46
|
Szwarc MM, Kommagani R, Lessey BA, Lydon JP. The p160/steroid receptor coactivator family: potent arbiters of uterine physiology and dysfunction. Biol Reprod 2014; 91:122. [PMID: 25297546 PMCID: PMC4434928 DOI: 10.1095/biolreprod.114.125021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 11/01/2022] Open
Abstract
The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3; otherwise known as NCOA1, NCOA2, and NCOA3, respectively), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor and non-nuclear receptor signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From "dovetailing" clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and to colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells, SRC-2 was shown to act as a molecular "pacemaker" of the glycolytic flux. This finding is significant because acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for endometrial stromal cells to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Although studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies, particularly in the mouse, to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, South Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
47
|
Novel role of hnRNP-A2/B1 in modulating aryl hydrocarbon receptor ligand sensitivity. Arch Toxicol 2014; 89:2027-38. [PMID: 25224401 DOI: 10.1007/s00204-014-1352-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is responsible for susceptibility to its ligand-dependent responses. However, the effect of non-AHR factors is less clear. To explore the non-AHR factors, we used two mouse strains with different AHR genetic variants, namely C3H/lpr and MRL/lpr strains with Ala and Val as the 375th amino acid residue, respectively. To assess the contribution of AHR alone, COS-7 cells transiently expressing AHR from each strain were treated with 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and xenobiotic-responsive element (XRE)-driven reporter gene activities were measured. FICZ-EC50 values for the C3H/lpr and MRL/lpr AHR-mediated transactivation were 0.023 and 0.046 nM, respectively, indicating a similar susceptibility in both AHR genotypes. In contrast, C3H/lpr AHR was fourfold more sensitive to TCDD than MRL/lpr AHR. By a pull-down assay using a XRE-containing PCR product as bait and the hepatic nuclear extracts of both FICZ-treated mouse strains, we identified two interacting proteins as heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP-A2) and its splicing variant (hnRNP-A2b). Immunoprecipitation assays demonstrated the AHR interaction with hnRNP-A2/B1. When hnRNP-A2 was co-expressed with the MRL/lpr or C3H/lpr AHR in COS-7, FICZ treatment decreased EC50 to about threefold in both AHR genotypes, compared with EC50 in AHR alone. Similarly, hnRNP-A2b co-expression also lowered the FICZ-EC50 values. In TCDD-treated COS-7, responses depended on the AHR genotype; while no change in TCDD-EC50 was observed for C3H/lpr AHR when hnRNP-A2 was co-expressed, the value was reduced to nearly tenfold for MRL/lpr AHR. Co-transfection with hnRNP-A2b attenuated the AHR sensitivity to TCDD. In conclusion, the hnRNP-A2/B1 interacting with AHR may be a modulator of the AHR ligand sensitivity.
Collapse
|
48
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
Affiliation(s)
- Wen-Li Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Chun-Yan Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
49
|
Endler A, Chen L, Shibasaki F. Coactivator recruitment of AhR/ARNT1. Int J Mol Sci 2014; 15:11100-10. [PMID: 24950180 PMCID: PMC4100201 DOI: 10.3390/ijms150611100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/27/2014] [Accepted: 06/07/2014] [Indexed: 01/03/2023] Open
Abstract
A common feature of nuclear receptors (NRs) is the transformation of external cell signals into specific transcriptions of the signal molecule. Signal molecules function as ligands for NRs and, after their uptake, activated NRs form homo- or heterodimers at promoter recognition sequences of the specific genes in the nucleus. Another common feature of NRs is their dependence on coactivators, which bridge the basic transcriptional machinery and other cofactors to the target genes, in order to initiate transcription and to unwind histone-bound DNA for exposing additional promoter recognition sites via their histone acetyltransferase (HAT) function. In this review, we focus on our recent findings related to the recruitment of steroid receptor coactivator 1 (SRC1/NCoA1) by the estrogen receptor-α (ERα) and by the arylhydrocarbon receptor/arylhydrocarbon receptor nuclear translocator 1 (AhR/ARNT1) complex. We also describe the extension of our previously published findings regarding the binding between ARNT1.1 exon16 and SRC1e exon 21, via in silico analyses of androgen receptor (AR) NH2-carboxyl-terminal interactions, the results of which were verified by in vitro experiments. Based on these data, we suggest a newly derived tentative binding site of nuclear coactivator 2/glucocorticoid receptor interacting protein-1/transcriptional intermediary factor 2 (NCOA-2/ GRIP-1/TIF-2) for ARNT1.1 exon 16. Furthermore, results obtained by immunoprecipitation have revealed a second leucine-rich binding site for hARNT1.1 exon 16 in SRC1e exon 21 (LSSTDLL). Finally, we discuss the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an endocrine disruptor for estrogen related transcription.
Collapse
Affiliation(s)
- Alexander Endler
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Li Chen
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
50
|
A TRIP230-retinoblastoma protein complex regulates hypoxia-inducible factor-1α-mediated transcription and cancer cell invasion. PLoS One 2014; 9:e99214. [PMID: 24919196 PMCID: PMC4053355 DOI: 10.1371/journal.pone.0099214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
Localized hypoxia in solid tumors activates transcriptional programs that promote the metastatic transformation of cells. Like hypoxia-inducible hyper-vascularization, loss of the retinoblastoma protein (Rb) is a trait common to advanced stages of tumor progression in many metastatic cancers. However, no link between the role of Rb and hypoxia-driven metastatic processes has been established. We demonstrated that Rb is a key mediator of the hypoxic response mediated by HIF1α/β, the master regulator of the hypoxia response, and its essential co-activator, the thyroid hormone receptor/retinoblastoma-interacting protein (TRIP230). Furthermore, loss of Rb unmasks the full co-activation potential of TRIP230. Using small inhibitory RNA approaches in vivo, we established that Rb attenuates the normal physiological response to hypoxia by HIF1α. Notably, loss of Rb results in hypoxia-dependent biochemical changes that promote acquisition of an invasive phenotype in MCF7 breast cancer cells. In addition, Rb is present in HIF1α-ARNT/HIF1β transcriptional complexes associated with TRIP230 as determined by co-immuno-precipitation, GST-pull-down and ChIP assays. These results demonstrate that Rb is a negative modulator of hypoxia-regulated transcription by virtue of its direct effects on the HIF1 complex. This work represents the first link between the functional ablation of Rb in tumor cells and HIF1α-dependent transcriptional activation and invasion.
Collapse
|