1
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
2
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
3
|
Sekrecka A, Kluzek K, Sekrecki M, Boroujeni ME, Hassani S, Yamauchi S, Sada K, Wesoly J, Bluyssen HAR. Time-dependent recruitment of GAF, ISGF3 and IRF1 complexes shapes IFNα and IFNγ-activated transcriptional responses and explains mechanistic and functional overlap. Cell Mol Life Sci 2023; 80:187. [PMID: 37347298 DOI: 10.1007/s00018-023-04830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.
Collapse
Affiliation(s)
- Agata Sekrecka
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Michal Sekrecki
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sanaz Hassani
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Shota Yamauchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Joanna Wesoly
- High Throughput Technologies Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
4
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Inoue A, Watanabe M, Kondo T, Hirano S, Hatakeyama S. TRIM22 negatively regulates MHC-II expression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119318. [PMID: 35777501 DOI: 10.1016/j.bbamcr.2022.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The development of cancer treatment has recently achieved a remarkable breakthrough, and checkpoint blockade immunotherapy has received much attention. To enhance the therapeutic efficacy of checkpoint blockade immunotherapy, recent studies have revealed the importance of activation of CD4+ T cells via an increase in major histocompatibility complex (MHC) class II molecules in cancer cells. Here, we demonstrate that tripartite motif-containing (TRIM) 22, negatively regulates MHC-II expression. Gene knockout of TRIM22 using Cas9-sgRNAs led to an increase of MHC-II proteins, while TRIM22 overexpression remarkably decreased MHC-II proteins. mRNA levels of MHC-II and class II transactivator (CIITA), which plays an essential role in the regulation of MHC-II transcription, were not affected by TRIM22. Furthermore, TRIM22 knockout did not suppress the degradation of MHC-II protein but rather promoted it. These results suggest that TRIM22 decreases MHC-II protein levels through a combination of multiple mechanisms other than transcription or degradation. We showed that inhibition of TRIM22 can increase the amount of MHC-II expression in cancer cells, suggesting a possibility of providing the biological basis for a possible therapeutic target to potentiate checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Ayano Inoue
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Gastroenterological Surgery II, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
6
|
Janakiram NB, Valerio MS, Goldman SM, Dearth CL. The Role of the Inflammatory Response in Mediating Functional Recovery Following Composite Tissue Injuries. Int J Mol Sci 2021; 22:ijms222413552. [PMID: 34948349 PMCID: PMC8705789 DOI: 10.3390/ijms222413552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Composite tissue injuries (CTI) are common among US Military Service members during combat operations, and carry a high potential of morbidity. Furthermore, CTI are often complicated due to an altered wound healing response, resulting in part from a dysregulation of the innate and adaptive immune responses. Unlike normal wound healing, in CTI, disruptions occur in innate immune responses, altering neutrophil functions, macrophage activation and polarization, further impacting the functions of T regulatory cells. Additionally, the biological underpinnings of these unfavorable wound healing conditions are multifactorial, including various processes, such as: ischemia, hypoxia, low nutrient levels, and altered cell metabolic pathways, among others, all of which are thought to trigger anergy in immune cells and destabilize adaptive immune responses. As a result, impaired wound healing is common in CTI. Herein, we review the altered innate and adaptive immune cells and their metabolic status and responses following CTI, and discuss the role a multi-pronged immunomodulatory approach may play in facilitating improved outcomes for afflicted patients.
Collapse
Affiliation(s)
- Naveena B. Janakiram
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Michael S. Valerio
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Stephen M. Goldman
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L. Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA; (N.B.J.); (M.S.V.); (S.M.G.)
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Correspondence: ; Tel.: +1-(301)-319-2461
| |
Collapse
|
7
|
Genetic and commensal induction of IL-18 drive intestinal epithelial MHCII via IFNγ. Mucosal Immunol 2021; 14:1100-1112. [PMID: 34103660 PMCID: PMC8562907 DOI: 10.1038/s41385-021-00419-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
Major histocompatibility complex class II (MHCII) is dynamically expressed on intestinal epithelial cells (IECs) throughout the intestine, but its regulation remains poorly understood. We observed that spontaneous upregulation of IEC MHCII in locally bred Rag1-/- mice correlated with serum Interleukin (IL)-18, was transferrable via co-housing to commercially bred immunodeficient mice and could be inhibited by both IL-12 and IL-18 blockade. Overproduction of intestinal IL-18 due to an activating Nlrc4 mutation upregulated IEC MHCII via classical inflammasome machinery independently of immunodeficiency or dysbiosis. Immunodeficient dysbiosis increased Il-18 transcription, which synergized with NLRC4 inflammasome activity to drive elevations in serum IL-18. This IL-18-MHCII axis was confirmed in several other models of intestinal and systemic inflammation. Elevated IL-18 reliably preceded MHCII upregulation, suggesting an indirect effect on IECs, and mice with IL-18 overproduction showed activation or expansion of type 1 lymphocytes. Interferon gamma (IFNg) was uniquely able to upregulate IEC MHCII in enteroid cultures and was required for MHCII upregulation in several in vivo systems. Thus, we have linked intestinal dysbiosis, systemic inflammation, and inflammasome activity to IEC MHCII upregulation via an intestinal IL-18-IFNg axis. Understanding this process may be crucial for determining the contribution of IEC MHCII to intestinal homeostasis, host defense, and tolerance.
Collapse
|
8
|
Tur J, Farrera C, Sánchez-Tilló E, Vico T, Guerrero-Gonzalez P, Fernandez-Elorduy A, Lloberas J, Celada A. Induction of CIITA by IFN-γ in macrophages involves STAT1 activation by JAK and JNK. Immunobiology 2021; 226:152114. [PMID: 34303919 DOI: 10.1016/j.imbio.2021.152114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Consol Farrera
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ester Sánchez-Tilló
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Guerrero-Gonzalez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ainhoa Fernandez-Elorduy
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Meyer S, Handke D, Mueller A, Biehl K, Kreuz M, Bukur J, Koehl U, Lazaridou MF, Berneburg M, Steven A, Massa C, Seliger B. Distinct Molecular Mechanisms of Altered HLA Class II Expression in Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153907. [PMID: 34359808 PMCID: PMC8345549 DOI: 10.3390/cancers13153907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) class II molecules are constitutively expressed in some melanoma, but the underlying molecular mechanisms have not yet been characterized. METHODS The expression of HLA class II antigen processing machinery (APM) components was determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry. Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to tumor grading, T-cell infiltration and patients' survival. RESULTS The heterogeneous HLA class II expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma (IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ; phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug tested. High levels of HLA class II APM component expression were associated with an increased intra-tumoral CD4+ T-cell density and increased patients' survival. CONCLUSIONS The heterogeneous basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by distinct molecular mechanisms and has clinical relevance.
Collapse
Affiliation(s)
- Stefanie Meyer
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Mark Berneburg
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
10
|
Feng H, Zhang YB, Gui JF, Lemon SM, Yamane D. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. PLoS Pathog 2021; 17:e1009220. [PMID: 33476326 PMCID: PMC7819612 DOI: 10.1371/journal.ppat.1009220] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.
Collapse
Affiliation(s)
- Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SML); (DY)
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- * E-mail: (SML); (DY)
| |
Collapse
|
11
|
Calonga‐Solís V, Amorim LM, Farias TDJ, Petzl‐Erler ML, Malheiros D, Augusto DG. Variation in genes implicated in B-cell development and antibody production affects susceptibility to pemphigus. Immunology 2021; 162:58-67. [PMID: 32926429 PMCID: PMC7730027 DOI: 10.1111/imm.13259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering skin disease characterized by the presence of pathogenic autoantibodies against desmoglein 1, a component of intercellular desmosome junctions. PF occurs sporadically across the globe and is endemic in some Brazilian regions. Because PF is a B-cell-mediated disease, we aimed to study the impact of variants within genes encoding molecules involved in the different steps of B-cell development and antibody production on the susceptibility of endemic PF. We analysed 3,336 single nucleotide polymorphisms (SNPs) from 167 candidate genes genotyped with Illumina microarray in a cohort of 227 PF patients and 193 controls. After quality control and exclusion of non-informative and redundant SNPs, 607 variants in 149 genes remained in the logistic regression analysis, in which sex and ancestry were included as covariates. Our results revealed 10 SNPs within or nearby 11 genes that were associated with susceptibility to endemic PF (OR >1.56; p < 0.005): rs6657275*G (TGFB2); rs1818545*A (RAG1/RAG2/IFTAP);rs10781530*A (PAXX), rs10870140*G and rs10781522*A (TRAF2); rs535068*A (TNFRSF1B); rs324011*A (STAT6);rs6432018*C (YWHAQ); rs17149161*C (YWHAG); and rs2070729*C (IRF1). Interestingly, these SNPs have been previously associated with differential gene expression, mostly in peripheral blood, in publicly available databases. For the first time, we show that polymorphisms in genes involved in B-cell development and antibody production confer differential susceptibility to endemic PF, and therefore are candidates for possible functional studies to understand immunoglobulin gene rearrangement and its impact on diseases.
Collapse
Affiliation(s)
- Verónica Calonga‐Solís
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Leonardo M. Amorim
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Ticiana D. J. Farias
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Maria Luiza Petzl‐Erler
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danielle Malheiros
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danillo G. Augusto
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
12
|
Nast R, Choepak T, Lüder CGK. Epigenetic Control of IFN-γ Host Responses During Infection With Toxoplasma gondii. Front Immunol 2020; 11:581241. [PMID: 33072127 PMCID: PMC7544956 DOI: 10.3389/fimmu.2020.581241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023] Open
Abstract
Host defense against the human pathogen Toxoplasma gondii depends on secretion of interferon (IFN)-γ and subsequent activation of monocytic cells to combat intracellular parasites. Previous studies have shown that T. gondii evades IFN-γ-mediated immunity by secreting the effector TgIST into the host cell where it binds to STAT1, strengthens its DNA binding activity and recruits the Mi-2/NuRD complex to STAT1-responsive promoters. Here we investigated the impact of the host chromatin environment on parasite interference with IFN-γ-induced gene expression. Luciferase reporters under control of primary and secondary IFN-γ response promoters were only inhibited by T. gondii when they were stably integrated into the host genome but not when expressed from a plasmid vector. Absence of CpG islands upstream and/or downstream of the transcriptional start site allowed more vigorous up-regulation by IFN-γ as compared to CpG-rich promoters. Remarkably, it also favored parasite interference with IFN-γ-induced gene expression indicating that nucleosome occupancy at IFN-γ-responsive promoters is important. Promoter DNA of IFN-γ-responsive genes remained largely non-methylated in T. gondii-infected cells, and inhibition of DNA methylation did not impact parasite interference with host responses. IFN-γ up-regulated histone marks H4ac, H3K9ac, and H3K4me3 but down-regulated H3S10p at primary and secondary response promoters. Infection with T. gondii abolished histone modification, whereas total nuclear activities of histone acetyl transferases and histone deacetylases were not altered. Taken together, our study reveals a critical impact of the host chromatin landscape at IFN-γ-activated promoters on their inhibition by T. gondii with a comprehensive blockade of histone modifications at parasite-inactivated promoters.
Collapse
Affiliation(s)
- Roswitha Nast
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Tenzin Choepak
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center Goettingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
13
|
Cornish SM, Chilibeck PD, Candow DG. Potential Importance of Immune System Response to Exercise on Aging Muscle and Bone. Curr Osteoporos Rep 2020; 18:350-356. [PMID: 32500480 DOI: 10.1007/s11914-020-00596-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The age-related loss of skeletal muscle and bone tissue decreases functionality and increases the risk for falls and injuries. One contributing factor of muscle and bone loss over time is chronic low-grade inflammation. Exercise training is an effective countermeasure for decreasing the loss of muscle and bone tissue, possibly by enhancing immune system response. Herein, we discuss key interactions between the immune system, muscle, and bone in relation to exercise perturbations, and we identify that there is substantial "cross-talk" between muscle and bone and the immune system in response to exercise. RECENT FINDINGS Recent advances in our understanding of the "cross-talk" between muscle and bone and the immune system indicate that exercise is likely to mediate many of the beneficial effects on muscle and bone via their interactions with the immune system. The age-related loss of muscle and bone tissue may be partially explained by an impaired immune system via chronic low-grade inflammation. Exercise training has a beneficial effect on immune system function and aging muscle and bone. Theoretically, the "cross-talk" between the immune system, muscle, and bone in response to exercise enhances aging musculoskeletal health.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, 117 Frank Kennedy Centre, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
14
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
15
|
Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol Cancer Res 2019; 17:2395-2409. [PMID: 31548239 DOI: 10.1158/1541-7786.mcr-19-0545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Molecular events activating the PI3K pathway are frequently detected in human tumors and the activation of PI3K signaling alters numerous cellular processes including tumor cell proliferation, survival, and motility. More recent studies have highlighted the impact of PI3K signaling on the cellular response to interferons and other immunologic processes relevant to antitumor immunity. Given the ability of IFNγ to regulate antigen processing and presentation and the pivotal role of MHC class I (MHCI) and II (MHCII) expression in T-cell-mediated antitumor immunity, we sought to determine the impact of PI3K signaling on MHCI and MHCII induction by IFNγ. We found that the induction of cell surface MHCI and MHCII molecules by IFNγ is enhanced by the clinical grade PI3K inhibitors dactolisib and pictilisib. We also found that PI3K inhibition increases STAT1 protein levels following IFNγ treatment and increases accessibility at genomic STAT1-binding motifs. Conversely, we found that pharmacologic activation of PI3K signaling can repress the induction of MHCI and MHCII molecules by IFNγ, and likewise, the loss of PTEN attenuates the induction of MHCI, MHCII, and STAT1 by IFNγ. Consistent with these in vitro studies, we found that within human head and neck squamous cell carcinomas, intratumoral regions with high phospho-AKT IHC staining had reduced MHCI IHC staining. IMPLICATIONS: Collectively, these findings demonstrate that MHC expression can be modulated by PI3K signaling and suggest that activation of PI3K signaling may promote immune escape via effects on antigen presentation.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Maiko Sasaki
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Urology Emory University School of Medicine, Atlanta, Georgia
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly R Magliocca
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - John T Seykora
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bishu Sapkota
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Susan N Thomas
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert A Swerlick
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia. .,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated With Disease. Front Immunol 2019; 10:1176. [PMID: 31178872 PMCID: PMC6543449 DOI: 10.3389/fimmu.2019.01176] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a family of homologous proteins that regulate the transcription of interferons (IFNs) and IFN-induced gene expression. As such they are important modulating proteins in the Toll-like receptor (TLR) and IFN signaling pathways, which are vital elements of the innate immune system. IRFs have a multi-domain structure, with the N-terminal part acting as a DNA binding domain (DBD) that recognizes a DNA-binding motif similar to the IFN-stimulated response element (ISRE). The C-terminal part contains the IRF-association domain (IAD), with which they can self-associate, bind to IRF family members or interact with other transcription factors. This complex formation is crucial for DNA binding and the commencing of target-gene expression. IRFs bind DNA and exert their activating potential as homo or heterodimers with other IRFs. Moreover, they can form complexes (e.g., with Signal transducers and activators of transcription, STATs) and collaborate with other co-acting transcription factors such as Nuclear factor-κB (NF-κB) and PU.1. In time, more of these IRF co-activating mechanisms have been discovered, which may play a key role in the pathogenesis of many diseases, such as acute and chronic inflammation, autoimmune diseases, and cancer. Detailed knowledge of IRFs structure and activating mechanisms predisposes IRFs as potential targets for inhibition in therapeutic strategies connected to numerous immune system-originated diseases. Until now only indirect IRF modulation has been studied in terms of antiviral response regulation and cancer treatment, using mainly antisense oligonucleotides and siRNA knockdown strategies. However, none of these approaches so far entered clinical trials. Moreover, no direct IRF-inhibitory strategies have been reported. In this review, we summarize current knowledge of the different IRF-mediated transcriptional regulatory mechanisms and how they reflect the diverse functions of IRFs in homeostasis and in TLR and IFN signaling. Moreover, we present IRFs as promising inhibitory targets and propose a novel direct IRF-modulating strategy employing a pipeline approach that combines comparative in silico docking to the IRF-DBD with in vitro validation of IRF inhibition. We hypothesize that our methodology will enable the efficient identification of IRF-specific and pan-IRF inhibitors that can be used for the treatment of IRF-dependent disorders and malignancies.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bart Krist
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Sajek
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Plens-Galaska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
17
|
Lu XB, Wang ZX, Liu SB, Zhang XY, Lu LF, Li S, Chen DD, Nie P, Zhang YA. Interferon Regulatory Factors 1 and 2 Play Different Roles in MHC II Expression Mediated by CIITA in Grass Carp, Ctenopharyngodon idella. Front Immunol 2019; 10:1106. [PMID: 31191518 PMCID: PMC6540827 DOI: 10.3389/fimmu.2019.01106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/01/2019] [Indexed: 01/22/2023] Open
Abstract
Expression of major histocompatibility complex class II (MHC II) molecules, which determines both the immune repertoire during development and subsequent triggering of immune responses, is always under the control of a unique (MHC class II) transactivator, CIITA. The IFN-γ-inducible MHC II expression has been extensively and thoroughly studied in humans, but not in bony fish. In this study, the characterization of CIITA was identified and its functional domains were analyzed in grass carp. The absence of GAS and E-box in the promoter region of grass carp CIITA, might imply that the cooperative interaction between STAT1 and USF1 to active the CIITA expression, found in mammals, is not present in bony fish. After the transfection of IFN-γ or IFN-γ rel, only IFN-γ could induce MHC II expression mediated by CIITA. Moreover, interferon regulatory factor (IRF) 2, which cooperates with IRF1 to active the CIITA promoter IV expression in mammals, played an antagonistic role to IRF1 in the activation of grass carp CIITA. These data suggested that grass carp, compared with mammals, has both conservative and unique mechanisms in the regulation of MHC II expression.
Collapse
Affiliation(s)
- Xiao-Bing Lu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Wang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Bo Liu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Shun Li
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Dan-Dan Chen
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Pin Nie
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Yong-An Zhang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
19
|
Parrini M, Meissl K, Ola MJ, Lederer T, Puga A, Wienerroither S, Kovarik P, Decker T, Müller M, Strobl B. The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transactivation and Cofactor Recruitment. Front Immunol 2018; 9:2879. [PMID: 30574148 PMCID: PMC6291510 DOI: 10.3389/fimmu.2018.02879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
STAT1 has a key role in the regulation of innate and adaptive immunity by inducing transcriptional changes in response to cytokines, such as all types of interferons (IFN). STAT1 exist as two splice isoforms, which differ in regard to the C-terminal transactivation domain (TAD). STAT1β lacks the C-terminal TAD and has been previously reported to be a weaker transcriptional activator than STAT1α, although this was strongly dependent on the target gene. The mechanism of this context-dependent effects remained unclear. By using macrophages from mice that only express STAT1β, we investigated the role of the C-terminal TAD during the distinct steps of transcriptional activation of selected target genes in response to IFNγ. We show that the STAT1 C-terminal TAD is absolutely required for the recruitment of RNA polymerase II (Pol II) and for the establishment of active histone marks at the class II major histocompatibility complex transactivator (CIIta) promoter IV, whereas it is dispensable for histone acetylation at the guanylate binding protein 2 (Gbp2) promoter but required for an efficient recruitment of Pol II, which correlated with a strongly reduced, but not absent, transcriptional activity. IFNγ-induced expression of Irf7, which is mediated by STAT1 in complex with STAT2 and IRF9, did not rely on the presence of the C-terminal TAD of STAT1. Moreover, we show for the first time that the STAT1 C-terminal TAD is required for an efficient recruitment of components of the core Mediator complex to the IFN regulatory factor (Irf) 1 and Irf8 promoters, which both harbor an open chromatin state under basal conditions. Our study identified novel functions of the STAT1 C-terminal TAD in transcriptional activation and provides mechanistic explanations for the gene-specific transcriptional activity of STAT1β.
Collapse
Affiliation(s)
- Matthias Parrini
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mojoyinola Joanna Ola
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,University Center Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
20
|
Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR. A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses. Front Immunol 2018; 9:1135. [PMID: 29892288 PMCID: PMC5985295 DOI: 10.3389/fimmu.2018.01135] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN)-I and IFN-II both induce IFN-stimulated gene (ISG) expression through Janus kinase (JAK)-dependent phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT2. STAT1 homodimers, known as γ-activated factor (GAF), activate transcription in response to all types of IFNs by direct binding to IFN-II activation site (γ-activated sequence)-containing genes. Association of interferon regulatory factor (IRF) 9 with STAT1–STAT2 heterodimers [known as interferon-stimulated gene factor 3 (ISGF3)] or with STAT2 homodimers (STAT2/IRF9) in response to IFN-I, redirects these complexes to a distinct group of target genes harboring the interferon-stimulated response element (ISRE). Similarly, IRF1 regulates expression of ISGs in response to IFN-I and IFN-II by directly binding the ISRE or IRF-responsive element. In addition, evidence is accumulating for an IFN-independent and -dependent role of unphosphorylated STAT1 and STAT2, with or without IRF9, and IRF1 in basal as well as long-term ISG expression. This review provides insight into the existence of an intracellular amplifier circuit regulating ISG expression and controlling long-term cellular responsiveness to IFN-I and IFN-II. The exact timely steps that take place during IFN-activated feedback regulation and the control of ISG transcription and long-term cellular responsiveness to IFN-I and IFN-II is currently not clear. Based on existing literature and our novel data, we predict the existence of a multifaceted intracellular amplifier circuit that depends on unphosphorylated and phosphorylated ISGF3 and GAF complexes and IRF1. In a combinatorial and timely fashion, these complexes mediate prolonged ISG expression and control cellular responsiveness to IFN-I and IFN-II. This proposed intracellular amplifier circuit also provides a molecular explanation for the existing overlap between IFN-I and IFN-II activated ISG expression.
Collapse
Affiliation(s)
- Agata Michalska
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Blaszczyk
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
21
|
Selinger E, Reiniš M. Epigenetic View on Interferon γ Signalling in Tumour Cells. Folia Biol (Praha) 2018; 64:125-136. [PMID: 30724158 DOI: 10.14712/fb2018064040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IFN-γ is a pleiotropic cytokine crucial for both innate and adaptive immunity, which also plays a critical role in immunological surveillance of cancer. Genetic defects or gene silencing in the IFN-γ signal transduction pathways as well as in the expression of IFN-γ-regulated genes represent frequent mechanisms by which tumour cells can escape from immune responses. Epigenetic control of the IFN-γ signalling pathway activation associated with epigenetic changes in the corresponding regulatory gene regions, such as chromatin remodelling, histone acetylation and methylation, and DNA demethylation is frequently dysregulated in tumour cells. Epigenetic silencing of the IFN-γ regulatory pathway components, as well as of the IFN-γ-regulated genes crucial for tumour cell recognition or induction of anti-tumour immune responses, has been documented in various cancer models. Expression of both IFN-γ signalling pathway components and selected IFN-γ-regulated genes can be influenced by epigenetic modifiers, namely DNA methyltransferase and histone deacetylase inhibitors. These agents thus can mimic, restore, or boost the immunomodulatory effects of IFN-γ in tumour cells, which can contribute to their anti-tumour therapeutic efficacies and justifies their potential use in combined epigenetic therapy with immunotherapeutic approaches.
Collapse
Affiliation(s)
- E Selinger
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - M Reiniš
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| |
Collapse
|
22
|
Abou El Hassan M, Huang K, Eswara MBK, Xu Z, Yu T, Aubry A, Ni Z, Livne-Bar I, Sangwan M, Ahmad M, Bremner R. Properties of STAT1 and IRF1 enhancers and the influence of SNPs. BMC Mol Biol 2017; 18:6. [PMID: 28274199 PMCID: PMC5343312 DOI: 10.1186/s12867-017-0084-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND STAT1 and IRF1 collaborate to induce interferon-γ (IFNγ) stimulated genes (ISGs), but the extent to which they act alone or together is unclear. The effect of single nucleotide polymorphisms (SNPs) on in vivo binding is also largely unknown. RESULTS We show that IRF1 binds at proximal or distant ISG sites twice as often as STAT1, increasing to sixfold at the MHC class I locus. STAT1 almost always bound with IRF1, while most IRF1 binding events were isolated. Dual binding sites at remote or proximal enhancers distinguished ISGs that were responsive to IFNγ versus cell-specific resistant ISGs, which showed fewer and mainly single binding events. Surprisingly, inducibility in one cell type predicted ISG-responsiveness in other cells. Several dbSNPs overlapped with STAT1 and IRF1 binding motifs, and we developed methodology to rapidly assess their effects. We show that in silico prediction of SNP effects accurately reflects altered binding both in vitro and in vivo. CONCLUSIONS These data reveal broad cooperation between STAT1 and IRF1, explain cell type specific differences in ISG-responsiveness, and identify genetic variants that may participate in the pathogenesis of immune disorders.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Clinical Chemistry Division, Provincial Laboratory Services, Queen Elizabeth Hospital, Charlottetown, PE, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Manoja B K Eswara
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zhaodong Xu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zuyao Ni
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Izzy Livne-Bar
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Monika Sangwan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Mohamad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada. .,Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Abstract
Diseases of muscle that are caused by pathological interactions between muscle and the immune system are devastating, but rare. However, muscle injuries that involve trauma and regeneration are fairly common, and inflammation is a clear feature of the regenerative process. Investigations of the inflammatory response to muscle injury have now revealed that the apparently nonspecific inflammatory response to trauma is actually a complex and coordinated interaction between muscle and the immune system that determines the success or failure of tissue regeneration.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California 90095-1606, USA
| |
Collapse
|
24
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
25
|
Song Z, Xiong B, Zheng H, Manyande A, Guan X, Cao F, Ren L, Zhou Y, Ye D, Tian Y. STAT1 as a downstream mediator of ERK signaling contributes to bone cancer pain by regulating MHC II expression in spinal microglia. Brain Behav Immun 2017; 60:161-173. [PMID: 27742579 DOI: 10.1016/j.bbi.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Major histocompatibility class II (MHC II)-specific activation of CD4+ T helper cells generates specific and persistent adaptive immunity against tumors. Emerging evidence demonstrates that MHC II is also involved in basic pain perception; however, little is known regarding its role in the development of cancer-induced bone pain (CIBP). In this study, we demonstrate that MHC II expression was markedly induced on the spinal microglia of CIBP rats in response to STAT1 phosphorylation. Mechanical allodynia was ameliorated by either pharmacological or genetic inhibition of MHC II upregulation, which was also attenuated by the inhibition of pSTAT1 and pERK but was deteriorated by intrathecal injection of IFNγ. Furthermore, inhibition of ERK signaling decreased the phosphorylation of STAT1, as well as the production of MHC II in vivo and in vitro. These findings suggest that STAT1 contributes to bone cancer pain as a downstream mediator of ERK signaling by regulating MHC II expression in spinal microglia.
Collapse
Affiliation(s)
- Zhenpeng Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pain Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Bingrui Xiong
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Zheng
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Xuehai Guan
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Fei Cao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lifang Ren
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dawei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
26
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
27
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
28
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Boyd NH, Morgan JE, Greer SF. Polycomb recruitment at the Class II transactivator gene. Mol Immunol 2015; 67:482-91. [PMID: 26283540 DOI: 10.1016/j.molimm.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.
Collapse
Affiliation(s)
- Nathaniel H Boyd
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Julie E Morgan
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Susanna F Greer
- Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Suite 632, Atlanta, GA 30302-4010, United States.
| |
Collapse
|
30
|
Osborn JL, Greer SF. Metastatic melanoma cells evade immune detection by silencing STAT1. Int J Mol Sci 2015; 16:4343-61. [PMID: 25690042 PMCID: PMC4346960 DOI: 10.3390/ijms16024343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022] Open
Abstract
Transcriptional activation of major histocompatibility complex (MHC) I and II molecules by the cytokine, interferon γ (IFN-γ), is a key step in cell-mediated immunity against pathogens and tumors. Recent evidence suggests that suppression of MHC I and II expression on multiple tumor types plays important roles in tumor immunoevasion. One such tumor is malignant melanoma, a leading cause of skin cancer-related deaths. Despite growing awareness of MHC expression defects, the molecular mechanisms by which melanoma cells suppress MHC and escape from immune-mediated elimination remain unknown. Here, we analyze the dysregulation of the Janus kinase (JAK)/STAT pathway and its role in the suppression of MHC II in melanoma cell lines at the radial growth phase (RGP), the vertical growth phase (VGP) and the metastatic phase (MET). While RGP and VGP cells both express MHC II, MET cells lack not only MHC II, but also the critical transcription factors, interferon response factor (IRF) 1 and its upstream activator, signal transducer and activator of transcription 1 (STAT1). Suppression of STAT1 in vitro was also observed in patient tumor samples, suggesting STAT1 silencing as a global mechanism of MHC II suppression and immunoevasion.
Collapse
Affiliation(s)
- JoDi Lynn Osborn
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Susanna F Greer
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
31
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
32
|
Maganti N, Moody TD, Truax AD, Thakkar M, Spring AM, Germann MW, Greer SF. Nonproteolytic roles of 19S ATPases in transcription of CIITApIV genes. PLoS One 2014; 9:e91200. [PMID: 24625964 PMCID: PMC3953376 DOI: 10.1371/journal.pone.0091200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes.
Collapse
Affiliation(s)
- Nagini Maganti
- Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Tomika D. Moody
- Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Agnieszka D. Truax
- Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Meghna Thakkar
- Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Alexander M. Spring
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - Markus W. Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - Susanna F. Greer
- Graduate Program in Cell Biology and Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS One 2014; 9:e87377. [PMID: 24475282 PMCID: PMC3903652 DOI: 10.1371/journal.pone.0087377] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022] Open
Abstract
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER− and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER− lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα+ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα− VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E2 and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα− breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα+ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.
Collapse
|
34
|
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 2013; 140:259-72. [PMID: 23789844 DOI: 10.1111/imm.12136] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA(-) GCB cells compared with CIITA(+) B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA(-) or CIITA(low) GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy.
Collapse
|
35
|
Debnath I, Roundy KM, Pioli PD, Weis JJ, Weis JH. Bone marrow-induced Mef2c deficiency delays B-cell development and alters the expression of key B-cell regulatory proteins. Int Immunol 2012; 25:99-115. [PMID: 23087187 DOI: 10.1093/intimm/dxs088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mef2 family transcriptional regulator Mef2c (myocyte enhancer factor 2c) is highly expressed in maturing bone marrow and peripheral mature B-cells. To evaluate the role of this transcription factor in B-cell development, we generated a B-cell-specific conditional deletion of Mef2c using the Mb-1-Cre transgene that is expressed during the early stages of immunoglobulin rearrangement. Young mice possessing this defect demonstrated a significant impairment in B-cell numbers in bone marrow and spleen. This phenotype was evident in all B-cell subsets; however, as the animals mature, the deficit in the peripheral mature B-cell compartments was overcome. The absence of Mef2c in mature B-cells led to unique CD23+ and CD23- subsets that were evident in Mef2c knockout primary samples as well as Mef2c-deficient cultured, differentiated B-cells. Genome-wide expression analysis of immature and mature B-cells lacking Mef2c indicated altered expression for a number of key regulatory proteins for B-cell function including Ciita, CD23, Cr1/Cr2 and Tnfsf4. Chromatin immunoprecipitation analysis confirmed Mef2c binding to the promoters of these genes indicating a direct link between the presence (or absence) of Mef2c and altered transcriptional control in mature B-cells.
Collapse
Affiliation(s)
- Irina Debnath
- The Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
36
|
Pisapia L, Pozzo GD, Barba P, Citro A, Harris PE, Maffei A. Contrasting effects of IFNα on MHC class II expression in professional vs. nonprofessional APCs: Role of CIITA type IV promoter. RESULTS IN IMMUNOLOGY 2012; 2:174-83. [PMID: 24371581 DOI: 10.1016/j.rinim.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/16/2012] [Accepted: 09/19/2012] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that, in ex vivo cultures, IFNα downregulates the expression of MHC class II (MHCII) genes in human non-professional APCs associated with pancreatic islets. IFNα has an opposing effect on MHCII expression in professional APCs. In this study, we found that the mechanism responsible for the IFNα-mediated MHCII's downregulation in human MHCII-positive non-professional antigen presenting human non-hematopoietic cell lines is the result of the negative feedback system that regulates cytokine signal transduction, which eventually inhibits promoters III and IV of CIITA gene. Because the CIITA-PIV isoform is mostly responsible for the constitutive expression of MHCII genes in non-professional APCs, we pursued and achieved the specific knockdown of CIITA-PIV mRNA in our in vitro system, obtaining a partial silencing of MHCII molecules similar to that obtained by IFNα. We believe that our results offer a new understanding of the potential significance of CIITA-PIV as a therapeutic target for interventional strategies that can manage autoimmune disease and allograft rejection with little interference on the function of professional APCs of the immune system.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Alessandra Citro
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Paul E Harris
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy ; Department of Medicine of Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Temajo NO, Howard N. The viral enterprises in autoimmunity: conversion of target cells into de novo APCs is the presage to autoimmunity. Autoimmun Rev 2012; 11:653-8. [PMID: 22122867 DOI: 10.1016/j.autrev.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 12/20/2022]
Abstract
An autoimmune disease (AD) occurs in a situation where an individual's protective immune system attacks and destroys the individual's own tissues and organ(s), causing a recognizable syndrome(s). The viruses feature in the triggering of autoimmune diseases in genetically primed individuals through generating a viral group of regulatory immediate early proteins (IE). The IE indulges in promiscuous regulations of the viral replications as well as of host intracellular proteins. But there are consequences in the IE controlling host cell protein regulations, which we suggest as: the IE titration of the transactivator protein, autoimmune regulator (AIRE), which causes abolition of central tolerance; and the IE titration of the repressor protein, FOXP3, which results in the breach of peripheral tolerance. Titrations of AIRE and FOXP3 allow the escape of autoreactive T cells into the (peripheral) circulation where they can reach and zero in on self-tissues. The AD-predisposing MHC-II-DR-DQ haplotypes probably play a crucial role in the shaping of the T cell repertoire intrathymically for the survival of budding autoreactive T cell receptors (TCRs). Finally, we suggest there is IE titration of the repressors, the histone deacetylases (HDACs), in target organ cells which then consequentially express de novo MHC-II molecules and become de novo non-professional antigen-presenting cells (APCs), able to present viral peptides to cognate TCRs, thereby enrolling themselves for apoptotic death: a destiny of all APCs in immune responses, in general. Extensive apoptotic destruction of organ cells leads to an autoimmune syndrome(s).
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | | |
Collapse
|
38
|
Reinsbach S, Nazarov PV, Philippidou D, Schmitt M, Wienecke-Baldacchino A, Muller A, Vallar L, Behrmann I, Kreis S. Dynamic regulation of microRNA expression following interferon-γ-induced gene transcription. RNA Biol 2012; 9:978-89. [PMID: 22767256 DOI: 10.4161/rna.20494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferon-γ (IFN-γ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a, miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not.
Collapse
Affiliation(s)
- Susanne Reinsbach
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Butler LM, Jeffery HC, Wheat RL, Long HM, Rae PC, Nash GB, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus inhibits expression and function of endothelial cell major histocompatibility complex class II via suppressor of cytokine signaling 3. J Virol 2012; 86:7158-66. [PMID: 22532676 PMCID: PMC3416330 DOI: 10.1128/jvi.06908-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells (EC) can present antigen to either CD8(+) T lymphocytes through constitutively expressed major histocompatibility complex class I (MHC-I) or CD4(+) T lymphocytes through gamma interferon (IFN-γ)-induced MHC-II. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an EC neoplasm characterized by dysregulated angiogenesis and a substantial inflammatory infiltrate. KSHV is understood to have evolved strategies to inhibit MHC-I expression on EC and MHC-II expression on primary effusion lymphoma cells, but its effects on EC MHC-II expression are unknown. Here, we report that the KSHV infection of human primary EC inhibits IFN-γ-induced expression of the MHC-II molecule HLA-DR at the transcriptional level. The effect is functionally significant, since recognition by an HLA-DR-restricted CD4(+) T-cell clone in response to cognate antigen presented by KSHV-infected EC was attenuated. Inhibition of HLA-DR expression was also achieved by exposing EC to supernatant from KSHV-inoculated EC before IFN-γ treatment, revealing a role for soluble mediators. IFN-γ-induced phosphorylation of STAT-1 and transcription of CIITA were suppressed in KSHV-inoculated EC via a mechanism involving SOCS3 (suppressor of cytokine signaling 3). Thus, KSHV infection resulted in transcriptional upregulation of SOCS3, and treatment with RNA interference against SOCS3 relieved virus-induced inhibition of IFN-γ-induced STAT-1 phosphorylation. Since cell surface MHC-II molecules present peptide antigens to CD4(+) T lymphocytes that can function either as direct cytolytic effectors or to initiate and regulate adaptive immune responses, inhibition of this antigen-presenting pathway would provide a survival advantage to the virus.
Collapse
Affiliation(s)
| | - H. C. Jeffery
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - R. L. Wheat
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - H. M. Long
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - P. C. Rae
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - G. B. Nash
- School of Clinical and Experimental Medicine
| | - D. J. Blackbourn
- School of Cancer Sciences and CR UK Centre for Cancer Research
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Truax AD, Thakkar M, Greer SF. Dysregulated recruitment of the histone methyltransferase EZH2 to the class II transactivator (CIITA) promoter IV in breast cancer cells. PLoS One 2012; 7:e36013. [PMID: 22563434 PMCID: PMC3338556 DOI: 10.1371/journal.pone.0036013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
One mechanism frequently utilized by tumor cells to escape immune system recognition and elimination is suppression of cell surface expression of Major Histocompatibility Class II (MHC II) molecules. Expression of MHC II is regulated primarily at the level of transcription by the Class II Transactivator, CIITA, and decreased CIITA expression is observed in multiple tumor types. We investigate here contributions of epigenetic modifications to transcriptional silencing of CIITA in variants of the human breast cancer cell line MDA MB 435. Significant increases in histone H3 lysine 27 trimethylation upon IFN-γ stimulation correlate with reductions in transcription factor recruitment to the interferon-γ inducible CIITA promoter, CIITApIV, and with significantly increased CIITApIV occupancy by the histone methyltransferase enhancer of zeste homolog 2 (EZH2). Most compelling is evidence that decreased expression of EZH2 in MDA MB 435 variants results in significant increases in CIITA and HLA-DRA mRNA expression, even in the absence of interferon-γ stimulation, as well as increased cell surface expression of MHC II. Together, these data add mechanistic insight to prior observations of increased EZH2 expression and decreased CIITA expression in multiple tumor types.
Collapse
Affiliation(s)
- Agnieszka D. Truax
- Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Meghna Thakkar
- Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Susanna F. Greer
- Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Strong evidence suggests a potential link among epigenetics, microRNAs (miRNAs), and pregnancy complications. Much research still needs to be carried out to determine whether epigenetic factors are predictive in the pathogenesis of preeclampsia (PE), a life-threatening disease during pregnancy. Recently, the importance of maternal epigenetic features, including DNA methylation, histone modifications, epigenetically regulated miRNA, and the effect of imprinted or non-imprinted genes on trophoblast growth, invasion, as well as fetal development and hypertension in pregnancy, has been demonstrated in a series of articles. This article discusses the current evidence of this complicated network of miRNA and epigenetic factors as potential mechanisms that may underlie the theories of disease for PE. Translating these basic epigenetic findings to clinical practice could potentially serve as prognostic biomarkers for diagnosis in its early stages and could help in the development of prophylactic strategies.
Collapse
Affiliation(s)
- Mahua Choudhury
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
42
|
Londhe P, Zhu B, Abraham J, Keller C, Davie J. CIITA is silenced by epigenetic mechanisms that prevent the recruitment of transactivating factors in rhabdomyosarcoma cells. Int J Cancer 2012; 131:E437-48. [PMID: 21989738 DOI: 10.1002/ijc.26478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/26/2011] [Indexed: 01/19/2023]
Abstract
Rhabdomyosarcomas (RMS) are highly malignant pediatric sarcomas. We have discovered that the gene encoding the major histocompatibilty complex class II transactivator, CIITA, is silenced in cells representing both major subtypes of RMS. Silencing of CIITA prevents the IFN-γ inducible expression of MHC class II genes in these cells. Overexpression of CIITA in these cells can restore MHC expression. We have found that IFN-γ signaling is intact in these cells, but pSTAT1 and IRF1 do not bind to the CIITA PIV promoter. The CIITA promoter is not hypermethylated in RD (ERMS) cells but does show a modestly enhanced methylation status in SJRH30 (ARMS) cells. We have found that histone acetylation, which normally increases on the CIITA PIV promoter following IFN-γ treatment, is blocked in both types of RMS cells. In RD cells, treatment with a histone deacetylase inhibitor (TSA) reverses the silencing of CIITA. In SJRH30 cells, treatment with DNA methyltransferase inhibitors and TSA cooperatively restores CIITA expression. Surprisingly, we have also shown that the expression of two components of the immunoproteasome, which are embedded in the class II locus, is stimulated by IFN-γ in certain RMS cells in the absence of stimulation by CIITA. CIITA overexpression can also activate the expression of these genes, indicating that the immunoproteasome genes LMP2 and LMP7 can be activated by both CIITA dependent and CIITA independent pathways.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | | | | | | | | |
Collapse
|
43
|
CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments. Genes Immun 2012; 13:299-310. [PMID: 22218223 PMCID: PMC3366023 DOI: 10.1038/gene.2011.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Three distinct promoters control the master regulator of MHC class II expression, CIITA, in a cell type specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells and macrophages, expresses a unique isoform that contains a caspase recruitment domain. The activity and function of this isoform is not understood but has been thought to enhance the function of CIITA in antigen presenting cells. To determine if isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen, or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DC, the pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown s II distal elements that could act at the pIII, the B cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.
Collapse
|
44
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
45
|
Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res 2011; 17:4400-13. [PMID: 21586626 DOI: 10.1158/1078-0432.ccr-10-3283] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Diverse immune-related effects occur with the use of epidermal growth factor receptor inhibitors (EGFRI). In addition to the cutaneous inflammation induced by EGFRIs, these agents have been associated with the exacerbation of autoimmune skin disease and contact hypersensitivity, antiviral effects, and fatal alveolar damage in the setting of lung transplantation. Because EGFR ligands can modulate MHC class I (MHCI) and II (MHCII) molecule expression, we hypothesized that some of the immune-related effects of EGFRIs are due to direct effects on the expression of MHCI and/or MHCII molecules. EXPERIMENTAL DESIGN Primary human keratinocytes and a malignant keratinocyte cell line (A431) were treated with EGFRIs alone or prior to IFN-γ, a potent inducer of MHCI and MHCII molecule expression. CIITA, MHCI, and MHCII RNA expression was measured using quantitative real-time reverse transcriptase PCR, and cell surface MHCI and MHCII protein expression was measured using flow cytometry. Skin biopsies from patients were analyzed for MHCI and MHCII protein expression before and during therapy with an EGFRI using immunohistochemistry. RESULTS Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies (cetuximab) augmented the induction of MHCI and MHCII molecules by IFN-γ in primary and malignant human keratinocytes. Unexpectedly, the increase in MHCI protein expression did not require the presence of IFN-γ. Consistent with these in vitro findings, skin biopsies from cancer patients exhibited increased epidermal MHCI protein expression during therapy with an EGFRI as well as increases in MHCI and MHCII molecule RNA. CONCLUSIONS These studies suggest that EGFRIs may influence immune/inflammatory responses by directly modulating MHC expression. Clin Cancer Res; 17(13); 4400-13. ©2011 AACR.
Collapse
Affiliation(s)
- Brian P Pollack
- Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
46
|
Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA. Mol Cell Biol 2011; 31:2854-66. [PMID: 21576360 DOI: 10.1128/mcb.05397-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gamma interferon (IFN-γ) is an inflammatory cytokine that has complex effects on myogenesis. Here, we show that the IFN-γ-induced inhibition of myogenesis is mediated by the major histocompatibility complex (MHC) class II transactivator, CIITA, which binds to myogenin and inhibits its activity. In IFN-γ-treated myoblasts, the inhibition of muscle-specific genes includes the expression of myogenin itself, while in myotubes, myogenin expression is unaffected. Thus, CIITA appears to act by both repressing the expression and inhibiting the activity of myogenin at different stages of myogenesis. Stimulation by IFN-γ in skeletal muscle cells induces CIITA expression as well as MHC class II gene expression. The IFN-γ-mediated repression is reversible, with myogenesis proceeding normally upon removal of IFN-γ. Through overexpression studies, we confirm that the expression of CIITA, independent of IFN-γ, is sufficient to inhibit myogenesis. Through knockdown studies, we also demonstrate that CIITA is necessary for the IFN-γ-mediated inhibition of myogenesis. Finally, we show that CIITA, which lacks DNA binding activity, is recruited to muscle-specific promoters coincident with reductions in RNA polymerase II recruitment. Thus, this work reveals how IFN-γ modulates myogenesis and demonstrates a key role for CIITA in this process.
Collapse
|
47
|
Smith MA, Wright G, Wu J, Tailor P, Ozato K, Chen X, Wei S, Piskurich JF, Ting JPY, Wright KL. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J Biol Chem 2011; 286:7893-7904. [PMID: 21216962 DOI: 10.1074/jbc.m110.165431] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are key mediators of immune function through robust and tightly regulated presentation of antigen in the context of the MHC Class II. MHC Class II expression is controlled by the transactivator CIITA. CIITA expression in conventional DCs is uniquely dependent on an uncharacterized myeloid cell-specific promoter, CIITApI. We now identify in vivo the promoter structure and factors regulating CIITApI. In immature DCs transcription requires binding of PU.1, IRF8, NFκB, and Sp1 to the promoter. PU.1 binds independently at one site and in a required heterodimer with IRF8 at a composite element. DCs from IRF8-null mice have an unoccupied CIITApI promoter that can be rescued by reconstitution with IRF8 in vitro. Furthermore, mutation of either PU.1 site or the IFR8 site inhibits transcriptional activation. In vivo footprinting and chromatin immunoprecipitation reveals that DC maturation induces complete disassociation of the bound activators paralleled by recruitment of PRDM1/Blimp-1 to the promoter. PRDM1 is a transcriptional repressor with essential roles in B cells, T cells, NK cells, and DCs. We show that PRDM1 co-repressors, G9a and HDAC2, are recruited to CIITApI, leading to a loss of histone acetylation and acquisition of histone H3K9 dimethylation and heterochromatin protein 1γ (HP1γ). PRDM1 binding also blocks IRF8-mediated activation dependent on the PU.1/IRF composite element. Together these findings reveal the mechanisms regulating CIITA and, thus, antigen presentation in DCs, demonstrating that PRDM1 and IRF8/PU.1 counter-regulate expression. The activity of PRDM1 in silencing all three cell type-specific CIITA promoters places it as a central regulator of antigen presentation.
Collapse
Affiliation(s)
- Matthew A Smith
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Gabriela Wright
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Jian Wu
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Prafullakumar Tailor
- the Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Keiko Ozato
- the Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Xianghong Chen
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Sheng Wei
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Janet F Piskurich
- the Department of Medical Education, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905, and
| | - Jenny P-Y Ting
- the Department of Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kenneth L Wright
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612,.
| |
Collapse
|
48
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Yoon H, Boss JM. PU.1 binds to a distal regulatory element that is necessary for B cell-specific expression of CIITA. THE JOURNAL OF IMMUNOLOGY 2010; 184:5018-28. [PMID: 20363966 DOI: 10.4049/jimmunol.1000079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transcriptional coactivator CIITA regulates MHC class II genes. In the mouse, CIITA is expressed from three distinct promoters (pI, pIII, and pIV) in a developmental and cell type-specific manner with pIII being responsible for B lymphocyte-specific expression. Although the promoter proximal sequences that regulate CIITA in B cells have been described, nothing is known about additional distal elements that may regulate its expression in B cells. Sequence homology comparisons, DNase I hypersensitivity assays, and histone modification analysis revealed a potential regulatory element located 11 kb upstream of pIII. Deletion of this element, termed hypersensitive site 1 (HSS1), in a bacterial artificial chromosome encoding the entire CIITA locus and surrounding genes, resulted in a complete loss of CIITA expression from the bacterial artificial chromosome following transfection into B cells. HSS1 and pIII displayed open chromatin architecture features in B cell but not in plasma cell lines, which are silenced for CIITA expression. PU.1 was found to bind HSS1 and pIII in B cells but not in plasma cells. Depletion of PU.1 by short hairpin RNA reduced CIITA expression. Chromatin conformation capture assays showed that HSS1 interacted directly with pIII in B cells and that PU.1 was important for this interaction. These results provide evidence that HSS1 is required for B cell-specific expression of CIITA and that HSS1 functions by interacting with pIII, forming a long-distance chromatin loop that is partly mediated through PU.1.
Collapse
Affiliation(s)
- Hyesuk Yoon
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Koues OI, Mehta NT, Truax AD, Dudley RK, Brooks JK, Greer SF. Roles for common MLL/COMPASS subunits and the 19S proteasome in regulating CIITA pIV and MHC class II gene expression and promoter methylation. Epigenetics Chromatin 2010; 3:5. [PMID: 20181089 PMCID: PMC2829561 DOI: 10.1186/1756-8935-3-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 02/04/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Studies indicate that the 19S proteasome contributes to chromatin reorganization, independent of the role the proteasome plays in protein degradation. We have previously shown that components of the 19S proteasome are crucial for regulating inducible histone activation events in mammalian cells. The 19S ATPase Sug1 binds to histone-remodeling enzymes, and in the absence of Sug1, a subset of activating epigenetic modifications including histone H3 acetylation, H3 lysine 4 trimethylation and H3 arginine 17 dimethylation are inhibited at cytokine-inducible major histocompatibilty complex (MHC)-II and class II transactivator (CIITA) promoters, implicating Sug1 in events required to initiate mammalian transcription. RESULTS Our previous studies indicate that H3 lysine 4 trimethylation at cytokine-inducible MHC-II and CIITA promoters is dependent on proteolytic-independent functions of 19S ATPases. In this report, we show that multiple common subunits of the mixed lineage leukemia (MLL)/complex of proteins associated with Set I (COMPASS) complexes bind to the inducible MHC-II and CIITA promoters; that overexpressing a single common MLL/COMPASS subunit significantly enhances promoter activity and MHC-II HLA-DRA expression; and that these common subunits are important for H3 lysine 4 trimethylation at MHC-II and CIITA promoters. In addition, we show that H3 lysine 27 trimethylation, which is inversely correlated with H3 lysine 4 trimethylation, is significantly elevated in the presence of diminished 19S ATPase Sug1. CONCLUSION Taken together, these experiments suggest that the 19S proteasome plays a crucial role in the initial reorganization of events enabling the relaxation of the repressive chromatin structure surrounding inducible promoters.
Collapse
Affiliation(s)
- Olivia I Koues
- Division of Cellular and Molecular Biology and Physiology, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|