1
|
Kim D, Nam HJ, Baek SH. Ubiquitination of transcription factors in cancer: unveiling therapeutic potential. Mol Oncol 2025. [PMID: 40227962 DOI: 10.1002/1878-0261.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Transcription factors, pivotal in gene expression regulation, are essential in cancer progression. Their function is meticulously regulated by post-translational modifications, including ubiquitination. This process, which marks proteins for degradation, can either enhance or inhibit the function of transcription factors, contingent on the context. In cancers, dysregulated ubiquitination of transcription factors contributes to the hallmark of uncontrolled growth and survival of tumors. For example, tumor suppressors such as p53 might be degraded prematurely due to abnormal ubiquitination, causing genomic instability. On the other hand, oncogenic transcription factors may gain stability via ubiquitination, thus facilitating tumorigenesis. Targeting the ubiquitin-proteasome system (UPS) therefore could be a viable therapeutic approach in cancer. Emerging treatments aim to block the ubiquitination of oncogenic transcription factors or to stabilize tumor suppressors. This review underscores the critical impact of transcription factor-altered ubiquitination on cancer progression. Additionally, it outlines innovative therapeutic approaches that involve inhibitors or drugs directed at specific ubiquitin E3 ligases and deubiquitinases (DUBs) that regulate transcription factor activity.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Jin Nam
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Korea
| |
Collapse
|
2
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
3
|
Patel JIA, Poyya J, Padakannaya A, Kurdekar NM, Khandagale AS, Joshi CG, Kanade SR, Satyamoorthy K. Mechanistic insights into gut microbe derived siderophores and PHD2 interactions with implications for HIF-1α stabilization. Sci Rep 2025; 15:1113. [PMID: 39774022 PMCID: PMC11707245 DOI: 10.1038/s41598-024-83730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions. This study also helps in understanding the structural mechanisms by which gut microbiota regulate HIF-1α via PHD2 inhibition through the secretion of siderophores. We explore potential PHD2 inhibitors through in-silico approaches, specifically molecular docking, binding pose metadynamics, molecular dynamics simulations, and free energy calculations. We evaluated siderophores secreted by gut microbiota as candidate inhibitors for PHD2. Docking studies revealed that Salmochelin SX exhibits the highest binding affinity to PHD2 (- 9.527 kcal/mol), interacting with key residues such as ASP254, TYR310, ASP315, and ARG322. Despite its high affinity, binding pose metadynamics indicated instability for Salmochelin SX, whereas Staphyloferrin A demonstrated superior stability. Molecular dynamics simulations confirmed stable ligand interactions with PHD2, highlighting HIS313 and ASP315 as critical for inhibition. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analyses underscored conformational changes and binding stability, suggesting that these interactions may stabilize PHD2's active site and have potential therapeutic implications. Additionally, the study reveals how gut microbiota prevent gut dysbiosis through the stabilization of HIF-1α signaling by secreting siderophores.
Collapse
Affiliation(s)
- Jainabbi Irshad Ahmed Patel
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India.
| | - Apeksha Padakannaya
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Namrata Manjunath Kurdekar
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | - Ajay Sathayanarayan Khandagale
- SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India
| | | | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| |
Collapse
|
4
|
Singh A, Cheng D, Swaminathan J, Yang Y, Zheng Y, Gordon N, Gopalakrishnan V. REST-dependent downregulation of von Hippel-Lindau tumor suppressor promotes autophagy in SHH-medulloblastoma. Sci Rep 2024; 14:13596. [PMID: 38866867 PMCID: PMC11169471 DOI: 10.1038/s41598-024-63371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Donghang Cheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Jyothishmathi Swaminathan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yanwen Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yan Zheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Nancy Gordon
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School for Biomedical Sciences, 6767 Bertner Ave, S3.8344 Mitchell BSRB, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Mukhopadhyay D, Chakraborty B, Sarkar S, Alam N, Panda CK. Clinical implications of activation of the LIMD1-VHL-HIF1α pathway during head-&-neck squamous cell carcinoma development. Indian J Med Res 2024; 159:479-493. [PMID: 39382421 PMCID: PMC11463245 DOI: 10.25259/ijmr_1262_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Given the importance of the role of hypoxia induced pathway in different cancers including head-and-neck squamous cell carcinoma (HNSCC), this study delved into elucidating the molecular mechanism of hypoxia-inducible factor-1α (HIF1α) activation in HNSCC. Additionally, it analyzes the alterations of its regulatory genes [von Hippel-Lindau (VHL) and LIM domain containing 1 (LIMD1)] and target gene vascular endothelial growth factor (VEGF) in head-and-neck lesions at different clinical stages in relation with human papillomavirus (HPV) infection. Methods Global mRNA expression profiles of HIF1α, VHL, LIMD1 and VEGF were evaluated from public datasets of HNSCC, followed by validation of their expression (mRNA/protein) in an independent set of HPV+ve/-ve HNSCC samples of different clinical stages. Results A diverse expression pattern of the HIF1α pathway genes was observed, irrespective of HPV infection, in the datasets. In validation in an independent set of HNSCC samples, high mRNA expressions of HIF1α/VEGF were observed particularly in HPV positive samples. However, VHL/LIMD1 mRNA expression was low in tumours regardless of HPV infection status. In immunohistochemical analysis, high/medium (H/M) expression of HIF1α/VEGF was observed in basal/parabasal layers of normal epithelium, with significantly higher expression in tumours, especially in HPV-positive samples. Conversely, high cytoplasmic VHL expression in these layers gradually decreased with the progression of HNSCC, regardless of HPV infection. A similar trend was noted in LIMD1 expression (nuclear/cytoplasmic) during the disease development. The methylation pattern of VHL and LIMD1 promoters in the basal/parabasal layers of normal epithelium correlated with their expression, exhibiting a gradual increase with the progression of HNSCC. The H/M expression of HIF1α/VEGF proteins and reduced VHL expression was associated with poor clinical outcomes. Interpretation & conclusions The results of this study showed differential regulation of the LIMD1-VHL-HIF1α pathway in HPV positive and negative HNSCC samples, illustrating the molecular distinctiveness of these two groups.
Collapse
Affiliation(s)
- Debalina Mukhopadhyay
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Shreya Sarkar
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
- New Brunswick Heart Centre, Saint John, NB, Canada
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
7
|
Chen Z, Wang Z, Zhu C, Deng H, Chen X. Inhibiting neddylation with MLN4924 potentiates hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells. Gene 2024; 893:147935. [PMID: 38381506 DOI: 10.1016/j.gene.2023.147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Hypoxia, an inadequate supply of tissue oxygen tension, has been reported to induce apoptosis of spermatogenic cells and is associated with male infertility. Neddylation, a post-translational modification similar to ubiquitination, has been shown to be involved in the hypoxia stress response. However, the functions of neddylation in hypoxia-induced apoptosis of spermatogenic cells and its association with male infertility remain largely unexplored. In this study, aiming to explore the role of neddylation in male infertility, we used the specific neddylation inhibitor MLN4924 for treatment in mouse type B spermatogonia GC-2 cells. Our results showed that MLN4924 had no apparent effect on GC-2 cell apoptosis under normoxia, but significantly increased apoptotic cells under hypoxia. Transcriptomic analysis and qPCR assay confirmed that MLN4924 could suppress the expression of hypoxia target genes in GC-2 cells under hypoxia. In addition, MLN4924 could enhance the induction of intracellular and mitochondrial reactive oxygen species (ROS) under hypoxia. These results indicate that the neddylation inhibitor MLN4924 potentiates hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells, and neddylation may play an important role in promoting spermatogenic cells to adapt to hypoxia stress.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, PR China.
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Jiang W, Zhang M, Gao C, Yan C, Gao R, He Z, Wei X, Xiong J, Ruan Z, Yang Q, Li J, Li Q, Zhong Z, Zhang M, Yuan Q, Hu H, Wang S, Hu M, Cai C, Wu G, Jiang C, Zhang Y, Zhang C, Zhang J. A mitochondrial EglN1-AMPKα axis drives breast cancer progression by enhancing metabolic adaptation to hypoxic stress. EMBO J 2023; 42:e113743. [PMID: 37661833 PMCID: PMC10577635 DOI: 10.15252/embj.2023113743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the β2β3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its β2β3 loop region, suggesting a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ronghui Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ziwei He
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Xin Wei
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jingjing Xiong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Zilun Ruan
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Qifang Li
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ziyi Zhong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Shuang Wang
- Mabnus Biological Technology IncorporationWuhanChina
| | - Ming‐Ming Hu
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Gao‐Song Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chao Jiang
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Ya‐Lin Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityFujianChina
| | - Chen‐Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityFujianChina
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
9
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
10
|
Yu Y, He J, Liu W, Li Z, Weng S, He J, Guo C. Molecular Characterization and Functional Analysis of Hypoxia-Responsive Factor Prolyl Hydroxylase Domain 2 in Mandarin Fish ( Siniperca chuatsi). Animals (Basel) 2023; 13:ani13091556. [PMID: 37174593 PMCID: PMC10177477 DOI: 10.3390/ani13091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
With increased breeding density, the phenomenon of hypoxia gradually increases in aquaculture. Hypoxia is primarily mediated by the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Prolyl hydroxylase domain proteins (PHD) are cellular oxygen-sensing molecules that regulate the stability of HIF-1α through hydroxylation. In this study, the characterization of the PHD2 from mandarin fish Siniperca chuatsi (scPHD2) and its roles in the HIF-1 signaling pathway were investigated. Bioinformation analysis showed that scPHD2 had the conserved prolyl 4-hydroxylase alpha subunit homolog domains at its C-terminal and was more closely related to other Perciformes PHD2 than other PHD2. Tissue-distribution results revealed that scphd2 gene was expressed in all tissues tested and more highly expressed in blood and liver than in other tested tissues. Dual-luciferase reporter gene and RT-qPCR assays showed that scPHD2 overexpression could significantly inhibit the HIF-1 signaling pathway. Co-immunoprecipitation analysis showed that scPHD2 could interact with scHIF-1α. Protein degradation experiment results suggested that scPHD2 could promote scHIF-1α degradation through the proteasome degradation pathway. This study advances our understanding of how the HIF-1 signaling pathway is regulated by scPHD2 and will help in understanding the molecular mechanisms underlying hypoxia adaptation in teleost fish.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Wenhui Liu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| |
Collapse
|
11
|
Jiang J, Chen S, Yu T, Chang C, Liu J, Ren X, Niu H, Huang K, Li B, Wang C, Yang T. Dynamic analysis of gene signatures in the progression of COPD. ERJ Open Res 2023; 9:00343-2022. [PMID: 36891078 PMCID: PMC9986750 DOI: 10.1183/23120541.00343-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
Aims Oxidative stress is an important amplifying mechanism in COPD; however, it is unclear how oxidative stress changes and what its exact amplification mechanism is in the pathological process. We aimed to dynamically analyse the progression of COPD and further elucidate the characteristics of each developmental stage and unveil the underlying mechanisms. Methods We performed a holistic analysis by integrating Gene Expression Omnibus microarray datasets related to smoking, emphysema and Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification based on the concept of gene, environment and time (GET). Gene ontology (GO), protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA) were used to explore the changing characteristics and potential mechanisms. Lentivirus was used to promote HIF3A overexpression. Results In smokers versus nonsmokers, the GO term mainly enriched in "negative regulation of apoptotic process". In later transitions between stages, the main enriched terms were continuous progression of "oxidation-reduction process" and "cellular response to hydrogen peroxide". Logistic regression showed that these core differentially expressed genes (DEGs) had diagnostic accuracy in test (area under the curve (AUC)=0.828) and validation (AUC=0.750) sets. GSEA and PPI networks showed that one of the core DEGs, HIF3A, strongly interacted with the ubiquitin-mediated proteolysis pathway. Overexpression of HIF3A restored superoxide dismutase levels and alleviated the reactive oxygen species accumulation caused by cigarette smoke extract treatment. Conclusion Oxidative stress was continuously intensified from mild emphysema to GOLD 4; thus, special attention should be paid to the identification of emphysema. Furthermore, the downregulated HIF3A may play an important role in the intensified oxidative stress in COPD.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Shengsong Chen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Tao Yu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chenli Chang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jixiang Liu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xiaoxia Ren
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Hongtao Niu
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Ke Huang
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Baicun Li
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,These authors contributed equally
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,These authors contributed equally
| |
Collapse
|
12
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Kubo A, Murata H, Shuin T, U HS. Role of SOCS and VHL Proteins in Neuronal Differentiation and Development. Int J Mol Sci 2023; 24:ijms24043880. [PMID: 36835292 PMCID: PMC9960776 DOI: 10.3390/ijms24043880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Correspondence: ; Tel.: +81-3-5242-5800
| | - Shutaro Matsumoto
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare, Atami 413-0012, Japan
| | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Taro Shuin
- Kochi Medical School Hospital, Nangoku 783-0043, Japan
| | - Hoi-Sang U
- Department of Electrical Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness. Blood 2022; 140:1686-1701. [PMID: 35881840 DOI: 10.1182/blood.2022016112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.
Collapse
|
14
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
15
|
Gu W, Qi J, Zhang S, Ding Y, Qiao J, Han Y. Inhibition of HIF prolyl hydroxylase modulates platelet function. Thromb Haemost 2022; 122:1693-1705. [PMID: 35477177 DOI: 10.1055/a-1837-7797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factors-1α (HIF-1α) involves in redox reaction. Considering the role of reactive oxygen species (ROS) in platelet function, whether it regulates platelet function remains unclear. Using an inhibitor of HIF prolyl hydroxylase IOX-2, we intend to investigate its effect on platelet function. Human platelets were treated with IOX-2 (0, 10, 25, and 50 M) followed by analysis of platelet aggregation, granule secretion, receptor expression, platelet spreading or clot retraction. Additionally, IOX-2 (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time and arterial thrombosis. IOX-2 significantly inhibited collagen-related peptide (CRP, 0.25 μg/ml) or thrombin (0.03 U/ml)-induced platelet aggregation and ATP release dose dependently without affecting P-selectin expression and the surface levels of glycoprotein (GP)Ib, GPVI or IIb3. In addition, IOX-2-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction. Moreover, IOX-2 administration into mice significantly impaired the in vivo hemostatic function of platelets and arterial thrombus formation without affecting the number of circulating platelets and coagulation factor (FVIII and FIX). Further, IOX-2 significantly upregulated HIF-1 in platelets, decreased ROS generation and downregulated NOX1 expression. Finally, IOX-2 increased the phosphorylation level of VASP (Ser157/239), and inhibited the phosphorylation of p38 (Thr180/Tyr182), ERK1/2 (Thr202/Tyr204), AKT (Thr308/Ser473) and PKC (Thr505) in CRP- or thrombin-stimulated platelets. In conclusion, inhibition of HIF prolyl hydroxylase modulates platelet function and arterial thrombus formation, possibly through upregulation of HIF-1α expression and subsequent inhibition of ROS generation, indicating that HIF-1α might be a novel target for the treatment of thrombotic disorders.
Collapse
|
16
|
Chacon-Barahona JA, Salladay-Perez IA, Lanning NJ. Lung Adenocarcinoma Transcriptomic Analysis Predicts Adenylate Kinase Signatures Contributing to Tumor Progression and Negative Patient Prognosis. Metabolites 2021; 11:metabo11120859. [PMID: 34940617 PMCID: PMC8705281 DOI: 10.3390/metabo11120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to detect and respond to hypoxia within a developing tumor appears to be a common feature amongst most cancers. This hypoxic response has many molecular drivers, but none as widely studied as Hypoxia-Inducible Factor 1 (HIF-1). Recent evidence suggests that HIF-1 biology within lung adenocarcinoma (LUAD) may be associated with expression levels of adenylate kinases (AKs). Using LUAD patient transcriptome data, we sought to characterize AK gene signatures related to lung cancer hallmarks, such as hypoxia and metabolic reprogramming, to identify conserved biological themes across LUAD tumor progression. Transcriptomic analysis revealed perturbation of HIF-1 targets to correlate with altered expression of most AKs, with AK4 having the strongest correlation. Enrichment analysis of LUAD tumor AK4 gene signatures predicts signatures involved in pyrimidine, and by extension, nucleotide metabolism across all LUAD tumor stages. To further discriminate potential drivers of LUAD tumor progression within AK4 gene signatures, partial least squares discriminant analysis was used at LUAD stage-stage interfaces, identifying candidate genes that may promote LUAD tumor growth or regression. Collectively, these results characterize regulatory gene networks associated with the expression of all nine human AKs that may contribute to underlying metabolic perturbations within LUAD and reveal potential mechanistic insight into the complementary role of AK4 in LUAD tumor development.
Collapse
Affiliation(s)
- Jonathan A. Chacon-Barahona
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
| | - Ivan A. Salladay-Perez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 94701, USA
| | - Nathan James Lanning
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA; (J.A.C.-B.); (I.A.S.-P.)
- Correspondence: ; Tel.: +1-(323)-343-2092
| |
Collapse
|
17
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
18
|
Liu H, Yang J, Zhang Y, Han J, Yang Y, Zhao Z, Dai X, Wang H, Ding X, Liu Y, Zhong W, Gao W, Sun T. Psychologic Stress Drives Progression of Malignant Tumors via DRD2/HIF1α Signaling. Cancer Res 2021; 81:5353-5365. [PMID: 34321238 PMCID: PMC9306299 DOI: 10.1158/0008-5472.can-21-1043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
Although it is established that the sustained psychologic stress conditions under which patients with tumors often reside accelerates malignant progression of tumors, the molecular mechanism behind this association is unclear. In this work, the effect of psychologic stress on tumor progression was verified using a stress-stimulated tumor-bearing mouse model (Str-tumor). Both D2 dopamine receptor (DRD2) and hypoxia-inducible factor-1α (HIF1α) were highly expressed in the nucleus of Str-tumors. Treatment with trifluoperazine (TFP), a DRD2 inhibitor, elicited better antitumor effects in Str-tumors than the control group. These results indicate that DRD2 may mediate stress-induced malignant tumor progression. DRD2 interacted with von Hippel-Lindau (VHL) in the nucleus, and competitive binding of DRD2 and HIF1α to VHL resulted in reduced ubiquitination-mediated degradation of HIF1α, enhancing the epithelial-mesenchymal transition of tumor cells. TFP acted as an interface inhibitor between DRD2 and VHL to promote the degradation of HIF1α. In conclusion, DRD2 may promote the progression of malignant tumors induced by psychologic stress via activation of the oxygen-independent HIF1α pathway, and TFP may serve as a therapeutic strategy for stress management in patients with cancer. SIGNIFICANCE: This work identifies DRD2 regulation of HIF1α as a mechanism underlying the progression of malignant tumors stimulated by psychologic stress and suggests that DRD2 inhibition can mitigate these stress conditions in patients.See related commentary by Bernabé, p. 5144.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jiahuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yang Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuyan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zihan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yanrong Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Corresponding Authors: Tao Sun, Nankai University, State Key Laboratory of Medicinal Chemical Biology, No. 38 Tongyan Road, Haihe River Education Park, Jinnan District, Tianjin, 300450 China. Phone: 13512922691; E-mail: ; and Wenqing Gao, Phone: 18512215515; E-mail:
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Corresponding Authors: Tao Sun, Nankai University, State Key Laboratory of Medicinal Chemical Biology, No. 38 Tongyan Road, Haihe River Education Park, Jinnan District, Tianjin, 300450 China. Phone: 13512922691; E-mail: ; and Wenqing Gao, Phone: 18512215515; E-mail:
| |
Collapse
|
19
|
Lin KH, Wei YM, Liu CH, Liu JS, Huang IC, Viswanadha VP, Huang CY, Kuo WW. Diallyl Trisulfide Suppresses High-Glucose-Induced Cardiomyocyte Apoptosis by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1α/Insulin-like Growth Factor Binding Protein 3 Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11696-11708. [PMID: 34558885 DOI: 10.1021/acs.jafc.1c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been reported that 80% of diabetic patients die due to cardiovascular diseases. We previously demonstrated that activated hypoxia-inducible factor-1α (HIF-1 α)/insulin-like growth factor binding protein-3 (IGFBP-3) signaling by reactive oxygen species (ROS)-regulated prolyl hydroxylase domain-containing protein (PHD) is involved in high-glucose (HG)-induced cardiac apoptosis. Diallyl trisulfide (DATS), a garlic component, shows the strongest inhibitory effect on diabetic cardiomyopathy. In this study, we investigated whether HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes. It was observed that significantly increased levels of cell apoptosis and decreased Akt phosphorylation were reversed by DATS in HG-exposed cardiac cells. H2O2 and PHD small interfering RNA treatments increased HIF-1α and IGFBP-3 protein levels, which were decreased by DATS treatment. Overexpression of HIF-1α and IGFBP-3 increased HG-induced cell apoptosis, which was suppressed by DATS. The coimmunoprecipitation assay results showed that DATS not only increased the IGF-1 level and reduced IGFBP-3 level but also suppressed their extracellular association for cardiac cells exposed to HG. Experiments using neonatal cardiomyocytes and hearts showed similar results. These findings indicate that the effect of ROS-regulated PHD on the activation of HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Min Wei
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | - Chung-Hung Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | - Jian-Sheng Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
- China Medical University, Thoracic Department, Beigang Hospital, Yunlin 651, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| |
Collapse
|
20
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
21
|
Ji YX, Wang Y, Li PL, Cai L, Wang XM, Bai L, Liu Z, Tian H, Tian S, Zhang P, Zhang XJ, Cheng X, Yuan Y, She ZG, Hu Y, Li H. A kinome screen reveals that Nemo-like kinase is a key suppressor of hepatic gluconeogenesis. Cell Metab 2021; 33:1171-1186.e9. [PMID: 33951476 DOI: 10.1016/j.cmet.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/13/2020] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Antihyperglycemic therapy is an important priority for the treatment of type 2 diabetes (T2D). Excessive hepatic glucose production (HGP) is a major cause of fasting hyperglycemia. Therefore, a better understanding of its regulation would be important to develop effective antihyperglycemic therapies. Using a gluconeogenesis-targeted kinome screening approach combined with transcriptome analyses, we uncovered Nemo-like kinase (NLK) as a potent suppressor of HGP. Mechanistically, NLK phosphorylates and promotes nuclear export of CRTC2 and FOXO1, two key regulators of hepatic gluconeogenesis, resulting in the proteasome-dependent degradation of the former and the inhibition of the self-transcriptional activity and expression of the latter. Importantly, the expression of NLK is downregulated in the liver of individuals with diabetes and in diabetic rodent models and restoring NLK expression in the mouse model ameliorates hyperglycemia. Therefore, our findings uncover NLK as a critical player in the gluconeogenic regulatory network and as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Yan-Xiao Ji
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yutao Wang
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng-Long Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Lin Cai
- Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ming Wang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Lan Bai
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yufeng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Minuzzi LG, da Conceição LR, Muñoz VR, Vieira RFL, Gaspar RC, da Silva ASR, Cintra DE, Pereira de Moura L, Ropelle ER, Teixeira AM, Pauli JR. Effects of short-term physical training on the interleukin-15 signalling pathway and glucose tolerance in aged rats. Cytokine 2021; 137:155306. [PMID: 33010727 DOI: 10.1016/j.cyto.2020.155306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Interleukin-15 (IL-15) is a myokine that has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. However, the evidence suggesting a role for IL-15 in improving whole-body insulin sensitivity and decreasing adiposity comes mainly from studies using supraphysiological levels of this cytokine. This study examined the effect of a short-term exercise training protocol on the protein content of IL-15, it's signaling pathway, and glucose tolerance in aged rats. METHODS Fourteen Wistar rats were divided into Young Sedentary (Young, n = 4); Old Sedentary (Old, n = 5); Old Exercise (Old.Exe, n = 5) groups. The animals from the exercised group were submitted to a short-term physical exercise protocol for five days. At the end of physical training and after 16 h of the last exercise session, the animals were euthanized, and tissue collection was done. RESULTS Physical exercise decreased epididymal and mesenteric fat mass and promoted positive effects on glucose tolerance and insulin sensitivity. Muscle IL-15 protein levels were not changed following the short-term physical exercise training with no alterations in the post-exercise IL-15-JAK/STAT signaling pathway. We found a tendency to increased HIF1α and a significant increase in its regulator, PHD2, in the skeletal muscle after exercise. CONCLUSION The elderly rats submitted to short-term aerobic physical training did not present skeletal muscle alteration in the protein content of the IL-15 and IL-15-JAK/STAT signaling pathway. However, short-term aerobic physical training was able to modulate the expression of HIF1α and its regulator PHD2, suggesting an essential role of these proteins in improving post-exercise glucose tolerance and insulin sensitivity in elderly rats.
Collapse
Affiliation(s)
- Luciele Guerra Minuzzi
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal; Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Luciana Renata da Conceição
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Post-graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Maria Teixeira
- University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
23
|
Gilyazova IR, Beeraka NM, Klimentova EA, Bulygin KV, Nikolenko VN, Izmailov AA, Gilyazova GR, Pavlov VN, Khusnutdinova EK, Somasundaram SG, Kirkland CE, Aliev G. Novel MicroRNA Binding Site SNPs and the Risk of Clear Cell Renal Cell Carcinoma (ccRCC): A Case-Control Study. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111697. [PMID: 33222672 DOI: 10.2174/1568009620666201120151226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Renal cell carcinoma represents 3% of all adult malignancies. MicroRNAs exhibit specific functions in various biological processes through their interaction with cellular mRNA involved in apoptosis and cell cycle control. Recent studies have reported the potential association of single-nucleotide polymorphisms (SNPs) in miRNA-binding sites of VHL-HIF1α pathway genes with renal cancer development and progression. OBJECTIVE The objective of this study is to investigate SNPs invoking an alteration in the nature of interaction with miRNA binding sites of VHL-HIF1α pathway genes. PATIENTS & METHODS Total 450 cases of histologically and clinically verified ccRCC and 490 controls were included in our study. Genotyping was performed using a TaqMan PCR allelic discrimination method. Kaplan-Meier method of statistical analysis was implemented to analyze the overall patient survival rate. RESULTS Polymorphism rs10491534 in TSC1 gene was significantly associated with risk of developing advanced ccRCC. Allele G of rs1642742 in VHL gene was significantly prevalent in ccRCC compared with control group aged 55 and older (OR = 1.5566; CI [1.1532-2.1019]). Results from the dominant model combining individuals with AG or AA genotype showed that the A allele bearers of CDCP1 rs6773576 exhibited higher risk of death compared to GG carriers (HR 3.93, 95% CI 1.76-17.21, log-rank P = 0.0033). CONCLUSION The present study delineated the association of miRNA binding site variants in VHL-HIF1α pathway genes with the ccRCC risk, which may affect clinical outcome.
Collapse
Affiliation(s)
- Irina R Gilyazova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa. Russian Federation
- Bashkir State Medical University, Ufa, Russian Federation
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka. India
| | - Elizaveta A Klimentova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa. Russian Federation
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | | | | | | | - Elsa K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa. Russian Federation
- Bashkir State Medical University, Ufa, Russian Federation
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, USA
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia
| |
Collapse
|
24
|
LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39:7005-7018. [PMID: 33060856 PMCID: PMC7661343 DOI: 10.1038/s41388-020-01512-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic alteration is one of the hallmarks of colorectal cancer (CRC). Many driver genes are regulated by DNA methylation in CRC. However, the role of DNA methylation regulating lncRNAs remain elusive. Here, we identify that SNHG11 (small nucleolar RNA host gene 11) is upregulated by promotor hypomethylation in CRC and is associated with poor prognosis in CRC patients. SNHG11 can promote CRC cell migration and metastasis under hypoxia. Interestingly, the DNA-binding motif of SNHG11 is similar to that of HIF-1α. In addition, SNHG11-associated genes are enriched with members of the HIF-1 signaling pathway in CRC. Mechanistically, SNHG11 binds to the pVHLrecognition sites on HIF-1α, thus blocking the interaction of pVHL with HIF-1α and preventing its ubiquitination and degradation. Moreover, SNHG11 upregulates the expression of HIF-1α target genes, i.e., AK4, ENO1, HK2, and Twist1. Notably, SNHG11 can bind to the HRE sites in the promoter of these genes and increase their transcription. In summary, these results identify a SNHG11/ HIF-1α axis that plays a pivotal role in tumor invasion and metastasis.
Collapse
|
25
|
Lo B, Marty-Gasset N, Pichereaux C, Bravo C, Manse H, Domitile R, Rémignon H. Proteomic Analysis of Two Weight Classes of Mule Duck " foie gras" at the End of an Overfeeding Period. Front Physiol 2020; 11:569329. [PMID: 33041868 PMCID: PMC7528769 DOI: 10.3389/fphys.2020.569329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
The weight of the liver is one of the important selection criteria in the quality of “foie gras”. This factor is highly variable despite the fact that individuals are reared, overfed and slaughtered in the same way. In this study, we performed an analysis of the proteome profile of two weight classes of light (between 550 and 599 g) and heavy (more than 700 g) livers. For the analysis of the proteic extracts, a liquid chromatographic analysis coupled with mass spectrometry was carried out. In low-weight livers, aerobic energy metabolism, protein metabolism and lipid metabolism oriented toward export and beta-oxidation were overexpressed. On the contrary, high weight livers were characterized by anaerobic energy metabolism and a more active protein catabolism associated with cell apoptosis and reorganization of the cell structure.
Collapse
Affiliation(s)
- Bara Lo
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Nathalie Marty-Gasset
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Carole Pichereaux
- Centre National de la Recherche Scientifique, Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité, Toulouse, France.,Centre National de la Recherche Scientifique, Université de Toulouse - UPS, Institut de Pharmacologie et Biologie Structurale, Toulouse, France
| | - Céline Bravo
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | - Hélène Manse
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| | | | - Hervé Rémignon
- Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, GENétique PHYsiologie et Systèmes d'Elevage, Castanet-Tolosan, France
| |
Collapse
|
26
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Zhao L, Wang J, Zhang Y, Wang L, Yu M, Wang F. Vitamin C decreases VEGF expression levels via hypoxia‑inducible factor‑1α dependent and independent pathways in lens epithelial cells. Mol Med Rep 2020; 22:436-444. [PMID: 32377733 PMCID: PMC7248485 DOI: 10.3892/mmr.2020.11103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Posterior capsular opacification (PCO) is the main complication following cataract surgery. The proliferation of the residual lens epithelial cells (LECs) serves an important role in PCO formation. The authors' previous study revealed that vitamin C inhibited the proliferation of human LECs by increasing the rapid degradation of hypoxia-inducible factor-1 (HIF-1α), and hence inhibited the expression of vascular endothelial growth factor (VEGF). The present study aimed to further investigate the mechanisms underlying the effects of vitamin C on the expression levels of VEGF. The present study demonstrated that the HIF-1 inhibitor BAY 87–2243 significantly inhibited the cell proliferation and the expression levels of VEGF in LECs through the use of colony formation, western blotting and ELISA assays. Moreover, it was revealed that vitamin C could further inhibit the cell proliferation and the expression levels of VEGF in LECs following the cotreatment with the HIF-1 inhibitor. The proline hydroxylation of HIF-1α by prolyl hydroxylases (PHDs) was previously discovered to be responsible for the rapid degradation of HIF-1α. Thus, the present study subsequently used three PHD inhibitors to investigate their effects on the expression levels of VEGF; it was found that the PHD2 specific inhibitor increased the expression levels of VEGF to the greatest extent. Moreover, the genetic knockdown of PHD2 by lentiviral transfection also significantly increased the expression levels of VEGF, whereas the PHD2 specific inhibitor did not alter the expression levels of VEGF in the PHD2 knockdown LECs. AKT kinase activity is an important mediator known to upregulate VEGF expression. Using an immunoprecipitation assay to isolate endogenous AKT, it was demonstrated that AKT was prolyl hydroxylated by PHD2, which inhibited its activity. It was also revealed that vitamin C enhanced the proline-hydroxylation and inhibited the activity of AKT. Furthermore, an AKT inhibitor increased the effects of vitamin C on the expression levels of VEGF. However, the AKT inhibitor did not affect the expression levels of glucose transporter 1, which is a HIF-1α target gene. In conclusion, the findings of the present study suggested that vitamin C may inhibit the expression levels of VEGF via HIF-1α-dependent and AKT-dependent pathways in LECs.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lijun Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Miao Yu
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Feng Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
28
|
Depping R, von Fallois M, Landesman Y, Kosyna FK. The Nuclear Export Inhibitor Selinexor Inhibits Hypoxia Signaling Pathways And 3D Spheroid Growth Of Cancer Cells. Onco Targets Ther 2019; 12:8387-8399. [PMID: 31632086 PMCID: PMC6793465 DOI: 10.2147/ott.s213208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The nucleocytoplasmic transport of macromolecules is critical for both cell physiology and pathophysiology. Exportin 1 (XPO1), the major nuclear export receptor, is involved in the cellular adaptation to reduced oxygen availability by controlling the nuclear activity of the hypoxia-inducible factors (HIFs). Recently, a specific inhibitor of XPO1, selinexor (KPT-330), has been identified that inhibits nuclear export of cargo proteins by binding to the XPO1 cargo-binding pocket. Patients and methods We used different cancer cell lines from human tissues and evaluated the physiological activity of selinexor on the hypoxia response pathway in two-dimensional (2D) monolayer cell cultures in quantitative real-time (qRT)-PCR experiments and luciferase reporter gene assays. A three-dimensional (3D) tumor spheroid culture model of MCF-7 breast cancer cells was established to analyze the effect of selinexor on 3D tumor spheroid structure, formation and viability. Results Selinexor treatment reduces HIF-transcriptional activity and expression of the HIF-1 target gene solute carrier family 2 member 1 (SLC2A1). Moreover, 3D tumor spheroid structure, formation and viability are inhibited in response to selinexor-induced nuclear export inhibition. Conclusion Here, we demonstrate the effect of specific XPO1-inhibition on the hypoxic response on the molecular level in 2D and 3D culture models of MCF-7 cells.
Collapse
Affiliation(s)
- Reinhard Depping
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| | - Moritz von Fallois
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany.,Clinic for Radiotherapy, University Hospital Schleswig-Holstein, Lübeck D-23562, Germany
| | | | - Friederike Katharina Kosyna
- Center for Structural and Cell Biology in Medicine, Institute of Physiology, Working Group Hypoxia, University of Lübeck, Lübeck D-23562, Germany
| |
Collapse
|
29
|
Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. Int J Mol Sci 2019; 20:E4131. [PMID: 31450598 PMCID: PMC6747260 DOI: 10.3390/ijms20174131] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is a complex organ with critical physiological functions including metabolism, glucose storage, and drug detoxification. Its unique immune profile with large numbers of cytotoxic CD8+ T cells and significant innate lymphoid population, including natural killer cells, γ δ T cells, MAIT cells, and iNKTcells, suggests an important anti-tumor surveillance role. Despite significant immune surveillance in the liver, in particular large NK cell populations, hepatic cell carcinoma (HCC) is a relatively common outcome of chronic liver infection or inflammation. The liver is also the second most common site of metastatic disease. This discordance suggests immune suppression by the environments of primary and secondary liver cancers. Classic tumor microenvironments (TME) are poorly perfused, leading to accumulation of tumor cell metabolites, diminished O2, and decreased nutrient levels, all of which impact immune cell phenotype and function. Here, we focus on changes in the liver microenvironment associated with tumor presence and how they affect NK function and phenotype.
Collapse
Affiliation(s)
| | - Kimberly A Luddy
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33626, USA.
| | - Cathal Harmon
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02138, USA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland.
| |
Collapse
|
30
|
Hypoxia Induced ER Stress Response as an Adaptive Mechanism in Cancer. Int J Mol Sci 2019; 20:ijms20030749. [PMID: 30754624 PMCID: PMC6387291 DOI: 10.3390/ijms20030749] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
It is evident that regions within tumors are deprived of oxygen, which makes the microenvironment hypoxic. Cancer cells experiencing hypoxia undergo metabolic alterations and cytoprotective adaptive mechanisms to survive such stringent conditions. While such mechanisms provide potential therapeutic targets, the mechanisms by which hypoxia regulates adaptive responses-such as ER stress response, unfolded protein response (UPR), anti-oxidative responses, and autophagy-remain elusive. In this review, we summarize the complex interplay between hypoxia and the ER stress signaling pathways that are activated in the hypoxic microenvironment of the tumors.
Collapse
|
31
|
Chandra D, Londino J, Alexander S, Bednash JS, Zhang Y, Friedlander RM, Daskivich G, Carlisle DL, Lariviere WR, Nakassa ACI, Ross M, St Croix C, Nyunoya T, Sciurba F, Chen B, Mallampalli RK. The SCFFBXO3 ubiquitin E3 ligase regulates inflammation in atherosclerosis. J Mol Cell Cardiol 2018; 126:50-59. [PMID: 30448480 DOI: 10.1016/j.yjmcc.2018.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Inflammation is critical in the pathobiology of atherosclerosis. An essential player in the inflammatory process in atherosclerosis are macrophages that scavenge oxidatively modified low-density lipoproteins (OxLDL) deposited in the subendothelium of systemic arteries that secrete a myriad of pro-inflammatory mediators. Here, we identified that a subunit of the Skp-Cullin-F-box ubiquitin E3 ligase apparatus, termed FBXO3, modulates the inflammatory response in atherosclerosis. Specifically, individuals with a hypofunctioning genetic variant of FBXO3 develop less atherosclerosis. FBXO3 protein is present in cells of monocytic lineage within carotid plaques and its levels increase in those with symptomatic compared with asymptomatic atherosclerosis. Further, cellular depletion or small molecule inhibition of FBXO3 significantly reduced the inflammatory response to OxLDL by macrophages without altering OxLDL uptake. Thus, FBXO3 potentiates vascular inflammation and atherosclerosis that can be effectively mitigated by a small molecule inhibitor.
Collapse
Affiliation(s)
- Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Londino
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shaun Alexander
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph S Bednash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Grant Daskivich
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R Lariviere
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rama K Mallampalli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
32
|
de Souza MM, Zerlotini A, Geistlinger L, Tizioto PC, Taylor JF, Rocha MIP, Diniz WJS, Coutinho LL, Regitano LCA. A comprehensive manually-curated compendium of bovine transcription factors. Sci Rep 2018; 8:13747. [PMID: 30213987 PMCID: PMC6137171 DOI: 10.1038/s41598-018-32146-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/29/2018] [Indexed: 01/28/2023] Open
Abstract
Transcription factors (TFs) are pivotal regulatory proteins that control gene expression in a context-dependent and tissue-specific manner. In contrast to human, where comprehensive curated TF collections exist, bovine TFs are only rudimentary recorded and characterized. In this article, we present a manually-curated compendium of 865 sequence-specific DNA-binding bovines TFs, which we analyzed for domain family distribution, evolutionary conservation, and tissue-specific expression. In addition, we provide a list of putative transcription cofactors derived from known interactions with the identified TFs. Since there is a general lack of knowledge concerning the regulation of gene expression in cattle, the curated list of TF should provide a basis for an improved comprehension of regulatory mechanisms that are specific to the species.
Collapse
Affiliation(s)
- Marcela M de Souza
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.,Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, São Paulo, 13560-970, Brazil
| | - Adhemar Zerlotini
- Bioinformatic Multi-user Laboratory, Embrapa Informática Agropecuária, Campinas, São Paulo, 70770-901, Brazil
| | - Ludwig Geistlinger
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, São Paulo, 13560-970, Brazil
| | | | - Jeremy F Taylor
- Division of Animal Science, University of Missouri, Columbia, Missouri, 65211-5300, USA
| | - Marina I P Rocha
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil
| | - Wellison J S Diniz
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil
| | - Luiz L Coutinho
- Functional Genomic Center, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Luciana C A Regitano
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, São Paulo, 13560-970, Brazil.
| |
Collapse
|
33
|
Smith SF, Adams T, Hosgood SA, Nicholson ML. The administration of argon during ex vivo normothermic perfusion in an experimental model of kidney ischemia–reperfusion injury. J Surg Res 2017; 218:202-208. [DOI: 10.1016/j.jss.2017.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
|
34
|
Yong HJ, Park JS, Lee Jeong A, Han S, Lee S, Ka HI, Sumiyasuren B, Joo HJ, So SJ, Park JY, Yoon DY, Lim JS, Lee MS, Lee HG, Yang Y. Von Hippel-Lindau regulates interleukin-32β stability in ovarian cancer cells. Oncotarget 2017; 8:69833-69846. [PMID: 29050245 PMCID: PMC5642520 DOI: 10.18632/oncotarget.19311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-induced interleukin-32β (IL-32β) shifts the metabolic program to the enhanced glycolytic pathway. In the present study, the underlying mechanism by which hypoxia-induced IL-32β stability is regulated was investigated in ovarian cancer cells. IL-32β expression increased under hypoxic conditions in ovarian cancer cells as it did in breast cancer cells. The amount of IL-32β was regulated by post-translational control rather than by transcriptional activation. Under normoxic conditions, IL-32β was continuously eliminated through ubiquitin-dependent degradation by the von-Hippel Lindau (VHL) E3 ligase complex. Oxygen deficiency or reactive oxygen species (ROS) disrupted the interaction between IL-32β and VHL, leading to the accumulation of the cytokine. The fact that IL-32β is regulated by the energy-consuming ubiquitination system implies that it plays an important role in oxidative stress. We found that IL-32β reduced protein kinase Cδ (PKCδ)-induced apoptosis under oxidative stress. This implies that the hypoxia- and ROS-stabilized IL-32β contributes to sustain survival against PKCδ-induced apoptosis.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Sunyi Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | | | - Hyun Jeong Joo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Su Jeong So
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ji Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Myeong-Seok Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Zhang C, Yang C, Feldman MJ, Wang H, Pang Y, Maggio DM, Zhu D, Nesvick CL, Dmitriev P, Bullova P, Chittiboina P, Brady RO, Pacak K, Zhuang Z. Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1 alpha. Oncotarget 2017; 8:56110-56125. [PMID: 28915577 PMCID: PMC5593548 DOI: 10.18632/oncotarget.18125] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/10/2017] [Indexed: 01/29/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a potent class of tumor-suppressive agents traditionally believed to exert their effects through loosening tightly-wound chromatin resulting in de-inhibition of various tumor suppressive genes. Recent literature however has shown altered intratumoral hypoxia signaling with HDACi administration not attributable to changes in chromatin structure. We sought to determine the precise mechanism of HDACi-mediated hypoxia signaling attenuation using vorinostat (SAHA), an FDA-approved class I/IIb/IV HDACi. Through an in-vitro and in-vivo approach utilizing cell lines for hepatocellular carcinoma (HCC), osteosarcoma (OS), and glioblastoma (GBM), we demonstrate that SAHA potently inhibits HIF-a nuclear translocation via direct acetylation of its associated chaperone, heat shock protein 90 (Hsp90). In the presence of SAHA we found elevated levels of acetyl-Hsp90, decreased interaction between acetyl-Hsp90 and HIF-a, decreased nuclear/cytoplasmic HIF-α expression, absent HIF-α association with its nuclear karyopharyin Importin, and markedly decreased HIF-a transcriptional activity. These changes were associated with downregulation of downstream hypoxia molecules such as endothelin 1, erythropoietin, glucose transporter 1, and vascular endothelial growth factor. Findings were replicated in an in-vivo Hep3B HRE-Luc expressing xenograft, and were associated with significant decreases in xenograft tumor size. Altogether, this study highlights a novel mechanism of action of an important class of chemotherapeutic.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China.,Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Feldman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Pang
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Dominic M Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dongwang Zhu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cody L Nesvick
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Dmitriev
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Petra Bullova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.,Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Roscoe O Brady
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Cirillo F, Resmini G, Ghiroldi A, Piccoli M, Bergante S, Tettamanti G, Anastasia L. Activation of the hypoxia‐inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. FASEB J 2017; 31:2146-2156. [DOI: 10.1096/fj.201600878r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Giulia Resmini
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| |
Collapse
|
37
|
Lee KW, Yim HS, Shin J, Lee C, Lee JH, Jeong JY. FGF11 induced by hypoxia interacts with HIF-1α and enhances its stability. FEBS Lett 2017; 591:348-357. [PMID: 28027390 DOI: 10.1002/1873-3468.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 11 (FGF11) is an intracellular FGF. Although induction of FGF11 by hypoxia has been observed in several cell types, the molecular function of FGF11 is not clearly understood yet. Here, we investigated the role of FGF11 under hypoxia. We identified hypoxia-inducible factor-1α (HIF-1α) as an interacting protein of FGF11 using immunoprecipitation and mass spectrometry. FGF11 knockdown decreased HIF-1α protein, while FGF11 overexpression increased it, without affecting HIF-1α mRNA. Protein stability test and ubiquitination assay showed that FGF11 increased HIF-1α stability by acting upstream of proteasomal degradation. Altogether, these results suggest a cross-regulation between HIF-1α and FGF11, through which hypoxia-induced FGF11 reinforces hypoxia responses by enhancing the stability of HIF-1α.
Collapse
Affiliation(s)
- Kyeong Won Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| | - Jihye Shin
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| | - Jae-Yeon Jeong
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, Korea
| |
Collapse
|
38
|
Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea. Front Physiol 2016; 7:319. [PMID: 27524971 PMCID: PMC4965455 DOI: 10.3389/fphys.2016.00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Laura Schaedel
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - Blai Casals
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - David Gozal
- Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
39
|
Melatonin and the von Hippel-Lindau/HIF-1 oxygen sensing mechanism: A review. Biochim Biophys Acta Rev Cancer 2016; 1865:176-83. [PMID: 26899267 DOI: 10.1016/j.bbcan.2016.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
There are numerous reports that melatonin inhibits the hypoxia-inducible factor, HIF-1α, and the HIF-1α-inducible gene, VEGF, both in vivo and in vitro. Through the inhibition of the HIF-1-VEGF pathway, melatonin reduces hypoxia-induced angiogenesis. Herein we discuss the interaction of melatonin with HIF-1α and HIF-1α-inducible genes in terms of what is currently known concerning the HIF-1α hypoxia response element (HIF-1α-HRE) pathway. The von Hippel-Lindau protein (VHL), also known as the VHL tumor suppressor, functions as part of a ubiquitin ligase complex which recognizes HIF-1α as a substrate. As such, VHL is part of the oxygen sensing mechanism of the cell. Under conditions of hypoxia, HIF-1α stimulates the transcription of numerous HIF-1α-induced genes, including EPO, VEGF, and PFKFB3; the latter is an enzyme which regulates glycolysis. Data from several studies show that ROS generated in mitochondria under conditions of hypoxia stimulate HIF-1α. Since melatonin acts as an antioxidant and reduces ROS, these data suggest that the antioxidant action of melatonin could account for reduced HIF-1, less VEGF, and reduced glycolysis in cancer cells (Warburg effect). A direct or indirect inhibitory action (via the reduction in ROS) of melatonin on proteasome activity would account for much of the published data.
Collapse
|
40
|
Greenald D, Jeyakani J, Pelster B, Sealy I, Mathavan S, van Eeden FJ. Genome-wide mapping of Hif-1α binding sites in zebrafish. BMC Genomics 2015; 16:923. [PMID: 26559940 PMCID: PMC4642629 DOI: 10.1186/s12864-015-2169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia Inducible Factor (HIF) regulates a cascade of transcriptional events in response to decreased oxygenation, acting from the cellular to the physiological level. This response is evolutionarily conserved, allowing the use of zebrafish (Danio rerio) as a model for studying the hypoxic response. Activation of the hypoxic response can be achieved in zebrafish by homozygous null mutation of the von Hippel-Lindau (vhl) tumour suppressor gene. Previous work from our lab has focused on the phenotypic characterisation of this mutant, establishing the links between vhl mutation, the hypoxic response and cancer. To further develop fish as a model for studying hypoxic signalling, we examine the transcriptional profile of the vhl mutant with respect to Hif-1α. As our approach uses embryos consisting of many cell types, it has the potential to uncover additional HIF regulated genes that have escaped detection in analogous mammalian cell culture studies. Results We performed high-density oligonucleotide microarray analysis of the gene expression changes in von Hippel-Lindau mutant zebrafish, which identified up-regulation of well-known hypoxia response genes and down-regulation of genes primarily involved in lipid processing. To identify the dependency of these transcriptional changes on HIF, we undertook Chromatin Immunoprecipitation linked next generation sequencing (ChIP-seq) for the transcription factor Hypoxia Inducible Factor 1α (HIF-1α). We identified HIF-1α binding sites across the genome, with binding sites showing enrichment for an RCGTG motif, showing conservation with the mammalian hypoxia response element. Conclusions Transcriptome analysis of vhl mutant embryos detected activation of key hypoxia response genes seen in human cell models of hypoxia, but also suppression of many genes primarily involved in lipid processing. ChIP-seq analysis of Hif-1α binding sites unveiled an unprecedented number of loci, with a high proportion containing a canonical hypoxia response element. Whether these sites are functional remains unknown, nevertheless their frequent location near transcriptional start sites suggests functionality, and will allow for investigation into the potential hypoxic regulation of genes in their vicinity. We expect that our data will be an excellent starting point for analysis of both fish and mammalian gene regulation by HIF. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Greenald
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| | - Justin Jeyakani
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Technikerstr, Innsbruck, Austria.
| | - Ian Sealy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Sinnakaruppan Mathavan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,The Genome Institute of Singapore, Biopolis, Biopolis Street, Singapore, Singapore.
| | - Fredericus J van Eeden
- Bateson Centre, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
41
|
Kim SH, Hwang D, Park H, Yang EG, Chung HS, Kim SY. The action of HIF-3α variants on HIF-2α-HIF-1β heterodimer formation is directly probed in live cells. Exp Cell Res 2015; 336:329-37. [PMID: 26160453 DOI: 10.1016/j.yexcr.2015.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/11/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
Hypoxia-inducible factors (HIFs), consisting of α and β subunits, activate various genes to adapt to low oxygen environments through their heterodimeric complex formation in the nucleus. While most of the studies have been extensively focused on the HIF-1α isoform, the effect of HIF-α isoforms on the complex formation between HIF-2α and HIF-1β in live cells has not been reported in detail. To probe these interactions in a physiological condition, we established a fluorescence resonance energy transfer (FRET) assay by introducing fluorescent reporter proteins onto the N-termini of HIF-2α and HIF-1β in live PC3 cells. After thorough validations of our FRET assay system, we showed that both HIF-1α and HIF-3α variants likely function as negative regulators on the heterodimer formation of HIF-2α with HIF-1β in cells. We also characterized the localization and stabilization of HIF-3α variants and measured the interaction between HIF-3α variants and other HIF isoforms in live cells. In contrast to the previous results showing HIF-3α-mediated blockage of HIF-1α translocation, the presence of HIF-3α did not affect the localization of HIF-2α, suggesting distinct roles of HIF-3α in regulation of two HIF-α isoforms.
Collapse
Affiliation(s)
- Seong Ho Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul 136-791, South Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), KIST Campus, Seoul 136-791, South Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), KIST Campus, Seoul 136-791, South Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), KIST Campus, Seoul 136-791, South Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), KIST Campus, Seoul 136-791, South Korea.
| |
Collapse
|
42
|
Tip110 Regulates the Cross Talk between p53 and Hypoxia-Inducible Factor 1α under Hypoxia and Promotes Survival of Cancer Cells. Mol Cell Biol 2015; 35:2254-64. [PMID: 25939381 DOI: 10.1128/mcb.00001-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Hypoxia often occurs under various physiological and pathophysiological conditions, including solid tumors; it is linked to malignant transformation, metastatic progression, and treatment failure or resistance. Tip110 protein plays important roles in several known physiological and pathophysiological processes, including cancers. Thus, in the present study we investigated the regulation of Tip110 expression under hypoxia. Hypoxia led to Tip110 protein degradation through the ubiquitin-proteasome system. Under hypoxia, Tip110 stabilized p53, which in return destabilized Tip110. In addition, Tip110 regulated hypoxia-inducible factor 1α (HIF-1α), likely through enhancement of its protein stability. Furthermore, Tip110 upregulated p300, a known coactivator for both p53 and HIF-1α. Expression of a p53(22/23) mutant deficient in p300 binding accelerated Tip110 degradation under hypoxia. Tip110 knockdown resulted in the inhibition of cell proliferation and cell death in the presence of p53. Finally, significantly less Tip110, p53, and HIF-1α was detected in the hypoxic region of bone metastasis tumors in a mouse model of human melanoma cells. Taken together, these results suggest Tip110 is an important mediator in the cross talk between p53 and HIF-1α in response to hypoxic stress.
Collapse
|
43
|
Yang SL, Wu C, Xiong ZF, Fang X. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review). Mol Med Rep 2015; 12:2411-6. [PMID: 25936862 DOI: 10.3892/mmr.2015.3689] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
Hypoxia inducible factors (HIFs) are transcription factors, which are commonly expressed in mammals, including humans. The HIFs consist of hypoxia-regulated α and oxygen-insensitive β subunits, and are key regulators of gene expression during hypoxia in normal and solid tumor tissues. Three members of the HIF family, HIF-1α, HIF-2α, and HIF-3α, are currently known. HIF-3α differs from HIF-1α and HIF-2α in protein structure and regulation of gene expression. For a long time, HIF-3α was considered as a negative mediator of HIF-regulated genes. HIF-3 has a transcriptional regulatory function, which negatively affects gene expression by competing with HIF-1α and HIF-2α in binding to transcriptional elements in target genes during hypoxia. Previously, certain target genes of HIF-3α have been identified, confirming the role of HIF-3α as a transcription factor. In this review, the protein structure, gene regulation and biological function of HIF-3 are discussed based on the literature.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Chao Wu
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhi-Fan Xiong
- Department of Medicine and Division of Digestion Disease, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Depping R, Jelkmann W, Kosyna FK. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl) 2015; 93:599-608. [PMID: 25809665 DOI: 10.1007/s00109-015-1276-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
In order to pass through the nuclear pore complex, proteins larger than ∼40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ∼100-120 kDa proteins, consisting of one out of three different O2-labile α subunits (primarily HIF-1α) and a more constitutive 1β subunit. In the presence of O2, the α subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1α and HIF-1β is mainly mediated by importins α and β (α/β). HIF-1α can shuttle between nucleus and cytoplasm, while HIF-1β is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin α/β receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1α occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin α/β receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases.
Collapse
Affiliation(s)
- Reinhard Depping
- Institute of Physiology, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany,
| | | | | |
Collapse
|
45
|
Jiang X, Zhang D, Zhang H, Huang Y, Teng M. Role of Ran-regulated nuclear-cytoplasmic trafficking of pVHL in the regulation of microtubular stability-mediated HIF-1α in hypoxic cardiomyocytes. Sci Rep 2015; 5:9193. [PMID: 25779090 PMCID: PMC4361876 DOI: 10.1038/srep09193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/25/2015] [Indexed: 12/30/2022] Open
Abstract
Our previous study suggested that microtubule network alteration affects the process of glycolysis in cardiomyocytes (CMs) via the regulation of hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known regarding the underlying mechanisms of microtubule network alteration-induced changes of HIF-1α. The von Hippel–Lindau tumor suppressor protein (pVHL) has been shown to mediate the ubiquitination of HIF-1α in the nuclear compartment prior to HIF-1α exportation to the cytoplasm, and pVHL dynamic nuclear-cytoplasmic trafficking is indicated to be involved in the process of HIF-1α degradation. In this study, by administering different microtubule-stabilizing and -depolymerizing interventions, we demonstrated that microtubule stabilization promoted pVHL nuclear export and drove the translocation of pVHL to the cytoplasm, while microtubule disruption prevented pVHL nuclear export in hypoxic CMs. Moreover, the ratio between nuclear and cytoplasmic pVHL was associated with HIF-1α regulation. Importantly, microtubule network alteration also affected the subcellular localization of Ran, which was involved in the regulation of pVHL nuclear-cytoplasmic trafficking. The above results suggest that the subcellular translocation of pVHL plays an important role in microtubular structure alteration-induced HIF-1α regulation. Interestingly, Ran is involved in the process of pVHL nuclear-cytoplasmic trafficking following microtubule network alteration in hypoxic CMs.
Collapse
Affiliation(s)
- Xupin Jiang
- 1] Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China [2] Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Hengshu Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Li YP, Tian FG, Shi PC, Guo LY, Wu HM, Chen RQ, Xue JM. 4-Hydroxynonenal Promotes Growth and Angiogenesis of Breast Cancer Cells through HIF-1α Stabilization. Asian Pac J Cancer Prev 2015; 15:10151-6. [DOI: 10.7314/apjcp.2014.15.23.10151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Gerez J, Tedesco L, Bonfiglio JJ, Fuertes M, Barontini M, Silberstein S, Wu Y, Renner U, Páez-Pereda M, Holsboer F, Stalla GK, Arzt E. RSUME inhibits VHL and regulates its tumor suppressor function. Oncogene 2014; 34:4855-66. [PMID: 25500545 DOI: 10.1038/onc.2014.407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022]
Abstract
Somatic mutations or loss of von Hippel-Lindau (pVHL) happen in the majority of VHL disease tumors, which present a constitutively active Hypoxia Inducible Factor (HIF), essential for tumor growth. Recently described mechanisms for pVHL modulation shed light on the open question of the HIF/pVHL pathway regulation. The aim of the present study was to determine the molecular mechanism by which RSUME stabilizes HIFs, by studying RSUME effect on pVHL function and to determine the role of RSUME on pVHL-related tumor progression. We determined that RSUME sumoylates and physically interacts with pVHL and negatively regulates the assembly of the complex between pVHL, Elongins and Cullins (ECV), inhibiting HIF-1 and 2α ubiquitination and degradation. We found that RSUME is expressed in human VHL tumors (renal clear-cell carcinoma (RCC), pheochromocytoma and hemangioblastoma) and by overexpressing or silencing RSUME in a pVHL-HIF-oxygen-dependent degradation stability reporter assay, we determined that RSUME is necessary for the loss of function of type 2 pVHL mutants. The functional RSUME/pVHL interaction in VHL-related tumor progression was further confirmed using a xenograft assay in nude mice. RCC clones, in which RSUME was knocked down and express either pVHL wt or type 2 mutation, have an impaired tumor growth, as well as HIF-2α, vascular endothelial growth factor A and tumor vascularization diminution. This work shows a novel mechanism for VHL tumor progression and presents a new mechanism and factor for targeting tumor-related pathologies with pVHL/HIF altered function.
Collapse
Affiliation(s)
- J Gerez
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - J J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M Barontini
- Center for Endocrinological Investigations (CEDIE), Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina
| | - S Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Y Wu
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - U Renner
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Páez-Pereda
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - G K Stalla
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - E Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
49
|
Vavilala DT, Ponnaluri VKC, Kanjilal D, Mukherji M. Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases. PLoS One 2014; 9:e113717. [PMID: 25422886 PMCID: PMC4244131 DOI: 10.1371/journal.pone.0113717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023] Open
Abstract
Pathological activation of the hypoxia-inducible-factor (HIF) pathway leading to expression of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF), is the fundamental cause of neovascularization in ocular ischemic diseases and cancers. We have shown that pure honokiol inhibits the HIF pathway and hypoxia-mediated expression of pro-angiogenic genes in a number of cancer and retinal pigment epithelial (RPE) cell lines. The crude extracts, containing honokiol, from Magnolia plants have been used for thousands of years in the traditional oriental medicine for a number of health benefits. We have recently demonstrated that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen induced retinopathy mouse model significantly reduced retinal neovascularization at P17. Here, we evaluate the mechanism of HIF inhibition by honokiol in RPE cells. Using chromatin immunoprecipitation experiments, we demonstrate that honokiol inhibits binding of HIF to hypoxia-response elements present on VEGF promoter. We further show using a number of in vitro angiogenesis assays that, in addition to anti-HIF effect, honokiol manifests potent anti-angiogenic effect on human retinal micro vascular endothelial cells. Our results suggest that honokiol possesses potent anti-HIF and anti-angiogenic properties. These properties of honokiol make it an ideal therapeutic agent for the treatment of ocular neovascular diseases and solid tumors.
Collapse
Affiliation(s)
- Divya Teja Vavilala
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - V. K. Chaithanya Ponnaluri
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Debolina Kanjilal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Mridul Mukherji
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
50
|
Role of compartmentalization on HiF-1α degradation dynamics during changing oxygen conditions: a computational approach. PLoS One 2014; 9:e110495. [PMID: 25338163 PMCID: PMC4206521 DOI: 10.1371/journal.pone.0110495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/21/2014] [Indexed: 12/25/2022] Open
Abstract
HiF-1α is the central protein driving the cellular response to hypoxia. Its accumulation in cancer cells is linked to the appearance of chemoresistant and aggressive tumor phenotypes. As a consequence, understanding the regulation of HiF-1α dynamics is a major issue to design new anti-cancer therapies. In this paper, we propose a model of the hypoxia pathway, involving HiF-1α and its inhibitor pVHL. Based on data from the literature, we made the hypothesis that the regulation of HiF-1α involves two compartments (nucleus and cytoplasm) and a constitutive shuttle of the pVHL protein between them. We first show that this model captures correctly the main features of HiF-1α dynamics, including the bi-exponential degradation profile in normoxia, the kinetics of induction in hypoxia, and the switch-like accumulation. Second, we simulated the effects of a hypoxia/reoxygenation event, and show that it generates a strong instability of HiF-1α. The protein concentration rapidly increases 3 hours after the reoxygenation, and exhibits an oscillating pattern. This effect vanishes if we do not consider compartmentalization of HiF-1α. This result can explain various counter-intuitive observations about the specific molecular and cellular response to the reoxygenation process. Third, we simulated the HiF-1α dynamics in the tumor case. We considered different types of mutations associated with tumorigenesis, and we compared their consequences on HiF-1α dynamics. Then, we tested different therapeutics strategies. We show that a therapeutic decrease of HiF-1α nuclear level is not always correlated with an attenuation of reoxygenation-induced instabilities. Thus, it appears that the design of anti-HiF-1α therapies have to take into account these two aspects to maximize their efficiency.
Collapse
|