1
|
Xie Y, Zhao R, Zheng Y, Li Y, Wu F, Lei Y, Li L, Zeng H, Chen Z, Hou Y. Targeting KPNB1 suppresses AML cells by inhibiting HMGB2 nuclear import. Oncogene 2025; 44:1646-1661. [PMID: 40082556 DOI: 10.1038/s41388-025-03340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Acute myeloid leukemia (AML) represents the most prevalent malignancy within the hematologic system, characterized by refractory relapses and a scarcity of effective treatment options. Karyopherin subunit beta-1 (KPNB1) is a member of karyopherin β family, mediating the nuclear import of its cargoes. In this study, we found that elevated expression levels of KPNB1 are associated with unfavorable outcomes in patients with AML. The knockdown of KPNB1 resulted in growth inhibition and apoptosis in AML cells. Additionally, pharmacological inhibition of KPNB1 using the specific inhibitor importazole (IPZ) significantly reduced tumor burden and prolonged survival in MLL-AF9-induced AML mice. Notably, the inhibition of KPNB1 by IPZ significantly enhanced the sensitivity of both AML cell lines and patient-derived cells to venetoclax in vitro and in xenograft mice models. At the molecular level, we identified an unrecognized cargo of KPNB1, high mobility group 2 (HMGB2), which plays a crucial role in DNA damage repair. Inhibition of KPNB1 resulted in impaired nuclear import of HMGB2, eventually leading to compromised DNA damage repair in AML cells. Overall, our findings elucidate the essential roles of KPNB1 in AML cells through the HMGB2-DNA damage repair axis and highlight a promising therapeutic target for AML intervention.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Mice
- beta Karyopherins/antagonists & inhibitors
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
- HMGB2 Protein/metabolism
- HMGB2 Protein/genetics
- Active Transport, Cell Nucleus/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Quinazolines
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Runlong Zhao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingjiao Zheng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yufei Lei
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhe Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Yu Hou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
2
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
3
|
Hu M, Zhang Y, Zhang P, Liu K, Zhang M, Li L, Yu Z, Zhang X, Zhang W, Xu Y. Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors. Protein Pept Lett 2025; 32:18-33. [PMID: 39648425 DOI: 10.2174/0109298665338519241114103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 12/10/2024]
Abstract
With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular in situ testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kangbo Liu
- Henan Institute for Drug and Medical Device Inspection (Henan Vaccine Issuance Center), Zhengzhou, 450018, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
4
|
Tian H, Zhai Y, Sun S, Zhang W, Zhao Z. The transcription factor HMGB2 indirectly regulates APRIL expression and Gd-IgA1 production in patients with IgA nephropathy. Ren Fail 2024; 46:2338931. [PMID: 38622929 PMCID: PMC11022921 DOI: 10.1080/0886022x.2024.2338931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.
Collapse
Affiliation(s)
- Huijuan Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Yaling Zhai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Shuaigang Sun
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Wenhui Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ji C, Chen L, Kaypaghian M. Effects of Combination of Ethanol With Ritonavir, Lopinavir or Darunavir on Expression and Localization of the ER-Associated Set Protein and Infection of HIV-1 Pseudovirus in Primary Human Cells. J Acquir Immune Defic Syndr 2024; 96:e6-e10. [PMID: 38771756 PMCID: PMC11110923 DOI: 10.1097/qai.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Affiliation(s)
- Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|
6
|
Senan-Salinas A, Comas L, Esteban P, Garzón-Tituaña M, Cheng Z, Santiago L, Domingo MP, Ramírez-Labrada A, Paño-Pardo JR, Vendrell M, Pardo J, Arias MA, Galvez EM. Selective Detection of Active Extracellular Granzyme A by Using a Novel Fluorescent Immunoprobe with Application to Inflammatory Diseases. ACS Pharmacol Transl Sci 2024; 7:1474-1484. [PMID: 38751645 PMCID: PMC11092195 DOI: 10.1021/acsptsci.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Granzymes (Gzms), a family of serine proteases, expressed by immune and nonimmune cells, present perforin-dependent and independent intracellular and extracellular functions. When released in the extracellular space, GzmA, with trypsin-like activity, is involved in the pathophysiology of different inflammatory diseases. However, there are no validated specific systems to detect active forms of extracellular GzmA, making it difficult to assess its biological relevance and potential use as a biomarker. Here, we have developed fluorescence-energy resonance-transfer (FRET)-based peptide probes (FAM-peptide-DABCYL) to specifically detect GzmA activity in tissue samples and biological fluids in both mouse and human samples during inflammatory diseases. An initial probe was developed and incubated with GzmA and different proteases like GzmB and others with similar cleavage specificity as GzmA like GzmK, thrombin, trypsin, kallikrein, or plasmin. After measuring fluorescence, the probe showed very good specificity and sensitivity for human and mouse GzmA when compared to GzmB, its closest homologue GzmK, and with thrombin. The specificity of this probe was further refined by incubating the samples in a coated plate with a GzmA-specific antibody before adding the probe. The results show a high specific detection of soluble GzmA even when compared with other soluble proteases with very similar cleavage specificity like thrombin, GzmK, trypsin, kallikrein, or plasmin, which shows nearly no fluorescence signal. The high specific detection of GzmA was validated, showing that using pure proteins and serum and tissue samples from GzmA-deficient mice presented a significant reduction in the signal compared with WT mice. The utility of this system in humans was confirmed, showing that GzmA activity was significantly higher in serum samples from septic patients in comparison with healthy donors. Our results present a new immunoprobe with utility to detect extracellular GzmA activity in different biological fluids, confirming the presence of active forms of the soluble protease in vivo during inflammatory and infectious diseases.
Collapse
Affiliation(s)
| | - Laura Comas
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Patricia Esteban
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Zhiming Cheng
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | | | | | - Ariel Ramírez-Labrada
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Unidad
de Nanotoxicología e Inmunotoxicología (UNATI), Centro
de Investigación Biomédica de Aragón (CIBA),
Aragón Health Research Institute (IIS Aragón), 50009Zaragoza, Spain
| | - José Ramón Paño-Pardo
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
- Servicio
de Enfermedades Infecciosas, Hospital Clinico
Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Marc Vendrell
- Centre for
Inflammation Research, The University of
Edinburgh, EH164UU Edinburgh, U.K.
| | - Julián Pardo
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- Dept.
Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Maykel A. Arias
- Fundación
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| | - Eva M. Galvez
- Instituto
de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
- CIBERINFEC,
ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029Madrid, Spain
| |
Collapse
|
7
|
Huang Y, Liangpunsakul S, Rudraiah S, Ma J, Keshipeddy SK, Wright D, Costa A, Burgess D, Zhang Y, Huda N, Wang L, Yang Z. HMGB2 is a potential diagnostic marker and therapeutic target for liver fibrosis and cirrhosis. Hepatol Commun 2023; 7:e0299. [PMID: 37930124 PMCID: PMC10629741 DOI: 10.1097/hc9.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND High mobility group proteins 1 and 2 (HMGB1 and HMGB2) are 80% conserved in amino acid sequence. The function of HMGB1 in inflammation and fibrosis has been extensively characterized. However, an unaddressed central question is the role of HMGB2 on liver fibrosis. In this study, we provided convincing evidence that the HMGB2 expression was significantly upregulated in human liver fibrosis and cirrhosis, as well as in several mouse liver fibrosis models. METHODS The carbon tetrachloride (CCl4) induced liver fibrosis mouse model was used. AAV8-Hmgb2 was utilized to overexpress Hmgb2 in the liver, while Hmgb2-/- mice were used for loss of function experiments. The HMGB2 inhibitor inflachromene and liposome-shHMGB2 (lipo-shHMGB2) were employed for therapeutic intervention. RESULTS The serum HMGB2 levels were also markedly elevated in patients with liver fibrosis and cirrhosis. Deletion of Hmgb2 in Hmgb2-/- mice or inhibition of HMGB2 in mice using a small molecule ICM slowed the progression of CCl4-induced liver fibrosis despite constant HMGB1 expression. In contrast, AAV8-mediated overexpression of Hmgb2 enchanced CCl4-incuded liver fibrosis. Primary hepatic stellate cells (HSCs) isolated from Hmgb2-/- mice showed significantly impaired transdifferentiation and diminished activation of α-SMA, despite a modest induction of HMGB1 protein. RNA-seq analysis revealed the induction of top 45 CCl4-activated genes in multiple signaling pathways including integrin signaling and inflammation. The activation of these genes by CCl4 were abolished in Hmgb2-/- mice or in ICM-treated mice. These included C-X3-C motif chemokine receptor 1 (Cx3cr1) associated with inflammation, cyclin B (Ccnb) associated with cell cycle, DNA topoisomerase 2-alpha (Top2a) associated with intracellular component, and fibrillin (Fbn) and fibromodulin (Fmod) associated with extracellular matrix. CONCLUSION We conclude that HMGB2 is indispensable for stellate cell activation. Therefore, HMGB2 may serve as a potential therapeutic target to prevent HSC activation during chronic liver injury. The blood HMGB2 level may also serve as a potential diagnostic marker to detect early stage of liver fibrosis and cirrhosis in humans.
Collapse
Affiliation(s)
- Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
- Medicine Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Swetha Rudraiah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Santosh K. Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Diane Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Li Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Zhou Y, Chen Y, Li J, Fu Z, Chen Q, Zhang W, Luo H, Xie M. The development of endoplasmic reticulum-related gene signatures and the immune infiltration analysis of sepsis. Front Immunol 2023; 14:1183769. [PMID: 37346041 PMCID: PMC10280294 DOI: 10.3389/fimmu.2023.1183769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Background Sepsis is a complex condition involving multiorgan failure, resulting from the hosts' deleterious systemic immune response to infection. It is characterized by high mortality, with limited effective detection and treatment options. Dysregulated endoplasmic reticulum (ER) stress is directly involved in the pathophysiology of immune-mediated diseases. Methods Clinical samples were obtained from Gene Expression Omnibus datasets (i.e., GSE65682, GSE54514, and GSE95233) to perform the differential analysis in this study. A weighted gene co-expression network analysis algorithm combining multiple machine learning algorithms was used to identify the diagnostic biomarkers for sepsis. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and the single-sample gene set enrichment analysis algorithm were used to analyze immune infiltration characteristics in sepsis. PCR analysis and western blotting were used to demonstrate the potential role of TXN in sepsis. Results Four ERRGs, namely SET, LPIN1, TXN, and CD74, have been identified as characteristic diagnostic biomarkers for sepsis. Immune infiltration has been repeatedly proved to play a vital role both in sepsis and ER. Subsequently, the immune infiltration characteristics result indicated that the development of sepsis is mediated by immune-related function, as four diagnostic biomarkers were strongly associated with the immune infiltration landscape of sepsis. The biological experiments in vitro and vivo demonstrate TXN is emerging as crucial player in maintaining ER homeostasis in sepsis. Conclusion Our research identified novel potential biomarkers for sepsis diagnosis, which point toward a potential strategy for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Yifang Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jianbo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Zailin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Qian Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Minghua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
10
|
Huang L, Li R, Ye L, Zhang S, Tian H, Du M, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Zhong L, Yang H, Yu M, Shi Y, Wang C, Zhang H, Chen W, Yang Z. Deep Sc-RNA sequencing decoding the molecular dynamic architecture of the human retina. SCIENCE CHINA. LIFE SCIENCES 2023; 66:496-515. [PMID: 36115892 DOI: 10.1007/s11427-021-2163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
The human retina serves as a light detector and signals transmission tissue. Advanced insights into retinal disease mechanisms and therapeutic strategies require a deep understanding of healthy retina molecular events. Here, we sequenced the mRNA of over 0.6 million single cells from human retinas across six regions at nine different ages. Sixty cell sub-types have been identified from the human mature retinas with unique markers. We revealed regional and age differences of gene expression profiles within the human retina. Cell-cell interaction analysis indicated a rich synaptic connection within the retinal cells. Gene expression regulon analysis revealed the specific expression of transcription factors and their regulated genes in human retina cell types. Some of the gene's expression, such as DKK3, are elevated in aged retinas. A further functional investigation suggested that over expression of DKK3 could impact mitochondrial stability. Overall, decoding the molecular dynamic architecture of the human retina improves our understanding of the vision system.
Collapse
Affiliation(s)
- Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China
| | - Runze Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Lin Ye
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shanshan Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Huaping Tian
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shujin Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mu Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Biao Wu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Ran Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Guo Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Ling Zhong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Hongjie Yang
- Department of Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100730, China
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China.
| |
Collapse
|
11
|
Qiu X, Liu W, Zheng Y, Zeng K, Wang H, Sun H, Dai J. Identification of HMGB2 associated with proliferation, invasion and prognosis in lung adenocarcinoma via weighted gene co-expression network analysis. BMC Pulm Med 2022; 22:310. [PMID: 35962344 PMCID: PMC9373369 DOI: 10.1186/s12890-022-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background High mobility group protein B2 (HMGB2) is a multifunctional protein that plays various roles in different cellular compartments. Moreover, HMGB2 serves as a potential prognostic biomarker and therapeutic target for lung adenocarcinoma (LUAD). Methods In this study, the expression pattern, prognostic implication, and potential role of HMGB2 in LUAD were evaluated using the integrated bioinformatics analyses based on public available mRNA expression profiles from The Cancer Genome Atlas and Gene Expression Omnibus databases, both at the single-cell level and the tissue level. Further study in the patient-derived samples was conducted to explore the correlation between HMGB2 protein expression levels with tissue specificity, (tumor size-lymph node-metastasis) TNM stage, pathological grade, Ki-67 status, and overall survival. In vitro experiments, such as CCK-8, colony-formation and Transwell assay, were performed with human LUAD cell line A549 to investigate the role of HMGB2 in LUAD progression. Furthermore, xenograft tumor model was generated with A549 in nude mice. Results The results showed that the HMGB2 expression was higher in the LUAD samples than in the adjacent normal tissues and was correlated with high degree of malignancy in different public data in this study. Besides, over-expression of HMGB2 promoted A549 cells proliferation and migration while knocking down of HMGB2 suppressed the tumor promoting effect. Conclusions Our study indicated that HMGB2 was remarkably highly expressed in LUAD tissues, suggesting that it is a promising diagnostic and therapeutic marker for LUAD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02110-y.
Collapse
Affiliation(s)
- Xie Qiu
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, Haian People's Hospital Affiliated to Nantong University, Haian, People's Republic of China
| | - Yifan Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Hao Wang
- Yancheng TCM Hospital, Nanjing University of Chinese Medicine, Yancheng, 224002, China
| | - Haijun Sun
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| | - Jianhua Dai
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| |
Collapse
|
12
|
Srivastava RK, Mishra B, Muzaffar S, Gorbatyuk MS, Agarwal A, Mukhtar MS, Athar M. Dynamic Regulation of the Nexus Between Stress Granules, Roquin, and Regnase-1 Underlies the Molecular Pathogenesis of Warfare Vesicants. Front Immunol 2022; 12:809365. [PMID: 35082795 PMCID: PMC8784689 DOI: 10.3389/fimmu.2021.809365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
The use of chemical warfare agents is prohibited but they have been used in recent Middle Eastern conflicts. Their accidental exposure (e.g. arsenical lewisite) is also known and causes extensive painful cutaneous injury. However, their molecular pathogenesis is not understood. Here, we demonstrate that a nexus of stress granules (SGs), integrated stress, and RNA binding proteins (RBPs) Roquin and Reganse-1 play a key role. Lewisite and its prototype phenylarsine oxide (PAO) induce SG assembly in skin keratinocytes soon after exposure, which associate with various RBPs and translation-related proteins. SG disassembly was detected several hours after exposure. The dynamics of SG assembly-disassembly associates with the chemical insult and cell damage. Enhanced Roquin and Regnase-1 expression occurs when Roquin was recruited to SGs and Regnase-1 to the ribosome while in the disassembling SGs their expression is decreased with consequent induction of inflammatory mediators. SG-targeted protein translational control is regulated by the phosphorylation-dependent activation of eukaryotic initiation factors 2α (eIF2α). Treatment with integrated stress response inhibitor (ISRIB), which blocks eIF2α phosphorylation, impacted SG assembly dynamics. Topical application of ISRIB attenuated the inflammation and tissue disruption in PAO-challenged mice. Thus, the dynamic regulation of these pathways provides underpinning to cutaneous injury and identify translational therapeutic approach for these and similar debilitating chemicals.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suhail Muzaffar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
14
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
15
|
Liu TC, Guo KW, Chu JW, Hsiao YY. Understanding APE1 cellular functions by the structural preference of exonuclease activities. Comput Struct Biotechnol J 2021; 19:3682-3691. [PMID: 34285771 PMCID: PMC8258793 DOI: 10.1016/j.csbj.2021.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) has versatile enzymatic functions, including redox, endonuclease, and exonuclease activities. APE1 is thus broadly associated with pathways in DNA repair, cancer cell growth, and drug resistance. Unlike its AP site-specific endonuclease activity in Base excision repair (BER), the 3′-5′ exonucleolytic cleavage of APE1 using the same active site exhibits complex substrate selection patterns, which are key to the biological functions. This work aims to integrate molecular structural information and biocatalytic properties to deduce the substrate recognition mechanism of APE1 as an exonuclease and make connection to its diverse functionalities in the cell. In particular, an induced space-filling model emerges in which a bridge-like structure is formed by Arg177 and Met270 (RM bridge) upon substrate binding, causing the active site to adopt a long and narrow product pocket for hosting the leaving group of an AP site or the 3′-end nucleotide. Rather than distinguishing bases as other exonucleases, the hydrophobicity and steric hindrance due to the APE1 product pocket provides selectivity for substrate structures, such as matched or mismatched blunt-ended dsDNA, recessed dsDNA, gapped dsDNA, and nicked dsDNA with 3′-end overhang shorter than 2 nucleotides. These dsDNAs are similar to the native substrates in BER proofreading, BER for trinucleotide repeats (TNR), Nucleotide incision repair (NIR), DNA single-strand breaks (SSB), SSB with damaged bases, and apoptosis. Integration of in vivo studies, in vitro biochemical assays, and structural analysis is thus essential for linking the APE1 exonuclease activity to the specific roles in cellular functions.
Collapse
Affiliation(s)
- Tung-Chang Liu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Kai-Wei Guo
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Jhih-Wei Chu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
SAM50, a side door to the mitochondria: The case of cytotoxic proteases. Pharmacol Res 2020; 160:105196. [PMID: 32919042 DOI: 10.1016/j.phrs.2020.105196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
SAM50, a 7-8 nm diameter β-barrel channel of the mitochondrial outer membrane, is the central channel of the sorting and assembly machinery (SAM) complex involved in the biogenesis of β-barrel proteins. Interestingly, SAM50 is not known to have channel translocase activity; however, we have recently found that this channel is necessary and sufficient for mitochondrial entry of cytotoxic proteases. Cytotoxic lymphocytes eliminate cells that pose potential hazards, such as virus- and bacteria-infected cells as well as cancer cells. They induce cell death following the delivery of granzyme cytotoxic proteases into the cytosol of the target cell. Although granzyme A and granzyme B (GA and GB), the best characterized of the five human granzymes, trigger very distinct apoptotic cascades, they share the ability to directly target the mitochondria. GA and GB do not have a mitochondrial targeting signal, yet they enter the target cell mitochondria to disrupt respiratory chain complex I and induce mitochondrial reactive oxygen species (ROS)-dependent cell death. We found that granzyme mitochondrial entry requires SAM50 and the translocase of the inner membrane 22 (TIM22). Preventing granzymes' mitochondrial entry compromises their cytotoxicity, indicating that this event is unexpectedly an important step for cell death. Although mitochondria are best known for their roles in cell metabolism and energy conversion, these double-membrane organelles are also involved in Ca2+ homeostasis, metabolite transport, cell cycle regulation, cell signaling, differentiation, stress response, redox homeostasis, aging, and cell death. This multiplicity of functions is matched with the complexity and plasticity of the mitochondrial proteome as well as the organelle's morphological and structural versatility. Indeed, mitochondria are extremely dynamic and undergo fusion and fission events in response to diverse cellular cues. In humans, there are 1500 different mitochondrial proteins, the vast majority of which are encoded in the nuclear genome and translated by cytosolic ribosomes, after which they must be imported and properly addressed to the right mitochondrial compartment. To this end, mitochondria are equipped with a very sophisticated and highly specific protein import machinery. The latter is centered on translocase complexes embedded in the outer and inner mitochondrial membranes working along five different import pathways. We will briefly describe these import pathways to put into perspective our finding regarding the ability of granzymes to enter the mitochondria.
Collapse
|
17
|
Yang S, Ye Z, Wang Z, Wang L. High mobility group box 2 modulates the progression of osteosarcoma and is related with poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1082. [PMID: 33145301 PMCID: PMC7576003 DOI: 10.21037/atm-20-4801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Increased expression of high mobility group box 2 (HMGB2) has been reported to promote the progression of several malignancies and be related to poor outcome. However, few studies have explored the relationship between HMGB2 and osteosarcoma. In this study, we aimed to obtain a better understanding of HMGB2 and its function in osteosarcoma. Methods Utilizing osteosarcoma paraffin sections and osteosarcoma cell lines, we observed the clinico-pathological relationship of osteosarcoma with HMGB2 expression and investigated the functions of HMGB2 in vitro. The possible pathways and regulation networks in which HMGB2 is involved were further explored through analysis of miRNA, mRNA and lncRNA micro array data sets. Results Strong expression of HMGB2 was found to be related with Enneking staging (P=0.002), tumor size (P=0.006), metastasis (P<0.001), and survival (P=0.011) in osteosarcoma. Multivariate analysis revealed that HMGB2 might have independent prognostic value in osteosarcoma (P=0.022). Kaplan-Meier curves and the log-rank test showed that survival time was significantly reduced in OS patients with strong HMGB2 expression (P=0.0056). In vitro experiments showed that HMGB2 overexpression promoted cell proliferation and enhanced the migration and invasion ability of osteosarcoma cells. Gene Ontology (GO) term analysis of osteosarcoma cell lines revealed HMGB2 to have various functions and to be mainly enriched in regulation of cell proliferation, cell death, and DNA binding. A competing endogenous RNA (ceRNA) network of miR-139-5p and six candidate lncRNAs was also suggested as targeting HMGB2 in osteosarcoma. Conclusions Our findings suggest that HMGB2 might have various functions in promoting the progression of osteosarcoma and may serve as a new target for osteosarcoma research.
Collapse
Affiliation(s)
- Shicong Yang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziyin Ye
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuo Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liantang Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Cámara-Quílez M, Barreiro-Alonso A, Rodríguez-Bemonte E, Quindós-Varela M, Cerdán ME, Lamas-Maceiras M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr Med Chem 2020; 27:3271-3289. [PMID: 30674244 DOI: 10.2174/0929867326666190123120338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.
Collapse
Affiliation(s)
- María Cámara-Quílez
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Esther Rodríguez-Bemonte
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| |
Collapse
|
19
|
Kołt S, Janiszewski T, Kaiserman D, Modrzycka S, Snipas SJ, Salvesen G, Dra G M, Bird PI, Kasperkiewicz P. Detection of Active Granzyme A in NK92 Cells with Fluorescent Activity-Based Probe. J Med Chem 2020; 63:3359-3369. [PMID: 32142286 PMCID: PMC7590976 DOI: 10.1021/acs.jmedchem.9b02042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cytotoxic
T-lymphocytes (CTLs) and natural killer cells (NKs) kill
compromised cells to defend against tumor and viral infections. Both
effector cell types use multiple strategies to induce target cell
death including Fas/CD95 activation and the release of perforin and
a group of lymphocyte granule serine proteases called granzymes. Granzymes
have relatively broad and overlapping substrate specificities and
may hydrolyze a wide range of peptidic epitopes; it is therefore challenging
to identify their natural and synthetic substrates and to distinguish
their localization and functions. Here, we present a specific and
potent substrate, an inhibitor, and an activity-based probe of Granzyme
A (GrA) that can be used to follow functional GrA in cells.
Collapse
Affiliation(s)
- Sonia Kołt
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Tomasz Janiszewski
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Dion Kaiserman
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Sylwia Modrzycka
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Scott J Snipas
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Guy Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marcin Dra G
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Phillip I Bird
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Paulina Kasperkiewicz
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Bui PL, Nishimura K, Seminario Mondejar G, Kumar A, Aizawa S, Murano K, Nagata K, Hayashi Y, Fukuda A, Onuma Y, Ito Y, Nakanishi M, Hisatake K. Template Activating Factor-I α Regulates Retroviral Silencing during Reprogramming. Cell Rep 2019; 29:1909-1922.e5. [DOI: 10.1016/j.celrep.2019.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
|
21
|
Hu X, Zhong Y, Lambers TT, Jiang W. Anti-inflammatory activity of extensively hydrolyzed casein is mediated by granzyme B. Inflamm Res 2019; 68:715-722. [PMID: 31168680 DOI: 10.1007/s00011-019-01254-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Nutritional factors such as extensively hydrolyzed casein (eHC) have been proposed to exert anti-inflammatory activity and affect clinical outcomes such as tolerance development in cow's milk allergy. Granzyme B (GrB) induces apoptosis in target cells and also controls the inflammatory response. Whether eHC could affect the activity of granzyme B and play a role in GrB-mediated inflammatory responses in vitro was unknown. METHODS The activity of GrB was measured using the substrate Ac-IEPD-pNA. Inflammatory responses were induced with GrB in HCT-8 and THP-1 cells, and pro-inflammatory cytokines were determined at the transcriptional and protein level. RESULTS GrB could induce the expression of IL-1β in HCT-8 cells, and IL-8 and MCP-1 in THP-1 cells, respectively. Interestingly, GrB acted synergistically on LPS-induced inflammation in HCT-8 cells and eHC reduced pro-inflammatory responses in both GrB and LPS-mediated inflammation. Further analyses revealed that eHC could inhibit the biological activities and cytotoxic activities of GrB and then could reduce GrB-mediated inflammatory response. CONCLUSION The results from the current study suggest that anti-inflammatory activity of extensively hydrolyzed casein is, to a certain extent, mediated through modulation of granzyme B activity and responses.
Collapse
Affiliation(s)
- Xuefei Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan Zhong
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Tim T Lambers
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
22
|
Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 2019; 105:1319-1329. [PMID: 31107565 DOI: 10.1002/jlb.mr0718-269r] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular cytotoxicity, the ability to kill other cells, is an important effector mechanism of the immune system to combat viral infections and cancer. Cytotoxic T cells and natural killer (NK) cells are the major mediators of this activity. Here, we summarize the cytotoxic mechanisms of NK cells. NK cells can kill virally infected of transformed cells via the directed release of lytic granules or by inducing death receptor-mediated apoptosis via the expression of Fas ligand or TRAIL. The biogenesis of perforin and granzymes, the major components of lytic granules, is a highly regulated process to prevent damage during the synthesis of these cytotoxic molecules. Additionally, NK cells have developed several strategies to protect themselves from the cytotoxic activity of granular content upon degranulation. While granule-mediated apoptosis is a fast process, death receptor-mediated cytotoxicity requires more time. Current data suggest that these 2 cytotoxic mechanisms are regulated during the serial killing activity of NK cells. As many modern approaches of cancer immunotherapy rely on cellular cytotoxicity for their effectiveness, unraveling these pathways will be important to further progress these therapeutic strategies.
Collapse
Affiliation(s)
- Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
23
|
Wang S, Li X, Zhang W, Gao Y, Zhang K, Hao Q, Li W, Wang Z, Li M, Zhang W, Zhang Y, Zhang C. Genome-Wide Investigation of Genes Regulated by ERα in Breast Cancer Cells. Molecules 2018; 23:molecules23102543. [PMID: 30301189 PMCID: PMC6222792 DOI: 10.3390/molecules23102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor alpha (ERα), which has been detected in over 70% of breast cancer cases, is a driving factor for breast cancer growth. For investigating the underlying genes and networks regulated by ERα in breast cancer, RNA-seq was performed between ERα transgenic MDA-MB-231 cells and wild type MDA-MB-231 cells. A total of 267 differentially expressed genes (DEGs) were identified. Then bioinformatics analyses were performed to illustrate the mechanism of ERα. Besides, by comparison of RNA-seq data obtained from MDA-MB-231 cells and microarray dataset obtained from estrogen (E2) stimulated MCF-7 cells, an overlap of 126 DEGs was screened. The expression level of ERα was negatively associated with metastasis and EMT in breast cancer. We further verified that ERα might inhibit metastasis by regulating of VCL and TNFRSF12A, and suppress EMT by the regulating of JUNB and ID3. And the relationship between ERα and these genes were validated by RT-PCR and correlation analysis based on TCGA database. By PPI network analysis, we identified TOP5 hub genes, FOS, SP1, CDKN1A, CALCR and JUNB, which were involved in cell proliferation and invasion. Taken together, the whole-genome insights carried in this work can help fully understanding biological roles of ERα in breast cancer.
Collapse
Affiliation(s)
- Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaoju Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
24
|
Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. PLoS Biol 2018; 16:e2005653. [PMID: 29734329 PMCID: PMC5957452 DOI: 10.1371/journal.pbio.2005653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/17/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
Three prime repair exonuclease 1 (TREX1) is an essential exonuclease in mammalian cells, and numerous in vivo and in vitro data evidenced its participation in immunity regulation and in genotoxicity remediation. In these very complicated cellular functions, the molecular mechanisms by which duplex DNA substrates are processed are mostly elusive because of the lack of structure information. Here, we report multiple crystal structures of TREX1 complexed with various substrates to provide the structure basis for overhang excision and terminal unwinding of DNA duplexes. The substrates were designed to mimic the intermediate structural DNAs involved in various repair pathways. The results showed that the Leu24-Pro25-Ser26 cluster of TREX1 served to cap the nonscissile 5′-end of the DNA for precise removal of the short 3′-overhang in L- and Y-structural DNA or to wedge into the double-stranded region for further digestion along the duplex. Biochemical assays were also conducted to demonstrate that TREX1 can indeed degrade double-stranded DNA (dsDNA) to a full extent. Overall, this study provided unprecedented knowledge at the molecular level on the enzymatic substrate processing involved in prevention of immune activation and in responses to genotoxic stresses. For example, Arg128, whose mutation in TREX1 was linked to a disease state, were shown to exhibit consistent interaction patterns with the nonscissile strand in all of the structures we solved. Such structure basis is expected to play an indispensable role in elucidating the functional activities of TREX1 at the cellular level and in vivo. Three prime repair exonuclease 1 (TREX1) was shown to participate in various cellular events such as DNA repair, immunity regulation, and viral infection. In addition to relating to autoimmune diseases, this exonuclease also acts as a potential protein target for anticancer or antiviral therapies. A key for such broad attendance of TREX1 is the activities of precise trimming of the 3′-overhang in a double-stranded (dsDNA) and breaking of the terminal base pairing of the duplex. Here, we designed a series of structural DNA substrates and activity assays to delineate the underlying mechanisms. The structures newly resolved in this work indicated that the Leu24-Pro25-Ser26 cluster of TREX1 is essential for the enzyme to carry out the aforementioned activities. Together, our results established an integrated structure view into the versatile exonuclease functions of TREX1 and illuminated the molecular origin for the unique catalytic properties of TREX1 in processing various DNA intermediates in DNA repair and in cytosolic immunity regulation.
Collapse
|
25
|
Fu D, Li J, Wei J, Zhang Z, Luo Y, Tan H, Ren C. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun Signal 2018; 16:8. [PMID: 29463261 PMCID: PMC5819211 DOI: 10.1186/s12964-018-0219-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background High-mobility group box 2 (HMGB2) is implicated in tumorigenesis in various cancers. However, the clinical significance of HMGB2 signaling in human breast cancer progression remains unknown. Methods We investigated HMGB2 expression in 185 cases of primary breast cancer and matched normal breast tissue specimens, and explored the underlying mechanisms of altered HMGB2 expression as well as the impact of this altered expression on breast cancer growth and on aerobic glycolysis using in vitro and animal models of breast cancer. Results HMGB2 was more highly expressed in tumor-cell nuclei of breast cancer cells than in the adjacent normal breast tissues (P < 0.05). Higher HMGB2 expression correlated with larger tumor size (P = 0.003) and advanced tumor stage (P = 0.033). A Cox proportional hazards model revealed that HMGB2 expression was an independent prognostic factor for breast cancer after radical resection (P < 0.05). Experimentally, knockdown of HMGB2 expression by stable transfected shRNA significantly decreased the growth and glycolysis of breast cancer cells both in vitro and in mouse models. Mechanically, promotion of breast cancer progression by HMGB2 directly and significantly correlated with activation of LDHB expression and inactivation of FBP1 expression. Conclusions These results disclose a novel role for HMGB2 in reprogramming the metabolic process in breast cancer cells by targeting LDHB and FBP1 and provide potential prognostic predictors for breast cancer patients.
Collapse
Affiliation(s)
- Deyuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China.
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, No.525,Hongfeng Road, Shanghai, 200032, China.,Departments of CyberKnife, Huashan Hospital, Fudan University, No.525,Hongfeng Road, Shanghai, 201206, China
| | - Jinli Wei
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Zhengquan Zhang
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Yulin Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Haosheng Tan
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Chuanli Ren
- The Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
26
|
Lee PY, Park BC, Chi SW, Bae KH, Kim S, Cho S, Kang S, Kim JH, Park SG. Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells. BMB Rep 2017; 49:560-565. [PMID: 27439606 PMCID: PMC5227298 DOI: 10.5483/bmbrep.2016.49.10.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 01/06/2023] Open
Abstract
Granzyme A (GzmA) was first identified as a cytotoxic T lymphocyte protease protein with limited tissue expression. A number of cellular proteins are known to be cleaved by GzmA, and its function is to induce apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates during apoptotic cell death. Here, we demonstrated that histone H4 was cleaved by GzmA during staurosporine-induced cell death; however, in the presence of caspase inhibitors, staurosporine-treated Raji cells underwent necroptosis instead of apoptosis. Furthermore, histone H4 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. These results suggest that histone H4 is a novel substrate for GzmA in staurosporine-induced cells. [BMB Reports 2016; 49(10): 560-565]
Collapse
Affiliation(s)
- Phil Young Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141; Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Seung Wook Chi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea University, Seoul 02841, Korea
| | - Seongman Kang
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
27
|
Kumar M, Kaur V, Kumar S, Kaur S. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer. Cytotechnology 2016; 68:531-63. [PMID: 26239338 PMCID: PMC4960184 DOI: 10.1007/s10616-015-9897-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
Advancement in the field of cancer molecular biology has aided researchers to develop various new chemopreventive agents which can target cancer cells exclusively. Cancer chemopreventive agents have proficiency to inhibit, reverse and delay process of carcinogenesis during its early and later course. Chemopreventive agents can act as antioxidative, antimutagenic/antigenotoxic, anti-inflammatory agents or via aiming various molecular targets in a cell to induce cell death. Apoptosis is a kind of cell death which shows various cellular morphological alterations such as cell shrinkage, blebbing of membrane, chromatin condensation, DNA fragmentation, formation of apoptotic bodies etc. Nowadays, apoptosis is being one of the new approaches for the identification and development of novel anticancer therapies. For centuries, plants are known to play part in daily routine from providing food to management of human health. In the last two decades, diverse phytochemicals and various botanical formulations have been characterized as agents that possess potential to execute cancer cells via inducing apoptosis. Data obtained from the research carried out globally pointed out that natural products are the potential candidates which have capability to combat cancer. In the present review, we surveyed literature on natural products which throws light on the mechanism through which these phytochemicals induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Subodh Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
28
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 742] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
29
|
Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballesca JL, Oliva R. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod 2014; 20:1041-53. [DOI: 10.1093/molehr/gau079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Qi ST, Wang ZB, Ouyang YC, Zhang QH, Hu MW, Huang X, Ge Z, Guo L, Wang YP, Hou Y, Schatten H, Sun QY. Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes. J Cell Sci 2013; 126:1595-1603. [PMID: 23444375 DOI: 10.1242/jcs.116541] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the phosphorylation of rec8, a member of the cohesin complex, at the centromeres and thus prevent cleavage of rec8 and so maintain the cohesion of chromatids. SETβ is a protein that physically interacts with shugoshin and inhibits PP2A activity. We thus hypothesized that SETβ might regulate cohesion protection and chromosome segregation during oocyte meiotic maturation. Here we report for the first time the expression, subcellular localization and functions of SETβ during mouse oocyte meiosis. Immunoblotting analysis showed that the expression level of SETβ was stable from the germinal vesicle stage to the MII stage of oocyte meiosis. Immunofluorescence analysis showed SETβ accumulation in the nucleus at the germinal vesicle stage, whereas it was targeted mainly to the inner centromere area and faintly localized to the interchromatid axes from germinal vesicle breakdown to MI stages. At the MII stage, SETβ still localized to the inner centromere area, but could relocalize to kinetochores in a process perhaps dependent on the tension on the centromeres. SETβ partly colocalized with PP2A at the inner centromere area. Overexpression of SETβ in mouse oocytes caused precocious separation of sister chromatids, but depletion of SETβ by RNAi showed little effects on the meiotic maturation process. Taken together, our results suggest that SETβ, even though it localizes to centromeres, might not be essential for chromosome separation during mouse oocyte meiotic maturation, although its forced overexpression causes premature chromatid separation.
Collapse
Affiliation(s)
- Shu-Tao Qi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li J, Kil C, Considine K, Smarkucki B, Stankewich MC, Balgley B, Vortmeyer AO. Intrinsic indicators for specimen degradation. J Transl Med 2013; 93:242-53. [PMID: 23212099 DOI: 10.1038/labinvest.2012.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Variable degrees of molecular degradation occur in human surgical specimens before clinical examination and severely affect analytical results. We therefore initiated an investigation to identify protein markers for tissue degradation assessment. We exposed 4 cell lines and 64 surgical/autopsy specimens to defined periods of time at room temperature before procurement (experimental cold ischemic time (CIT)-dependent tissue degradation model). Using two-dimensional fluorescence difference gel electrophoresis in conjunction with mass spectrometry, we performed comparative proteomic analyses on cells at different CIT exposures and identified proteins with CIT-dependent changes. The results were validated by testing clinical specimens with western blot analysis. We identified 26 proteins that underwent dynamic changes (characterized by continuous quantitative changes, isoelectric changes, and/or proteolytic cleavages) in our degradation model. These changes are strongly associated with the length of CIT. We demonstrate these proteins to represent universal tissue degradation indicators (TDIs) in clinical specimens. We also devised and implemented a unique degradation measure by calculating the quantitative ratio between TDIs' intact forms and their respective degradation-modified products. For the first time, we have identified protein TDIs for quantitative measurement of specimen degradation. Implementing these indicators may yield a potentially transformative platform dedicated to quality control in clinical specimen analyses.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
33
|
van Domselaar R, Quadir R, van der Made AM, Broekhuizen R, Bovenschen N. All human granzymes target hnRNP K that is essential for tumor cell viability. J Biol Chem 2012; 287:22854-64. [PMID: 22582387 PMCID: PMC3391115 DOI: 10.1074/jbc.m112.365692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/11/2012] [Indexed: 11/06/2022] Open
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism to eliminate virus-infected cells and tumor cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes. All human granzymes display distinct substrate specificities and induce cell death by cleaving critical intracellular death substrates. In the present study, we show that all human granzymes directly cleaved the DNA/RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K), designating hnRNP K as the first known pan-granzyme substrate. Cleavage of hnRNP K was more efficient in the presence of RNA and occurred in two apparent proteolysis-sensitive amino acid regions, thereby dissecting the functional DNA/RNA-binding hnRNP K domains. HnRNP K was cleaved under physiological conditions when purified granzymes were delivered into living tumor cells and during lymphokine-activated killer cell-mediated attack. HnRNP K is essential for tumor cell viability, since knockdown of hnRNP K resulted in spontaneous tumor cell apoptosis with caspase activation and reactive oxygen species production. This apoptosis was more pronounced at low tumor cell density where hnRNP K knockdown also triggered a caspase-independent apoptotic pathway. This suggests that hnRNP K promotes tumor cell survival in the absence of cell-cell contact. Silencing of hnRNP K protein expression rendered tumor cells more susceptible to cellular cytotoxicity. We conclude that hnRNP K is indispensable for tumor cell viability and our data suggest that targeting of hnRNP K by granzymes contributes to or reinforces the cell death mechanisms by which cytotoxic lymphocytes eliminate tumor cells.
Collapse
Affiliation(s)
- Robert van Domselaar
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Razi Quadir
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Astrid M. van der Made
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Roel Broekhuizen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Niels Bovenschen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
34
|
Fung DCY, Li SS, Goel A, Hong SH, Wilkins MR. Visualization of the interactome: What are we looking at? Proteomics 2012; 12:1669-86. [DOI: 10.1002/pmic.201100454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- David C. Y. Fung
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Simone S. Li
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Apurv Goel
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| | - Seok-Hee Hong
- School of Information Technologies; Faculty of Engineering and Information Technologies; The University of Sydney; New South Wales Australia
| | - Marc R. Wilkins
- New South Wales Systems Biology Initiative; and School of Biotechnology and Biomolecular Sciences; The University of New South Wales; New South Wales Australia
| |
Collapse
|
35
|
Oligomeric amyloid-β peptide affects the expression of genes involved in steroid and lipid metabolism in primary neurons. Neurochem Int 2012; 61:321-33. [PMID: 22579571 DOI: 10.1016/j.neuint.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/10/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Amyloid-β peptide (Aβ) is the principal component of plaques in the brains of patients with Alzheimer's disease (AD), and the most toxic form of Aβ may be as soluble oligomers. We report here the results of a microarray study of gene expression profiles in primary mouse cortical neurons in response to oligomeric Aβ(1-42). A major and unexpected finding was the down-regulation of genes involved in the biosynthesis of cholesterol and other steroids and lipids (such as Fdft1, Fdps, Idi1, Ldr, Mvd, Mvk, Nsdhl, Sc4mol), the expression of which was verified by quantitative real-time RT-PCR (qPCR). The ATP-binding cassette gene Abca1, which has a major role in cholesterol transport in brain and other tissues and has been genetically linked to AD, was notably up-regulated. The possible involvement of cholesterol and other lipids in Aβ synthesis and action in Alzheimer's disease has been studied and debated extensively but remains unresolved. These new data suggest that Aβ may influence steroid and lipid metabolism in neurons via multiple gene-expression changes.
Collapse
|
36
|
Abstract
Granzymes (Grs) were discovered just over a quarter century ago. They are produced by cytotoxic T cells and natural killer cells and are released upon interaction with target cells. Intensive biochemical, genetic, and biological studies have been performed in order to study their roles in immunity and inflammation. This review summarizes research on the family of Grs.
Collapse
|
37
|
van Domselaar R, Bovenschen N. Cell death-independent functions of granzymes: hit viruses where it hurts. Rev Med Virol 2011; 21:301-14. [PMID: 21714121 DOI: 10.1002/rmv.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/24/2022]
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism of our immune response to eliminate virus-infected cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes (GrA, GrB, GrH, GrK, GrM) that display distinct substrate specificities. Granzymes have mostly been studied for their ability to induce cell death. However, viruses have evolved many inhibitors to effectively block apoptosis. Evidence is emerging that granzymes also use noncytotoxic strategies to inhibit viral replication and potential viral reactivation from latency. Granzymes directly cleave viral or host cell proteins that are required in the viral life cycle. Furthermore, granzymes induce a pro-inflammatory cytokine response to create an antiviral environment. In this review, we summarize and discuss these novel strategies by which the immune system counteracts viral infections, and we will address the potential therapeutic applications that could emerge from this intriguing mechanism.
Collapse
Affiliation(s)
- Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
38
|
Sheng Q, Zhang Y, Wang R, Zhang J, Chen B, Wang J, Zhang W, Xin X. Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer. Med Oncol 2011; 29:1265-71. [PMID: 21479902 DOI: 10.1007/s12032-011-9931-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 03/24/2011] [Indexed: 01/03/2023]
Abstract
Cytoplasmic localization of apurinic/apyrimidinic endonuclease 1 (APE1) correlates with different tumorigenic processes and poor prognosis in several cancer types. However, rare investigation into the prognosis value of cytoplasmic localization of APE1 was provided in ovarian cancer. The present study examined for the first time the cytoplasmic localization of APE1 in epithelial ovarian cancer (EOC) by immunohistochemistry. The relationship between cytoplasmic localization of APE1 and clinicopathological parameters, as well as the correlation between cytoplasmic localization of APE1 and prognosis, was investigated. We found that cytoplasmic positivity was significantly higher in EOCs with low tumor differentiation (P = 0.002) and was significantly higher in advanced Federation International of Gynecology and Obstetrics (FIGO) stage (III + IV) patients compared to that in early FIGO stage (I + II) patients (40.7% vs. 11.8%; P = 0.002). No significant difference was observed in APE1 pattern referring to age, tumor size, family history, histological type, ascites, and lymphatic metastasis (P > 0.05). In addition, a lower survival rate was found in patients with cytoplasmic positive localization of APE1 compared to that in patients with cytoplasmic negative localization (P < 0.05). All these findings suggest that cytoplasmic localization of APE1 is associated with tumor progression and might be a valuable prognostic marker for EOC.
Collapse
Affiliation(s)
- Qingsong Sheng
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Schultz-Norton JR, Ziegler YS, Nardulli AM. ERα-associated protein networks. Trends Endocrinol Metab 2011; 22:124-9. [PMID: 21371903 DOI: 10.1016/j.tem.2010.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding hormone, interacts with specific recognition sequences in DNA. An extensive body of literature has documented the association of individual regulatory proteins with ERα. It has recently become apparent that, instead of simply recruiting individual proteins, ERα recruits interconnected networks of proteins with discrete activities that play crucial roles in maintaining the structure and function of the receptor, stabilizing the receptor-DNA interaction, influencing estrogen-responsive gene expression, and repairing misfolded proteins and damaged DNA. Together these studies suggest that the DNA-bound ERα serves as a nucleating factor for the recruitment of protein complexes involved in key processes including the oxidative stress response, DNA repair, and transcription regulation.
Collapse
Affiliation(s)
- Jennifer R Schultz-Norton
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
40
|
Van Damme P, Maurer-Stroh S, Hao H, Colaert N, Timmerman E, Eisenhaber F, Vandekerckhove J, Gevaert K. The substrate specificity profile of human granzyme A. Biol Chem 2011; 391:983-97. [PMID: 20536382 DOI: 10.1515/bc.2010.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The exact biological function of granzyme A, a granule-associated serine protease belonging to the tryptase family of proteases, is still a matter of debate because conflicting roles have been suggested, such as initiation of caspase-independent apoptosis-like cell death and endogenous modulation of inflammatory processes. In contrast to its well-studied family member, granzyme B, far less is known about the physiological targets of granzyme A. Using an N-terminal peptide-centric proteomics technology, the substrate specificity of human granzyme A was extensively characterized at the level of macromolecular protein substrates. Overall, more than 260 cleavage sites, almost exclusively favoring basic residues at the P1 position, in approximately 200 unique protein substrates, including the well-known in vitro substrates APEX-endonuclease 1 and different histones, were identified. Further substrate characterization was used to delineate physical properties in the substrate specificity profiles, which further highlights important aspects in protease/substrate biology.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Higashi K, Tomigahara Y, Shiraki H, Miyata K, Mikami T, Kimura T, Moro T, Inagaki Y, Kaneko H. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem 2010; 286:4485-92. [PMID: 21115500 DOI: 10.1074/jbc.m110.151936] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to liver fibrosis. We have previously shown that nuclear translocation of YB-1 antagonizes the TGF-β/Smad3 signaling in regulating collagen gene expression. More recently, we have demonstrated that the novel small compound HSc025 promotes nuclear translocation of YB-1, resulting in the improvement of skin and pulmonary fibrosis. Here, we presented evidence as to the mechanism by which HSc025 stimulates nuclear translocation of YB-1 and the pharmacological effects of HSc025 on a murine model of hepatic fibrosis. A proteomics approach and binding assays using HSc025-immobilized resin showed that HSc025 binds to the amino acid sequence within the C-tail region of YB-1. In addition, immunoprecipitation experiments and glutathione S-transferase pulldown assays identified poly(A)-binding protein (PABP) as one of the cytoplasmic anchor proteins of YB-1. HSc025 directly binds to YB-1 and interrupts its interaction with PABP, resulting in accelerated nuclear translocation of YB-1. Transfection of cells with PABP siRNA promoted nuclear translocation of YB-1 and subsequently inhibited basal and TGF-β-stimulated collagen gene expression. Moreover, HSc025 significantly suppressed collagen gene expression in cultured activated hepatic stellate cells. Oral administration of HSc025 to mice with carbon tetrachloride-induced hepatic fibrosis improved liver injury as well as the degree of hepatic fibrosis. Altogether, the results provide a novel insight into therapy for organ fibrosis using YB-1 modulators.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, Osaka 554-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 2010; 11:1005-13. [PMID: 20871604 PMCID: PMC2958248 DOI: 10.1038/ni.1941] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/27/2010] [Indexed: 12/27/2022]
Abstract
Viral infection triggers innate immune sensors to produce type I interferon. However, infection of T cells and macrophages with human immunodeficiency virus (HIV) does not trip those alarms. How HIV avoids activating nucleic acid sensors is unknown. Here we found that the cytosolic exonuclease TREX1 suppressed interferon triggered by HIV. In Trex1(-/-) mouse cells and human CD4(+) T cells and macrophages in which TREX1 was inhibited by RNA-mediated interference, cytosolic HIV DNA accumulated and HIV infection induced type I interferon that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate interferon expression via a pathway dependent on the kinase TBK1, the adaptor STING and the transcription factor IRF3. HIV-stimulated interferon production in cells deficient in TREX1 did not involve known nucleic acid sensors.
Collapse
Affiliation(s)
- Nan Yan
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Cytotoxic lymphocytes are armed with granules that are released in the granule-exocytosis pathway to kill tumor cells and virus-infected cells. Cytotoxic granules contain the pore-forming protein perforin and a family of structurally homologues serine proteases called granzymes. While perforin facilitates the entry of granzymes into a target cell, the latter initiate distinct apoptotic routes. Granzymes are also implicated in extracellular functions such as extracellular matrix degradation, immune regulation, and inflammation. The family of human granzymes consists of five members, of which granzyme A and B have been studied most extensively. Recently, elucidation of the specific characteristics of the other three human granzymes H, K, and M, also referred to as orphan granzymes, have started. In this review, we summarize and discuss what is currently known about the biology of the human orphan granzymes.
Collapse
Affiliation(s)
- Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
44
|
Fung DCY, Wilkins MR, Hart D, Hong SH. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks. Proteomics 2010; 10:2723-7. [DOI: 10.1002/pmic.201000046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Abstract
Granzyme A (GzmA) is the most abundant serine protease in killer cell cytotoxic granules. GzmA activates a novel programed cell death pathway that begins in the mitochondrion, where cleavage of NDUFS3 in electron transport complex I disrupts mitochondrial metabolism and generates reactive oxygen species (ROS). ROS drives the endoplasmic reticulum-associated SET complex into the nucleus, where it activates single-stranded DNA damage. GzmA also targets other important nuclear proteins for degradation, including histones, the lamins that maintain the nuclear envelope, and several key DNA damage repair proteins (Ku70, PARP-1). Cells that are resistant to the caspases or GzmB by overexpressing bcl-2 family anti-apoptotic proteins or caspase or GzmB protease inhibitors are sensitive to GzmA. By activating multiple cell death pathways, killer cells provide better protection against a variety of intracellular pathogens and tumors. GzmA also has proinflammatory activity; it activates pro-interleukin-1beta and may also have other proinflammatory effects that remain to be elucidated.
Collapse
Affiliation(s)
- Judy Lieberman
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev 2010; 235:73-92. [DOI: 10.1111/j.0105-2896.2010.00907.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Zhou F. Expression of Multiple Granzymes by Cytotoxic T Lymphocyte Implies that They Activate Diverse Apoptotic Pathways in Target Cells. Int Rev Immunol 2010; 29:38-55. [DOI: 10.3109/08830180903247889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Ly L, Wasinger VC. Mass and charge selective protein fractionation for the differential analysis of T-cell and CD34+ stem cell proteins from cord blood. J Proteomics 2010; 73:571-8. [DOI: 10.1016/j.jprot.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022]
|
50
|
Lee D, Kwon JH, Kim EH, Kim ES, Choi KY. HMGB2 stabilizes p53 by interfering with E6/E6AP-mediated p53 degradation in human papillomavirus-positive HeLa cells. Cancer Lett 2009; 292:125-32. [PMID: 20036050 DOI: 10.1016/j.canlet.2009.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/26/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022]
Abstract
We investigated the effect of HMGB2 on the stability of p53 protein in HeLa cells. Overexpression of HMGB2 led to accumulation of the p53 protein, whereas HMGB2 knockdown with siRNA resulted in a substantial decrease in the p53 protein level. The HMGB2-dependent increase of p53 stability was specific for HPV-positive HeLa cells as HCT116 and MCF7 cell lines did not demonstrate this response. Co-expression of HMGB2 and HPV E6 prevented HPV E6 protein-mediated ubiquitination and degradation of p53. FACS analysis exhibited that HeLa cells transfected with HMGB2 displayed decreased cell proliferation, with a concomitant increase of the p53 protein and arrest of the cell cycle, predominantly in G1 phase. Our findings collectively suggest that HMGB2 could stabilize p53 by interfering with E6/E6AP-mediated p53 degradation in HPV-positive HeLa cells.
Collapse
Affiliation(s)
- Daekyun Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | |
Collapse
|