1
|
Xu J, Wang L, Liang Y, Shen Q, Tu W, Cheng Z, Hu L, Wang YH, Li J. Association mapping and identification of candidate genes for callus induction and regeneration using sorghum mature seeds. FRONTIERS IN PLANT SCIENCE 2025; 16:1430141. [PMID: 40343126 PMCID: PMC12058750 DOI: 10.3389/fpls.2025.1430141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
Introduction A whole plant can be regenerated through tissue culture from an embryogenic callus in a process referred to as plant regeneration. Regeneration ability of embryogenic callus is a quantitative trait and the main limiting factor for genetic studies in sorghum. Methods We evaluated 236 sorghum mini core varieties for callus induction rate, embryogenic callus rate, callus browning rate and differentiation rate and performed a multi-locus genome-wide association study (GWAS) of the four traits with 6,094,317 SNPs. Results We found five mini core varieties most amenable to tissue culture manipulations: IS5667, IS24503, IS8348, IS4698, and IS5295.Furthermore, we mapped 34 quantitative trait loci (QTLs) to the four traits and identified 47 candidate genes. Previous studies provided evidence for the orthologs of 14 of these genes for their role in cellular function and embryogenesis and that the ortholog of WIND1 (WOUND INDUCED DEDIFFERENTIATION 1) identified in this study promotes callus formation and increases de novo shoot regeneration. Conclusion These candidate genes will help to further understand the genetic basis of plant embryonic callus regeneration.
Collapse
Affiliation(s)
- Jingyi Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Yuan Liang
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Qi Shen
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Wenmiao Tu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Zhengxiao Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Lu Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| | - Yi-Hong Wang
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China
| |
Collapse
|
2
|
Yeo MJR, Zhang O, Xie X, Nam E, Payne NC, Gosavi PM, Kwok HS, Iram I, Lee C, Li J, Chen NJ, Nguyen K, Jiang H, Wang ZA, Lee K, Mao H, Harry SA, Barakat IA, Takahashi M, Waterbury AL, Barone M, Mattevi A, Carr SA, Udeshi ND, Bar-Peled L, Cole PA, Mazitschek R, Liau BB, Zheng N. UM171 glues asymmetric CRL3-HDAC1/2 assembly to degrade CoREST corepressors. Nature 2025; 639:232-240. [PMID: 39939761 PMCID: PMC11882444 DOI: 10.1038/s41586-024-08532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
UM171 is a potent agonist of ex vivo human haematopoietic stem cell self-renewal1. By co-opting KBTBD4, a substrate receptor of the CUL3-RING E3 ubiquitin ligase (CRL3) complex, UM171 promotes the degradation of the LSD1-CoREST corepressor complex, thereby limiting haematopoietic stem cell attrition2,3. However, the direct target and mechanism of action of UM171 remain unclear. Here we show that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1/2 to promote corepressor degradation. Through proteomics and chemical inhibitor studies, we identify the principal target of UM171 as HDAC1/2. Cryo-electron microscopy analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex identifies an asymmetric assembly in which a single UM171 molecule enables a pair of KELCH-repeat propeller domains to recruit the HDAC1 catalytic domain. One KBTBD4 propeller partially masks the rim of the HDAC1 active site, which is exploited by UM171 to extend the E3-neosubstrate interface. The other propeller cooperatively strengthens HDAC1 binding through a distinct interface. The overall CoREST-HDAC1/2-KBTBD4 interaction is further buttressed by the endogenous cofactor inositol hexakisphosphate, which acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces is demonstrated by base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, we reveal how the cooperativity offered by a dimeric CRL3 E3 can be leveraged by a small molecule degrader.
Collapse
Affiliation(s)
- Megan J R Yeo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivia Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaowen Xie
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pallavi M Gosavi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Irtiza Iram
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Khanh Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Desai Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Stefan A Harry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Idris A Barakat
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marco Barone
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
English D, Lee S, Sabat K, Baker I, Pham TK, Collins M, Cowley S. Rapid degradation of histone deacetylase 1 (HDAC1) reveals essential roles in both gene repression and active transcription. Nucleic Acids Res 2025; 53:gkae1223. [PMID: 39704107 PMCID: PMC11879047 DOI: 10.1093/nar/gkae1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Histone Deacetylase 1 (HDAC1) removes acetyl groups from lysine residues on core histones, a critical step in regulating chromatin accessibility. Despite histone deacetylation being an apparently repressive activity, suppression of HDACs causes both up- and downregulation of gene expression. Here we exploited the degradation tag (dTAG) system to rapidly degrade HDAC1 in mouse embryonic stem cells (ESCs) lacking its paralog, HDAC2. The dTAG system allowed specific degradation and removal of HDAC1 in <1 h (100x faster than genetic knockouts). This rapid degradation caused increased histone acetylation in as little as 2 h, with H2BK5 and H2BK11 being the most sensitive. The majority of differentially expressed genes following 2 h of HDAC1 degradation were upregulated (275 genes up versus 15 down) with increased proportions of downregulated genes observed at 6 h (1153 up versus 443 down) and 24 h (1146 up versus 967 down), respectively. Upregulated genes showed increased H2BK5ac and H3K27ac around their transcriptional start site (TSS). In contrast, decreased acetylation and chromatin accessibility of super-enhancers was linked to the most strongly downregulated genes. These findings suggest a paradoxical role for HDAC1 in the maintenance of histone acetylation levels at critical enhancer regions required for the pluripotency-associated gene network.
Collapse
Affiliation(s)
- David M English
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Samuel N Lee
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Khadija A Sabat
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - India M Baker
- Cambridge Stem Cell Institute & Department of Haematology, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
4
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
5
|
Carmona-Mora P, Knepp B, Jickling GC, Zhan X, Hakoupian M, Hull H, Alomar N, Amini H, Sharp FR, Stamova B, Ander BP. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med 2023; 21:65. [PMID: 36803375 PMCID: PMC9942321 DOI: 10.1186/s12916-023-02766-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/21/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. METHODS The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0-24 h, 24-48 h, and >48 h following stroke. RESULTS Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. CONCLUSIONS Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA.
| | - Bodie Knepp
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 87 Avenue & 114 Street, Edmonton, AB, T6G 2J7, Canada
| | - Xinhua Zhan
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Marisa Hakoupian
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Heather Hull
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Noor Alomar
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Hajar Amini
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Frank R Sharp
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Boryana Stamova
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| |
Collapse
|
6
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
7
|
Ma J, Li C, Qian H, Zhang Y. MTA1: A Vital Modulator in Prostate Cancer. Curr Protein Pept Sci 2022; 23:456-464. [PMID: 35792131 DOI: 10.2174/1389203723666220705152713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer of the male genitourinary system and the second most common cancer in men worldwide. PCa has become one of the leading diseases endangering men's health in Asia in recent years, with a large increase in morbidity and mortality. MTA1 (metastasis-associated antigen-1), a transcriptional coregulator involved in histone deacetylation and nucleosome remodeling, is a member of the MTA family. MTA1 is involved in cell signaling, chromosomal remodeling, and transcriptional activities, all of which are important for epithelial cell progression, invasion, and growth. MTA1 has been demonstrated to play a significant role in the formation, progression, and metastasis of PCa, and MTA1 expression is specifically linked to PCa bone metastases. Therefore, MTA1 may be a potential target for PCa prevention and treatment. Here, we reviewed the structure, function, and expression of MTA1 in PCa as well as drugs that target MTA1 to highlight a potential new treatment for PCa.
Collapse
Affiliation(s)
- Jialu Ma
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Urology Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Huang W, Chen J, Liu X, Liu X, Duan S, Chen L, Liu X, Lan J, Zou Y, Guo D, Zhou J. MIER3 induces epithelial-mesenchymal transition and promotes breast cancer cell aggressiveness via forming a co-repressor complex with HDAC1/HDAC2/Snail. Exp Cell Res 2021; 406:112722. [PMID: 34242623 DOI: 10.1016/j.yexcr.2021.112722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/16/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer death in women. MIER3 (Mesoderm induction early response 1, family member3) is considered as a potential oncogene for breast cancer. However, the role of MIER3 in breast cancer remain largely unknown. The expression of MIER3 was detected and the relationship between its expression and clinicopathological characteristics was also analyzed. The effect of MIER3 on proliferation and migration of breast cancer cells was detected in vitro and in vivo. Western blot, IF, and Co-IP were employed to detect the relationship between MIER3, HDAC1, HDAC2, and Snail. ChIP assay was performed to determine the binding of MIER3/HDAC1/HDAC2/Snail complex to the promoter of E-cadherin. In this study, we found that MIER3 was upregulated in breast cancer tissue and closely associated with poor prognosis of patients. MIER3 could promote the proliferation, migration, and epithelial-mesenchymal transition (EMT) of breast cancer cells. Further studies showed that MIER3 interacted with HDAC1/HDAC2 and Snail to form a repressive complex which could bind to E-cadherin promoter and was related to its deacetylation. Our study concluded that MIER3 was involved in forming a co-repressor complex with HDAC1/HDAC2/Snail to promote EMT by silencing E-cadherin.
Collapse
Affiliation(s)
- Wenqing Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xunhua Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuming Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lixia Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zou
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet 2021; 17:e1009412. [PMID: 33961623 PMCID: PMC8104389 DOI: 10.1371/journal.pgen.1009412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice. Meiosis is a fundamental process that consists of one round of genomic DNA replication and two rounds of chromosome segregation, producing four haploid cells. To properly distribute their genetic material, cells need to undergo complex chromosome events such as a physical linkage of homologous chromosomes (termed synapsis) and meiotic recombination. The molecules involved in these events have not been fully characterized yet, especially in mammals. Using a CRISPR/Cas9-screening system, we identified the potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis in male mice. Further, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). By observing meiosis of Zfp541 knockout germ cells, we found that Zfp541 was also essential for meiosis. These results show that the KCTD19/ZFP541 complex plays a critical role and is indispensable for male meiosis and fertility.
Collapse
|
10
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
11
|
More than a Corepressor: The Role of CoREST Proteins in Neurodevelopment. eNeuro 2020; 7:ENEURO.0337-19.2020. [PMID: 32075869 PMCID: PMC7070449 DOI: 10.1523/eneuro.0337-19.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms governing normal neurodevelopment are tightly regulated by the action of transcription factors. Repressor element 1 (RE1) silencing transcription factor (REST) is widely documented as a regulator of neurogenesis that acts by recruiting corepressor proteins and repressing neuronal gene expression in non-neuronal cells. The REST corepressor 1 (CoREST1), CoREST2, and CoREST3 are best described for their role as part of the REST complex. However, recent evidence has shown the proteins have the ability to repress expression of distinct target genes in a REST-independent manner. These findings indicate that each CoREST paralogue may have distinct and critical roles in regulating neurodevelopment and are more than simply “REST corepressors,” whereby they act as independent repressors orchestrating biological processes during neurodevelopment.
Collapse
|
12
|
Zhang H, Wang L, Bai J, Jiao W, Wang M. MIER3 suppresses the progression of non-small cell lung cancer by inhibiting Wnt/β-Catenin pathway and histone acetyltransferase activity. Transl Cancer Res 2020; 9:346-357. [PMID: 35117188 PMCID: PMC8798777 DOI: 10.21037/tcr.2020.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND The mesoderm induction early response 1, family member 3 (MIER3) gene has been recognized as potentially being associated with cancer. However, in relation to the development of non-small cell lung cancer (NSCLC), the expression pattern and the role of MIER3 are yet to be reported. The aim of this research was to investigate the rate of expression of MIER3 in NSCLC cells and tissues and to investigate the role of MIER3 in NSCLC. METHODS Seventeen patients received NSCLC tissues and corresponding healthy tissues. MTT assay was used to determine cell proliferation. For detecting mRNA and protein expression, we used both quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot method. To measure cell apoptosis and cell cycle distribution, we applied the flow cytometry technique. We used a wound-healing assay and a Transwell invasion assay to study cell migration and invasion. RESULTS In comparison with adjacent normal tissues, the expression of MIER3 was down-regulated in NSCLC tissues. In addition, the level of MIER3 in NSCLC cell lines was also lower than in pulmonary epithelial cell BEAS-2B. Moreover, when MIER3 was overexpressed, cell proliferation, migration, and invasion were significantly inhibited, apoptosis increased, and cell cycle arrest was induced in A549 and H460 cells. MIER3 overexpression also suppressed tumor growth in NSCLC xenograft mouse models. Furthermore, our study demonstrated that MIER3 down-regulated the Wnt/β-catenin signaling pathway in NSCLC cells. More importantly, MIER3 decreased the activity of histone acetyltransferase (HAT) p300, which may have contributed to its regulation on β-catenin and tumorigenesis. CONCLUSIONS The data suggests MIER3 takes on the tumor-suppressor role in the progression of NSCLC and, therefore, could prove to be a valuable clinical marker in the prognosis of the disease.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Oncology, Linyi Central Hospital, Linyi 276400, China
| | - Ling Wang
- Department of Nephrology, Yishui People’s Hospital, Linyi 276400, China
| | - Juan Bai
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Wenyu Jiao
- Department of Respiratory and Critical Care Medicine, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Mingxia Wang
- Department of Oncology, Linyi Central Hospital, Linyi 276400, China
| |
Collapse
|
13
|
Sher F, Hossain M, Seruggia D, Schoonenberg VAC, Yao Q, Cifani P, Dassama LMK, Cole MA, Ren C, Vinjamur DS, Macias-Trevino C, Luk K, McGuckin C, Schupp PG, Canver MC, Kurita R, Nakamura Y, Fujiwara Y, Wolfe SA, Pinello L, Maeda T, Kentsis A, Orkin SH, Bauer DE. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet 2019; 51:1149-1159. [PMID: 31253978 PMCID: PMC6650275 DOI: 10.1038/s41588-019-0453-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Developmental silencing of fetal globins serves as both a paradigm of spatiotemporal gene regulation and an opportunity for therapeutic intervention of β-hemoglobinopathy. The nucleosome remodeling and deacetylase (NuRD) chromatin complex participates in γ-globin repression. We used pooled CRISPR screening to disrupt NuRD protein coding sequences comprehensively in human adult erythroid precursors. Essential for fetal hemoglobin (HbF) control is a non-redundant subcomplex of NuRD protein family paralogs, whose composition we corroborated by affinity chromatography and proximity labeling mass spectrometry proteomics. Mapping top functional guide RNAs identified key protein interfaces where in-frame alleles resulted in loss-of-function due to destabilization or altered function of subunits. We ascertained mutations of CHD4 that dissociate its requirement for cell fitness from HbF repression in both primary human erythroid precursors and transgenic mice. Finally we demonstrated that sequestering CHD4 from NuRD phenocopied these mutations. These results indicate a generalizable approach to discover protein complex features amenable to rational biochemical targeting.
Collapse
Affiliation(s)
- Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Center for Translational & Computational Neuroimmunology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Mir Hossain
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Vivien A C Schoonenberg
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura M K Dassama
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Mitchel A Cole
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Kershaw MJ, Li W, Wang J, Yin J, Zhu X, Liu X, Chern M, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Ren Z, Wu X, Li P, Li S, Peng Y, Lin F, Talbot NJ, Chen X. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 2018; 14:1543-1561. [PMID: 29929416 DOI: 10.1080/15548627.2018.1458171] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus. ABBREVIATIONS M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase β subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
Collapse
Affiliation(s)
- Min He
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China.,b School of Biosciences , University of Exeter , Exeter , UK
| | - Youpin Xu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jinhua Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuan Luo
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yang Lv
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jia Su
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | | | - Weitao Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jing Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Junjie Yin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaobo Zhu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaohong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Mawsheng Chern
- d Department of Plant Pathology , University of California , Davis , CA , USA
| | - Bingtian Ma
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jichun Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Peng Qin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Weilan Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuping Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wenming Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhenglong Ren
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xianjun Wu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Ping Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Shigui Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Youliang Peng
- e State Key Laboratory of Agrobiotechnology and MOA, Key Laboratory of Plant Pathology , China Agricultural University , Beijing , China
| | - Fucheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | | | - Xuewei Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
15
|
Peng M, Hu Y, Song W, Duan S, Xu Q, Ding Y, Geng J, Zhou J. MIER3 suppresses colorectal cancer progression by down-regulating Sp1, inhibiting epithelial-mesenchymal transition. Sci Rep 2017; 7:11000. [PMID: 28887525 PMCID: PMC5591250 DOI: 10.1038/s41598-017-11374-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023] Open
Abstract
Mesoderm induction early response 1, family member 3 (MIER3) has recently been identified as a potential cancer susceptibility gene. However, the expression pattern and the role of MIER3 in the progression of colorectal cancer (CRC) have not yet been well characterized. Here, we reported that MIER3 was significantly reduced in human primary colorectal cancer and was associated with CRC metastasis and poor prognosis. Moreover, the up-regulation of MIER3 expression significantly inhibited CRC cell proliferation, migration and invasion in vitro and repressed tumor growth and metastasis in vivo. In contrast, down-regulation of MIER3 could promote the aggressive behaviors of CRC cells. Furthermore, our study showed that MIER3 inhibited cell proliferation and invasion partially via reduction of Sp1 and subsequent suppression of epithelial-mesenchymal transition (EMT). In conclusion, our data suggested that MIER3 plays a potential tumor suppressor role in CRC progression and may be a potentially valuable clinical prognostic marker of this disease.
Collapse
Affiliation(s)
- Man Peng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Song W, Peng M, Duan SY, Lin C, Xu Q, Zhou J. [Expression of MIER3 in colorectal cancer and bioinformatic analysis of MIER3- interacting proteins]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1040-1046. [PMID: 28801283 PMCID: PMC6765740 DOI: 10.3969/j.issn.1673-4254.2017.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore role of MIER3 gene in the development and progression of human colorectal carcinoma (CRC) and analyze the proteins that interact with MIER3 using bioinformatic techniques. METHODS MIER3 mRNA and protein expressions were detected in 8 CRC biopsy samples and paired adjacent tissues using real-time PCR and Western blotting. A recombinant eukaryotic expression vector pcDNA3-MIER3 was constructed and its effect on the proliferation and invasion of CRC cells were tested using CCK8 assay and Transwell migration assay. Bioinformatic methods were used to predict and analyze MIER3-interacting proteins. RESULTS MIER3 was obviously down-regulated in the 8 CRC tissues as compared with the paired adjacent tissues. In human CRC cell line DLD1, MIER3 overexpression induced by transfection of the cells with pcDNA3-MIER3 significantly inhibited the cell proliferation and suppressed cell invasiveness in vitro. Bioinformatics analyses indicated that NAT9 was a potential MIER3-interacting protein and MIER3 was probably associated with tumor susceptibility. CONCLUSION MIER3, which is obviously down-regulated in CRC tissues, is closely associated with the proliferation and invasion of CRC, and NAT9 protein is a probable MIER3-interacting protein.
Collapse
Affiliation(s)
- Wen Song
- Department of Pathology, Nanfang Hospital1, Department of Radiotherapy, Nanfang Hospital2, Department of Pathology, School of Basic Medical Sciences3, Southern Medical University, Guangzhou 510515, China. E-mail:
| | | | | | | | | | | |
Collapse
|
17
|
Ugalde-Morales E, Li J, Humphreys K, Ludvigsson JF, Yang H, Hall P, Czene K. Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 2017; 7:5942. [PMID: 28725034 PMCID: PMC5517429 DOI: 10.1038/s41598-017-06287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
There is epidemiologic evidence showing that women with celiac disease have reduced risk of later developing breast cancer, however, the etiology of this association is unclear. Here, we assess the extent of genetic overlap between the two diseases. Through analyses of summary statistics on densely genotyped immunogenic regions, we show a significant genetic correlation (r = −0.17, s.e. 0.05, P < 0.001) and overlap (Ppermuted < 0.001) between celiac disease and breast cancer. Using individual-level genotype data from a Swedish cohort, we find higher genetic susceptibility to celiac disease summarized by polygenic risk scores to be associated with lower breast cancer risk (ORper-SD, 0.94, 95% CI 0.91 to 0.98). Common single nucleotide polymorphisms between the two diseases, with low P-values (PCD < 1.00E-05, PBC ≤ 0.05), mapped onto genes enriched for immunoregulatory and apoptotic processes. Our results suggest that the link between breast cancer and celiac disease is due to a shared polygenic variation of immune related regions, uncovering pathways which might be important for their development.
Collapse
Affiliation(s)
- Emilio Ugalde-Morales
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Haomin Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Targeting Class I Histone Deacetylases in a "Complex" Environment. Trends Pharmacol Sci 2017; 38:363-377. [PMID: 28139258 DOI: 10.1016/j.tips.2016.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are proven anticancer therapeutics and have potential in the treatment of many other diseases including HIV infection, Alzheimer's disease, and Friedreich's ataxia. A problem with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Designing isoform-selective inhibitors has proven challenging due to similarities in the structure and chemistry of HDAC active sites. However, the fact that HDACs 1, 2, and 3 are recruited to several large multi-subunit complexes, each with particular biological functions, raises the possibility of specifically inhibiting individual complexes. This may be assisted by recent structural and functional information about the assembly of these complexes. Here, we review the available structural information and discuss potential targeting strategies.
Collapse
|
19
|
Differential HDAC1 and 2 Recruitment by Members of the MIER Family. PLoS One 2017; 12:e0169338. [PMID: 28046085 PMCID: PMC5207708 DOI: 10.1371/journal.pone.0169338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
The mier family consists of three related genes encoding ELM2-SANT containing proteins. MIER1 has been well characterized and is known to function in transcriptional repression through its ability to recruit HDAC1 and 2. Little is known about MIER2 or MIER3 function and no study characterizing these two proteins has been published. In this report, we investigate MIER2 and MIER3 localization and function. Confocal analysis revealed that, while MIER2 and MIER3 are mainly nuclear proteins, a substantial proportion (32%) of MIER2 is localized in the cytoplasm. Co-immunoprecipitation experiments demonstrated that the MIER proteins do not dimerize; that MIER2, but not MIER3, can recruit HDACs; and that recruitment is cell line-dependent. MIER2 was associated with HDAC1 and HDAC2 in HEK293 cells, but only with HDAC1 in MCF7 and HeLa cells. Little or no MIER3 co-immunoprecipitated with either HDAC1 or 2 in any of the three cell lines tested. By contrast, HDAC1 and 2 were readily detected in MIER1α complexes in all three cell lines. Histone deacetylase assays confirmed that MIER2, but not MIER3 complexes, have associated deacetylase activity, leading to the conclusion that MIER3 does not function in HDAC recruitment in these cell lines. In contrast to what has been reported for other ELM2-SANT associated HDACs, addition of D-myo-inositol-1,4,5,6-tetrakisphosphate led to only a small increase in MIER1α associated deacetylase activity and no effect on that associated with MIER2. Deletion analysis revealed that HDAC recruitment occurs through the ELM2 domain. Finally, using site-directed mutagenesis, we show that, like MIER1, 228W in the ELM2 domain is a critical residue for HDAC recruitment by MIER2.
Collapse
|
20
|
Extent of pre-translational regulation for the control of nucleocytoplasmic protein localization. BMC Genomics 2016; 17:472. [PMID: 27342569 PMCID: PMC4919871 DOI: 10.1186/s12864-016-2854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate protein subcellular localization is essential for proper cellular function. Central to the regulation of protein localization are protein targeting motifs, stretches of amino acids serving as guides for protein entry in a specific cellular compartment. While the use of protein targeting motifs is modulated in a post-translational manner, mainly by protein conformational changes and post-translational modifications, the presence of these motifs in proteins can also be regulated in a pre-translational manner. Here, we investigate the extent of pre-translational regulation of the main signals controlling nucleo-cytoplasmic traffic: the nuclear localization signal (NLS) and the nuclear export signal (NES). Results Motif databases and manual curation of the literature allowed the identification of 175 experimentally validated NLSs and 120 experimentally validated NESs in human. Following mapping onto annotated transcripts, these motifs were found to be modular, most (73 % for NLS and 88 % for NES) being encoded entirely in only one exon. The presence of a majority of these motifs is regulated in an alternative manner at the transcript level (61 % for NLS and 72 % for NES) while the remaining motifs are present in all coding isoforms of their encoding gene. NLSs and NESs are pre-translationally regulated using four main mechanisms: alternative transcription/translation initiation, alternative translation termination, alternative splicing of the exon encoding the motif and frameshift, the first two being by far the most prevalent mechanisms. Quantitative analysis of the presence of these motifs using RNA-seq data indicates that inclusion of these motifs can be regulated in a tissue-specific and a combinatorial manner, can be altered in disease states in a directed way and that alternative inclusion of these motifs is often used by proteins with diverse interactors and roles in diverse pathways, such as kinases. Conclusions The pre-translational regulation of the inclusion of protein targeting motifs is a prominent and tightly-regulated mechanism that adds another layer in the control of protein subcellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2854-4) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, Le Guillou M, Champy MF, Wattenhofer-Donzé M, Soubigou G, Ait-Si-Ali S, Feunteun J, Sorg T, Coppée JY, Ferguson-Smith AC, Cossart P, Bierne H. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet 2016; 12:e1005898. [PMID: 26938916 PMCID: PMC4777444 DOI: 10.1371/journal.pgen.1005898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.
Collapse
Affiliation(s)
- Goran Lakisic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Alice Lebreton
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Renaud Pourpre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Olivia Wendling
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Emanuele Libertini
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Elizabeth J. Radford
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
| | - Morwenna Le Guillou
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Marie-France Champy
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marie Wattenhofer-Donzé
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Guillaume Soubigou
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Jean Feunteun
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Tania Sorg
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| |
Collapse
|
22
|
Structure, expression and functions of MTA genes. Gene 2016; 582:112-21. [PMID: 26869315 DOI: 10.1016/j.gene.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.
Collapse
|
23
|
Simon JM, Parker JS, Liu F, Rothbart SB, Ait-Si-Ali S, Strahl BD, Jin J, Davis IJ, Mosley AL, Pattenden SG. A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin. J Biol Chem 2015; 290:26088-102. [PMID: 26338712 PMCID: PMC4646261 DOI: 10.1074/jbc.m115.654459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.
Collapse
Affiliation(s)
- Jeremy M Simon
- From the Carolina Institute for Developmental Disabilities, Department of Cell Biology and Physiology, and the Department of Genetics, Curriculum in Bioinformatics and Computational Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joel S Parker
- the Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Feng Liu
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Slimane Ait-Si-Ali
- the Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Brian D Strahl
- the Lineberger Comprehensive Cancer Center, the Curriculum in Genetics and Molecular Biology, and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jian Jin
- the Department of Structural and Chemical Biology, the Department of Oncological Sciences, and the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ian J Davis
- the Department of Genetics, the Lineberger Comprehensive Cancer Center, the Department of Pediatrics, and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Samantha G Pattenden
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
24
|
Li S, Paterno GD, Gillespie LL. Insulin and IGF-1, but not 17β-estradiol, alter the subcellular localization of MIER1α in MCF7 breast carcinoma cells. BMC Res Notes 2015; 8:356. [PMID: 26281834 PMCID: PMC4539687 DOI: 10.1186/s13104-015-1336-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MIER1α is a transcriptional regulator that interacts with estrogen receptor α and inhibits estrogen-stimulated growth of breast carcinoma cells. Interestingly, analysis of MIER1α subcellular localization in breast samples revealed a stepwise shift from the nucleus to the cytoplasm during progression to invasive carcinoma. Previously, we demonstrated that MIER1α is nuclear in MCF7 cells yet it does not contain a nuclear localization signal. Instead MIER1α is targeted to the nucleus through interaction and co-transport with HDAC 1 and 2. RESULTS In this study, we demonstrate that treatment of MCF7 breast carcinoma cells with either insulin or insulin-like growth factor affects the subcellular localization of MIER1α. Both factors reduce the percentage of cells with nuclear MIER1α from 81 and 89 to 41 and 56%, respectively. Treatment with 17β-estradiol, on the other hand, had no effect and MIER1α remained nuclear. CONCLUSIONS Our data demonstrate that insulin and IGF-1 can contribute to loss of nuclear MIER1α in the MCF7 breast carcinoma cell line.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Gary D Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | - Laura L Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| |
Collapse
|
25
|
Hudson GM, Watson PJ, Fairall L, Jamieson AG, Schwabe JWR. Insights into the Recruitment of Class IIa Histone Deacetylases (HDACs) to the SMRT/NCoR Transcriptional Repression Complex. J Biol Chem 2015; 290:18237-18244. [PMID: 26055705 PMCID: PMC4505066 DOI: 10.1074/jbc.m115.661058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the "closed" conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes.
Collapse
Affiliation(s)
- Gregg M Hudson
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester LE1 9HN
| | - Peter J Watson
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester LE1 9HN
| | - Louise Fairall
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester LE1 9HN
| | - Andrew G Jamieson
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - John W R Schwabe
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester LE1 9HN.
| |
Collapse
|
26
|
Abstract
Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
27
|
Differential properties of transcriptional complexes formed by the CoREST family. Mol Cell Biol 2014; 34:2760-70. [PMID: 24820421 DOI: 10.1128/mcb.00083-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1), and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases 1 and 2 (HDAC1/2) and the finding that all three CoRESTs are expressed in the adult rat brain. CoRESTs interact equally strongly with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2, which is barely present in LSD1/KDM1A-CoREST2 complexes. A nonconserved leucine in the first SANT domain of CoREST2 severely weakens its association with HDAC1/2. Furthermore, CoREST2 mutants with increased HDAC1/2 interaction and those without HDAC1/2 interaction exhibit equivalent transcriptional repression capacities, indicating that CoREST2 represses in an HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental in the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine-tuning gene expression regulation.
Collapse
|
28
|
Li DQ, Yang Y, Kumar R. MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Cancer Metastasis Rev 2014; 33:993-1000. [PMID: 25332144 PMCID: PMC4302735 DOI: 10.1007/s10555-014-9524-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The DNA damage, most notably DNA double-strand breaks, poses a serious threat to the stability of mammalian genome. Maintenance of genomic integrity is largely dependent on an efficient, accurate, and timely DNA damage response in the context of chromatin. Consequently, dysregulation of the DNA damage response machinery is fundamentally linked to the genomic instability and a likely predisposition to cancer. In turn, aberrant activation of DNA damage response pathways in human cancers enables tumor cells to survive DNA damages, thus, leading to the development of resistance of tumor cells to DNA damaging radio- and chemotherapies. A substantial body of experimental evidence has established that ATP-dependent chromatin remodeling and histone modifications play a central role in the DNA damage response. As a component of the nucleosome remodeling and histone deacetylase (NuRD) complex that couples both ATP-dependent chromatin remodeling and histone deacetylase activities, the metastasis-associated protein (MTA) family proteins have been recently shown to participate in the DNA damage response beyond its well-established roles in gene transcription. In this thematic review, we will focus on our current understandings of the role of the MTA family proteins in the DNA damage response and their potential implications in DNA damaging anticancer therapy.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,
| | | | | |
Collapse
|
29
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
30
|
Zheng B, He H, Zheng Y, Wu W, McCormick S. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004421. [PMID: 25057814 PMCID: PMC4109846 DOI: 10.1371/journal.pgen.1004421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/20/2014] [Indexed: 12/17/2022] Open
Abstract
In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain)-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation. For all eukaryotes, gamete formation is an essential aspect of sexual reproduction. Unlike in animals, where meiotic products directly become gametes, the germline in plants is established by two consecutive mitotic divisions after meiosis is completed. The first mitosis is asymmetric, forming a larger vegetative cell and a smaller generative cell. The smaller generative cell then divides to produce two sperm cells. Current knowledge indicates DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in this process by controlling expression of other germline genes. But how DUO1 is activated in the generative cell is unknown. To better understand the mechanisms that govern sperm cell formation and activate DUO1 expression, we characterized, ARID1, encoding an ARID (AT-Rich Interacting Domain)-containing protein. We show that ARID1 is required for DUO1 activation and sperm cell formation in Arabidopsis. Furthermore, ARID1 physically associates with a histone deacetylase, facilitating the maintenance of histone acetylation between the vegetative nucleus and sperm nuclei. Thus, our study shows that a pollen-specific ARID protein plays an important role during sperm cell formation in a dual manner: as a transcription factor to activate DUO1 and as a potential component of the histone modification machinery to maintain epigenetic status in pollen.
Collapse
Affiliation(s)
- Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
| | - Hui He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanhua Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenye Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sheila McCormick
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Li S, Paterno GD, Gillespie LL. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells. PLoS One 2013; 8:e84046. [PMID: 24376786 PMCID: PMC3869823 DOI: 10.1371/journal.pone.0084046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a ‘piggyback’ mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA). Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+) and VC5 (ERα-). Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5). These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gary D. Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Laura L. Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
32
|
Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 2013; 33:5005-20. [PMID: 24144980 DOI: 10.1128/mcb.00866-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X chromosome inactivation is a remarkable example of chromosome-wide gene silencing and facultative heterochromatin formation. Numerous histone posttranslational modifications, including H3K9me2 and H3K27me3, accompany this process, although our understanding of the enzymes that lay down these marks and the factors that bind to them is still incomplete. Here we identify Cdyl, a chromodomain-containing transcriptional corepressor, as a new chromatin-associated protein partner of the inactive X chromosome (Xi). Using mouse embryonic stem cell lines with mutated histone methyltransferase activities, we show that Cdyl relies on H3K9me2 for its general association with chromatin in vivo. For its association with Xi, Cdyl requires the process of differentiation and the presence of H3K9me2 and H3K27me3, which both become chromosomally enriched following Xist RNA coating. We further show that the removal of the PRC2 component Eed and subsequent loss of H3K27me3 lead to a reduction of both Cdyl and H3K9me2 enrichment on inactive Xi. Finally, we show that Cdyl associates with the H3K9 histone methyltransferase G9a and the MGA protein, both of which are also found on Xi. We propose that the combination of H3K9me2 and H3K27me3 recruits Cdyl to Xi, and this, in turn, may facilitate propagation of the H3K9me2 mark by anchoring G9a.
Collapse
|
33
|
Millard C, Watson P, Celardo I, Gordiyenko Y, Cowley S, Robinson C, Fairall L, Schwabe J. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 2013; 51:57-67. [PMID: 23791785 PMCID: PMC3710971 DOI: 10.1016/j.molcel.2013.05.020] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
Class I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - Ivana Celardo
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - Yuliya Gordiyenko
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Shaun M. Cowley
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - Carol V. Robinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
34
|
McCarthy PL, Paterno GD, Gillespie LL. Protein expression pattern of human MIER1 alpha, a novel estrogen receptor binding protein. J Mol Histol 2013; 44:469-79. [PMID: 23277184 DOI: 10.1007/s10735-012-9478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in a limited number of non-endocrine organs.
Collapse
Affiliation(s)
- Patti L McCarthy
- Terry Fox Cancer Research Labs, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | | |
Collapse
|
35
|
Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells. PLoS One 2012; 7:e32499. [PMID: 22384264 PMCID: PMC3286477 DOI: 10.1371/journal.pone.0032499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
MIER1 was originally identified in a screen for novel fibroblast growth factor activated early response genes. The mier1 gene gives rise to multiple transcripts encoding protein isoforms that differ in their amino (N-) and carboxy (C-) termini. Much of the work to date has focused on the two C-terminal variants, MIER1α and β, both of which have been shown to function as transcriptional repressors. Our previous work revealed a dramatic shift in MIER1α subcellular localization from nuclear in normal breast tissue to cytoplasmic in invasive breast carcinoma, suggesting that loss of nuclear MIER1α may play a role in breast cancer development. In the present study, we investigated whether alternative splicing to include a cassette exon and produce an N–terminal variant of MIER1α affects its subcellular localization in MCF7 breast carcinoma cells. We demonstrate that this cassette exon, exon 3A, encodes a consensus leucine-rich nuclear export signal (NES). Inclusion of this exon in MIER1α to produce the MIER1-3Aα isoform altered its subcellular distribution in MCF7 cells from 81% nuclear to 2% nuclear and this change in localization was abrogated by mutation of critical leucines within the NES. Treatment with leptomycin B (LMB), an inhibitor of the nuclear export receptor CRM1, resulted in a significant increase in the percentage of cells with nuclear MIER1-3Aα, from 4% to 53%, demonstrating that cytoplasmic localization of this isoform was due to CRM1-dependent nuclear export. Inclusion of exon 3A in MIER1β to produce the N-terminal variant MIER1-3Aβ however had little effect on the nuclear targeting of this isoform. Our results demonstrate that alternative splicing to include exon 3A specifically affects the localization pattern of the α isoform.
Collapse
|
36
|
Zhang Y, Li Y. The Expanding Mi-2/NuRD Complexes: A Schematic Glance. PROTEOMICS INSIGHTS 2011. [DOI: 10.4137/pri.s6329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This mini-review will schematically update the progress of the expanding Mi-2/Nucleosome Remodeling Deacetylase (NuRD) complexes in cancer and in normal development such as stemness, with a focus on mammals and the increasingly popular and powerful model organism Caenorhabditis elegans. The Mi-2/NuRD complexes control gene activity during the development of complex organisms. Every Mi-2/NuRD complex contains many different core polypeptides, which form distinct multifunctional complexes with specific context-dependent regulators. The Mi-2/NuRD complexes have unique ATP-dependent chromatin remodeling, histone deacetylase, demethylase activities and higher order chromatin organization. They can regulate the accessibility of transcription factors or repair proteins to DNA. In this review, we summarize our current knowleges in the composition, interaction and function of the subunits within the Mi-2/NuRD complex, the methodology used for the identification of Mi-2/NuRD complexes, as well as the clinical and therapeutic implications targeting the Mi-2/NuRD subunits.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Yinghua Li
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
37
|
Hwang S, Schmitt AA, Luteran AE, Toone EJ, McCafferty DG. Thermodynamic characterization of the binding interaction between the histone demethylase LSD1/KDM1 and CoREST. Biochemistry 2010; 50:546-57. [PMID: 21142040 DOI: 10.1021/bi101776t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Flavin-dependent histone demethylases catalyze the posttranslational oxidative demethylation of mono- and dimethylated lysine residues, producing formaldehyde and hydrogen peroxide in addition to the corresponding demethylated protein. In vivo, histone demethylase LSD1 (KDM1; BCH110) is a component of the multiprotein complex that includes histone deacetylases (HDAC 1 and 2) and the scaffolding protein CoREST. Although little is known about the affinities of or the structural basis for the interaction between CoREST and HDACs, the structure of CoREST(286-482) bound to an α-helical coiled-coil tower domain within LSD1 has recently been reported. Given the significance of CoREST in directing demethylation to specific nucleosomal substrates, insight into the molecular basis of the interaction between CoREST and LSD1 may suggest a new means of inhibiting LSD1 activity by misdirecting the enzyme away from nucleosomal substrates. Toward this end, isothermal titration calorimetry studies were conducted to determine the affinity and thermodynamic parameters characterizing the binding interaction between LSD1 and CoREST(286-482). The proteins tightly interact in a 1:1 stoichiometry with a dissociation constant (K(d)) of 15.9 ± 2.07 nM, and their binding interaction is characterized by a favorable enthalpic contribution near room temperature with a smaller entropic penalty at pH 7.4. Additionally, one proton is transferred from the buffer to the heterodimeric complex at pH 7.4. From the temperature dependence of the enthalpy change of interaction, a constant-pressure heat capacity change (ΔC(p)) of the interaction was determined to be -0.80 ± 0.01 kcal mol(-1) K(-1). Notably, structure-driven truncation of CoREST revealed that the central binding determinant lies within the segment of residues 293-380, also known as the CoREST "linker" region, which is a central isolated helix that interacts with the LSD1 coiled-coil tower domain to create a triple-helical bundle. Thermodynamic parameters obtained from the binding between LSD1 and the linker region of CoREST are similar to those obtained from the interaction between LSD1 and CoREST(286-482). These results provide a framework for understanding the molecular basis of protein-protein interactions that govern nucleosomal demethylation.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemistry, Levine Science Research Center, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
38
|
Mulligan P, Westbrook TF, Ottinger M, Pavlova N, Chang B, Macia E, Shi YJ, Barretina J, Liu J, Howley PM, Elledge SJ, Shi Y. CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Mol Cell 2009; 32:718-26. [PMID: 19061646 DOI: 10.1016/j.molcel.2008.10.025] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/26/2008] [Accepted: 10/22/2008] [Indexed: 01/30/2023]
Abstract
The neuronal gene repressor REST/NRSF recruits corepressors, including CoREST, to modify histones and repress transcription. REST also functions as a tumor suppressor, but the mechanism remains unclear. We identified chromodomain on Y-like (CDYL) as a REST corepressor that physically bridges REST and the histone methylase G9a to repress transcription. Importantly, RNAi knockdown of REST, CDYL, and G9a, but not CoREST, induced oncogenic transformation of immortalized primary human cells and derepression of the proto-oncogene TrkC. Significantly, transgenic expression of TrkC also induced transformation. This implicates CDYL-G9a, but not CoREST, in REST suppression of transformation, possibly by oncogene repression. CDYL knockdown also augments transformation in a cell culture model of cervical cancer, where loss of heterozygosity of the CDYL locus occurs. These findings demonstrate molecular strategies by which REST carries out distinct biological functions via different corepressors and provide critical insights into the role of histone-modifying complexes in regulating cellular transformation.
Collapse
Affiliation(s)
- Peter Mulligan
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang L, Tsai CC. Atrophin proteins: an overview of a new class of nuclear receptor corepressors. NUCLEAR RECEPTOR SIGNALING 2008; 6:e009. [PMID: 19043594 PMCID: PMC2586093 DOI: 10.1621/nrs.06009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/22/2008] [Indexed: 12/12/2022]
Abstract
The normal development and physiological functions of multicellular organisms are regulated by complex gene transcriptional networks that include myriad transcription factors, their associating coregulators, and multiple chromatin-modifying factors. Aberrant gene transcriptional regulation resulting from mutations among these elements often leads to developmental defects and diseases. This review article concentrates on the Atrophin family proteins, including vertebrate Atrophin-1 (ATN1), vertebrate arginine-glutamic acid dipeptide repeats protein (RERE), and Drosophila Atrophin (Atro), which we recently identified as nuclear receptor corepressors. Disruption of Atrophin-mediated pathways causes multiple developmental defects in mouse, zebrafish, and Drosophila, while an aberrant form of ATN1 and altered expression levels of RERE are associated with neurodegenerative disease and cancer in humans, respectively. We here provide an overview of current knowledge about these Atrophin proteins. We hope that this information on Atrophin proteins may help stimulate fresh ideas about how this newly identified class of nuclear receptor corepressors aids specific nuclear receptors and other transcriptional factors in regulating gene transcription, manifesting physiological effects, and causing diseases.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
40
|
Choi E, Han C, Park I, Lee B, Jin S, Choi H, Kim DH, Park ZY, Eddy EM, Cho C. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis. J Biol Chem 2008; 283:35283-94. [PMID: 18849567 DOI: 10.1074/jbc.m805590200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, Zhang Z. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. PLANT PHYSIOLOGY 2008; 148:337-47. [PMID: 18633121 PMCID: PMC2528112 DOI: 10.1104/pp.108.119164] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/13/2008] [Indexed: 05/18/2023]
Abstract
During the establishment of symbiosis in legume roots, the rhizobial Nod factor signal is perceived by the host cells via receptor-like kinases, including SymRK. The NODULE INCEPTION (NIN) gene in Lotus japonicus is required for rhizobial entry into root cells and for nodule organogenesis. We describe here a novel DNA-binding protein from L. japonicus, referred to as SIP1, because it was identified as a SymRK-interacting protein. SIP1 contains a conserved AT-rich interaction domain (ARID) and represents a unique member of the ARID-containing proteins in plants. The C terminus of SIP1 was found to be responsible for its interaction with the kinase domain of SymRK and for homodimerization in the absence of DNA. SIP1 specifically binds to the promoter of LjNIN but not to that of LjCBP1 (a calcium-binding protein gene), both of which are known to be inducible by Nod factors. SIP1 recognizes two of the three AT-rich domains present in the NIN gene promoter. Deletion of one of the AT-rich domains at the NIN promoter diminishes the binding of SIP1 to the NIN promoter. The protein is localized to the nuclei when expressed as a red fluorescence fusion protein in the onion (Allium cepa) epidermal cells. The SIP1 gene is expressed constitutively in the uninfected roots, and its expression levels are elevated after infection by Mesorhizobium loti. It is proposed that SIP1 may be required for the expression of NIN and involved in the initial communications between the rhizobia and the host root cells.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Blackmore TM, Mercer CF, Paterno GD, Gillespie LL. The transcriptional cofactor MIER1-beta negatively regulates histone acetyltransferase activity of the CREB-binding protein. BMC Res Notes 2008; 1:68. [PMID: 18721470 PMCID: PMC2546418 DOI: 10.1186/1756-0500-1-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/22/2008] [Indexed: 11/25/2022] Open
Abstract
Background Mier1 encodes a novel transcriptional regulator and was originally isolated as a fibroblast growth factor early response gene. Two major protein isoforms have been identified, MIER1α and β, which differ in their C-terminal sequence. Previously, we demonstrated that both isoforms recruit histone deacetylase 1 (HDAC1) to repress transcription. To further explore the role of MIER1 in chromatin remodeling, we investigated the functional interaction of MIER1 with the histone acetyltransferase (HAT), Creb-binding protein (CBP). Findings Using GST pull-down assays, we demonstrate that MIER1 interacts with CBP and that this interaction involves the N-terminal half (amino acids 1–283) of MIER1, which includes the acidic activation and ELM2 domains and the C-terminal half (amino acids 1094–2441) of CBP, which includes the bromo-, HAT, C/H3 and glutamine-rich domains. Functional analysis, using HEK293 cells, shows that the CBP bound to MIER1 in vivo has no detectable HAT activity. Histone 4 peptide binding assays demonstrate that this inhibition of HAT activity is not the result of interference with histone binding. Conclusion Our data indicate that an additional mechanism by which MIER1 could repress transcription involves the inhibition of histone acetyltransferase activity.
Collapse
Affiliation(s)
- Tina M Blackmore
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, A1B 3V6, Canada.
| | | | | | | |
Collapse
|
43
|
Gómez AV, Galleguillos D, Maass JC, Battaglioli E, Kukuljan M, Andrés ME. CoREST represses the heat shock response mediated by HSF1. Mol Cell 2008; 31:222-31. [PMID: 18657505 DOI: 10.1016/j.molcel.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 03/23/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
The stress response in cells involves a rapid and transient transcriptional activation of stress genes. It has been shown that Hsp70 limits its own transcriptional activation functioning as a corepressor of heat shock factor 1 (HSF1) during the attenuation of the stress response. Here we show that the transcriptional corepressor CoREST interacts with Hsp70. Through this interaction, CoREST represses both HSF1-dependent and heat shock-dependent transcriptional activation of the hsp70 promoter. In cells expressing short hairpin RNAs directed against CoREST, Hsp70 cannot repress HSF1-dependent transcription. A reduction of CoREST levels also provoked a significant increase of Hsp70 protein levels and an increase of HSF1-dependent transactivation of hsp70 promoter. Via chromatin immunoprecipitation assays we show that CoREST is bound to the hsp70 gene promoter under basal conditions and that its binding increases during heat shock response. In conclusion, we demonstrated that CoREST is a key regulator of the heat shock stress response.
Collapse
Affiliation(s)
- Andrea V Gómez
- Millenium Nucleus in Stress and Addiction, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | | | | | | | | | | |
Collapse
|
44
|
McCarthy PL, Mercer FC, Savicky MWJ, Carter BA, Paterno GD, Gillespie LL. Changes in subcellular localisation of MI-ER1 alpha, a novel oestrogen receptor-alpha interacting protein, is associated with breast cancer progression. Br J Cancer 2008; 99:639-46. [PMID: 18665173 PMCID: PMC2527822 DOI: 10.1038/sj.bjc.6604518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The oestrogen receptor-α (ERα) plays a key role in breast development and tumorigenesis and inhibiting its activity remains a prime strategy in the treatment of ERα-positive breast cancers. Thus, elucidation of the molecular mechanisms responsible for regulating ERα activity may facilitate the design of new, more effective breast cancer therapies. The MI-ER1α is a novel transcriptional repressor that contains an LXXLL motif for interaction with nuclear hormone receptors. We investigated the ability of MI-ER1α to bind to ERα in HEK293 and MCF-7 breast carcinoma cells, using co-immunoprecipitation assays. In both cell lines, MI-ER1α interacted with ERα in the presence and absence of oestrogen, but the interaction was stronger in the absence of ligand. Functional analysis revealed that overexpression of MI-ER1α in T47D breast carcinoma cells results in inhibition of oestrogen-stimulated anchorage-independent growth, suggesting that MI-ER1α may play a role in regulating breast carcinoma cell proliferation in vivo. To explore this further, we performed an immunohistochemical analysis of normal breast tissue and breast carcinoma; a total of 110 cases were examined in whole tissue sections and 771 cases were analysed in tissue microarrays. No consistent difference in the MI-ER1α expression level between normal breast tissue and breast carcinoma was discernible. However, there was a dramatic shift in the subcellular localisation: nuclear MI-ER1α was detectable in 75% of normal breast samples and in 77% of hyperplasia, but in breast carcinoma, only 51% of DCIS, 25% of ILC and 4% of IDC contained nuclear staining. This shift from nuclear to cytoplasmic localisation of MI-ER1α during breast cancer progression suggests that loss of nuclear MI-ER1α might contribute to the development of invasive breast carcinoma.
Collapse
Affiliation(s)
- P L McCarthy
- Division of BioMedical Sciences, Faculty of Medicine, Terry Fox Cancer Research Laboratories, Memorial University of Newfoundland, St John's, NL A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Clark AG, Mackin KM, Foster MH. Tracking Differential Gene Expression in MRL/MpJ Versus C57BL/6 Anergic B Cells: Molecular Markers of Autoimmunity. Biomark Insights 2008; 3:335-350. [PMID: 19578517 PMCID: PMC2688340 DOI: 10.4137/bmi.s840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Anergy is a key mechanism controlling expression of autoreactive B cells and a major site for failed regulation in autoimmune diseases. Yet the molecular basis for this differentiated cell state remains poorly understood. The current lack of well-characterized surface or molecular markers hinders the isolation of anergic cells for further study. Global gene profiling recently identified transcripts whose expression differentiates anergic from naïve B cells in model mouse systems. The objective of the current study was to evaluate the molecular and cellular processes that differentiate anergic cells that develop in the healthy C57BL/6 (B6) milieu from those that develop in the autoimmune-prone MRL/MpJ (MRL) background. This approach takes advantage of B6 and MRL mice bearing an anti-laminin Ig transgene with a well characterized anergic B cell phenotype. Results Global gene expression was evaluated in purified transgenic B cells using Operon version 3.0 oligonucleotide microarray assaying >31,000 oligoprobes. Genes with a 2-fold expression difference in B6 as compared to MRL anergic B cells were identified. Expression of selected genes was confirmed using quantitative RT-PCR. This approach identified 43 probes corresponding to 37 characterized genes, including Ptpn22, CD74, Birc1f/Naip, and Ctla4, as differentially expressed in anergic B cells in the two strains. Gene Ontology classification identified differentiation, cell cycle, proliferation, development, apoptosis, and cell death as prominently represented ontology groups. Ingenuity Pathway Analysis identified two major networks incorporating 27 qualifying genes. Network 1 centers on beta-estradiol and TP53, and Network 2 encompasses RB1, p38 MAPK, and NFkB cell growth, proliferation, and cell cycle signaling pathways. Conclusion Using microarray analysis we identified 37 characterized genes and two functional pathways engaged in maintenance of B cell anergy for which expression is distorted by underlying autoimmune genetic susceptibility. This approach identifes a new biological role for multiple genes and potential new therapeutic targets in autoimmunity.
Collapse
Affiliation(s)
- Amy G Clark
- Departments of Medicine and Research Service, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina, U.S.A
| | | | | |
Collapse
|
46
|
Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates. EMBO Rep 2008; 9:555-62. [PMID: 18451879 DOI: 10.1038/embor.2008.67] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 11/08/2022] Open
Abstract
Atrophin family proteins, including the vertebrate arginine-glutamic acid dipeptide repeats protein (RERE) and Drosophila Atrophin (Atro), constitute a new class of nuclear receptor corepressors. Both RERE and Atro share the ELM2 (EGL-27 and MTA1 homology 2) and SANT (SWI3/ADA2/N-CoR/TFIII-B) domains, which are also present in other important transcriptional cofactors. Here, we report that the SANT domain in RERE binds to the histone methyltransferase G9a, and that both the ELM2 and SANT domains orchestrate molecular events that lead to a stable methylation of histone H3-lysine 9. We establish the physiological relevance of these interactions among Atrophin, G9a, and histone deacetylases 1 and 2 in Drosophila by showing that these proteins localize to overlapping chromosomal loci, and act together to suppress wing vein and melanotic-mass formation. This study not only shows a new function of the SANT domain and establishes its connection with the ELM2 domain, but also implies that a similar strategy is used by other ELM2-SANT proteins to repress gene transcription and to exert biological effects.
Collapse
|
47
|
Roche AE, Bassett BJ, Samant SA, Hong W, Blobel GA, Svensson EC. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. J Mol Cell Cardiol 2008; 44:352-60. [PMID: 18067919 PMCID: PMC2277079 DOI: 10.1016/j.yjmcc.2007.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/27/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.
Collapse
Affiliation(s)
- Andrea E. Roche
- Committee on Developmental Biology, University of Chicago, Chicago, IL
| | | | | | - Wei Hong
- Division of Hematology, Children’s Hospital of Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, PA
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eric C. Svensson
- Committee on Developmental Biology, University of Chicago, Chicago, IL
- Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
48
|
Thorne LB, McCarthy PL, Paterno GD, Gillespie LL. Protein expression of the transcriptional regulator MI-ER1 alpha in adult mouse tissues. J Mol Histol 2007; 39:15-24. [PMID: 17622490 DOI: 10.1007/s10735-007-9116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 11/29/2022]
Abstract
MI-ER1 is a novel transcriptional regulator that plays a critical role in embryonic development and is differentially expressed in breast carcinoma. The MI-ER1 protein sequence is highly conserved among species, with 95% identity between mouse and humans and 72% between Xenopus and mouse. There are two major protein isoforms, MI-ER1alpha and MI-ER1beta, which differ in the sequence of their C-terminus. MI-ER1alpha is of particular interest because it contains a consensus LXXLL nuclear receptor interaction motif and the current study was undertaken to determine the expression pattern of MI-ER1alpha protein in adult mouse tissues. Immunohistochemical analysis of paraffin-embedded tissue using an MI-ER1alpha-specific antibody revealed that the majority of mouse adult tissues examined showed very weak or no immunoreactivity; these included tissues of the lung, liver, intestine, uterus, spleen, lymph node, bladder as well as skeletal muscle. Interestingly, a subset of endocrine tissues displayed intense staining for MI-ER1alpha. Specifically, the islets of Langerhans, the zona glomerulosa and medulla of the adrenal gland, the ovary and the hypothalamus were intensely stained. In addition, both anterior and posterior pituitary showed moderate immunoreactivity, as did the parafollicular cells of the thyroid gland and Leydig cells and spermatids in the testes. Negative endocrine tissues included follicular cells of the thyroid gland and the X zone of the adrenal cortex. A few non-endocrine tissues displayed moderate immunoreactivity; these included all tubules and collecting ducts in the kidney, myocardial and endocardial layers of the heart, the hippocampal formation, pyramidal neurons in the cortex and the ductal epithelium of the mammary gland. In all cases, MI-ER1alpha immunoreactivity was cytoplasmic. This study represents the first immunohistochemical analysis of MI-ER1alpha expression in mammals and our data suggest that this transcriptional regulator plays a role in specific endocrine pathways.
Collapse
Affiliation(s)
- Leanne B Thorne
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada A1B 3V6
| | | | | | | |
Collapse
|
49
|
Stavropoulos P, Hoelz A. Lysine-specific demethylase 1 as a potential therapeutic target. Expert Opin Ther Targets 2007; 11:809-20. [PMID: 17504018 DOI: 10.1517/14728222.11.6.809] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chromatin is a highly dynamic structure that undergoes a variety of chemical modifications. These modifications mediate alterations of the chromatin architecture, generate binding platforms that are recognized by other proteins, and are important elements of epigenetic gene regulation. An array of antagonizing histone modifying enzymes that catalyze the attachment and removal of a number of chemical groups has been described and their biologic role has been an intense area of research. With the recent discovery of the first histone demethylase, lysine-specific demethylase-1, a dynamic view of histone methylation was born. As a deeper understanding of their involvement in transcriptional regulation is gained, histone demethylases are becoming increasingly interesting targets for drug development.
Collapse
Affiliation(s)
- Pete Stavropoulos
- The Rockefeller University, Laboratory of Cell Biology, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 2006; 26:6395-402. [PMID: 16914725 PMCID: PMC1592851 DOI: 10.1128/mcb.00723-06] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes that contain histone deacetylase 1/2 (HDAC1/2) and the histone demethylase BHC110 (LSD1). Here we show that HDAC inhibitors diminish histone H3 lysine 4 (H3K4) demethylation by BHC110 in vitro. In vivo analysis revealed an increased H3K4 methylation concomitant with inhibition of nucleosomal deacetylation by HDAC inhibitors. Reconstitution of recombinant complexes revealed a functional connection between HDAC1 and BHC110 only when nucleosomal substrates were used. Importantly, while the enzymatic activity of BHC110 is required to achieve optimal deacetylation in vitro, in vivo analysis following ectopic expression of an enzymatically dead mutant of BHC110 (K661A) confirmed the functional cross talk between the demethylase and deacetylase enzymes. Our studies not only reveal an intimate link between the histone demethylase and deacetylase enzymes but also identify histone demethylation as a secondary target of HDAC inhibitors.
Collapse
Affiliation(s)
- Min Gyu Lee
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|