1
|
Shammas T, Peiris MN, Meyer AN, Donoghue DJ. BCR-ABL: The molecular mastermind behind chronic myeloid leukemia. Cytokine Growth Factor Rev 2025; 83:45-58. [PMID: 40360311 DOI: 10.1016/j.cytogfr.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
The chromosomal translocation t(9;22)(q34;q11), known as the Philadelphia (Ph) chromosome, results in the BCR-ABL gene fusion which gives rise to Chronic Myeloid Leukemia (CML), a slowly progressing hematopoietic cancer that begins in the bone marrow of the patient. Making up about 15 % of all new leukemia cases, CML remains a critical focus of cancer research and treatment due to its distinctive genetic hallmark, the BCR-ABL fusion gene. The BCR-ABL fusion protein is a constitutively active tyrosine kinase which signals to multiple pathways including the Ras/MAPK, PI3K/AKT, JAK/STAT and NF-kappaB pathways which promote uncontrolled cell proliferation and survival. While multiple tyrosine kinase inhibitors (TKIs) are used to specifically target the fusion in the treatment of CML, new therapies are becoming available to overcome the resistance that occurs during TKI treatments of the disease. The discovery of the Philadelphia chromosome and the subsequent elucidation of the BCR-ABL fusion protein have since become a paradigm for understanding the genetic basis of cancer and developing precision medicine approaches. This review highlights the etiology and historical discovery of the BCR-ABL fusion, recent advances in understanding its regulatory mechanisms, and emerging strategies for its therapeutic targeting.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/therapeutic use
- Animals
- Signal Transduction
- Philadelphia Chromosome
Collapse
Affiliation(s)
- Tara Shammas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
2
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. Biol Open 2025; 14:bio061811. [PMID: 39882731 PMCID: PMC11810119 DOI: 10.1242/bio.061811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full set of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622507. [PMID: 39574742 PMCID: PMC11581034 DOI: 10.1101/2024.11.07.622507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full network of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Vysochinskaya V, Dovbysh O, Gorshkov A, Brodskaia A, Dubina M, Vasin A, Zabrodskaya Y. Advancements and Future Prospects in Molecular Targeted and siRNA Therapies for Chronic Myeloid Leukemia. Biomolecules 2024; 14:644. [PMID: 38927048 PMCID: PMC11201692 DOI: 10.3390/biom14060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Humans
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Targeted Therapy
- Animals
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
Collapse
Affiliation(s)
- Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Olesya Dovbysh
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
| | - Andrey Gorshkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
- Almazov National Research Centre, Akkuratova str. 2, 197341 St. Petersburg, Russia
| | - Alexandra Brodskaia
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Michael Dubina
- Russian Academy of Sciences, 14 Leninskiy pr., 119991 Moscow, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| | - Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia (Y.Z.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
5
|
Malik V, Radhakrishnan N, Kaul SC, Wadhwa R, Sundar D. Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Biomolecules 2022; 12:biom12020212. [PMID: 35204712 PMCID: PMC8961606 DOI: 10.3390/biom12020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Withaferin-A (Wi-A), a secondary metabolite extracted from Ashwagandha (Withania somnifera), has been shown to possess anticancer activity. However, the molecular mechanism of its action and the signaling pathways have not yet been fully explored. We performed an inverse virtual screening to investigate its binding potential to the catalytic site of protein kinases and identified ABL as a strong candidate. Molecular docking and molecular dynamics simulations were undertaken to investigate the effects on BCR-ABL oncogenic signaling that is constitutively activated yielding uncontrolled proliferation and inhibition of apoptosis in Chronic Myeloid Leukemia (CML). We found that Wi-A and its closely related withanolide, Withanone (Wi-N), interact at both catalytic and allosteric sites of the ABL. The calculated binding energies were higher in the case of Wi-A at catalytic site (−82.19 ± 5.48) and allosteric site (−67.00 ± 4.96) as compared to the clinically used drugs Imatinib (−78.11 ± 5.21) and Asciminib (−54.00 ± 6.45) respectively. Wi-N had a lesser binding energy (−42.11 ± 10.57) compared to Asciminib at the allosteric site. The interaction and conformational changes, subjected to ligand interaction, were found to be similar to the drugs Imatinib and Asciminib. The data suggested that Ashwagandha extracts containing withanolides, Wi-A and Wi-N may serve as natural drugs for the treatment of CML. Inhibition of ABL is suggested as one of the contributing factors of anti-cancer activity of Wi-A and Wi-N, warranting further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Vidhi Malik
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (S.C.K.); (R.W.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
- School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110-016, India
- Correspondence: ; Tel.: +91-11-2659-1066
| |
Collapse
|
6
|
Tozzi M, Brown EL, Petersen PSS, Lundh M, Isidor MS, Plucińska K, Nielsen TS, Agueda-Oyarzabal M, Small L, Treebak JT, Emanuelli B. Dynamic interplay between Afadin S1795 phosphorylation and diet regulates glucose homeostasis in obese mice. J Physiol 2021; 600:885-902. [PMID: 34387373 DOI: 10.1113/jp281657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and AfadinS1795 phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression. Genetic silencing of AfadinS1795 phosphorylation improves glucose homeostasis in the early stages of diet-induced metabolic dysregulation. AfadinS1795 phosphorylation contributes to the early development of obesity-related complications in mice. ABSTRACT Obesity is associated with systemic insulin resistance and numerous metabolic disorders. Yet, the mechanisms underlying impaired insulin action during obesity remain to be fully elucidated. Afadin is a multifunctional scaffold protein with the ability to modulate insulin action through its phosphorylation at S1795 in adipocytes. In the present study, we report that insulin-stimulated AfadinS1795 phosphorylation is not restricted to adipose tissues, but is a common signalling event in insulin-responsive tissues including muscle, liver, pancreas and heart. Furthermore, a dynamic regulation of Afadin abundance occurred during diet-induced obesity progression, while its phosphorylation was progressively attenuated. To investigate the role of AfadinS1795 phosphorylation in the regulation of whole-body metabolic homeostasis, we generated a phospho-defective mouse model (Afadin SA) in which the Afadin phosphorylation site was silenced (S1795A) at the whole-body level using CRISPR-Cas9-mediated gene editing. Metabolic characterization of these mice under basal physiological conditions or during a high-fat diet (HFD) challenge revealed that preventing AfadinS1795 phosphorylation improved insulin sensitivity and glucose tolerance and increased liver glycogen storage in the early stage of diet-induced metabolic dysregulation, without affecting body weight. Together, our findings reveal that AfadinS1795 phosphorylation in metabolic tissues is critical during obesity progression and contributes to promote systemic insulin resistance and glucose intolerance in the early phase of diet-induced obesity.
Collapse
Affiliation(s)
- Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Carmena A. The Case of the Scribble Polarity Module in Asymmetric Neuroblast Division in Development and Tumorigenesis. Int J Mol Sci 2020; 21:ijms21082865. [PMID: 32325951 PMCID: PMC7215838 DOI: 10.3390/ijms21082865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.
Collapse
Affiliation(s)
- Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
9
|
Wu J, Rowart P, Jouret F, Gassaway BM, Rajendran V, Rinehart J, Caplan MJ. Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane. Am J Physiol Cell Physiol 2020; 318:C486-C501. [PMID: 31913699 DOI: 10.1152/ajpcell.00422.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCζ and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCζ localization. Both aPKCζ and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCζ activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight-junction protein zonula occludens-1. Afadin is phosphorylated at two critical sites, S228 (residing within an aPKCζ consensus site) and S1102 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S228A and S1102A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S228A increased the ZO-1/afadin interaction, while S1102A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCζ activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCζ phosphorylation of afadin terminates the ZO-1/afadin interaction and thus permits the later stages of junction assembly.
Collapse
Affiliation(s)
- Jingshing Wu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut.,Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Vanathy Rajendran
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut.,Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Ras functional proximity proteomics establishes mTORC2 as new direct ras effector. Oncotarget 2019; 10:5126-5135. [PMID: 31497244 PMCID: PMC6718260 DOI: 10.18632/oncotarget.27025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023] Open
Abstract
Although oncogenic mutations in the three major Ras isoforms, KRAS, HRAS and NRAS, are present in nearly a third of human cancers, therapeutic targeting of Ras remains a challenge due to its structure and complex regulation. However, an in-depth examination of the protein interactome of oncogenic Ras may provide new insights into key regulators, effectors and other mediators of its tumorigenic functions. Previous proteomic analyses have been limited by experimental tools that fail to capture the dynamic, transient nature of Ras cellular interactions. Therefore, in a recent study, we integrated proximity-dependent biotin labeling (BioID) proteomics with CRISPR screening of identified proteins to identify Ras proximal proteins required for Ras-dependent cancer cell growth. Oncogenic Ras was proximal to proteins involved in unexpected biological processes, such as vesicular trafficking and solute transport. Critically, we identified a direct, bona fide interaction between active Ras and the mTOR Complex 2 (mTORC2) that stimulated mTORC2 kinase activity. The oncogenic Ras-mTORC2 interaction resulted in a downstream pro-proliferative transcriptional program and promoted Ras-dependent tumor growth in vivo. Here we provide additional insight into the Ras isoform-specific protein interactomes, highlighting new opportunities for unique tumor-type therapies. Finally, we discuss the active Ras-mTORC2 interaction in detail, providing a more complete understanding of the direct relationship between Ras and mTORC2. Collectively, our findings support a model wherein Ras integrates an expanded array of pro-oncogenic signals to drive tumorigenic processes, including action on mTORC2 as a direct effector of Ras-driven proliferative signals.
Collapse
|
11
|
Dai C, Wang X, Wu Y, Xu Y, Zhuo S, Qi M, Ji W, Zhan L. Polarity Protein AF6 Controls Hepatic Glucose Homeostasis and Insulin Sensitivity by Modulating IRS1/AKT Insulin Pathway in an SHP2-Dependent Manner. Diabetes 2019; 68:1577-1590. [PMID: 31127058 DOI: 10.2337/db18-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major contributing factor in the development of metabolic disease. Although numerous functions of the polarity protein AF6 (afadin and MLLT4) have been identified, a direct effect on insulin sensitivity has not been previously described. We show that AF6 is elevated in the liver tissues of dietary and genetic mouse models of diabetes. We generated liver-specific AF6 knockout mice and show that these animals exhibit enhanced insulin sensitivity and liver glycogen storage, whereas overexpression of AF6 in wild-type mice by adenovirus-expressing AF6 led to the opposite phenotype. Similar observations were obtained from in vitro studies. In addition, we discovered that AF6 directly regulates IRS1/AKT kinase-mediated insulin signaling through its interaction with Src homology 2 domain-containing phosphatase 2 (SHP2) and its regulation of SHP2's tyrosine phosphatase activity. Finally, we show that knockdown of hepatic AF6 ameliorates hyperglycemia and insulin resistance in high-fat diet-fed or db/db diabetic mice. These results demonstrate a novel function for hepatic AF6 in the regulation of insulin sensitivity, providing important insights about the metabolic role of AF6.
Collapse
Affiliation(s)
- Cheng Dai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyan Qi
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
BCR: a promiscuous fusion partner in hematopoietic disorders. Oncotarget 2019; 10:2738-2754. [PMID: 31105873 PMCID: PMC6505627 DOI: 10.18632/oncotarget.26837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2019] [Indexed: 12/23/2022] Open
Abstract
Considerable advances have been made in our understanding of the molecular basis of hematopoietic cancers. The discovery of the BCR-ABL fusion protein over 50 years ago has brought about a new era of therapeutic progress and overall improvement in patient care, mainly due to the development and use of personalized medicine and tyrosine kinase inhibitors (TKIs). However, since the detection of BCR-ABL, BCR has been identified as a commonly occurring fusion partner in hematopoietic disorders. BCR has been discovered fused to additional tyrosine kinases, including: Fibroblast Growth Factor Receptor 1 (FGFR1), Platelet-derived Growth Factor Receptor Alpha (PDGFRA), Ret Proto-Oncogene (RET), and Janus Kinase 2 (JAK2). While BCR translocations are infrequent in hematopoietic malignancies, clinical evidence suggests that patients who harbor these mutations benefit from TKIs and additional personalized therapies. The improvement of further methodologies for characterization of these fusions is crucial to determine a patient’s treatment regimen, and optimal outcome. However, potential relapse and drug resistance among patients’ highlights the need for additional treatment options and further understanding of these oncogenic fusion proteins. This review explores the mechanisms behind cancer progression of these BCR oncogenic fusion proteins, comparing their similarities and differences, examining the significance of BCR as a partner gene, and discussing current treatment options for these translocation-induced hematopoietic malignancies.
Collapse
|
13
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
14
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
15
|
Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, Kalogriopoulos NA, Lopez-Sanchez I, Ghassemian M, Sahoo D, Kufareva I, Ghosh P. Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal 2018; 11:11/519/eaao4220. [PMID: 29487190 DOI: 10.1126/scisignal.aao4220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular proliferation, differentiation, and morphogenesis are shaped by multiple signaling cascades, and their dysregulation plays an integral role in cancer progression. Three cascades that contribute to oncogenic potential are those mediated by Wnt proteins and the receptor Frizzled (FZD), growth factor receptor tyrosine kinases (RTKs), and heterotrimeric G proteins and associated GPCRs. Daple is a guanine nucleotide exchange factor (GEF) for the G protein Gαi Daple also binds to FZD and the Wnt/FZD mediator Dishevelled (Dvl), and it enhances β-catenin-independent Wnt signaling in response to Wnt5a-FZD7 signaling. We identified Daple as a substrate of multiple RTKs and non-RTKs and, hence, as a point of convergence for the three cascades. We found that phosphorylation near the Dvl-binding motif in Daple by both RTKs and non-RTKs caused Daple/Dvl complex dissociation and augmented the ability of Daple to bind to and activate Gαi, which potentiated β-catenin-independent Wnt signals and stimulated epithelial-mesenchymal transition (EMT) similarly to Wnt5a/FZD7 signaling. Although Daple acts as a tumor suppressor in the healthy colon, the concurrent increased abundance of Daple and epidermal growth factor receptor (EGFR) in colorectal tumors was associated with poor patient prognosis. Thus, the Daple-dependent activation of Gαi and the Daple-dependent enhancement of β-catenin-independent Wnt signals are not only stimulated by Wnt5a/FZD7 to suppress tumorigenesis but also hijacked by growth factor-activated RTKs to enhance tumor progression. These findings identify a cross-talk paradigm among growth factor RTKs, heterotrimeric G proteins, and the Wnt/FZD pathway in cancer.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nina Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendall Satterfield
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fang He
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
17
|
Younesian S, Shahkarami S, Ghaffari P, Alizadeh S, Mehrasa R, Ghavamzadeh A, Ghaffari SH. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk Res 2017; 61:33-38. [PMID: 28869817 DOI: 10.1016/j.leukres.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Hypermethylation of Ras association domain family (RASSF) often plays a key role in malignant progression of solid tumors; however, their impact on the prognosis and survival of adult ALL patients remain elusive. METHODS The frequency of the promoter methylation pattern of RASSF6 and RASSF10 were analyzed in the peripheral blood (PB) samples taken at the time of diagnosis of 45 ALL patients. The methylation-specific PCR (MSP) assay was used to detect the DNA methylation patterns. RESULTS RASSF6 was frequently hypermethylated in patients diagnosed with pre-B-ALL (90.9%) and B-ALL (87.5%), followed by T-ALL (66.7%); whereas, RASSF10 methylation was more confined to T-ALL (80%) as compared to B-ALL (25%) and pre-B ALL (9.1%) patients. Moreover, hypermethylation of RASSF6 was significantly associated with a poor prognosis and shorter overall survival (OS) in patients with pre-B-ALL (log-rank test; P=0.041). CONCLUSION RASSF6 and RASSF10 were frequently hypermethylated in the samples at the time of diagnosis of adult ALL patients. Our study represents the first report of methylation of RASSF6 at a high frequency in patients with pre-B ALL. Furthermore, hypermethylation of RASSF6 was significantly associated with inferior overall survival in pre-B ALL patients. It may suggest that the frequent epigenetic inactivation of RASSF6 plays an important role in the pathogenesis and progression of pre-B-ALL.
Collapse
Affiliation(s)
- Samareh Younesian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Hematology, School of Allied Medical Sciences, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Mehrasa
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Rives-Quinto N, Franco M, de Torres-Jurado A, Carmena A. Synergism between canoe and scribble mutations causes tumor-like overgrowth via Ras activation in neural stem cells and epithelia. Development 2017; 144:2570-2583. [PMID: 28619817 DOI: 10.1242/dev.148171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade an intriguing connection between asymmetric cell division, stem cells and tumorigenesis has emerged. Neuroblasts, which are the neural stem cells of the Drosophila central nervous system, divide asymmetrically and constitute an excellent paradigm for investigating this connection further. Here we show that the simultaneous loss of the asymmetric cell division regulators Canoe (afadin in mammals) and Scribble in neuroblast clones leads to tumor-like overgrowth through both a severe disruption of the asymmetric cell division process and canoe loss-mediated Ras-PI3K-Akt activation. Moreover, canoe loss also interacts synergistically with scribble loss to promote overgrowth in epithelial tissues, here just by activating the Ras-Raf-MAPK pathway. discs large 1 and lethal (2) giant larvae, which are functionally related to scribble, contribute to repress the Ras-MAPK signaling cascade in epithelia. Hence, our work uncovers novel cooperative interactions between all these well-conserved tumor suppressors that ensure tight regulation of the Ras signaling pathway.
Collapse
Affiliation(s)
- Noemí Rives-Quinto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana de Torres-Jurado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
19
|
Xu Y, Chang R, Peng Z, Wang Y, Ji W, Guo J, Song L, Dai C, Wei W, Wu Y, Wan X, Shao C, Zhan L. Loss of polarity protein AF6 promotes pancreatic cancer metastasis by inducing Snail expression. Nat Commun 2015; 6:7184. [PMID: 26013125 DOI: 10.1038/ncomms8184] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is a particularly lethal form of cancer with high potential for metastasis to distant organs. Disruption of cell polarity is a hallmark of advanced epithelial tumours. Here we show that the polarity protein AF6 (afadin and MLLT4) is expressed at low levels in PC. We demonstrate that depletion of AF6 markedly promotes proliferation and metastasis of PC cells through upregulation of the expression of Snail protein, and this requires the nuclear localization of AF6. Furthermore, AF6 deficiency in PC cells leads to increased formation of a Dishevelled 2 (Dvl2)-FOXE1 complex on the promoter region of Snail gene, and activation of Snail expression. Altogether, our data established AF6 as a potential inhibitor of metastasis in PC cells. Targeting the Dvl2-FOXE1-Snail signalling axis may thus represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Zhiyong Peng
- 1] Department of Pancreatic Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China [2] Navy Medical Research Institute, the Second Military Medical University, Shanghai 200433, China
| | - Yanmei Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Weiwei Ji
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Cheng Dai
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Wei Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Yanjun Wu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai 2nd People's Hospital, Tongji University, School of Medicine, Shanghai 200011, China
| | - Chenghao Shao
- Department of Pancreatic Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Lixing Zhan
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghaim 200031, China [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| |
Collapse
|
20
|
The functional interplay between the t(9;22)-associated fusion proteins BCR/ABL and ABL/BCR in Philadelphia chromosome-positive acute lymphatic leukemia. PLoS Genet 2015; 11:e1005144. [PMID: 25919613 PMCID: PMC4412790 DOI: 10.1371/journal.pgen.1005144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/15/2015] [Indexed: 12/20/2022] Open
Abstract
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The t(9;22) is a reciprocal translocation, which causes chronic myeloid leukemia (CML) and a subset of high risk acute lymphatic leukemia (ALL). The derivative chromosome 22 is the so called Philadelphia chromosome (Ph) which encodes the BCR/ABL kinase. Targeting BCR/ABL by selective ATP competitors, such as imatinib or nilotinib, is a well validated therapeutic concept, but unable to definitively eradicate the disease. Little is known about the role of the fusion protein encoded by the reciprocal derivative chromosome 9, the ABL/BCR. In models of Ph+ ALL we show that the functional interplay between ABL/BCR and BCR/ABL not only increases the transformation potential of BCR/ABL but is also indispensable for the growth and survival of Ph+ ALL leukemic cells. The presence of ABL/BCR changed the phenotype of the leukemia most likely due to its capacity to influence the stem cell population as shown by our in vivo data. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Collapse
|
21
|
Yamamoto T, Mori T, Sawada M, Matsushima H, Ito F, Akiyama M, Kitawaki J. Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer. BMC Cancer 2015; 15:275. [PMID: 25879875 PMCID: PMC4399104 DOI: 10.1186/s12885-015-1286-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/30/2015] [Indexed: 02/04/2023] Open
Abstract
Background AF-6/afadin plays an important role in the formation of adherence junctions. In breast and colon cancer, loss of AF-6/afadin induces cell migration and cell invasion. We aimed to elucidate the role of AF-6/afadin in human endometrial cancer. Methods Morphology and AF-6/afadin expression in endometrial cancer cell lines was investigated by 3-dimensional culture. We used Matrigel invasion assay to demonstrate AF-6/afadin knockdown induced invasive capability. Cell proliferation assay was performed to estimate chemoresistance to doxorubicin, paclitaxel and cisplatin induced by AF-6/afadin knockdown. The associations between AF-6/afadin expression and clinicopathological status were determined by immunohistochemical analysis in endometrial cancer tissues. Informed consent was obtained from all patients before the study. Results The majority of cell clumps in 3-dimensional cultures of Ishikawa cells that strongly expressed AF-6/afadin showed round gland-like structures. In contrast, the cell clumps in 3-dimensional cultures of HEC1A and AN3CA cells—both weakly expressing AF-6/afadin—showed irregular gland-like structures and disorganized colonies with no gland-like structures, respectively. AF-6/afadin knockdown resulted in reduced number of gland-like structures in 3-dimensional cultures and enhancement of cell invasion and phosphorylation of ERK1/2 and Src in the highly AF-6/afadin-expressing endometrial cancer cell line. Inhibitors of MAPK/ERK kinase (MEK) (U0126) and Src (SU6656) suppressed the AF-6/afadin knockdown-induced invasive capability. AF-6/afadin knockdown induced chemoresistance to doxorubicin, paclitaxel and cisplatin in Ishikawa cells, not in HEC1A. Immunohistochemical analysis showed that AF-6/afadin expression was significantly associated with myometrial invasion and high histological grade. Conclusions AF-6/afadin regulates cell morphology and invasiveness. Invasive capability is partly regulated through the ERK and Src pathway. The inhibitors to these pathways might be molecular-targeted drugs which suppress myometrial invasion in endometrial cancer. AF-6/afadin could be a useful selection marker for fertility-sparing therapy for patients with atypical hyperplasia or grade 1 endometrioid adenocarcinoma with no myometrial invasion. AF-6/afadin knockdown induced chemoresistance especially to cisplatin. Therefore, loss of AF-6/afadin might be a predictive marker of chemoresistance to cisplatin.
Collapse
Affiliation(s)
- Takuro Yamamoto
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Morio Sawada
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Makoto Akiyama
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
22
|
Kaposi's sarcoma-associated herpesvirus microRNAs repress breakpoint cluster region protein expression, enhance Rac1 activity, and increase in vitro angiogenesis. J Virol 2015; 89:4249-61. [PMID: 25631082 DOI: 10.1128/jvi.03687-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, ∼ 22-nucleotide-long RNAs that regulate gene expression posttranscriptionally. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-miRNAs during latency, and the functional significance of these microRNAs during KSHV infection and their cellular targets have been emerging recently. Using a previously reported microarray profiling analysis, we identified breakpoint cluster region mRNA (Bcr) as a cellular target of the KSHV miRNA miR-K12-6-5p (miR-K6-5). Bcr protein levels were repressed in human umbilical vein endothelial cells (HUVECs) upon transfection with miR-K6-5 and during KSHV infection. Luciferase assays wherein the Bcr 3' untranslated region (UTR) was cloned downstream of a luciferase reporter showed repression in the presence of miR-K6-5, and mutation of one of the two predicted miR-K6-5 binding sites relieved this repression. Furthermore, inhibition or deletion of miR-K6-5 in KSHV-infected cells showed increased Bcr protein levels. Together, these results show that Bcr is a direct target of the KSHV miRNA miR-K6-5. To understand the functional significance of Bcr knockdown in the context of KSHV-associated disease, we hypothesized that the knockdown of Bcr, a negative regulator of Rac1, might enhance Rac1-mediated angiogenesis. We found that HUVECs transfected with miR-K6-5 had increased Rac1-GTP levels and tube formation compared to HUVECs transfected with control miRNAs. Knockdown of Bcr in latently KSHV-infected BCBL-1 cells increased the levels of viral RTA, suggesting that Bcr repression by KSHV might aid lytic reactivation. Together, our results reveal a new function for both KSHV miRNAs and Bcr in KSHV infection and suggest that KSHV miRNAs, in part, promote angiogenesis and lytic reactivation. IMPORTANCE Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) infection is linked to multiple human cancers and lymphomas. KSHV encodes small nucleic acids (microRNAs) that can repress the expression of specific human genes, the biological functions of which are still emerging. This report uses a variety of approaches to show that a KSHV microRNA represses the expression of the human gene called breakpoint cluster region (Bcr). Repression of Bcr correlated with the activation of a protein previously shown to cause KS-like lesions in mice (Rac1), an increase in KS-associated phenotypes (tube formation in endothelial cells and vascular endothelial growth factor [VEGF] synthesis), and modification of the life cycle of the virus (lytic replication). Our results suggest that KSHV microRNAs suppress host proteins and contribute to KS-associated pathogenesis.
Collapse
|
23
|
Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, Nakagawa A, Oda M, Suzuki M, Sakisaka T, Takai Y, Hiroaki H. Crystal structure of afadin PDZ domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci 2015; 24:376-85. [PMID: 25534554 DOI: 10.1002/pro.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan; Global-COE (Center of Excellence) Program for Integrative Membrane Biology, Kobe University, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia. Blood 2014; 124:263-72. [PMID: 24695851 DOI: 10.1182/blood-2013-09-525741] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.
Collapse
|
25
|
Vargas C, Radziwill G, Krause G, Diehl A, Keller S, Kamdem N, Czekelius C, Kreuchwig A, Schmieder P, Doyle D, Moelling K, Hagen V, Schade M, Oschkinat H. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions. ChemMedChem 2014; 9:1458-62. [PMID: 24668962 DOI: 10.1002/cmdc.201300553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Indexed: 10/25/2022]
Abstract
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Collapse
Affiliation(s)
- Carolyn Vargas
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Current address: Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ly M, Valent A, Diallo G, Penault-Lorca F, Dumke K, Marty V, Viehl P, Lazar V, Job B, Richon C, Scott V, Diallo DA, Bernaudin JF, Andre F. Gene copy number variations in breast cancer of Sub-Saharan African women. Breast 2013; 22:295-300. [PMID: 22999459 DOI: 10.1016/j.breast.2012.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 02/28/2012] [Accepted: 07/08/2012] [Indexed: 12/23/2022] Open
Abstract
The goal of this study was CGH array profiling of breast cancer from Malian women in order to define differences with those from USA. CGH array was performed in 28 samples, 17 with a triple negative phenotype. The profiles were compared to those of 106 tumors from USA. 6 chromosomal regions (6p21, 9q34, 11q13, 12q24, 17q25 and 22q12.1-22q13.1) were identified with a significant higher rate of copy number alterations. These regions contain several genes of interest including BCR. FISH and IHC confirmed that BCR was amplified and overexpressed particularly in triple negative tumors. Finally, 5 regions presented a high level of amplification in two or more samples, including 2 regions located between 9p22.3-9p23 and 9p23-9p24.1. This study confirms that breast cancers from African women present biological differences with those from USA. Larger studies are needed to go further in the identification of therapeutic targets that would be specific to African women.
Collapse
Affiliation(s)
- Madani Ly
- Service d'Hématologie et d'Oncologie Médicale, Hôpital du point G, Bamako, Mali
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maru Y. Molecular biology of chronic myeloid leukemia. Cancer Sci 2012; 103:1601-10. [PMID: 22632137 DOI: 10.1111/j.1349-7006.2012.02346.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/11/2022] Open
Abstract
Detailed information on the crystal structure of the pharmacologically targeted domains of the BCR-ABL molecule and on its intracellular signaling, which are potentially involved in growth, anti-apoptosis, metabolism and stemness, has made the study of chronic myeloid leukemia the most successful field in tumor biology. However, we now face the issue of drug resistance due to deregulation in the quality control of both DNA and protein. BCR-ABL is basically a misfolded protein with intrinsically disordered regions, which not only produces endoplasmic reticulum stress followed by unfolded protein response in some settings, but also conformational plasticity that may affect the structure of the whole molecule. The intercellular signaling derived from the leukemic cell microenvironment may influence the intracellular responses that take place in a manner both dependent on and independent of BCR-ABL tyrosine kinase activity.
Collapse
Affiliation(s)
- Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Japan.
| |
Collapse
|
28
|
Kim J, Kim I, Yang JS, Shin YE, Hwang J, Park S, Choi YS, Kim S. Rewiring of PDZ domain-ligand interaction network contributed to eukaryotic evolution. PLoS Genet 2012; 8:e1002510. [PMID: 22346764 PMCID: PMC3276551 DOI: 10.1371/journal.pgen.1002510] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/12/2011] [Indexed: 12/04/2022] Open
Abstract
PDZ domain-mediated interactions have greatly expanded during metazoan evolution, becoming important for controlling signal flow via the assembly of multiple signaling components. The evolutionary history of PDZ domain-mediated interactions has never been explored at the molecular level. It is of great interest to understand how PDZ domain-ligand interactions emerged and how they become rewired during evolution. Here, we constructed the first human PDZ domain-ligand interaction network (PDZNet) together with binding motif sequences and interaction strengths of ligands. PDZNet includes 1,213 interactions between 97 human PDZ proteins and 591 ligands that connect most PDZ protein-mediated interactions (98%) in a large single network via shared ligands. We examined the rewiring of PDZ domain-ligand interactions throughout eukaryotic evolution by tracing changes in the C-terminal binding motif sequences of the PDZ ligands. We found that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet. The rewiring of PDZ domain-ligand interactions provided an effective means of functional innovations in nervous system development. Our findings provide empirical evidence for a network evolution model that highlights the rewiring of interactions as a mechanism for the development of new protein functions. PDZNet will be a valuable resource to further characterize the organization of the PDZ domain-mediated signaling proteome. Rewiring of interactions is a powerful tool for the evolution of organism complexity. Rewiring among preexisting proteins provides a simple mechanism for the development of new signaling circuits by redirecting information flows without a gain or loss of genes. Particularly, interactions mediated by short linear motifs can be easily changed by mutations during evolution, resulting in a rewiring of interactions. However, how interaction rewiring of linear motif interactions facilitates the emergence of new protein function during evolution is poorly understood. Here, we systematically investigated the rewiring of interactions mediated by PDZ domains, which are one of the most commonly found peptide recognition modules. We found that PDZ domain-ligand interactions are frequently rewired by C-terminal sequence mutations in PDZ ligands during evolution. Especially, rewiring of PDZ domain-ligand interactions was involved in neuronal function development, occurring concurrently with the emergence of vertebrates and suggesting that reorganization of signaling pathways by rewiring PDZ domain-ligand interactions significantly contributed to the evolution of nervous systems in vertebrates. Our findings highlight the rewiring of interactions as an effective means for functional innovation, providing new insight into eukaryotic evolution, which has not been fully explained by only the expansion of protein families.
Collapse
Affiliation(s)
- Jinho Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Inhae Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Jae-Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - Young-Eun Shin
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Jihye Hwang
- Division of ITCE, Pohang University of Science and Technology, Pohang, Korea
| | - Solip Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - Yoon Sup Choi
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sanguk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
- Division of ITCE, Pohang University of Science and Technology, Pohang, Korea
- * E-mail:
| |
Collapse
|
29
|
Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y. Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 2012; 60:137-170. [PMID: 22674071 DOI: 10.1007/978-94-007-4186-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The immunogroblin (Ig) superfamily proteins characterized by the presence of Ig-like domains are involved in various cellular functions. The properties of the Ig-like domains to form rod-like structures and to bind specifically to other proteins make them ideal for cell surface receptors and cell adhesion molecules (CAMs). Ig-CAMs, nectins in mammals and Echinoid in Drosophila, are crucial components of cadherin-based adherens junctions in the epithelium. Nectins form cell-cell adhesion by their trans-interactions and recruit cadherins to the nectin-initiated cell-cell adhesion site to establish adherens junctions. Thereafter junction adhesion molecules, occludin, and claudins, are recruited to the apical side of adherens junctions to establish tight junctions. The recruitment of these molecules by nectins is mediated both by the direct and indirect interactions of afadin with many proteins, such as catenins, and zonula occludens proteins, and by the nectin-induced reorganization of the actin cytoskeleton. Nectins contribute to the formation of both homotypic and heterotypic types of cell-cell junctions, such as synapses in the brain, contacts between pigment and non-pigment cell layers of the ciliary epithelium in the eye, Sertoli cell-spermatid junctions in the testis, and sensory cells and supporting cells in the sensory organs. In addition, cis- and trans-interactions of nectins with various cell surface proteins, such as integrins, growth factor receptors, and nectin-like molecules (Necls) play important roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, survival, and cell sorting. Furthermore, the Ig-CAMs are implicated in many human diseases including viral infections, ectodermal dysplasia, cancers, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 650-0017, Kobe, Japan
| | | | | | | | | |
Collapse
|
30
|
Kim J, Chang A, Dudak A, Federoff HJ, Lim ST. Characterization of nectin processing mediated by presenilin-dependent γ-secretase. J Neurochem 2011; 119:945-56. [PMID: 21910732 DOI: 10.1111/j.1471-4159.2011.07479.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nectins play an important role in forming various intercellular junctions including synapses. This role is regulated by several secretases present at intercellular junctions. We have investigated presenilin (PS)-dependent secretase-mediated processing of nectins in PS1 KO cells and primary hippocampal neurons. The loss of PS1/γ-secretase activity delayed the processing of nectin-1 and caused the accumulation of its full-length and C-terminal fragments. Over-expression of PS2 in PS1 KO cells compensated for the loss of PS1, suggesting that PS2 also has the ability to regulate nectin-1 processing. In mouse brain slices, a pronounced increase in levels of 30 and 24 kDa C-terminal fragments in response to chemical long-term potentiation was observed. The mouse brain synaptosomal fractionation study indicated that nectin-1 localized to post-synaptic and preferentially pre-synaptic membranes and that shedding occurs in both compartments. These data suggest that nectin-1 shedding and PS-dependent intramembrane cleavage occur at synapses, and is a regulated event during conditions of synaptic plasticity in the brain. Point mutation analysis identified several residues within the transmembrane domain that play a critical role in the positioning of cleavage sites by ectodomain sheddases. Nectin-3, which forms hetero-trans-dimers with nectin-1, also undergoes intramembrane cleavage mediated by PS1/γ-secretase, suggesting that PS1/γ-secreatse activity regulates synapse formation and remodeling by nectin processing.
Collapse
Affiliation(s)
- Jinsook Kim
- Department of Neuroscience, Georgetown University Medical Center, NW, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM–PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.
Collapse
|
32
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 PMCID: PMC3129138 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
33
|
Chambers KF, Pearson JF, Pellacani D, Aziz N, Gužvić M, Klein CA, Lang SH. Stromal upregulation of lateral epithelial adhesions: gene expression analysis of signalling pathways in prostate epithelium. J Biomed Sci 2011; 18:45. [PMID: 21696611 PMCID: PMC3141633 DOI: 10.1186/1423-0127-18-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/22/2011] [Indexed: 01/05/2023] Open
Abstract
Background Stromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process. Methods Microarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model. Results TGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1). Conclusions In 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.
Collapse
Affiliation(s)
- Karen F Chambers
- Yorkshire Cancer Research Unit, Dept, Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Fournier G, Cabaud O, Josselin E, Chaix A, Adélaïde J, Isnardon D, Restouin A, Castellano R, Dubreuil P, Chaffanet M, Birnbaum D, Lopez M. Loss of AF6/afadin, a marker of poor outcome in breast cancer, induces cell migration, invasiveness and tumor growth. Oncogene 2011; 30:3862-74. [DOI: 10.1038/onc.2011.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Rikitake Y, Takai Y. Directional Cell Migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:97-143. [DOI: 10.1016/b978-0-12-386043-9.00003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Batliner J, Mancarelli MM, Jenal M, Reddy VA, Fey MF, Torbett BE, Tschan MP. CLEC5A (MDL-1) is a novel PU.1 transcriptional target during myeloid differentiation. Mol Immunol 2011; 48:714-9. [PMID: 21094529 PMCID: PMC3026634 DOI: 10.1016/j.molimm.2010.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/21/2010] [Accepted: 10/23/2010] [Indexed: 11/29/2022]
Abstract
C-type lectin domain family 5, member A (CLEC5A), also known as myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 (MDL-1), is a cell surface receptor strongly associated with the activation and differentiation of myeloid cells. CLEC5A associates with its adaptor protein DAP12 to activate a signaling cascade resulting in activation of downstream kinases in inflammatory responses. Currently, little is known about the transcriptional regulation of CLEC5A. We identified CLEC5A as one of the most highly induced genes in a microarray gene profiling experiment of PU.1 restored myeloid PU.1-null cells. We further report that CLEC5A expression is significantly reduced in several myeloid differentiation models upon PU.1 inhibition during monocyte/macrophage or granulocyte differentiation. In addition, CLEC5A mRNA expression was significantly lower in primary acute myeloid leukemia (AML) patient samples than in macrophages and granulocytes from healthy donors. Moreover, we found activation of a CLEC5A promoter reporter by PU.1 as well as in vivo binding of PU.1 to the CLEC5A promoter. Our findings indicate that CLEC5A expression in monocyte/macrophage and granulocytes is regulated by PU.1.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation/genetics
- Cell Line, Tumor
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Gene Silencing
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Macrophages/cytology
- Macrophages/metabolism
- Mice
- Molecular Sequence Data
- Monocytes/cytology
- Monocytes/metabolism
- Myeloid Cells/cytology
- Myeloid Cells/metabolism
- Neutrophils/cytology
- Neutrophils/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Jasmin Batliner
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Mathias Jenal
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Martin F. Fey
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Mario P. Tschan
- Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
37
|
Liedtke M, Ayton PM, Somervaille TCP, Smith KS, Cleary ML. Self-association mediated by the Ras association 1 domain of AF6 activates the oncogenic potential of MLL-AF6. Blood 2010; 116:63-70. [PMID: 20395419 PMCID: PMC2904581 DOI: 10.1182/blood-2009-09-243386] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 04/04/2010] [Indexed: 11/20/2022] Open
Abstract
MLL is a common target for chromosomal translocations associated with acute leukemia resulting in its fusion with a large variety of nuclear or cytoplasmic proteins that may activate its oncogenic properties by distinct but poorly understood mechanisms. The MLL-AF6 fusion gene represents the most common leukemogenic fusion of mixed lineage leukemia (MLL) to a cytoplasmic partner protein. Here, we identified a highly conserved Ras association (RA1) domain at the amino-terminus of AF6 as the minimal region sufficient for MLL-AF6 mediated myeloid progenitor immortalization in vitro and short latency leukemogenesis in vivo. Moreover, the ability of RA1 to activate MLL oncogenesis is conserved with its Drosophila ortholog, Canoe. Although the AF6 RA1 domain has previously been defined as an interaction surface for guanosine triphosphate-bound Ras, single amino acid substitutions known to abolish the AF6-Ras interaction did not abrogate MLL-AF6-mediated oncogenesis. Furthermore, fusion of MLL to heterologous RA domains of c-Raf1 or RalGDS, or direct fusion of MLL to constitutively active K-RAS, H-RAS, or RAP1 was not sufficient for oncogenic activation of MLL. Rather, the AF6 RA1 domain efficiently mediated self-association, suggesting that constitutive MLL self-association is a more common pathogenic mechanism for MLL oncogenesis than indicated by previous studies of rare MLL fusion partners.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Blotting, Western
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Cell Line
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Genetic Vectors/genetics
- Humans
- Kinesins/genetics
- Kinesins/metabolism
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Mutation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Myosins/genetics
- Myosins/metabolism
- Neoplasm Transplantation
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- Transduction, Genetic
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Michaela Liedtke
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA. Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 2010; 1:348-365. [PMID: 20543890 PMCID: PMC2882301 DOI: 10.1021/cn100012x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/03/2010] [Indexed: 02/06/2023] Open
Abstract
Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density, and thus positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | | | | | | |
Collapse
|
39
|
Banga SS, Peng L, Dasgupta T, Palejwala V, Ozer HL. PHF10 is required for cell proliferation in normal and SV40-immortalized human fibroblast cells. Cytogenet Genome Res 2010; 126:227-42. [PMID: 20068294 PMCID: PMC3711003 DOI: 10.1159/000251960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2009] [Indexed: 01/28/2023] Open
Abstract
Normal human diploid fibroblasts have limited life span in culture and undergo replicative senescence after 50-60 population doublings. On the contrary, cancer cells typically divide indefinitely and are immortal. Expression of SV40 large T and small t antigens in human fibroblasts transiently extends their life span by 20-30 population doublings and facilitates immortalization. We have identified a rearrangement in chromosome 6 shared by SV40-transformed human fibroblasts. Rearrangements involving chromosome 6 are among the most frequent in human carcinogenesis. In this paper, we extend analysis of the 6q26-q27 region, a putative site for a growth suppressor gene designated SEN6 involved in immortalization of SV40-transformed cells. Detailed molecular characterization of the rearranged chromosomes (6q*, normal appearing; and 6q(t), translocated) in the SV40-immortalized cell line HALneo by isolating each of these 2 chromosomes in mouse/HAL somatic cell hybrids is presented. Analysis of these mouse/HAL somatic cell hybrids with polymorphic and nonpolymorphic markers revealed that the 6q* has undergone a chromosomal break in the MLLT4 gene (alias AF6). This result in conjunction with previous published observations leads us to conclude that SEN6 lies between MLLT4 and TBP at chromosomal region 6q27. Examination of different genes (MLLT4, DLL1, FAM120B, PHF10) located within this interval that are expressed in HS74 normal fibroblast cells reveals that overexpression of epitope-tagged truncated PHF10 cDNAs resulted in reduced cell proliferation in multiple cell lines. Paradoxically, down-regulation of PHF10 by RNAi also resulted in loss of cell proliferation in normal fibroblast cells, indicating PHF10 function is required for cell growth. Taken together, these observations suggest that decreased cell proliferation with epitope-tagged truncated PHF10 proteins may be due to dominant negative effects or due to unregulated expression of these mutant proteins. Hence we conclude that PHF10 is not SEN6 but is required for cell growth.
Collapse
Affiliation(s)
- S S Banga
- Department of Microbiology and Molecular Genetics, New Jersey Medical School-University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA. banga @ umdnj.edu
| | | | | | | | | |
Collapse
|
40
|
Zheng X, Oancea C, Henschler R, Moore MAS, Ruthardt M. Reciprocal t(9;22) ABL/BCR fusion proteins: leukemogenic potential and effects on B cell commitment. PLoS One 2009; 4:e7661. [PMID: 19876398 PMCID: PMC2764858 DOI: 10.1371/journal.pone.0007661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022] Open
Abstract
Background t(9;22) is a balanced translocation, and the chromosome 22 breakpoints (Philadelphia chromosome – Ph+) determine formation of different fusion genes that are associated with either Ph+ acute lymphatic leukemia (Ph+ ALL) or chronic myeloid leukemia (CML). The “minor” breakpoint in Ph+ ALL encodes p185BCR/ABL from der22 and p96ABL/BCR from der9. The “major” breakpoint in CML encodes p210BCR/ABL and p40ABL/BCR. Herein, we investigated the leukemogenic potential of the der9-associated p96ABL/BCR and p40ABL/BCR fusion proteins and their roles in the lineage commitment of hematopoietic stem cells in comparison to BCR/ABL. Methodology All t(9;22) derived proteins were retrovirally expressed in murine hematopoietic stem cells (SL cells) and human umbilical cord blood cells (UCBC). Stem cell potential was determined by replating efficiency, colony forming - spleen and competitive repopulating assays. The leukemic potential of the ABL/BCR fusion proteins was assessed by in a transduction/transplantation model. Effects on the lineage commitment and differentiation were investigated by culturing the cells under conditions driving either myeloid or lymphoid commitment. Expression of key factors of the B-cell differentiation and components of the preB-cell receptor were determined by qRT-PCR. Principal Findings Both p96ABL/BCR and p40ABL/BCR increased proliferation of early progenitors and the short term stem cell capacity of SL-cells and exhibited own leukemogenic potential. Interestingly, BCR/ABL gave origin exclusively to a myeloid phenotype independently from the culture conditions whereas p96ABL/BCR and to a minor extent p40ABL/BCR forced the B-cell commitment of SL-cells and UCBC. Conclusions/Significance Our here presented data establish the reciprocal ABL/BCR fusion proteins as second oncogenes encoded by the t(9;22) in addition to BCR/ABL and suggest that ABL/BCR contribute to the determination of the leukemic phenotype through their influence on the lineage commitment.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Hematology, Laboratory for Tumor Stem Cell Biology, Goethe University, Frankfurt, Germany
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Claudia Oancea
- Department of Hematology, Laboratory for Tumor Stem Cell Biology, Goethe University, Frankfurt, Germany
| | - Reinhard Henschler
- Department of Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - Malcolm A. S. Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin Ruthardt
- Department of Hematology, Laboratory for Tumor Stem Cell Biology, Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
41
|
Jenal M, Trinh E, Britschgi C, Britschgi A, Roh V, Vorburger SA, Tobler A, Leprince D, Fey MF, Helin K, Tschan MP. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res 2009; 7:916-22. [PMID: 19491197 DOI: 10.1158/1541-7786.mcr-08-0359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.
Collapse
Affiliation(s)
- Mathias Jenal
- Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takai Y, Ikeda W, Ogita H, Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 2008; 24:309-42. [PMID: 18593353 DOI: 10.1146/annurev.cellbio.24.110707.175339] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectins are immunoglobulin-like cell adhesion molecules (CAMs) that compose a family of four members. Nectins homophilically and heterophilically interact in trans with each other to form cell-cell adhesions. In addition, they heterophilically interact in trans with other immunoglobulin-like CAMs. Nectins bind afadin, an actin filament (F-actin)-binding protein, at its cytoplasmic tail and associate with the actin cytoskeleton. Afadin additionally serves as an adaptor protein by further binding many scaffolding proteins and F-actin-binding proteins and contributes to the association of nectins with other cell-cell adhesion and intracellular signaling systems. Nectins and afadin play roles in the formation of a variety of cell-cell junctions cooperatively with, or independently of, cadherins. Cooperation between nectins and cadherins is required for the formation of cell-cell junctions; cadherins alone are not sufficient. Additionally, nectins regulate many other cellular activities (such as movement, proliferation, survival, differentiation, polarization, and the entry of viruses) in cooperation with other CAMs and cell surface membrane receptors.
Collapse
Affiliation(s)
- Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
43
|
Baeumler J, Szuhai K, Falkenburg JF, van Schie ML, Ottmann OG, Nijmeijer BA. Establishment and cytogenetic characterization of a human acute lymphoblastic leukemia cell line (ALL-VG) with ETV6/ABL1 rearrangement. ACTA ACUST UNITED AC 2008; 185:37-42. [DOI: 10.1016/j.cancergencyto.2008.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/25/2008] [Accepted: 05/02/2008] [Indexed: 11/29/2022]
|
44
|
Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, Fey MF, Helin K, Tschan MP. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene 2008; 27:5706-16. [PMID: 18521079 DOI: 10.1038/onc.2008.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.
Collapse
Affiliation(s)
- A Britschgi
- 1Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lim ST, Lim KC, Giuliano RE, Federoff HJ. Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. J Comp Neurol 2008; 507:1228-44. [PMID: 18181141 DOI: 10.1002/cne.21608] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nectins are cell adhesion molecules that, together with the intracellular binding partner afadin, mediate adhesion and signaling at a variety of intercellular junctions. In this work we studied the distribution of nectin-1 and afadin during hippocampal synapse formation using cultured primary hippocampal neurons. Nectin-1 and afadin cluster at developing synapses between hippocampal neurons. These nectin-afadin clusters uniformly colocalize with N-cadherin-catenin pairs, suggesting that formation of developing synapses involves participation of both bimolecular systems. Nectin-1 is initially expressed at excitatory and inhibitory synapses but is progressively lost at inhibitory synapses during their maturation. Treatment of neurons with actin depolymerizing agents disrupts the synaptically localized nectin-1 and afadin cluster at an early stage and elicits nectin-1 ectodomain shedding. These data indicate that the synaptic localization of nectin-1 and l-afadin are F-actin-dependent and that the shedding of nectin-1 is a mechanism contributing to synaptic plasticity.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
46
|
Boisguerin P, Ay B, Radziwill G, Fritz RD, Moelling K, Volkmer R. Characterization of a putative phosphorylation switch: adaptation of SPOT synthesis to analyze PDZ domain regulation mechanisms. Chembiochem 2008; 8:2302-7. [PMID: 17973281 DOI: 10.1002/cbic.200700518] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transient macromolecular complexes are often formed by protein-protein interaction domains (e.g., PDZ, SH2, SH3, WW), which are often regulated (positively or negatively) by phosphorylation. To address the in vitro analysis of PDZ domain regulation by such phosphorylation, we improved the inverted peptide method. This method is based on standard SPOT synthesis, followed by inversion of the peptide under acidic conditions to generate the free C termini necessary for PDZ domain ligand recognition. The benefit of the newly introduced acidic conditions is the preservation of the incorporated phosphate group during peptide synthesis. Furthermore, the improved method is more robust and shows an increased signal-to-noise ratio. As representative examples, we used the AF6, ERBIN, and SNA1 (alpha-1-syntrophin) PDZ domains to analyze the influence of ligand-position-dependent phosphorylation. We could clearly demonstrate severe down-regulation by phosphorylation of the PDZ ligand position -2 (<50 %) and slightly less at position -1 ( approximately 50 %). These results are specific and reproducible for all three PDZ domains. Finally, we confirmed the influence of negative regulation by using the protein kinase BCR as the AF6 PDZ domain ligand. For the first time, this approach allows the SPOT synthesis technique to be used to screen large libraries of phosphorylated peptides in vitro. This should ultimately help in the identification of phosphorylation-dependent regulation mechanisms in vivo.
Collapse
Affiliation(s)
- Prisca Boisguerin
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Kweon SM, Cho YJ, Minoo P, Groffen J, Heisterkamp N. Activity of the Bcr GTPase-activating domain is regulated through direct protein/protein interaction with the Rho guanine nucleotide dissociation inhibitor. J Biol Chem 2007; 283:3023-3030. [PMID: 18070886 DOI: 10.1074/jbc.m705513200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cycling of Rac GTPases, alternating between an active GTP- and an inactive GDP-bound state, is controlled by guanine nucleotide exchange factors, GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). Little is known about how these controlling activities are coordinated. Studies using null mutant mice have demonstrated that Bcr and Abr are two physiologically important GAPs for Rac. Here, we report that in the presence of RhoGDIalpha, Bcr is unable to convert Rac-GTP to Rac-GDP because RhoGDI forms a direct protein complex with Bcr. Interestingly, RhoGDIalpha binds to the GAP domain in Bcr and Abr, a domain that also binds to Rac-GTP and catalyzes conversion of the bound GTP to GDP on Rac. The presence of activated Rac diminished the Bcr/RhoGDIalpha interaction. Moreover, a Bcr mutant that lacks the ability to promote hydrolysis of Rac-GTP bound to its GAP domain did not bind to RhoGDIalpha in cell lysates, indicating that binding of RhoGDIalpha and Rac-GTP to the Bcr GAP domain is mutually exclusive. Our results provide the first identification of a protein that regulates BcrGAP activity.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California 90027
| | - Young Jin Cho
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California 90027
| | - Parviz Minoo
- Department of Pediatrics, University of Southern California, Los Angeles, California 90033
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California 90027; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California 90027; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
48
|
Keyser J, Lorger M, Pavlovic J, Radziwill G, Moelling K. Role of AF6 protein in cell-to-cell spread of Herpes simplex virus 1. FEBS Lett 2007; 581:5349-54. [PMID: 17967423 DOI: 10.1016/j.febslet.2007.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/11/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.
Collapse
Affiliation(s)
- Johanna Keyser
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 2007; 27:8683-97. [PMID: 17938206 DOI: 10.1128/mcb.00157-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.
Collapse
|
50
|
Weiss A, Baumgartner M, Radziwill G, Dennler J, Moelling K. c-Src is a PDZ interaction partner and substrate of the E3 ubiquitin ligase Ligand-of-Numb protein X1. FEBS Lett 2007; 581:5131-6. [DOI: 10.1016/j.febslet.2007.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/28/2022]
|