1
|
Kadry MO, Abd-Ellatef GEF, Ammar NM, Hassan HA, Hussein NS, Kamel NN, Soltan MM, Abdel-Megeed RM, Abdel-Hamid AHZ. Metabolomics integrated genomics approach: Understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin and ABCA1/EGFR/PI3k/PTEN crosstalk. Toxicol Rep 2025; 14:101884. [PMID: 39886047 PMCID: PMC11780168 DOI: 10.1016/j.toxrep.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Resistance of cancer cells, especially breast cancer, to therapeutic medicines represents a major clinical obstacle that impedes the stages of treatment. Carcinoma cells that acquire resistance to therapeutic drugs can reprogram their own metabolic processes as a way to overcome the effectiveness of treatment and continue their reproduction processes. Despite the recent developments in medical research in the field of drug resistance, which showed some explanations for this phenomenon, the real explanation, along with the ability to precisely predict the possibility of its occurrence in breast cancer cells, still necessitates a deep consideration of the dynamics of the tumor's response to treatment. For this purpose the current study, combined both in vitro metabolomics and in vivo genomics analysis as the most advanced omics technologies that can provide a potential en route for inventing novel strategies to perform prospective, prognostic and diagnostic biomarkers for drug resistance phenomena in mammary cancer. Doxorubicin is the currently available breast cancer chemotherapeutic medication nevertheless; it was demonstrated to cause drug resistance, which impairs patient survival and prognosis by prompting proliferation, cell cycle progression, and preventing apoptosis, interactions between signaling pathways triggered drug resistance. In this research, in vitro metabolomics analysis based on GC-MS coupled with multivariable analysis was performed on MCF-7 and DOX resistant cell lines; MCF-7/adr cultured cells in addition to, further in vivo confirmation via inducing mammary cancer in rats via two doses of 7,12-dimethylbenz(a) anthracene (DMBA) (50 mg/kg and 25 mg/kg) proceeded by doxorubicin (5 mg/kg) treatment for one month. The metabolomics in vitro results pointed out that mannitol, myoinositol, glycine, α-linolenic acid, oleic acid and stearic acid have AUC values: 0.14, 0.5, 0.7, 0.1, 0.02, -0.02 (1, 1) respectively. Glycine and myoinositol metabolites provided the best discriminative power in the wild and resistance MCF-7 phenotypes. Meanwhile, in vivo results revealed a significant crosstalk between the alternation in oxidative stress biomarkers as well as Arginase II tumor biomarker and the molecular assessment of ABCA1 and P53 gene expression that displayed a marked reduction in addition to, the obvious elevation in resistance and apoptotic biomarkers EGFR/PI3k/AKT/PTEN signaling pathway upon DMBA administration. Data revealed a significant alternation in signaling pathways related to resistance upon doxorubicin administration that affect lipid metabolism in breast cancer. In conclusion, Metabolomics integrated genomics analysis may be promising in understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin through modulating ABCA1/EGFR/P53/PI3k/PTEN signaling pathway thus metabolic biomarkers in addition to molecular biomarkers elucidate the challenges fronting profitable therapy of mammary cancer and an pioneering approaches that metabolomics compromises to improve recognizing drug resistance in breast carcinoma.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | | - Naglaa M. Ammar
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Heba A. Hassan
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Noha S. Hussein
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Nahla N. Kamel
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Maha M. Soltan
- National Research Center, Biology Unit, Central Laboratory for Pharmaceutical and drug industries Research Institute, Chemistry of Medicinal Plants Department, Al Bohouth Street, Dokki, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | |
Collapse
|
2
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
3
|
Zhang K, Zhu YW, Tang AQ, Zhou ZT, Yang YL, Liu ZH, Li Y, Liang XY, Feng ZF, Wang J, Jiang T, Jiang QY, Wu DD. Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives. Transl Oncol 2025; 52:102272. [PMID: 39813769 PMCID: PMC11783123 DOI: 10.1016/j.tranon.2025.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways. As a result, the effects of H2S-catalyzing enzymes in cancers also attract widspread attention. 3-mercaptopyruvate sulfurtransferase (3-MST) is privileged to be one of them. In fact, 3-MST is overexpressed in many tumors including human colon cancer, lung adenocarcinoma, and bladder urothelial carcinoma. But it is also lowly expressed in hepatocellular carcinoma. In this review, we focus on the generation of endogenous H2S and polysulfides, facilitated by 3-MST. Additionally, we delve deeply into the potential role of 3-MST in tumorigenesis and development. The impact of 3-MST inhibition on the development of tumors and its potential for tumor therapy are also highlighted.
Collapse
Affiliation(s)
- Ka Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ze-Tao Zhou
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yan Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Jun Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Tong Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lim SH, Lee SY, Hong JY, Lee J, Kim ST. CDK4/6 inhibition to resensitize BRAF/EGFR inhibitor in patient-derived BRAF/PTEN-mutant colon cancer cells. Transl Cancer Res 2024; 13:3695-3703. [PMID: 39145064 PMCID: PMC11319972 DOI: 10.21037/tcr-24-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/24/2024] [Indexed: 08/16/2024]
Abstract
Background In v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant colorectal cancer (CRC), encorafenib-cetuximab has been established as standard second-line therapy, but not all patients respond and the duration of response is relatively short. Overcoming intrinsic or acquired resistance to BRAF/EGFR inhibitors is crucial for enhancing treatment outcomes in metastatic BRAF-mutated CRC. The aim of the study is to investigate the resistance mechanisms in BRAF-mutant CRC patient refractory to BRAF/EGFR targeted therapy. Methods We established patient-derived cells (PDCs) from a patient with BRAF/PTEN-mutant metastatic colon cancer who progressed rapidly on encorafenib plus cetuximab. To explore potential treatment options for inherent resistance caused by simultaneous PTEN mutation in BRAF-mutated CRC, we conducted cell viability assays using PDCs treated with encorafenib-cetuximab in combination with a cyclin-dependent kinase-4 and 6 (CDK4/6) inhibitor. Results The patient's tumor had concurrent PTEN loss-of-function alteration at diagnosis and PDCs were generated from ascites after resistance to the BRAF/EGFR inhibitor. The PDCs were resistant to the encorafenib-cetuximab combination even at a high concentration of cetuximab (up to 500 µg/mL). Adding the CDK4/6 inhibitor, ribociclib, to encorafenib-cetuximab showed a synergistic effect in a proliferation assay. Ribociclib plus encorafenib-cetuximab represented a significantly lower expression of Ki-67 compared to the dual combination alone. An MTS assay showed that triplet therapy with ribociclib, encorafenib, and cetuximab suppressed cell viability more efficiently than the two-drug combinations. Investigating the combined effect of triplet therapy using the calculated combination index (CI) showed that ribociclib had a synergistic effect with encorafenib-cetuximab when applied to PDCs with a concurrent BRAF/PTEN mutation. Conclusions Our results suggest that combining the CDK4/6 inhibitor with the BRAF/EGFR inhibitor might be a novel treatment strategy for concomitant BRAF and PTEN-mutant CRC.
Collapse
Affiliation(s)
- Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
| | - Song-Yi Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
6
|
Georgescu MM. Translation into Clinical Practice of the G1-G7 Molecular Subgroup Classification of Glioblastoma: Comprehensive Demographic and Molecular Pathway Profiling. Cancers (Basel) 2024; 16:361. [PMID: 38254850 PMCID: PMC10814912 DOI: 10.3390/cancers16020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma is the most frequent and malignant primary neoplasm of the central nervous system. In a recent breakthrough study on a prospective Discovery cohort, I proposed the first all-inclusive molecular classification of glioblastoma into seven subgroups, G1-G7, based on MAPK pathway activation. New data from a WHO-grade-4 diffuse glioma prospective Validation cohort offers, in this study, an integrated demographic-molecular analysis of a 213-patient Combined cohort. Despite cohort differences in the median age and molecular subgroup distribution, all the prospectively-acquired cases from the Validation cohort mapped into one of the G1-G7 subgroups defined in the Discovery cohort. A younger age of onset, higher tumor mutation burden and expanded G1/EGFR-mutant and G3/NF1 glioblastoma subgroups characterized the glioblastomas from African American/Black relative to Caucasian/White patients. The three largest molecular subgroups were G1/EGFR, G3/NF1 and G7/Other. The fourth largest subgroup, G6/Multi-RTK, was detailed by describing a novel gene fusion ST7-MET, rare PTPRZ1-MET, LMNA-NTRK1 and GOPC-ROS1 fusions and their overexpression mechanisms in glioblastoma. The correlations between the MAPK pathway G1-G7 subgroups and the PI3-kinase/PTEN, TERT, cell cycle G1 phase and p53 pathways defined characteristic subgroup pathway profiles amenable to personalized targeted therapy. This analysis validated the first all-inclusive molecular classification of glioblastoma, showed significant demographic and molecular differences between subgroups, and provided the first ethnic molecular comparison of glioblastoma.
Collapse
|
7
|
Queiroz MM, Lima NF, Biachi de Castria T. Immunotherapy and Targeted Therapy for Advanced Biliary Tract Cancer: Adding New Flavors to the Pizza. Cancers (Basel) 2023; 15:1970. [PMID: 37046631 PMCID: PMC10093144 DOI: 10.3390/cancers15071970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Biliary tract cancers (BTCs) are a rare pathology and can be divided into four major subgroups: intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, hilar cholangiocarcinoma, and gallbladder cancer. In the era of precision oncology, the development of next-generation sequencing (NGS) allowed a better understanding of molecular differences between these subgroups. Thus, the development of drugs that can target these alterations and inhibit the abnormal pathway activation has changed the prognosis of BTC patients. Additionally, the development of immune checkpoint inhibitors and a better understanding of tumor immunogenicity led to the development of clinical trials with immunotherapy for this scenario. The development of biomarkers that can predict how the immune system acts against the tumor cells, and which patients benefit from this activation, are urgently needed. Here, we review the most recent data regarding targeted treatment and immunotherapy in the scenario of BTC treatment, while also discussing the future perspectives for this challenging disease.
Collapse
Affiliation(s)
- Marcello Moro Queiroz
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Nildevande Firmino Lima
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|
8
|
Wang Z, Xie W, Guan H. The diagnostic, prognostic role and molecular mechanism of miR-328 in human cancer. Biomed Pharmacother 2023; 157:114031. [PMID: 36413837 DOI: 10.1016/j.biopha.2022.114031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNA are non-coding small RNAs that bind to their target mRNA and cause mRNA degradation or translation inhibition. MiRNA dysregulation is linked to a variety of human cancers and has a role in the genesis and development of cancer pathology. MiR-328 has been reported to be involved in various human cancers. And miR-328 is considered a key regulator in human cancer. It participates in biological processes such as proliferation, apoptosis, invasion, migration, and EMT. The present review will combine the basic and clinical studies to find that miR-328 promotes tumorigenesis and metastasis in human cancer. And we will describe the diagnostic, prognostic, and therapeutic value of miR-328 in various human cancers.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
9
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
10
|
Ascenção K, Lheimeur B, Szabo C. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol 2022; 56:102466. [PMID: 36113340 PMCID: PMC9482125 DOI: 10.1016/j.redox.2022.102466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 10/28/2022] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61, also termed CCN family member 1 or CCN1), is a matricellular protein encoded by the CYR61 gene. This protein has been implicated in the regulation of various cancer-associated processes including tumor growth, angiogenesis, tumor cell adhesion, migration, and invasion as well as the regulation of anticancer drug resistance. Hydrogen sulfide (H2S) is a gaseous endogenous biological mediator, involved in the regulation of cellular bioenergetics, angiogenesis, invasion, and chemotherapeutic resistance in several types of cancer. H2S is produced by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current studies were set up to investigate if CBS or 3-MST regulates CyR61 in colon cancer cells in the context of the regulation of proliferation, migration, and survival. The study mainly utilized HCT116 cells, in which two of the principal H2S-producing enzymes, CBS and 3-MST, are highly expressed. The H2S donor GYY4137 and the polysulfide donor Na2S3 activated the CyR61 promoter in a concentration-dependent fashion. Aminooxyacetic acid (AOAA), a pharmacological inhibitor of CBS as well as HMPSNE: 2-[(4-hydroxy-6- methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, a pharmacological inhibitor of 3-MST inhibited CyR61 mRNA expression. This effect was more pronounced in response to HMPSNE than to AOAA and occurred through the modulation of S1PR via ATF1 and CREB. CyR61 was found to play an active, but relatively minor role in maintaining colon cell proliferation. HMPSNE markedly suppressed the secretion/release of CyR61 from the colon cancer cells. Moreover, HMPSNE promoted colon cancer cell apoptosis; endogenously produced CyR61 was found to counteract this effect, at least in part via RhoA activation. Taken together, we conclude that the upregulation of 3-MST in cancer cells exerts cytoprotective effects and confers the cancer cells a more aggressive phenotype - at least in part via the modulation of CyR61 expression and release.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bassma Lheimeur
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
11
|
Abstract
Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.
Collapse
|
12
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
13
|
Misra S, Chowdhury SG, Ghosh G, Mukherjee A, Karmakar P. Both phosphorylation and phosphatase activity of PTEN are required to prevent replication fork progression during stress by inducing heterochromatin. Mutat Res 2022; 825:111800. [PMID: 36155262 DOI: 10.1016/j.mrfmmm.2022.111800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
PTEN is a tumor suppressor protein frequently altered in various cancers. PTEN-null cells have a characteristic of rapid proliferation with an unstable genome. Replication stress is one of the causes of the accumulation of genomic instability if not sensed by the cellular signaling. Though PTEN-null cells have shown to be impaired in replication progression and stalled fork recovery, the association between the catalytic function of PTEN regulated by posttranslational modulation and cellular response to replication stress has not been studied explicitly. To understand molecular mechanism, we find that PTEN-null cells display unrestrained replication fork progression with accumulation of damaged DNA after treatment with aphidicolin which can be rescued by ectopic expression of full-length PTEN, as evident from DNA fiber assay. Moreover, the C-terminal phosphorylation (Ser 380, Thr 382/383) of PTEN is essential for its chromatin association and sensing replication stress that, in response, induce cell cycle arrest. Further, we observed that PTEN induces HP1α expression and H3K9me3 foci formation in a C-terminal phosphorylation-dependent manner. However, phosphatase dead PTEN cannot sense replication stress though it can be associated with chromatin. Together, our results suggest that DNA replication perturbation by aphidicolin enables chromatin association of PTEN through C-terminal phosphorylation, induces heterochromatin formation by stabilizing and up-regulating H3K9me3 foci and augments CHK1 activation. Thereby, PTEN prevents DNA replication fork elongation and simultaneously causes G1-S phase cell cycle arrest to limit cell proliferation in stress conditions. Thus PTEN act as stress sensing protein during replication arrest to maintain genomic stability.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | | | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology,Thiruvananthapuram 695 014, Kerala, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
14
|
Gupta S, Kumar M, Chaudhuri S, Kumar A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway. J Cell Physiol 2022; 237:3181-3204. [PMID: 35616326 DOI: 10.1002/jcp.30782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
The PI3K-AKT-MTOR signal transduction pathway is one of the essential signalling cascades within the cell due to its involvement in many vital functions. The pathway initiates with the recruitment of phosphatidylinositol-3 kinases (PI3Ks) onto the plasma membrane, generating phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3 ] and subsequently activating AKT. Being the central node of the PI3K network, AKT activates the mechanistic target of rapamycin kinase complex 1 (MTORC1) via Tuberous sclerosis complex 2 inhibition in the cytoplasm. Although the cytoplasmic role of the pathway has been widely explored for decades, we now know that most of the effector molecules of the PI3K axis diverge from the canonical route and translocate to other cell organelles including the nucleus. The presence of phosphoinositides (PtdIns) inside the nucleus itself indicates the existence of a nuclear PI3K signalling. The nuclear localization of these signaling components is evident in regulating many nuclear processes like DNA replication, transcription, DNA repair, maintenance of genomic integrity, chromatin architecture, and cell cycle control. Here, our review intends to present a comprehensive overview of the nuclear functions of the PI3K-AKT-MTOR signaling biomolecules.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mukund Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Soumi Chaudhuri
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
15
|
Molnar R, Szabo L, Tomesz A, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers. Cells 2022; 11:cells11081300. [PMID: 35455979 PMCID: PMC9029301 DOI: 10.3390/cells11081300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Collapse
Affiliation(s)
- Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
16
|
Ai J, Li J, Su Q, Ma H, Wei Q, Li H, Gao G. rAAV-delivered PTEN therapeutics for prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:122-132. [PMID: 34976432 PMCID: PMC8671520 DOI: 10.1016/j.omtn.2021.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Effective treatments for prostate cancer (PCa) require further development, and previous studies have reported that PTEN and its downstream target CDKN1B are significantly downregulated in PCa cells compared with normal cells. Therefore, modulation of PTEN and CDKN1B expression might be a promising therapeutic approach for PCa treatment. Expression of PTEN and CDKN1B was verified in specimens from PCa patients and transgenic adenocarcinoma mouse prostate (TRAMP) mice. The effect of PTEN on PCa cell migration, apoptosis, and the cell cycle was analyzed in vitro using a wound-healing assay and flow cytometry. We assessed the ability of intraprostatic and intratumoral injections of recombinant adeno-associated virus (rAAV) 9 expressing Pten or Cdkn1b into TRAMP mice and a subcutaneous tumor xenograft mouse model, respectively, to inhibit PCa progression. PTEN and CDKN1B were significantly downregulated in human and mouse PCa samples, and CDKN1B expression correlated positively with PTEN expression. PTEN overexpression significantly inhibited cell migration and cell-cycle progression and promoted apoptosis in PCa cells by decreasing Ccnd1 expression and increasing that of Cdkn1b. Importantly, treatment with the rAAV9.Pten or rAAV9.Cdkn1b extended the lifespan of TRAMP mice and inhibited the growth rate of tumor xenografts by regulating downstream gene expression. Moreover, neoplasia in treated prostates was significantly diminished compared with that in control prostates, and apoptosis was markedly observed in xenografts treated with Pten or Cdkn1b. These data indicate that rAAV-based PTEN/CDKN1B delivery is promising for the development of novel therapeutics for PCa.
Collapse
Affiliation(s)
- Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Dey S, Singh AK, Singh AK, Rawat K, Banerjee J, Agnihotri V, Upadhaya D. Critical pathways of oral squamous cell carcinoma: molecular biomarker and therapeutic intervention. Med Oncol 2022; 39:30. [DOI: 10.1007/s12032-021-01633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
18
|
Gharbi S, Mohammadi Z, Dezaki MS, Dokanehiifard S, Dabiri S, Korsching E. Characterization of the first microRNA in human CDH1 that affects cell cycle and apoptosis and indicates breast cancers progression. J Cell Biochem 2022; 123:657-672. [PMID: 34997630 DOI: 10.1002/jcb.30211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
The E-cadherin protein (Cadherin 1, gene: CDH1), a master regulator of the human epithelial homeostasis, contributes to the epithelial-mesenchymal transition (EMT) which confers cell migratory features to the cells. The EMT is central to many pathophysiological changes in cancer. Therefore, a better understanding of this regulatory scenario is beneficial for therapeutic regiments. The CDH1 gene is approximately 100 kbp long and consists of 16 exons with a relatively large second intron. Since none microRNA (miRNA) has been identified in CDH1 up to now we screened the CDH1 gene for promising miRNA hairpin structures in silico. Out of the 27 hairpin structures we identified, one stable RNA fold with a promising sequence motive was selected for experimental verification. The exogenous validation of the hairpin sequence was performed by transfection of HEK293T cells and the mature miRNA sequences could be verified by quantitative polymerase chain reaction. The endogenous expression of the mature miRNA provisionally named CDH1-i2-miR-1 could be confirmed in two normal (HEK293T, HUVEK) and five cancer cell lines (MCF7, MDA-MB-231, SW480, HT-29, A549). The functional characterization by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a suppression of HEK293T cell proliferation. A flow cytometry-based approach showed the ability of CDH1-i2-miR-1 to arrest transfected cells on a G2/M state while annexin staining exemplified an apoptotic effect. BAX and PTEN expression levels were affected following the overexpression with the new miRNA. The in vivo expression level was assessed in 35 breast tumor tissues and their paired nonmalignant marginal part. A fourfold downregulation in the tumor specimens compared to their marginal controls could be observed. It can be concluded that the sequence of the hub gene CDH1 harbors at least one miRNA but eventually even more relevant for the pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Sedigheh Gharbi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Saedi Dezaki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sadat Dokanehiifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Eberhard Korsching
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Misra S, Ghosh G, Chowdhury SG, Karmakar P. Non-canonical function of nuclear PTEN and its implication on tumorigenesis. DNA Repair (Amst) 2021; 107:103197. [PMID: 34359000 DOI: 10.1016/j.dnarep.2021.103197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Suppression of genomic instability is the key to prevent tumor development. PTEN is a unique tumor suppressor protein having both lipid and protein phosphatase activities. Interestingly though it is a cytoplasmic protein, but a significant pool of PTEN can also be localized in nucleus. The function of cytoplasmic PTEN is well defined and extensively studied in various literatures focusing mainly on the negative regulation of oncogenic PI-3Kinase-AKT pathway but functional regulation of nuclear PTEN is less defined and therefore it is a fascinating subject of research in cancer biology. Post-translation modulation of PTEN such as phosphorylation, sumorylation, acetylation and methylation also regulates its cellular localization, protein-protein association and catalytic function. Loss or mutation in PTEN is associated with the development of tumors in various tissues from the brain to prostate. Here we have summarized the role of nuclear PTEN and its epigenetic modulation in various DNA metabolic pathways, for example, DNA damage response, DNA repair, DNA replication, DNA segregation etc. Further, pathways involved in nuclear PTEN degradation are also discussed. Additionally, we also emphasize probable potential targets associated with PTEN pathway for chemotherapeutic purpose.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
20
|
Ma L, Zhang W, Jin Y, Bai X, Yu Q. miR-638 suppresses proliferation by negatively regulating high mobility group A1 in ovarian cancer cells. Exp Ther Med 2021; 22:1319. [PMID: 34630673 PMCID: PMC8495545 DOI: 10.3892/etm.2021.10754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological diseases with high mortality rates. Previous studies have shown that microRNA (miR)-638 is associated with tumorigenesis. The present study aimed to assess the role and underlying mechanisms of miR-638 in ovarian cancer. miR-638 expression was detected in ovarian cancer tissues and miR-638 was overexpressed or knocked down in ovarian cancer OVCAR-3 and Caov-3 cells. The clinical results revealed that miR-638 expression was downregulated in ovarian cancer tissues compared with in adjacent normal tissues. miR-638 expression was also found to be relatively low in OVCAR-3 cells whilst being relatively high in Caov-3 cells among the five ovarian cancer cell lines tested. miR-638 overexpression inhibited cell viability, arrested the cell cycle at the G1 phase and promoted apoptosis in OVCAR-3 cells. By contrast, miR-638 knockdown increased Caov-3 cell viability, facilitated cell cycle progression and inhibited apoptosis. miR-638 reduced the expression of high mobility group A1 (HMGA1) by directly targeting its 3' untranslated region. HMGA1 overexpression reversed the inhibition of proliferation induced by miR-638 overexpression in OVCAR-3 cells. These results suggest that miR-638 may serve to be a suppressor of ovarian cancer by regulating HMGA1, which may provide a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Scientific Research, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaomei Bai
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiaoling Yu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
21
|
Delicato A, Montuori E, Angrisano T, Pollice A, Calabrò V. YB-1 Oncoprotein Controls PI3K/Akt Pathway by Reducing Pten Protein Level. Genes (Basel) 2021; 12:genes12101551. [PMID: 34680946 PMCID: PMC8535809 DOI: 10.3390/genes12101551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
YB-1 is a multifunctional protein overexpressed in many types of cancer. It is a crucial oncoprotein that regulates cancer cell progression and proliferation. Ubiquitously expressed in human cells, YB-1 protein functions are strictly dependent on its subcellular localization. In the cytoplasm, where YB-1 is primarily localized, it regulates mRNA translation and stability. However, in response to stress stimuli and activation of PI3K and RSK signaling, YB-1 moves to the nucleus acting as a prosurvival factor. YB-1 is reported to regulate many cellular signaling pathways in different types of malignancies. Furthermore, several observations also suggest that YB-1 is a sensor of oxidative stress and DNA damage. Here we show that YB-1 reduces PTEN intracellular levels thus leading to PI3K/Akt pathway activation. Remarkably, PTEN reduction mediated by YB-1 overexpression can be observed in human immortalized keratinocytes and HEK293T cells and cannot be reversed by proteasome inhibition. Real-time PCR data indicate that YB-1 silencing up-regulates the PTEN mRNA level. Collectively, these observations indicate that YB-1 negatively controls PTEN at the transcript level and its overexpression could confer survival and proliferative advantage to PTEN proficient cancer cells.
Collapse
|
22
|
Thielhelm TP, Goncalves S, Welford SM, Mellon EA, Cohen ER, Nourbakhsh A, Fernandez-Valle C, Telischi F, Ivan ME, Dinh CT. Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers (Basel) 2021; 13:4575. [PMID: 34572805 PMCID: PMC8467596 DOI: 10.3390/cancers13184575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VS) are benign tumors arising from cranial nerve VIII that account for 8-10% of all intracranial tumors and are the most common tumors of the cerebellopontine angle. These tumors are typically managed with observation, radiation therapy, or microsurgical resection. Of the VS that are irradiated, there is a subset of tumors that are radioresistant and continue to grow; the mechanisms behind this phenomenon are not fully understood. In this review, the authors summarize how radiation causes cellular and DNA injury that can activate (1) checkpoints in the cell cycle to initiate cell cycle arrest and DNA repair and (2) key events that lead to cell death. In addition, we discuss the current knowledge of VS radiobiology and how it may contribute to clinical outcomes. A better understanding of VS radiobiology can help optimize existing treatment protocols and lead to new therapies to overcome radioresistance.
Collapse
Affiliation(s)
- Torin P Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin R Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, Zhao J, Zeng Y, Mao X. The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem 2021; 297:101088. [PMID: 34416231 PMCID: PMC8429974 DOI: 10.1016/j.jbc.2021.101088] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Yuanming He
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuoyi Jiang
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenyu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hui Zheng
- Institute of Biomedical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, China.
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
24
|
Ben-Salem S, Venkadakrishnan VB, Heemers HV. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021; 28:R141-R155. [PMID: 33830069 PMCID: PMC8496945 DOI: 10.1530/erc-20-0517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/08/2022]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in Western men. These deaths occur because metastatic CaP acquires resistance to available treatments. The novel and functionally diverse treatment options that have been introduced in the clinic over the past decade each eventually induce resistance for which the molecular basis is diverse. Both initiation and progression of CaP have been associated with enhanced cell proliferation and cell cycle dysregulation. A better understanding of the specific pro-proliferative molecular shifts that control cell division and proliferation during CaP progression may ultimately overcome treatment resistance. Here, we examine literature for support of this possibility. We start by reviewing recently renewed insights in prostate cell types and their proliferative and oncogenic potential. We then provide an overview of the basic knowledge on the molecular machinery in charge of cell cycle progression and its regulation by well-recognized drivers of CaP progression such as androgen receptor and retinoblastoma protein. In this respect, we pay particular attention to interactions and reciprocal interplay between cell cycle regulators and androgen receptor. Somatic alterations that impact the cell cycle-associated and -regulated genes encoding p53, PTEN and MYC during progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP are discussed. We considered also non-genomic events that impact cell cycle determinants, including transcriptional, epigenetic and micro-environmental switches that occur during CaP progression. Finally, we evaluate the therapeutic potential of cell cycle regulators and address challenges and limitations in the approaches modulating their action for CaP treatment.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Wang RQ, Long XR, Zhou NN, Chen DN, Zhang MY, Wen ZS, Zhang LJ, He FZ, Zhou ZL, Mai SJ, Wang HY. Lnc-GAN1 expression is associated with good survival and suppresses tumor progression by sponging mir-26a-5p to activate PTEN signaling in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:9. [PMID: 33407724 PMCID: PMC7786923 DOI: 10.1186/s13046-020-01819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of non-small-cell lung cancer (NSCLC); however, the role of most lncRNAs in NSCLC remains unknown. This study explored the clinical significance, biological function and underlying mechanism of lnc-GAN1 in NSCLC. METHODS With a custom lncRNA microarray we found that lnc-GAN1 is markedly downregulated in NSCLC tissues. Then lnc-GAN1 expression level was measured using qRT-PCR in NSCLC tissues and cell lines. Survival was assessed using the Kaplan-Meier method. The biological functions of lnc-GAN1 in lung cancer cells were evaluated in vitro and in vivo. RNA fluorescence in situ hybridization and subcellular localization assays revealed the subcellular distribution of lnc-GAN1 in cells. Bioinformatic analysis was adopted to predict miRNAs and signaling pathways regulated by lnc-GAN1. RNA immunoprecipitation and Dual-luciferase reporter assays were used to assess the interaction between lnc-GAN1 and miR-26a-5p in lung cancer cells. RESULTS lnc-GAN1 is downregulated in HCC tissues and associated with larger tumor size and poor overall survival and disease-free survival; its ectopic expression suppresses cell proliferation, colony formation, and cell cycle progression and induces apoptosis in NSCLC cells; it also inhibits tumor growth in the NSCLC xenograft model. We further proved that lnc-GAN1 is localized in cytoplasm and transcribed independently from its parental gene GAN. Mechanistically, lnc-GAN1 acts as a sponge for miR-26a-5p by two seed sequences, and the two non-coding RNAs have a negative relationship in NSCLC tissues; we further prove that PTEN is a direct target of miR-26a-5p and lnc-GAN1 inhibits cell cycle signaling pathway by activating PTEN, whose expression level correlated negatively with miR-26a-5p level but positively with lnc-GAN1 level in NSCLC samples. CONCLUSIONS Lnc-GAN1 is downregulated and associated with poor survival of NSCLC patients, and mechanistically acts as a tumor suppressor via sponging and inhibiting miR-26a-5p to upregulate PTEN. This study provides a potential prognostic biomarker and treatment target for NSCLC.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xiao-Ran Long
- Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Ni Chen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhe-Sheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lan-Jun Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fa-Zhong He
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhi-Lin Zhou
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
26
|
ATM Kinase Inhibition Preferentially Sensitises PTEN-Deficient Prostate Tumour Cells to Ionising Radiation. Cancers (Basel) 2020; 13:cancers13010079. [PMID: 33396656 PMCID: PMC7794981 DOI: 10.3390/cancers13010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Prostate cancer is the most frequently diagnosed cancer in men. Despite the importance of radical radiotherapy for the management of this disease, recurrence remains a challenge. PTEN is a tumour suppressor that is frequently inactivated in advanced prostate cancer and has been associated with relapse following radiotherapy. The present study shows that the role of PTEN in response to ionizing radiation is complex. Furthermore, it demonstrates that in the absence of PTEN, an increased response to combined treatment using radiotherapy and the ATM inhibitor KU-60019 can be observed. Our findings provide a strong rationale for evaluating loss of PTEN in prostate cancer as a therapeutic target for ATM inhibitor in combination with radiotherapy in the clinical setting. Abstract Radical radiotherapy, often in combination with hormone ablation, is a safe and effective treatment option for localised or locally-advanced prostate cancer. However, up to 30% of patients with locally advanced PCa will go on to develop biochemical failure, within 5 years, following initial radiotherapy. Improving radiotherapy response is clinically important since patients exhibiting biochemical failure develop castrate-resistant metastatic disease for which there is no curative therapy and median survival is 8–18 months. The aim of this research was to determine if loss of PTEN (highly prevalent in advanced prostate cancer) is a novel therapeutic target in the treatment of advanced prostate cancer. Previous work has demonstrated PTEN-deficient cells are sensitised to inhibitors of ATM, a key regulator in the response to DSBs. Here, we have shown the role of PTEN in cellular response to IR was both complex and context-dependent. Secondly, we have confirmed ATM inhibition in PTEN-depleted cell models, enhances ionising radiation-induced cell killing with minimal toxicity to normal prostate RWPE-1 cells. Furthermore, combined treatment significantly inhibited PTEN-deficient tumour growth compared to PTEN-expressing counterparts, with minimal toxicity observed. We have further shown PTEN loss is accompanied by increased endogenous levels of ROS and DNA damage. Taken together, these findings provide pre-clinical data for future clinical evaluation of ATM inhibitors as a neoadjuvant/adjuvant in combination with radiation therapy in prostate cancer patients harbouring PTEN mutations.
Collapse
|
27
|
Hao T, Gan YH. ΔNp63α promotes the expression and nuclear translocation of PTEN, leading to cisplatin resistance in oral cancer cells. Am J Transl Res 2020; 12:6187-6203. [PMID: 33194023 PMCID: PMC7653557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Pan-histone deacetylase (HDAC) inhibitors can induce the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein. However, the underlying mechanism by which this occurs remains unclear. In this study, we show that pan-HDAC inhibitors, including trichostatin A, suberoylanilide hydroxamic acid, and sodium butyrate, were able to induce PTEN mRNA and protein expression via the acetylation of the transcription factor ΔNp63α by inhibiting HDAC1 and HDAC3. ΔNp63α enhanced PTEN promoter activity by binding two newly identified recognition sites on it. Unfortunately, the inhibition of HDAC1 or HDAC3 failed to activate PTEN, as knockdown of HDAC1 inhibited both membrane-bound and nuclear PTEN, and knockdown of HDAC3 only induced cytoplasmic PTEN. Furthermore, the overexpression of ΔNp63α downregulated membrane-bound PTEN but enhanced the nuclear translocation of PTEN, leading to the cisplatin resistance of oral cancer cells. PTEN accumulated in the nuclei of cancerous cells and normal cells when ΔNp63α was highly expressed in specimens from patients with squamous cell carcinoma of the tongue. However, inhibiting either HDAC1 or HDAC6 prevented the nuclear translocation of PTEN and attenuated cisplatin resistance. These results suggest that chemotherapeutic inhibitors of HDAC1 or HDAC6, together with cisplatin, might improve outcomes for patients with squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Ting Hao
- Central Laboratory, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
- Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
- Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| |
Collapse
|
28
|
Adaku N, Park HB, Spakowicz DJ, Tiwari MK, Strobel SA, Crawford JM, Rogers FA. A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma. JOURNAL OF NATURAL PRODUCTS 2020; 83:1899-1908. [PMID: 32407116 DOI: 10.1021/acs.jnatprod.0c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disruption of the tumor suppressor PTEN, either at the protein or genomic level, plays an important role in human cancer development. The high frequency of PTEN deficiency reported across several cancer subtypes positions therapeutic approaches that exploit PTEN loss-of-function with the ability to significantly impact the treatment strategies of a large patient population. Here, we report that an endophytic fungus isolated from a medicinal plant produces an inhibitor of DNA double-strand-break repair. Furthermore, the novel alkaloid product, which we have named irrepairzepine (1), demonstrated synthetic lethal targeting in PTEN-deficient glioblastoma cells. Our results uncover a new therapeutic lead for PTEN-deficient cancers and an important molecular tool toward enhancing the efficacy of current cancer treatments.
Collapse
Affiliation(s)
- Nneoma Adaku
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
29
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
30
|
Ewald PW, Swain Ewald HA. The scope of viral causation of human cancers: interpreting virus density from an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180304. [PMID: 30955500 DOI: 10.1098/rstb.2018.0304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most known oncogenic viruses of humans use DNA as their genomic material. Research over the past quarter century has revealed that their oncogenicity results largely from direct interference with barriers to oncogenesis. In contrast to viruses that have been accepted causes of particular cancers, candidate viral causes tend to have fewer viral than cellular genomes in the tumours. These low viral loads have caused researchers to conclude that the associated viruses are not primary causes of the associated cancers. Consideration of differential survival, reproduction and infiltration of cells in a tumour suggest, however, that viral loads could be low even when viruses are primary causes of cancer. Resolution of this issue has important implications for human health because medical research tends to be effective at preventing and controlling infectious diseases. Mathematical models may clarify the problem and help guide future research by assessing whether low viral loads are likely outcomes of the differential survival, reproduction, and infiltration of cells in a tumour and, more generally, the extent to which viruses contribute to cancer. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville , Louisville, KY 40292 , USA
| | - Holly A Swain Ewald
- Department of Biology, University of Louisville , Louisville, KY 40292 , USA
| |
Collapse
|
31
|
Judd J, Lovas J, Huang GN. Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes. Sci Rep 2019; 9:18830. [PMID: 31827131 PMCID: PMC6906479 DOI: 10.1038/s41598-019-55027-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Adult mammalian cardiomyocytes exit the cell cycle during the neonatal period, commensurate with the loss of regenerative capacity in adult mammalian hearts. We established conditions for long-term culture of adult mouse cardiomyocytes that are genetically labeled with fluorescence. This technique permits reliable analyses of proliferation of pre-existing cardiomyocytes without complications from cardiomyocyte marker expression loss due to dedifferentiation or significant contribution from cardiac progenitor cell expansion and differentiation in culture. Using this system, we took a candidate gene approach to screen for fetal-specific proliferative gene programs that can induce proliferation of adult mouse cardiomyocytes. Using pooled gene delivery and subtractive gene elimination, we identified a novel functional interaction between E2f Transcription Factor 2 (E2f2) and Brain Expressed X-Linked (Bex)/Transcription elongation factor A-like (Tceal) superfamily members Bex1 and Tceal8. Specifically, Bex1 and Tceal8 both preserved cell viability during E2f2-induced cell cycle re-entry. Although Tceal8 inhibited E2f2-induced S-phase re-entry, Bex1 facilitated DNA synthesis while inhibiting cell death. In sum, our study provides a valuable method for adult cardiomyocyte proliferation research and suggests that Bex family proteins may function in modulating cell proliferation and death decisions during cardiomyocyte development and maturation.
Collapse
Affiliation(s)
- Justin Judd
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan Lovas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
32
|
Yan S, Liu H, Liu Z, Peng F, Jiang F, Li L, Fu R. CCN1 stimulated the osteoblasts via PTEN/AKT/GSK3β/cyclinD1 signal pathway in Myeloma Bone Disease. Cancer Med 2019; 9:737-744. [PMID: 31769620 PMCID: PMC6970049 DOI: 10.1002/cam4.2608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 11/05/2022] Open
Abstract
BACKGROUNDS Myeloma-related bone disease (MBD) is a common complication of multiple myeloma (MM), which can both decrease life quality and influence the prognosis of the patients. We have found that CCN1 stimulated proliferation and differentiation of osteoblasts in MM in vitro and in vivo, while its mechanism still remains unknown. METHOD Bone marrow mononuclear cells were collected from MM patients and differentiated into the osteoblasts. After co-culture with CCN1 in vitro, the intracellular signaling antibody array and western blot were performed to explore the signaling pathway. Furthermore, GSK3β inhibitor TWS119 was used to check the pathway of CCN1 might have on osteoblasts in vitro. RESULTS For the protein array kit, the expressions of GSK3β, 4E-BP1, and PTEN are decreased in CCN1 group. For western blots, the CCN1 group also has lower expression comparing to the control group in PTEN (P = .031). Meanwhile p-AKT and cyclinD1 levels have increased in the CCN1 group (P = .002, P = .039). After adding TWS119 as another group, western blot was performed again to verify the pathway. For upstream proteins PTEN and p-AKT, TWS119 group has higher expression level compared to that in CCN1 group (P = .003, P = .001). And for downstream protein cyclinD1, TWS119 group also presented higher level than the control group (P = .02). CCN1 could have almost the same effect on GSK3β as the specific inhibitor TWS119 had. CONCLUSIONS CCN1 can stimulate osteoblasts through PTEN/AKT/GSK3β/cyclinD1 pathway in MBD, which has the potential to be a novel therapy of MBD.
Collapse
Affiliation(s)
- Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China.,Tianjin Medical University, Tianjin, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
33
|
Tan YH, Shudo T, Yoshida T, Sugiyama Y, Si JY, Tsukano C, Takemoto Y, Kakizuka A. Ellagic acid, extracted from Sanguisorba officinalis, induces G1 arrest by modulating PTEN activity in B16F10 melanoma cells. Genes Cells 2019; 24:688-704. [PMID: 31495058 DOI: 10.1111/gtc.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
In Chinese medicine, herbal medicine is commonly used to treat individuals suffering from many types of diseases. We thus expected that some herbal medicines would contain promising compounds for cancer chemotherapy. Indeed, we found that Sanguisorba officinalis extracts strongly inhibit the growth of B16F10 melanoma cells, and we identified ellagic acid (EA) as the responsible ingredient. B16F10 cells treated with EA exhibited strong G1 arrest accompanied by accumulation of p53, followed by inactivation of AKT. Addition of a PTEN inhibitor, but not a p53 inhibitor, abrogated the EA-induced AKT inactivation and G1 arrest. The PTEN inhibitor also diminished EA-induced p53 accumulation. Furthermore, EA apparently increased the protein phosphatase activity of PTEN, as demonstrated by the reduced phosphorylation level of FAK, a protein substrate of PTEN. Furthermore, an in vitro PTEN phosphatase assay on PIP3 showed the direct modulation of PTEN activity by EA. These results suggest that EA functions as an allosteric modulator of PTEN, enhancing its protein phosphatase activity while inhibiting its lipid phosphatase activity. It is notable that a combination of EA and cisplatin, a widely used chemotherapy agent, dramatically enhanced cell death in B16F10 cells, suggesting a promising strategy in chemotherapy.
Collapse
Affiliation(s)
- Yi Hsun Tan
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshiyuki Shudo
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoki Yoshida
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuma Sugiyama
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Jia Ying Si
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chihiro Tsukano
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Yoshiji Takemoto
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep 2019; 20:4235-4243. [PMID: 31545428 PMCID: PMC6797992 DOI: 10.3892/mmr.2019.10668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin-proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
35
|
Montalto FI, Giordano F, Chiodo C, Marsico S, Mauro L, Sisci D, Aquila S, Lanzino M, Panno ML, Andò S, De Amicis F. Progesterone Receptor B signaling Reduces Breast Cancer Cell Aggressiveness: Role of Cyclin-D1/Cdk4 Mediating Paxillin Phosphorylation. Cancers (Basel) 2019; 11:E1201. [PMID: 31426542 PMCID: PMC6721542 DOI: 10.3390/cancers11081201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Progesterone-Receptor (PR) positivity is related with an enhanced response to breast cancer therapy, conversely cyclin D1 (CD1) is a retained marker of poor outcome. Herein, we demonstrate that hydroxyprogesterone (OHPg) through progesterone receptor B (PR-B) reduces breast cancer cell aggressiveness, by targeting the cytoplasmic CD1. Specifically, OHPg diminishes CD1 expression by a transcriptional regulation due to the recruitment of PR-B at a canonical half-PRE site of the CD1 promoter, together with HDAC1, determining a chromatin conformation less prone for gene transcription. CD1, together with its kinase partner Cdk4, regulates cell migration and metastasis, through the association with key components of focal adhesion, such as Paxillin (Pxn). Kaplan-Meier analysis shows that low Pxn expression was associated with increased distant metastasis-free survival in luminal A PR+ breast carcinomas. Interestingly, OHPg treatment reduced Pxn content in T47-D and MCF-7 cells; besides, the interaction between endogenous cytoplasmic CD1/Cdk4 with Pxn was reduced. This was consistent with the reduction of p-Ser83Pxn levels, crucially causing the delay in cell migration and a concomitant inhibition of Rac1 activity and p-PAK. Collectively, these findings support the role of PR-B in breast epithelial cell integrity and reinforce the importance in targeting PR-B as a potential strategy to restrict breast tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Stefania Marsico
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Diego Sisci
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Saveria Aquila
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marilena Lanzino
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
| | - Francesca De Amicis
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
| |
Collapse
|
36
|
Qiu K, Xie Q, Jiang S, Lin T. Silencing of DJ-1 reduces proliferation, invasion, and migration of papillary thyroid cancer cells in vitro, probably by increase of PTEN expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2046-2055. [PMID: 31934026 PMCID: PMC6949646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
AIMS To explore the function of DJ-1 on cell proliferation, migration, and invasion in human papillary thyroid carcinoma (PTC) cells. MATERIALS AND METHODS DJ-1 was knocked out by siRNA in K1 and TPC-1 cells and the efficiency of siRNA was examined by qRT-PCR and western blot. Cell proliferation, cell cycle, migration, and invasion were measured by CCK-8 assay, flow cytometry, colony formation assay and trans-well assay, respectively. RESULTS K1 and TPC-1 cells that were transfected with siRNA of DJ-1 had significantly lower expression levels of DJ-1 mRNA and protein. Down-regulation of DJ-1 significantly suppressed the cell proliferation, migration, and invasion. siRNA-mediated knock-down of DJ-1 increased the number of cells in the G0/G1 phase but reduced it in the S phase, while the G2/M phase was not affected. Moreover, the expression level of PTEN (Phosphatase and Tensin Homolog, PTEN) was found up-regulated in DJ-1-null cells. CONCLUSIONS This work suggested that DJ-1 implicated in cell proliferation, migration, and invasion of papillary thyroid cancer cells, possibly by the DJ-1/PTEN/PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Kai Qiu
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Qingji Xie
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Shan Jiang
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Ting Lin
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| |
Collapse
|
37
|
Loeuillard E, Fischbach SR, Gores GJ, Ilyas SI. Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:982-992. [PMID: 29627364 PMCID: PMC6177316 DOI: 10.1016/j.bbadis.2018.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with a poor overall prognosis. There is a critical need to develop effective targeted therapies for the treatment of this lethal disease. In an effort to address this challenge, preclinical in vivo studies have become paramount in understanding CCA carcinogenesis, progression, and therapy. Various CCA animal models exist including carcinogen-based models in which animals develop CCA after exposure to a carcinogen, genetically engineered mouse models in which genetic changes are induced in mice leading to CCA, murine syngeneic orthotopic models, as well as xenograft tumors derived from xenotransplantation of CCA cells, organoids, and patient-derived tissue. Each type has distinct advantages as well as shortcomings. In the ideal animal model of CCA, the tumor arises from the biliary tract in an immunocompetent host with a species-matched tumor microenvironment. Such a model would also be time-efficient, recapitulate the genetic and histopathological features of human CCA, and predict therapeutic response in humans. Recently developed biliary tract transduction and orthotopic syngeneic transplant mouse models encompass several of these elements. Herein, we review the different animal models of CCA, their advantages and deficiencies, as well as features which mimic human CCA.
Collapse
Affiliation(s)
- Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Samantha R Fischbach
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
38
|
Yang X, Zhao C, Bamunuarachchi G, Wang Y, Liang Y, Huang C, Zhu Z, Xu D, Lin K, Senavirathna LK, Xu L, Liu L. miR-193b represses influenza A virus infection by inhibiting Wnt/β-catenin signalling. Cell Microbiol 2019; 21:e13001. [PMID: 30650225 PMCID: PMC6459727 DOI: 10.1111/cmi.13001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chunling Zhao
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lan Xu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
39
|
The Role of RB in Prostate Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:301-318. [PMID: 31900914 DOI: 10.1007/978-3-030-32656-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.
Collapse
|
40
|
Macrophage Cytokines Enhance Cell Proliferation of Normal Prostate Epithelial Cells through Activation of ERK and Akt. Sci Rep 2018; 8:7718. [PMID: 29769604 PMCID: PMC5955920 DOI: 10.1038/s41598-018-26143-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophage infiltrations (inflammation) are associated with prostate disorders such as prostatitis, prostatic hyperplasia and prostate cancer. All prostate disorders have elevated cell proliferation, and are initiated from normal prostate epithelial cells. To date, the mechanism of how macrophages regulate normal prostate epithelial cell proliferation remains largely unknown. Using a 3D co-culture system, we here show that Raw 264.7 macrophages increased cell proliferation of normal prostate epithelial PZ-HPV-7 cells. In addition, these Raw 264.7 macrophages expressed higher levels of Ym1 and CD206. We further identify macrophage-secreted cytokines including CCL3, IL-1ra, osteopontin, M-CSF1 and GDNF as mediators for potentiating PZ-HPV-7 cell proliferation in 3D. All these cytokines differentially activated ERK and Akt. Blockade of both kinases through their inhibitors hindered macrophage-induced cell proliferation of PZ-HPV-7 cells. Hence, our data provide mechanistic insight of how inflammation may contribute to development of prostatic diseases at a very early stage through augment of cell proliferation of normal prostate epithelial cells.
Collapse
|
41
|
Tang YC, Ho SC, Tan E, Ng AWT, McPherson JR, Goh GYL, Teh BT, Bard F, Rozen SG. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer. Breast Cancer Res 2018; 20:22. [PMID: 29566768 PMCID: PMC5863852 DOI: 10.1186/s13058-018-0949-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. Methods To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. Results The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Conclusions Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors. Electronic supplementary material The online version of this article (10.1186/s13058-018-0949-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yew Chung Tang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Szu-Chi Ho
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Elisabeth Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - John R McPherson
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Germaine Yen Lin Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Bin Tean Teh
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
42
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 PMCID: PMC11481865 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Ferreira DM, Neves TJ, Lima LGCA, Alves FA, Begnami MD. Prognostic implications of the phosphatidylinositol 3-kinase/Akt signaling pathway in oral squamous cell carcinoma: overexpression of p-mTOR indicates an adverse prognosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41241-017-0046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Kelsey I, Zbinden M, Byles V, Torrence M, Manning BD. mTORC1 suppresses PIM3 expression via miR-33 encoded by the SREBP loci. Sci Rep 2017; 7:16112. [PMID: 29170467 PMCID: PMC5701013 DOI: 10.1038/s41598-017-16398-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling. PIM3 expression is suppressed in cells with loss of the tuberous sclerosis complex (TSC) tumor suppressors, which exhibit growth factor-independent activation of mTORC1, and in the mouse liver upon feeding-induced activation of mTORC1. Inhibition of mTORC1 with rapamycin induces PIM3 transcript and protein levels in a variety of settings. Suppression of PIM3 involves the sterol regulatory element-binding (SREBP) transcription factors SREBP1 and 2, whose activation and mRNA expression are stimulated by mTORC1 signaling. We find that PIM3 repression is mediated by miR-33, an intronic microRNA encoded within the SREBP loci, the expression of which is decreased with rapamycin. These results demonstrate that PIM3 is induced upon mTORC1 inhibition, with potential implications for the effects of mTORC1 inhibitors in TSC, cancers, and the many other disease settings influenced by aberrant mTORC1 signaling.
Collapse
Affiliation(s)
- Ilana Kelsey
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie Zbinden
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vanessa Byles
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Torrence
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
45
|
Georgescu MM, Gagea M, Cote G. NHERF1/EBP50 Suppresses Wnt-β-Catenin Pathway-Driven Intestinal Neoplasia. Neoplasia 2017; 18:512-23. [PMID: 27566107 PMCID: PMC5018097 DOI: 10.1016/j.neo.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
NHERF1/EBP50, an adaptor molecule that interacts with β-catenin, YAP, and PTEN, has been recently implicated in the progression of various human malignancies, including colorectal cancer. We report here that NHERF1 acts as a tumor suppressor in vivo for intestinal adenoma development. NHERF1 is highly expressed at the apical membrane of mucosa intestinal epithelial cells (IECs) and serosa mesothelial cells. NHERF1-deficient mice show overall longer small intestine and colon that most likely could be attributed to a combination of defects, including altered apical brush border of absorbtive IECs and increased number of secretory IECs. NHERF1 deficiency in Apc(Min/+) mice resulted in significantly shorter animal survival due to markedly increased tumor burden. This resulted from a moderate increase of the overall tumor density, more pronounced in females than males, and a massive increase in the number of large adenomas in both genders. The analysis of possible pathways controlling tumor size showed upregulation of Wnt-β-catenin pathway, higher expression of unphosphorylated YAP, and prominent nuclear expression of cyclin D1 in NHERF1-deficient tumors. Similar YAP changes, with relative decrease of phosphorylated YAP and increase of nuclear YAP expression, were observed as early as the adenoma stages in the progression of human colorectal cancer. This study discusses a complex role of NHERF1 for intestinal morphology and presents indisputable evidence for its in vivo tumor suppressor function upstream of Wnt-β-catenin and Hippo-YAP pathways.
Collapse
Affiliation(s)
- Maria-Magdalena Georgescu
- Department of Pathology and Translational Pathobiology, Louisiana State University, Shreveport, LA, 71103, USA.
| | - Mihai Gagea
- Department of Veterinary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gilbert Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
46
|
He C, Duan S, Dong L, Wang Y, Hu Q, Liu C, Forrest ML, Holzbeierlein JM, Han S, Li B. Characterization of a novel p110β-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 2017; 77:1187-1198. [PMID: 28631436 PMCID: PMC5527967 DOI: 10.1002/pros.23377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Our previous studies demonstrated that the class IA PI3K/p110β is critical in castration-resistant progression of prostate cancer (CRPC) and that targeting prostate cancer with nanomicelle-loaded p110β-specific inhibitor TGX221 blocked xenograft tumor growth in nude mice, confirming the feasibility of p110β-targeted therapy for CRPCs. To improve TGX221's aqueous solubility, in this study, we characterized four recently synthesized TGX221 analogs. METHODS TGX221 analog efficacy were examined in multiple prostate cancer cell lines with the SRB cell growth assay, Western blot assay for AKT phosphorylation and cell cycle protein levels. Target engagement with PI3K isoforms was evaluated with cellular thermal shift assay. PI3K activity was determined with the Kinase-Glo Plus luminescent kinase assay. Cell cycle distribution was evaluated with flow cytometry after propidium iodide staining. RESULTS As expected, replacing either one of two major functional groups in TGX221 by more hydrophilic groups dramatically improved the aqueous solubility (about 40-fold) compared to TGX221. In the CETSA assay, all the analogs dramatically shifted the melting curve of p110β protein while none of them largely affected the melting curves of p110α, p110γ, or Akt proteins, indicating target-specific engagement of these analogs with p110β protein. However, functional evaluation showed that only one of the analogs BL140 ubiquitously inhibited AKT phosphorylation in all CRPC cell lines tested with diverse genetic abnormalities including AR, PTEN, and p53 status. BL140 was superior than GSK2636771 (IC50 5.74 vs 20.49 nM), the only p110β-selective inhibitor currently in clinical trials, as revealed in an in vitro Kinase-Glo assay. Furthermore, BL140 exhibited a stronger inhibitory effect than GSK2636771 on multiple CRPC cell lines including a MDV3100-resistant C4-2B cell subline, indicating BL140 elimination of MDV3100 resistance. Mechanistic studies revealed that BL140 blocked G1 phase cell cycle entry by reducing cyclin D1 but increasing p27kip1 protein levels. CONCLUSION These studies suggested that BL140 is a promising p110β-specific inhibitor with multiple superb properties than GSK2636771 worthy for further clinical development.
Collapse
Affiliation(s)
- Chenchen He
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Shaofeng Duan
- Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Liang Dong
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Yifen Wang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Qingting Hu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Chunjing Liu
- Department of Pharmaceutical Chemistry, The University of Kansas School of Pharmacy, Lawrence, KS 66045
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas School of Pharmacy, Lawrence, KS 66045
| | | | - Suxia Han
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
| | - Benyi Li
- Department of Medical Oncology, The First Affiliated Hospital, Xi’An Jiaotong University School of Medicine, Xi’An 710061, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Pharmaceutical College, Henan University, Kaifeng 475004, China
| |
Collapse
|
47
|
Khalid A, Hussain T, Manzoor S, Saalim M, Khaliq S. PTEN: A potential prognostic marker in virus-induced hepatocellular carcinoma. Tumour Biol 2017. [DOI: 10.1177/1010428317705754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ayesha Khalid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tabinda Hussain
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Saalim
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saba Khaliq
- University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
48
|
Brandmaier A, Hou SQ, Shen WH. Cell Cycle Control by PTEN. J Mol Biol 2017; 429:2265-2277. [PMID: 28602818 DOI: 10.1016/j.jmb.2017.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity.
Collapse
Affiliation(s)
- Andrew Brandmaier
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sheng-Qi Hou
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
49
|
Liu Y, Qi X, Zeng Z, Wang L, Wang J, Zhang T, Xu Q, Shen C, Zhou G, Yang S, Chen X, Lu F. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci Rep 2017; 7:2796. [PMID: 28584302 PMCID: PMC5459841 DOI: 10.1038/s41598-017-03070-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
The p53 mutation and altered Pten expression are two most common genetic events in Hepatitis B virus (HBV) infection related hepatocellular carcinoma (HCC). To confirm the causative role of p53 and Pten somatic mutation in HCC development, we established CRISPR/Cas9-mediated somatic gene disruption via hydrodynamic tail vein injection, allowing for in vivo targeting p53 and Pten simultaneously in adult HBV transgenic mice. Here we demonstrated that the utility of this approach resulted in macroscopic liver tumors as early as 4 months' post injection and most tumors harbored both p53 and Pten loss-of-function alterations. Immunohistochemical (IHC) and histopathology analysis demonstrated that the tumors were positive for Glutamine synthetase (GS), a marker of HCC and accompanied with prominent lipid accumulation. The study here indicated that CRISPR/Cas9-mediated p53 and Pten somatic mutation accelerated hepatocarcinogenesis in adult HBV transgenic mice. This method also provides a fast and convenient system for generating mouse model of HCC with HBV infection characteristics.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Xuewei Qi
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Zhenzhen Zeng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Lu Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Jie Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Ting Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Qiang Xu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Congle Shen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Guangde Zhou
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, 100039, P.R. China
| | - Shaomin Yang
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Xiangmei Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China.
| | - Fengmin Lu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| |
Collapse
|
50
|
He M, Jiang L, Li B, Wang G, Wang J, Fu Y. Oxymatrine suppresses the growth and invasion of MG63 cells by up-regulating PTEN and promoting its nuclear translocation. Oncotarget 2017; 8:65100-65110. [PMID: 29029415 PMCID: PMC5630315 DOI: 10.18632/oncotarget.17783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
Studies demonstrated that reduced PTEN levels are associated with poor prognoses of osteosarcoma. The nuclear localization of PTEN is important for its tumor suppressive function. Equally importantly, PTEN is the most significant negative regulator of PI3K/Akt signaling cascade, the constitutively activated pathway in osteosarcoma. In our study MG63 cells and U2OS cells were treated with the indicated concentrations of oxymatrine, in order to find the inhibition of oxymatrine to cells. We found the functions of oxymatrine on proliferation, apoptosis and invasion in cells. Oxymatrine could increase the expression of PTEN and promote its nuclear translocation in MG63 cells. In addition, oxymatrine could induce cell cycle arrest in G1 phase and apoptosis of MG63 cells. The migration and invasion potential of MG63 cells were also markedly inhibited by oxymatrine. Oxymatrine could suppress the growth and invasion of MG63 human osteosarcoma cells by up-regulating PTEN and promoting its nuclear translocation and inhibiting PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Linlin Jiang
- Department of Electrotheropy, Shenyang Medical College Affiliated Central Hospital, Shenyang, Liaoning, People's Republic of China
| | - Bin Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guangbin Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jiashi Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yonghui Fu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|