1
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 PMCID: PMC12124708 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji’nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
2
|
Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Laca Megyesi Š, Mačeková Z, Takáčová G, Moreno-Borrallo A, Ruiz-Hernandez E, Isakov L, Takáč P. Do We Know Enough About the Safety Profile of Silver Nanoparticles in Oncology? A Focus on Novel Methods and Approaches. Int J Mol Sci 2025; 26:5344. [PMID: 40508153 PMCID: PMC12155435 DOI: 10.3390/ijms26115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/22/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Silver nanoparticles (AgNPs) have emerged as promising agents in cancer diagnostics and/or therapy, demonstrating a lot of possible pharmacological actions. However, understanding the pharmacokinetics and safety profiles of nanoparticles, which is crucial for their clinical application, still raises many questions. Studies indicate that AgNPs can accumulate in tumour tissues, improving drug delivery and specificity. However, their interaction with biological systems necessitates thorough safety evaluations. Classical methods for assessing AgNPs' safety include cytotoxicity assays, genotoxicity tests, and histopathological examinations. However, novel techniques are emerging, such as advanced imaging and biomarker analysis, offering more precise toxicity assessments. Prediction models, including computational simulations and in silico analyses, are being developed to forecast AgNPs' toxicity profiles. These models aim to reduce reliance on animal testing and expedite the evaluation process. To mitigate potential risks associated with nanoparticle-based therapies, strategies such as surface modification, controlled release systems, and targeted delivery are being explored. These methods aim to enhance therapeutic efficacy while minimizing adverse effects. The main aim of this review article is to describe AgNPs from the point of view of their pharmacokinetic/toxicokinetic profile in the light of modern knowledge. Special attention will be given to novel methods for assessing the safety and toxicity profiles of AgNPs, providing insights into their interactions with cancer therapies and their potential clinical applications.
Collapse
Affiliation(s)
- Peter Takáč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Štefánia Laca Megyesi
- Department of Pharmacy and Social Pharmacy, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Zuzana Mačeková
- Department of Pharmacy and Social Pharmacy, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
| | - Gabriela Takáčová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University and L. Pasteur University Hospital in Košice, 040 01 Košice, Slovakia
| | - Almudena Moreno-Borrallo
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 YY50 Dublin, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 YY50 Dublin, Ireland
| | - Luka Isakov
- BioSense Institute, University of Novi Sad, Dr. Zorana Đinđića 1, 21102 Novi Sad, Serbia
| | - Peter Takáč
- Department of Physical Medicine, Balneology and Medical Rehabilitation, Faculty of Medicine, Pavol Jozef Šafárik University and L. Pasteur University Hospital in Košice, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Wang X, Wang Q, Wang H, Cai G, An Y, Liu P, Zhou H, Chen HW, Ji S, Ye J, Wang J. Small protein ERSP encoded by LINC02870 promotes triple negative breast cancer progression via IRE1α/XBP1s activation. Cell Death Differ 2025; 32:1014-1025. [PMID: 39799200 PMCID: PMC12162857 DOI: 10.1038/s41418-025-01443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown. In this study, we identified a previously undocumented small protein encoded by the lncRNA LINC02870. This protein is localized at the endoplasmic reticulum (ER) and participates in ER stress, thus, we named it the endoplasmic reticulum stress protein (ERSP). ERSP was highly expressed in TNBC tissues, and elevated LINC02870 content was correlated with poor prognosis in TNBC patients. Loss of ERSP inhibited TNBC growth and metastasis both in vitro and in vivo. The pro-oncogenic effects of ERSP could be attributed to its selective activation of the IRE1α/XBP1s branch. ERSP enhances the unfolded protein response (UPR) by interacting with XBP1s, facilitating the nuclear accumulation of XBP1s, thereby promoting the expression of ER stress-related genes. These findings highlight the regulatory role of the lncRNA-encoded protein ERSP in ER stress and suggest that it is a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xiaolu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yana An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510006, China.
| | - Jiantao Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
Hermanson JN, Barny LA, Plate L. Development of an Adaptive, Economical, and Easy-to-Use SP3-TMT Automated Sample Preparation Workflow for Quantitative Proteomics. J Proteome Res 2025. [PMID: 40423998 DOI: 10.1021/acs.jproteome.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Liquid handling robots have been developed to automate various steps of the bottom-up proteomics workflow, however, protocols for the generation of isobarically labeled peptides remain limited. Existing methods often require costly specialty devices and are constrained by fixed workflows. To address this, we developed a cost-effective, flexible, automated sample preparation protocol for TMT-labeled peptides using the Biomek i5 liquid handler (Beckman Coulter). Our approach leverages single-pot solid-phase-enhanced sample preparation with paramagnetic beads to streamline protein cleanup and digestion. The protocol also allows for adjustment of trypsin concentration and peptide-to-TMT ratio to increase throughput and reduce costs, respectively. We compared our automated and manual 18-plex TMT-Pro labeling workflows by monitoring select protein markers of the unfolded protein response in pharmacologically activatable, engineered cell lines. Overall, the automated protocol demonstrated equivalent performance in peptide and protein identifications, digestion and labeling efficiency, and an enhancement in the dynamic range of TMT quantifications. Compared to the manual method, the Biomek protocol significantly reduces hands-on time and minimizes sample handling errors. The 96-well format additionally allows for the number of TMT reactions to be scaled up quickly without a significant increase in user interaction. Our optimized automated workflow enhances throughput, reproducibility, and cost-effectiveness, making it a valuable tool for high-throughput proteomics studies.
Collapse
Affiliation(s)
- Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Sedlacek J. Impact of proteostasis workload on sensitivity to proteasome inhibitors in multiple myeloma. Clin Exp Med 2025; 25:176. [PMID: 40418254 DOI: 10.1007/s10238-025-01713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Genomic alterations and enormous monoclonal immunoglobulin production cause multiple myeloma to heavily depend on proteostasis mechanisms, including protein folding and degradation. These findings support the use of proteasome inhibitors for treating multiple myeloma and mantle cell lymphoma. Myeloma treatment has evolved, especially with the availability of new drugs, such as proteasome inhibitors, into therapeutic strategies for both frontline and relapsed/refractory disease settings. However, proteasome inhibitors are generally not effective enough to cure most patients. Natural resistance and eventual acquired resistance led to relapsed/refractory disease and poor prognosis. Advances in the understanding of cellular proteostasis and the development of innovative drugs that also target other proteostasis network components offer opportunities to exploit the intrinsic vulnerability of myeloma cells. This review outlines recent findings on the molecular mechanisms regulating cellular proteostasis pathways, as well as resistance, sensitivity, and escape strategies developed against proteasome inhibitors and provides a rationale and examples for novel combinations of proteasome inhibitors with FDA-approved drugs and investigational drugs targeting the NRF1 (NFE2L1)-mediated proteasome bounce-back response, redox homeostasis, heat shock response, unfolding protein response, autophagy, and VCP/p97 to increase proteotoxic stress, which can improve the efficacy of antimyeloma therapy based on proteasome inhibitors.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic.
| |
Collapse
|
6
|
Han Y, Dai J, Cheng J, He Y, Zhao C, Li R, Zhang Y, Zhang L, Zhou T, Shi Y. Cadmium induces autophagy via IRE1 signaling pathway activated by Ca 2 + in GC-2spd cells. Reprod Toxicol 2025; 135:108950. [PMID: 40398541 DOI: 10.1016/j.reprotox.2025.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Cadmium (Cd), an environmental toxicant, accumulates in the human body and damages the male reproductive system. To investigate the molecular mechanisms underlying Cd-induced reproductive toxicity, we used GC-2spd cells and treated them with CdCl2. Additionally, we added 2-APB (an inhibitor of the IP3R) and STF-083010 (an inhibitor of IRE1) to investigate whether they could ameliorate Cd-induced reproductive toxicity. Confocal microscopy and flow cytometry confirmed that CdCl2-treated GC-2spd cells displayed imbalance of calcium homeostasis, with upregulation of the expression of the IP3R, a key pathway for endoplasmic reticulum (ER) Ca2+ release. Furthermore, the ER stress (ERS) effector protein IRE1 expression was also increased, suggesting that Cd activated ERS and the IRE1 pathway by disrupting calcium homeostasis. Previous studies have shown that ERS induces autophagy. We performed the MDC assay to detect autophagosome formation, revealing increased expression of autophagy-related proteins LC3-II/LC3-I and Beclin-1 in response to Cd treatment. In contrast, treatment with 2-APB and STF-083010 inhibited autophagy and mitigated cell death. This inhibitory effect may be due to 2-APB blocking IP3R-mediated Ca2+ release, alleviating imbalance of calcium homeostasis, while STF-083010 inhibits IRE1, restoring ER homeostasis and reducing autophagy. These findings suggest that imbalance of calcium homeostasis activates the IRE1 pathway-mediated ERS, leading to excessive autophagy and male reproductive toxicity. Conversely, the addition of 2-APB and STF-083010 reversed these effects, synergistically restoring intracellular Ca2+ homeostasis and inhibiting ERS to promote cell health. This study provides a new therapeutic strategy for Cd-induced male reproductive disorders.
Collapse
Affiliation(s)
- Yue Han
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Jinxin Cheng
- Jiang'an District Center for Disease Prevention and Control in Wuhan, China
| | - Yan He
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Chengkun Zhao
- Ezhou centers for Disease Prevention and Control, China.
| | - Rui Li
- Central China Normal University, China
| | - Yaqin Zhang
- Geriatric Hospital Affiliated with Wuhan University of Science and Technology, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
7
|
Sun J, Lee K, Kutseikin S, Guerrero A, Rius B, Madhavan A, Buasakdi C, Cheong KN, Chatterjee P, Rosen DA, Yoon L, Ardejani MS, Mendoza A, Rosarda JD, Saez E, Kelly JW, Wiseman RL. Identification of a Selective Pharmacologic IRE1/XBP1s Activator with Enhanced Tissue Exposure. ACS Chem Biol 2025; 20:993-1003. [PMID: 40231944 DOI: 10.1021/acschembio.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) has emerged as a promising strategy to mitigate etiologically diverse diseases. Despite this promise, few compounds are available to selectively activate IRE1/XBP1s signaling to probe the biologic and therapeutic implications of this pathway in human disease. Recently, we identified the compound IXA4 as a highly selective activator of protective IRE1/XBP1s signaling. While IXA4 has proven useful for increasing IRE1/XBP1s signaling in cultured cells and mouse liver, the utility of this compound is restricted by its limited activity in other tissues. To broaden our ability to pharmacologically interrogate the impact of IRE1/XBP1s signaling in vivo, we sought to identify IRE1/XBP1s activators with greater tissue activity than IXA4. We reanalyzed 'hits' from the high throughput screen used to identify IXA4, selecting compounds from structural classes not previously pursued. We then performed global RNAseq to confirm that these compounds showed transcriptome-wide selectivity for IRE1/XBP1s activation. Functional profiling revealed compound IXA62 as a selective IRE1/XBP1s activator that reduced Aβ secretion from CHO7PA2 cells and enhanced glucose-stimulated insulin secretion from rat insulinoma cells, mimicking the effects of IXA4 in these assays. IXA62 robustly and selectively activated IRE1/XBP1s signaling in the liver of mice dosed compound intraperitoneally or orally. In treated mice, IXA62 showed broader tissue activity, relative to IXA4, inducing expression of IRE1/XBP1s target genes in additional tissues such as kidney and lung. Collectively, our results designate IXA62 as a selective IRE1/XBP1s signaling activating compound with enhanced tissue activity, which increases our ability to pharmacologically probe the biologic significance and potential therapeutic utility of enhancing adaptive IRE1/XBP1s signaling in vivo.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Adrian Guerrero
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Bibiana Rius
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Aparajita Madhavan
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Ka-Neng Cheong
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Priyadarshini Chatterjee
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Dorian A Rosen
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alejandra Mendoza
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Enrique Saez
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037, United States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Barrios D, Bachhav B, Carlos-Alcalde W, Llanos CD, Zhou W, Segatori L. Feedback-responsive cell factories for dynamic modulation of the unfolded protein response. Nat Commun 2025; 16:4106. [PMID: 40316547 PMCID: PMC12048557 DOI: 10.1038/s41467-025-58994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
Engineering cell factories that support the production of large quantities of protein therapeutics remains a significant biomanufacturing challenge. The overexpression of secretory proteins causes proteotoxic stress, affecting cell viability and protein productivity. Proteotoxic stress leads to the activation of the Unfolded Protein Response (UPR), a series of signal transduction pathways regulating protein quality control mechanisms aimed at restoring homeostasis. Sustained UPR activation culminates with the induction of apoptosis. Current strategies for enhancing the production of therapeutic proteins have focused on the deregulated modulation of key components of the UPR. These strategies have resulted in limited and often protein-specific improvements as they may lead to adaptation and cell toxicity and do not account for natural population heterogeneities. We report here feedback-responsive cell factories that sense proteotoxic stress and, in response, modulate the UPR to enhance stress attenuation and delay cell death, addressing the limitations of current strategies. We demonstrate that our cell engineering approach enables dynamic UPR modulation upon proteotoxic stress. The sense-and-respond systems that mediate dynamic UPR modulation enhance the production of the therapeutic enzyme tissue plasminogen activator and the bispecific antibody blinatumomab. Our feedback-responsive cell factories provide an innovative strategy for dynamically adjusting the innate cellular stress response and enhancing therapeutic protein manufacturing.
Collapse
Affiliation(s)
- Daniela Barrios
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Bhagyashree Bachhav
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | | | - Carlos D Llanos
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Wenchang Zhou
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Lenders M, Rudolph E, Brand E. Impact of ER stress and the unfolded protein response on Fabry disease. EBioMedicine 2025; 115:105733. [PMID: 40300326 DOI: 10.1016/j.ebiom.2025.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder caused by pathogenic missense and nonsense variants in the α-galactosidase A (GLA) gene, leading to absent or reduced enzyme activity. The resulting lysosomal accumulation of the substrate globotriaosylceramide leads to progressive renal failure, cardiomyopathy with (malignant) cardiac arrhythmias and progressive heart failure as well as recurrent strokes, which significantly limits the life expectancy of patients affected with FD. There is increasing evidence that pathogenic GLA missense variants as well as formally benign GLA variants can cause retention in the endoplasmic reticulum (ER), resulting in ER stress, which in turn triggers an unfolded protein response (UPR) leading to cellular dysregulation including inflammation, irreversible cell damage, and apoptosis. This review aims to provide an update on the pathogenetic significance of ER stress and UPR in FD, current treatment options, including pharmaceutical and chemical chaperones, and an outlook on current research and future treatment options in FD.
Collapse
Affiliation(s)
- Malte Lenders
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany.
| | - Elisa Rudolph
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Centre (IFAZ), University Hospital Muenster, Muenster, Germany
| |
Collapse
|
10
|
Sharma A, Heffernan LM, Hoang K, Jeyaseelan S, Beavers WN, Abuaita BH. Activation of the endoplasmic reticulum stress regulator IRE1α compromises pulmonary host defenses. Cell Rep 2025; 44:115632. [PMID: 40315054 DOI: 10.1016/j.celrep.2025.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
The endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) is associated with lung infections where innate immune cells are drivers for progression and resolution ammatory cytokinesflammation. Yet, the role of IRE1α in pulmonary innate immune host defense during acute respiratory infection remains unexplored. Here, we found that activation of IRE1α in infected lungs compromises immunity against methicillin-resistant Staphylococcus aureus (MRSA)-induced primary and secondary pneumonia. Moreover, activation of IRE1α in MRSA-infected lungs and alveolar macrophages (AMs) leads to exacerbated production of inflammatory mediators followed by cell death. Ablation of myeloid IRE1α or global IRE1α inhibition confers protection against MRSA-induced pneumonia with improved survival, bacterial clearance, cytokine reduction, and lung injury. In addition, loss of myeloid IRE1α protects mice against MRSA-induced secondary to influenza pneumonia by promoting AM survival. Thus, activation of IRE1α is detrimental to pneumonia, and therefore, it shows potential as a target to control excessive unresolved lung inflammation.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Linda M Heffernan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ky Hoang
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; Mass Spectrometry Resource Center, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Basel H Abuaita
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| |
Collapse
|
11
|
Jia M, Fu Z, Ye C, Xu W, Liu J, Wu C, Yan H. Targeting MTHFD2 alters metabolic homeostasis and synergizes with bortezomib to inhibit multiple myeloma. Cell Death Discov 2025; 11:201. [PMID: 40280919 PMCID: PMC12032361 DOI: 10.1038/s41420-025-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. While recent therapies have significantly improved survival in MM patients, drug resistance and refractory phenomenon underscores the urgent need of new therapeutic targets. Methylenetetrahydrofolate dehydrogenase 2(MTHFD2) has been widely reported as a potential and promising anti-cancer target, but its role and underlying mechanisms remain unclear in MM. We aimed to investigate the biologic function and mechanisms of MTHFD2 in MM. First, we demonstrated that MTHFD2 is overexpressed in MM and associated with poor prognosis. We then illustrated that targeting MTHFD2 exhibits anti-MM effects in vitro and in vivo. Mechanistically, targeting MTHFD2 inhibited glycolysis and mitochondrial respiration in MM cells. For the nonmetabolic function of MTHFD2, we found that MTHFD2 knockdown affected the unfolded protein response (UPR) via decreasing expression of the splice form of X-box binding protein 1 (XBP1s). Importantly, the level of MTHFD2 in MM cells was associated with sensitivity of bortezomib, and targeting MTHFD2 synergizes with bortezomib against MM in vitro and in vivo. In summary, our innovative findings suggest that MTHFD2 is a promising target for MM, targeting it alters metabolic homeostasis of MM and synergizes with bortezomib to inhibit MM.
Collapse
Affiliation(s)
- Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Cruz-Rodríguez M, Chevet E, Muñoz-Pinedo C. Glucose sensing and the unfolded protein response. FEBS J 2025. [PMID: 40272086 DOI: 10.1111/febs.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
The unfolded protein response (UPR) is activated primarily upon alteration of protein folding in the endoplasmic reticulum (ER). This occurs under physiological situations that cause an abrupt increase in protein synthesis, or under redox and metabolic stresses. Among the latter, hyperglycemia and glucose scarcity have been identified as major modulators of UPR signaling. Indeed, the first mammalian UPR effector, the glucose-regulated protein 78, also known as BiP, was identified in response to glucose deprivation. Tunicamycin, arguably the most commonly used drug to induce ER stress responses in vitro and in vivo, is an inhibitor of N-glycosylation. We compile here evidence that the UPR is activated upon physiological and pathological conditions that alter glucose levels and that this is mostly mediated by alterations of protein N-glycosylation, ATP levels, or redox balance. The three branches of the UPR transduced by PERK/ATF4, IRE1/XBP1s, and ATF6, as well as non-canonical ER sensors such as SCAP/SREBP, sense ER protein glycosylation status driven by glucose and other glucose-derived metabolites. The outcomes of UPR activation range from restoring protein N-glycosylation and protein folding flux to stimulating autophagy, organelle recycling, and mitochondrial respiration, and in some cases, cell death. Anabolic responses to glucose levels are also stimulated by glucose through components of the UPR. Therefore, the UPR should be further studied as a potential biomarker and mediator of glucose-associated diseases.
Collapse
Affiliation(s)
- Mabel Cruz-Rodríguez
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Eric Chevet
- INSERM U1242, Univ Rennes, Centre de Lutte contre le Cancer Eugène Marquis, France
| | - Cristina Muñoz-Pinedo
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
13
|
Moreews M, Karlsson MCI. Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders. Semin Immunol 2025; 78:101954. [PMID: 40267701 DOI: 10.1016/j.smim.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
Collapse
Affiliation(s)
- Marion Moreews
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
14
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
15
|
Dabsan S, Zur G, Abu-Freha N, Sofer S, Grossman-Haham I, Gilad A, Igbaria A. Cytosolic and endoplasmic reticulum chaperones inhibit wt-p53 to increase cancer cells' survival by refluxing ER-proteins to the cytosol. eLife 2025; 14:e102658. [PMID: 40202782 PMCID: PMC11981610 DOI: 10.7554/elife.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or 'ERCYS'). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gali Zur
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Naim Abu-Freha
- Institute of Gastroenterology and Liver Diseases, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the NegevBeer ShevaIsrael
| | - Shahar Sofer
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Grossman-Haham
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ayelet Gilad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
16
|
Yan W, Deng J, Zhang J, Gao K, Yi H, Zhang J, Zhang F, Wang J, Jiang Y, Wu Y. Effects of the Small-Molecule ISRIB on the Rapid and Efficient Myelination of Oligodendrocytes in Human Stem Cell-Derived Cerebral Organoids in Patients With Leukoencephalopathy With Vanishing White Matter. CNS Neurosci Ther 2025; 31:e70398. [PMID: 40296303 PMCID: PMC12037694 DOI: 10.1111/cns.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
INTRODUCTION Leukoencephalopathy with vanishing white matter (VWM) is a rare genetic disorder caused by mutations in any one of the EIF2B1-5, which encode subunits of eukaryotic translation initiation factor 2B (eIF2B). Previous studies suggested that the dysfunction of astrocytes played a central role in the pathogenic mechanism of VWM. In addition, eIF2B participates in the unfolded protein response(UPR) by coordinating the integrated stress response (ISR). Higher susceptibility to endoplasmic reticulum stress (ERS) and abnormal overactivation of the unfolded protein response (UPR) were found in VWM, which led to logical deterioration and exacerbation of cell death. There are currently no specific treatments available for VWM. AIM Previous studies have successfully constructed three-dimensional brain organoids that can be used to study the development of neuronal cells during brain development. In this study, we aimed to develop a more rapid and efficient brain organoid model that would produce mature astrocytes, oligodendrocytes, and myelin within 8 weeks. The small-molecule ISR inhibitor (ISRIB) is a specific eIF2B activator by inhibiting the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Thus, ISRIB is used on eIF2B mutant organoids to determine its potential as a therapeutic approach for VWM. RESULTS We constructed EIF2B4 and EIF2B5 mutants as well as wild-type rapid myelinating oligodendrocyte brain organoids using human induced pluripotent stem cells (iPSCs). We observed mature astrocytes, oligodendrocytes, and myelin within 8 weeks, greatly shortening the culture period. Compared with the wild type, mutant organoids displayed a smaller size and contained increased immature and dysfunctional astrocytes, oligodendrocytes, and sparse myelin. Abnormal overactivation of the UPR pathway was also present in mutant cerebral organoids. Additionally, we found that the maturation and function of these cells in mutant organoids were significantly improved after ISRIB treatment, which also inhibited hyperactivation of the unfolded protein response (UPR) signaling pathway. CONCLUSIONS Our study established a rapid myelinating oligodendrocyte brain model in VWM for the first time, providing a more effective and tractable platform for further study of this condition and other white matter diseases. Furthermore, our findings suggested that ISRIB may have potential as a clinical treatment for VWM.
Collapse
Affiliation(s)
- Wei Yan
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Jiong Deng
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Jie Zhang
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Kai Gao
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Huan Yi
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Junjiao Zhang
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Fan Zhang
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Jingmin Wang
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Yuwu Jiang
- Children's Medical CentrePeking University First HospitalBeijingChina
| | - Ye Wu
- Children's Medical CentrePeking University First HospitalBeijingChina
| |
Collapse
|
17
|
Li J, Liu J, Tang Y, Zhang H, Zhang Y, Zha X, Zhao X. Role of C/EBP Homologous Protein (CHOP) and Nupr1 Interaction in Endoplasmic Reticulum Stress-Induced Apoptosis of Lens Epithelial Cells. Mol Biotechnol 2025; 67:1628-1640. [PMID: 38771421 PMCID: PMC11928426 DOI: 10.1007/s12033-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Junyi Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yongying Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| | - Xueying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
18
|
Chen Y, Wang J, Jin CX, Wu H, He W, Wu ZX, Wang ZT, Hong YZ, Yang ZH, Yang S, Song FB, Luo J, Sun JL. Study on the potential impact of sustained high temperatures during non-breeding season on largemouth bass. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101501. [PMID: 40184882 DOI: 10.1016/j.cbd.2025.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
With the growing scale of largemouth bass breeding, the demand for seedlings is increasing. As global temperatures rise, it is crucial to study the effects of high temperature their regulatory mechanisms in largemouth bass. In this study, we simulated a high water temperature (28 °C) in the non-breeding season in aquaculture ponds for 28 days to examine the growth, reproduction, metabolism, apoptosis, and methylation markers in largemouth bass; transcriptome analysis was also performed. The results showed no significant difference in body weight between male and female largemouth bass. However, the high-temperature exposed females had reduced growth hormone (GH) and estradiol (E2) levels and elevated cortisol levels. They also showed upregulated expression of AR, cyp19a, igf, fshβ, and lhβ in ovarian tissue. Transcriptomic comparisons between temperature treatments revealed 963 differentially expressed genes in females and 700 in males. Both the ECM receptor interaction and PPAR signaling pathways were significantly enriched. High-temperature enhanced the lipid metabolism process through the PPAR signaling pathway. High temperatures increased oxidative stress in females, which corresponded with increases in SOD, CAT, and GSH-Px, likely to counteract the excess reactive oxygen species. Moreover, endoplasmic reticulum stress was activated, indicated by increases in IRE1 and ATF6, leading to the upregulation of apoptosis-related genes and ovarian cell apoptosis. At high temperature, 5-MC%, demethylase, and methyltransferase were not different in females, while 5-MC% and methyltransferase were higher and demethylase was lower in males. In summary, sustained high temperature affected ovarian development by altering the expression of hormone and gonad related genes and inducing endoplasmic reticulum stress leading to ovarian cell apoptosis. However, low demethylase activity and high genome-wide methylation in the test is suggested that high temperatures may affect testis development via methylation, potentially impacting offspring production.
Collapse
Affiliation(s)
- Yue Chen
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641112, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Wei He
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Xian Wu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Tong Wang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yi Zhou Hong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zi Hang Yang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Barny LA, Hermanson JN, Garcia SK, Stauffer PE, Plate L. Dissecting Branch-Specific Unfolded Protein Response Activation in Drug-Tolerant BRAF-Mutant Melanoma using Data-Independent Acquisition Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644425. [PMID: 40196682 PMCID: PMC11974750 DOI: 10.1101/2025.03.20.644425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cells rely on the Unfolded Protein Response (UPR) to maintain ER protein homeostasis (proteostasis) when faced with elevated levels of misfolded and aggregated proteins. The UPR is comprised of three main branches-ATF6, IRE1, and PERK-that coordinate the synthesis of proteins involved in folding, trafficking, and degradation of nascent proteins to restore ER function. Dysregulation of the UPR is linked to numerous diseases, including neurodegenerative disorders, cancer, and diabetes. Despite its importance, identifying UPR targets has been challenging due to their heterogeneous induction, which varies by cell type and tissue. Additionally, defining the magnitude and range of UPR-regulated genes is difficult because of intricate temporal regulation, feedback between UPR branches, and extensive cross-talk with other stress-signaling pathways. To comprehensively identify UPR-regulated proteins and determine their branch specificity, we developed a data-independent acquisition (DIA) liquid-chromatography mass spectrometry (LC-MS) pipeline. Our optimized workflow improved identifications of low-abundant UPR proteins and leveraged an automated SP3-based protocol on the Biomek i5 liquid handler for label-free peptide preparation. Using engineered stable cell lines that enable selective pharmacological activation of each UPR branch without triggering global UPR activation, we identified branch-specific UPR proteomic targets. These targets were subsequently applied to investigate proteomic changes in multiple patient-derived BRAF-mutant melanoma cell lines treated with a BRAF inhibitor (PLX4720, i.e., vemurafenib). Our findings revealed differential regulation of the XBP1s branch of the UPR in the BRAF-mutant melanoma cell lines after PLX4720 treatment, likely due to calcium activation, suggesting that the UPR plays a role as a non-genetic mechanism of drug tolerance in melanoma. In conclusion, the validated branch-specific UPR proteomic targets identified in this study provide a robust framework for investigating this pathway across different cell types, drug treatments, and disease conditions in a high-throughput manner.
Collapse
Affiliation(s)
- Lea A Barny
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Sarah K Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
| | - Philip E Stauffer
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Lars Plate
- Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
20
|
Makdissi S, Loudhaief R, George S, Weller T, Salim M, Malick A, Mu Y, Parsons BD, Di Cara F. Alterations in ether phospholipids metabolism activate the conserved UPR-Xbp1- PDIA3/ERp60 signaling to maintain intestinal homeostasis. iScience 2025; 28:111946. [PMID: 40034858 PMCID: PMC11872617 DOI: 10.1016/j.isci.2025.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Intestinal epithelium regeneration and homeostasis must be tightly regulated. Alteration of epithelial homeostasis is a major contributing factor to diseases such as colorectal cancer and inflammatory bowel diseases. Many pathways involved in epithelial regeneration have been identified, but more regulators remain undiscovered. Metabolism has emerged as an overlooked regulator of intestinal epithelium homeostasis. Using the model organism Drosophila melanogaster, we found that ether lipids metabolism is required to maintain intestinal epithelial homeostasis. Its dysregulation in intestinal progenitors causes the activation of the unfolded protein response of the endoplasmic reticulum (UPR) that triggers Xbp1 and upregulates the conserved disulfide isomerase PDIA3/ERp60. Activation of the Xbp1-ERp60 signaling causes Jak/Stat-mediated increase in progenitor cells, compromising epithelial barrier function and survival in males but not females. This study identified ether lipids-PDIA3/ERp60 as a key regulator of intestinal progenitor homeostasis in health that, if altered, causes pathological conditions in the intestinal epithelium.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Rihab Loudhaief
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Smitha George
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Tabatha Weller
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Minna Salim
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ahsan Malick
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brendon D. Parsons
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry -University of Alberta, Edmonton, AB, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| |
Collapse
|
21
|
Valenzuela V, Becerra D, Astorga JI, Fuentealba M, Diaz G, Bargsted L, Chacón C, Martinez A, Gozalvo R, Jackson K, Morales V, Heras ML, Tamburini G, Petrucelli L, Sardi SP, Plate L, Hetz C. Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD. Mol Ther 2025; 33:1226-1245. [PMID: 39799393 PMCID: PMC11897772 DOI: 10.1016/j.ymthe.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress. Here, we provide evidence of suboptimal activation of the UPR in ALS/FTD models under experimental ER stress. To artificially engage the UPR, we intracerebroventricularly administrated adeno-associated viruses (AAVs) to express the active form of XBP1 (XBP1s) in the nervous system of ALS/FTD models. XBP1s expression improved motor performance and extended lifespan of mutant SOD1 mice, associated with reduced protein aggregation. AAV-XBP1s administration also attenuated disease progression in models of TDP-43 and C9orf72 pathogenesis. Proteomic profiling of spinal cord tissue revealed that XBP1s overexpression improved proteostasis and modulated the expression of a cluster of synaptic and cell morphology proteins. Our results suggest that strategies to improve ER proteostasis may serve as a pan-therapeutic strategy to treat ALS/FTD.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Daniela Becerra
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José I Astorga
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Matías Fuentealba
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | - Guillermo Diaz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leslie Bargsted
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carlos Chacón
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Romina Gozalvo
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Vania Morales
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Macarena Las Heras
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Giovanni Tamburini
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
22
|
Shishova A, Ivin Y, Gladneva E, Fominykh K, Dyugay I, Gmyl A. Modulation of Ire1-Xbp1 Defense Pathway in Encephalomyocarditis Virus-Infected HeLa Cells. Viruses 2025; 17:360. [PMID: 40143290 PMCID: PMC11946305 DOI: 10.3390/v17030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by the IRE1 (inositol-requiring enzyme 1) protein, which possesses protein kinase and RNase activities that facilitate the unconventional cytoplasmic splicing of XBP1 mRNA, leading to the upregulation of the XBP1 transcription factor. In this study, we demonstrate that Encephalomyocarditis Virus (Cardiovirus rueckerti) is able to suppress IRE1-dependent XBP1 activation. HeLa cells infection with EMCV resulted in the modulation of phosphorylated IRE1 levels throughout the infection cycle. Viral infection did not result in the accumulation of spliced XBP1 mRNA. Moreover, the addition of a chemical inducer of ER stress (dithiothreitol) to infected cells led to a markedly lower accumulation of spliced XBP1 mRNA as compared to the level of this mRNA in inducer-treated mock-infected cells. Thus, our results demonstrate the ability of picornaviruses to modulate another defensive activity of the host cell.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ekaterina Gladneva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| |
Collapse
|
23
|
Lucas D, Sarkar T, Niemeyer CY, Harnoss JC, Schneider M, Strowitzki MJ, Harnoss JM. IRE1 is a promising therapeutic target in pancreatic cancer. Am J Physiol Cell Physiol 2025; 328:C806-C824. [PMID: 39819023 DOI: 10.1152/ajpcell.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Denise Lucas
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Clara Y Niemeyer
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian C Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
24
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
25
|
Hermanson JN, Barny LA, Plate L. Development of an Adaptive, Economical, and Easy-to-Use SP3-TMT Automated Sample Preparation Workflow for Quantitative Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639731. [PMID: 40060590 PMCID: PMC11888279 DOI: 10.1101/2025.02.23.639731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Liquid handling robots have been developed to automate various steps of the bottom-up proteomics workflow, however, protocols for the generation of isobarically labeled peptides remain limited. Existing methods often require costly specialty devices and are constrained by fixed workflows. To address this, we developed a cost-effective, flexible, automated sample preparation protocol for TMT-labeled peptides using the Biomek i5 liquid handler. Our approach leverages Single-Pot Solid-Phase-Enhanced Sample Preparation (SP3) with paramagnetic beads to streamline protein cleanup and digestion. The protocol also allows for adjustment of trypsin concentration and peptide-to-TMT ratio to increase throughput and reduce costs, respectively. We compared our automated and manual 18-plex TMT-Pro labeling workflows by monitoring select protein markers of the Unfolded Protein Response (UPR) in pharmacologically activatable, engineered cell lines. Overall, the automated protocol demonstrated equivalent performance in peptide and protein identifications, digestion and labeling efficiency, and an enhancement in the dynamic range of TMT quantifications. Compared to the manual method, the Biomek protocol significantly reduces hands-on time and minimizes sample handling errors. The 96-well format additionally allows for the number of TMT reactions to be scaled up quickly without a significant increase in user interaction. Our optimized automated workflow enhances throughput, reproducibility, and cost-effectiveness, making it a valuable tool for high-throughput proteomics studies.
Collapse
Affiliation(s)
- Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University Nashville, Tennessee
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University Nashville, Tennessee
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University Nashville, Tennessee
- Program in Chemical and Physical Biology, Vanderbilt University Nashville, Tennessee
- Department of Chemistry, Vanderbilt University Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Chang TD, Chen YJ, Luo JL, Zhang C, Chen SY, Lin ZQ, Zhang PD, Shen YX, Tang TX, Li H, Dong LM, Tang ZH, Chen D, Wang YM. Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes. Immunotargets Ther 2025; 14:99-121. [PMID: 39990274 PMCID: PMC11846490 DOI: 10.2147/itt.s492334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
As important innate immune cells, natural killer (NK) cells play an essential role in resisting pathogen invasion and eliminating transformed cells. However, the hypoxic microenvironment caused by disease conditions is an important physicochemical factor that impairs NK cell function. With the increasing prominence of NK cells in immunotherapy, there has been a surge of interest in developing biological means through which NK cells may overcome the inhibition caused by hypoxia in disease conditions. Although the effects of hypoxic conditions in shaping the functions of NK cells have been increasingly recognized and investigated, reviews have been scantly. A comprehensive understanding of how NK cells adapt to hypoxia can provide valuable insights into how the functional capacity of NK cells may be restored. This review focuses on the functional alterations of NK cells in response to hypoxia. It delineates the mechanisms by which NK cells adapt to hypoxia at the transcriptional, metabolic, translational levels. Furthermore, given the complexity of the hypoxic microenvironment, we also elucidated the effects of key hypoxic metabolites on NK cells. Finally, this review discusses the current clinical therapies derived from targeting hypoxic NK cells. The study of NK cell adaptation to hypoxia has yielded new insights into immunotherapy. These insights may lead to development of novel strategies to improve the treatment of infectious diseases and cancer.
Collapse
Affiliation(s)
- Te-Ding Chang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Jie Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jia-Liu Luo
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Cong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shun-Yao Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Qiang Lin
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pei-Dong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - You-Xie Shen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ting-Xuan Tang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hui Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Ming Dong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhao-Hui Tang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Deng Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Man Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
27
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
28
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
29
|
Ovejero S, Alibert L, Devin J, Cañeque T, Jacquier V, Romero A, Amar S, Abouladze M, de Paco EG, Gadacha OK, Requirand G, Robert N, Zellagui ML, de Boussac H, Cartron G, Chiche J, Ricci JE, Herbaux C, Rodriguez R, Moreaux J, Bret C. Ironomycin induces mantle cell lymphoma cell death by targeting iron metabolism addiction. Theranostics 2025; 15:2834-2851. [PMID: 40083931 PMCID: PMC11898298 DOI: 10.7150/thno.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Mantle-cell lymphoma (MCL) remains an aggressive and incurable cancer. Accumulating evidence reveals that abnormal iron metabolism plays an important role in tumorigenesis and in cancer progression of many tumors. Based on these data, we searched to identify alterations of iron homeostasis in MCL that could be exploited to develop novel therapeutic strategies. Methods: Analysis of the iron metabolism gene expression profile of a cohort of patients with MCL enables the identification of patients with a poor outcome who might benefit from an iron homeostasis-targeted therapy. We analyzed the therapeutic interest of ironomycin, known to sequester iron in the lysosome and to induce ferroptosis. Results: In a panel of MCL cell lines, ironomycin inhibited MCL cell growth at nanomolar concentrations compared with conventional iron chelators. Ironomycin treatment resulted in ferroptosis induction and decreased cell proliferation rate, with a reduced percentage of cells in S-phase together with Ki67 and Cyclin D1 downregulation. Ironomycin treatment induced DNA damage response, accumulation of DNA double-strand breaks, and activated the Unfolded Protein Response (UPR). We validated the therapeutic interest of ironomycin in primary MCL cells of patients. Ironomycin demonstrated a significant higher toxicity in MCL cells compared to normal cells from the microenvironment. We tested the therapeutic interest of combining ironomycin with conventional treatments used in MCL. We identified a synergistic effect when ironomycin is combined with Ibrutinib, Bruton's tyrosine kinase (BTK) inhibitor, associated with a strong inhibition of B-Cell receptor (BCR) signaling. Conclusion: Altogether, these data underline that MCL patients my benefit from targeting iron homeostasis using ironomycin alone or in combination with conventional MCL treatments.
Collapse
Affiliation(s)
- Sara Ovejero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Laura Alibert
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Julie Devin
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Valentin Jacquier
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Andrea Romero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Salome Amar
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Johanna Chiche
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Charles Herbaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Raphael Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Jerome Moreaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Caroline Bret
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| |
Collapse
|
30
|
Yamazaki A, Omura I, Kamikawa Y, Hide M, Tanaka A, Kaneko M, Imaizumi K, Saito A. Unfolded protein response modulates Tyrosinase levels and melanin production during melanogenesis. J Dermatol Sci 2025; 117:36-44. [PMID: 39818444 DOI: 10.1016/j.jdermsci.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity. OBJECTIVE This study investigates the regulatory mechanisms of melanin production, focusing on ER stress and the ER stress-induced response. METHODS B16 mouse melanoma cells induced to undergo melanogenesis were treated with unfolded protein response (UPR) inhibitors or chemical chaperones, and their effects on melanogenesis were analyzed. RESULTS During melanogenesis in B16 cells stimulated by alpha-melanocyte-stimulating hormone (α-MSH), ER stress and UPR activation occurred, accompanied by increased Tyrosinase protein. Reducing IRE1 and ATF6 branch activity lowered melanin levels, while chemical chaperone treatment restored melanin production and increased Tyrosinase levels. CONCLUSION UPR activation, linked to elevated Tyrosinase levels, influences melanin production during melanogenesis. Modulating UPR can regulate melanin synthesis and provides a potential new approach for treating pigmentation disorders.
Collapse
Affiliation(s)
- Akari Yamazaki
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Kaneko
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
31
|
Qiao Z, Nguyen LC, Yang D, Dann C, Thomas DM, Henn M, Valdespino A, Swenson CS, Oakes SA, Rosner MR, Moellering RE. Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors. Nat Chem Biol 2025; 21:247-255. [PMID: 39215099 DOI: 10.1038/s41589-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein-protein and protein-DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF-DNA binding.
Collapse
Affiliation(s)
- Zeyu Qiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Long C Nguyen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Dongbo Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Madeline Henn
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Andrea Valdespino
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Scott A Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
32
|
Barton BM, Son F, Verma A, Bal SK, Tang Q, Wang R, Umphred-Wilson K, Khan R, Trichka J, Dong H, Lentucci C, Chen X, Chen Y, Hong Y, Duy C, Elemento O, Melnick AM, Cao J, Chen X, Glimcher LH, Adoro S. IRE1α-XBP1 safeguards hematopoietic stem and progenitor cells by restricting pro-leukemogenic gene programs. Nat Immunol 2025; 26:200-214. [PMID: 39789376 DOI: 10.1038/s41590-024-02063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway. Transcriptome analysis and genome-wide mapping of XBP1 targets in HSPCs identified an '18-gene signature' of XBP1-repressed β-catenin targets that were highly expressed in acute myeloid leukemia (AML) cases with worse prognosis. Accordingly, IRE1α deficiency cooperated with a myeloproliferative oncogene in HSPCs to cause a lethal AML in mice, while genetic induction of XBP1 suppressed the leukemia stem cell program and activity of patient-derived AML cells. Thus, IRE1α-XBP1 signaling safeguards the integrity of the blood system by restricting pro-leukemogenic programs in HSPCs.
Collapse
Affiliation(s)
- Brendan M Barton
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Francheska Son
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Akanksha Verma
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Saswat Kumar Bal
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rehan Khan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Claudia Lentucci
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xi Chen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Olivier Elemento
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jin Cao
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Huang H, Charron TL, Fu M, Dunn M, Jones DM, Kumar P, Kulkarni A, Konopka G, Shakkottai VG. Resilience to Endoplasmic Reticulum Stress Mitigates Calcium-Dependent Membrane Hyperexcitability Underlying Late Disease Onset in SCA6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635103. [PMID: 39975408 PMCID: PMC11838253 DOI: 10.1101/2025.01.27.635103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
An enduring puzzle in many inherited neurological disorders is the late onset of symptoms despite expression of function-impairing mutant protein early in life. We examined the basis for onset of impairment in Spinocerebellar ataxia type 6 (SCA6), a canonical late-onset neurodegenerative ataxia which results from a polyglutamine expansion in the voltage gated calcium channel, Cav2.1. Cerebellar Purkinje cell spiking abnormalities are seen concurrent with motor impairment in SCA6 mice but the basis for these changes in spiking is unknown. We identify endoplasmic reticulum (ER) calcium depletion as the cause for Purkinje cell spiking abnormalities and that the impairments in Purkinje cell spiking are unrelated to Cav2.1 ion-flux function. Further, intact inhibitory neurotransmission in the cerebellar cortex is necessary for Purkinje neurons to exhibit spiking abnormalities in SCA6 mice. Based on serial cerebellar transcriptome analysis, we define a mechanism of disease that is related to ER stress. Further, our studies support a model whereby proteotoxicity from misfolded mutant Cav2.1 is mitigated by a HSP90-dependent unfolded protein response (UPR) and that age-related breakdown of this response causes motor dysfunction and aberrant Purkinje cell spiking. Redundant pathways of the UPR mediate this resilience to ER stress. These studies elucidate a mechanism of resilience connecting aberrant proteostasis and calcium-dependent intrinsic membrane hyperexcitability to explain delayed disease onset more widely in age-dependent neurodegenerative disease. Significance Statement Advancing age is the single most important risk factor for neurodegenerative disease. Understanding how age intersects with genetic risk is therefore a critical challenge for neurodegenerative disease research. SCA6, a canonical late-onset degenerative cerebellar ataxia, results from a polyQ expansion in the voltage gated calcium channel, Cav2.1, encoded by CACNA1A . We define a mechanism of disease in SCA6 that is related to ER stress and unrelated to impaired calcium flux function of Cav2.1. Age-related decompensation of a HSP90-dependent unfolded protein response leads to disease onset. Mutant Cav2.1 misfolding as the basis for disease in SCA6 provides insight into a novel role for channelopathies to behave as proteinopathies and helps understand resilience to proteotoxicity more widely in adult-onset neurodegenerative disease.
Collapse
|
34
|
Williams MP, Wang YJ, Kang JQ, Perryman JH, Mu TW. GABRA1 frameshift variants impair GABA A receptor proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.28.625971. [PMID: 39651292 PMCID: PMC11623673 DOI: 10.1101/2024.11.28.625971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The gamma-aminobutyric acid type A receptor (GABAAR) is the most common inhibitory neurotransmitter-gated ion channel in the central nervous system. Pathogenic variants in genes encoding GABAAR subunits can cause receptor dysfunction and lead to genetic epilepsy. Frameshift variants in these genes can result in a premature termination codon, producing truncated receptor subunit variants. However, the pathogenic molecular mechanism as well as functional implications of these frameshift variants remains inadequately characterized. This study focused on four clinical frameshift variants of the α1 subunit of GABAAR (encoded by the GABRA1 gene): K401fs (c.1200del), S326fs (c.975del), V290fs (c.869_888del), and F272fs (c.813del). These variants result in the loss of one to three transmembrane helices, whereas wild type α1 has four transmembrane helices. Therefore, these variants serve as valuable models to evaluate membrane protein biogenesis and proteostasis deficiencies of GABAARs. In HEK293T cells, all four frameshift variants exhibit significantly reduced trafficking to the cell surface, resulting in essentially non-functional ion channels. However, the severity of proteostasis deficiency varied among these four frameshift variants, presumably due to their specific transmembrane domain deletions. The variant α1 subunits exhibited endoplasmic reticulum (ER) retention and activated the unfolded protein response (UPR) to varying extents. Our findings revealed that these frameshift variants of GABRA1 utilize overlapping yet distinct molecular mechanisms to impair proteostasis, providing insights into the pathogenesis of GABAAR-associated epilepsy.
Collapse
Affiliation(s)
- Marnie P. Williams
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jing-Qiong Kang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
35
|
Nie Q, Yang J, Zhou X, Li N, Zhang J. The Role of Protein Disulfide Isomerase Inhibitors in Cancer Therapy. ChemMedChem 2025; 20:e202400590. [PMID: 39319369 DOI: 10.1002/cmdc.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Protein disulfide isomerase (PDI) is a member of the mercaptan isomerase family, primarily located in the endoplasmic reticulum (ER). At least 21 PDI family members have been identified. PDI plays a key role in protein folding, correcting misfolded proteins, and catalyzing disulfide bond formation, rearrangement, and breaking. It also acts as a molecular chaperone. Dysregulation of PDI activity is thus linked to diseases such as cancer, infections, immune disorders, thrombosis, neurodegenerative diseases, and metabolic disorders. In particular, elevated intracellular PDI levels can enhance cancer cell proliferation, metastasis, and invasion, making it a potential cancer marker. Cancer cells require extensive protein synthesis, with disulfide bond formation by PDI being a critical producer. Thus, cancer cells have higher PDI levels than normal cells. Targeting PDI can induce ER stress and activate the Unfolded Protein Response (UPR) pathway, leading to cancer cell apoptosis. This review discusses the structure and function of PDI, PDI inhibitors in cancer therapy, and the limitations of current inhibitors, proposing especially future directions for developing new PDI inhibitors.
Collapse
Affiliation(s)
- Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Na Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
36
|
Bradley A, Le M, Park S, Kroeger H, Wiseman RL, Lee EJ, Lin JH. Dysregulation of Retinal and Photoreceptor Structural Integrity Genes in ATF6 -/- Retinal Organoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:401-407. [PMID: 39930229 DOI: 10.1007/978-3-031-76550-6_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
ATF6 is a key regulator of the unfolded protein response (UPR) pathway that maintains cellular homeostasis during ER stress. In people, loss of ATF6 function causes cone dysfunction, manifesting as achromatopsia (ACHM). Previously, we generated ACHM retinal organoids (ROs) from patient induced pluripotent stem cells (iPSCs) carrying mutant ATF6 variants and gene-edited ATF6-knockout (KO) human embryonic stem cells (hESCs). ACHM and ATF6-KO ROs both showed severe stunting of cone inner and outer segments. RNA-Seq analysis of ACHM 290-day-old ROs showed downregulated cone gene expression and dysregulated mitochondria and ER stress gene expression. Here, we analyzed RNA-Seq analysis of 203-day-old ATF6-KO ROs. In younger ROs, we found dysregulation of genes involved in retinal and photoreceptor structural integrity, including CRB1, EGFLAM, and VTN. In addition, we found dysregulation of ATF6 and UPR-regulated transcriptional signatures. Dysregulation of retinal and photoreceptor structural integrity genes may underlie the observed stunting of cone inner/outer segments in ATF6-achromatopsia patients.
Collapse
Affiliation(s)
- Allyssa Bradley
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Masako Le
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Soyeon Park
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Heike Kroeger
- Department of Cellular Biology, Franklin College of Arts and Sciences, Paul D. Coverdell Center for Biomedical Sciences, Athens, GA, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Eun-Jin Lee
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Jonathan H Lin
- Department of Ophthalmology, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- VA Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
37
|
Wilson A, McCormick C. Reticulophagy and viral infection. Autophagy 2025; 21:3-20. [PMID: 39394962 DOI: 10.1080/15548627.2024.2414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Alexa Wilson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
38
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
39
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
40
|
Kadry MO, Abdel-Megeed RM. Thioctic acid shield against lipopolysaccharide depression and endoplasmic reticulum stress: GR7M/Homer/ATF6 signaling. Future Sci OA 2024; 10:2422791. [PMID: 39584686 PMCID: PMC11591480 DOI: 10.1080/20565623.2024.2422791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/10/2024] [Indexed: 11/26/2024] Open
Abstract
Aim: Endoplasmic reticulum stress triggers neuronal unfolded protein accumulation, contributing to the pathophysiology of depression psychiatric illnesses.Materials & methods: The brain-derived neurotrophic factor (BDNF), metabotropic glutamate receptor type 7 (GRM7), phosphoinisitol kinase-3 (PIK3), serine/threonine kinase 1 (AKT) and Homer1 may afford an important signaling pathways in LPS induced depression rat model. Herein, thioctic acid, Burdock and propolis therapeutic index on lipopolysaccharide (LPS)-induced depression was monitored. BDNF/PI3K/GR7M/ATF6/CHOP/XBP/AKT/Homer-1 signaling pathways also opened a novel avenue in the integration of synaptic neurotransmission.Results: The aforementioned treatments elevated GR7M/BDNF/GABA gene expression meanwhile decreased reactive oxygen species generation (Malondialdehyde/glutathione reductase/Total antioxidant capacity) and reduced the expression of ATF6/CHOP/PI3K/AKT/XBP/Homer-1 post LPS elevation.Conclusion: Thioctic acid, propolis and Burdock are prospective therapeutic agents via GRM7/BDNF/AKT/PI3K/ATF6/XBP/homer -1 signaling pathways in LPS-induced depression.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic Chemistry Department, Giza, Egypt
| | | |
Collapse
|
41
|
Sang Y, Li B, Su T, Zhan H, Xiong Y, Huang Z, Wang C, Cong X, Du M, Wu Y, Yu H, Yang X, Ding K, Wang X, Miao X, Gong W, Wang L, Zhao J, Zhou Y, Liu W, Hu X, Sun Q. Visualizing ER-phagy and ER architecture in vivo. J Cell Biol 2024; 223:e202408061. [PMID: 39556340 PMCID: PMC11575016 DOI: 10.1083/jcb.202408061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024] Open
Abstract
ER-phagy is an evolutionarily conserved mechanism crucial for maintaining cellular homeostasis. However, significant gaps persist in our understanding of how ER-phagy and the ER network vary across cell subtypes, tissues, and organs. Furthermore, the pathophysiological relevance of ER-phagy remains poorly elucidated. Addressing these questions requires developing quantifiable methods to visualize ER-phagy and ER architecture in vivo. We generated two transgenic mouse lines expressing an ER lumen-targeting tandem RFP-GFP (ER-TRG) tag, either constitutively or conditionally. This approach enables precise spatiotemporal measurements of ER-phagy and ER structure at single-cell resolution in vivo. Systemic analysis across diverse organs, tissues, and primary cultures derived from these ER-phagy reporter mice unveiled significant variations in basal ER-phagy, both in vivo and ex vivo. Furthermore, our investigation uncovered substantial remodeling of ER-phagy and the ER network in different tissues under stressed conditions such as starvation, oncogenic transformation, and tissue injury. In summary, both reporter models represent valuable resources with broad applications in fundamental research and translational studies.
Collapse
Affiliation(s)
- Yongjuan Sang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boran Li
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tinglin Su
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hanyu Zhan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yue Xiong
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Zhiming Huang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Changjing Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Xiaoxia Cong
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wu
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Kezhi Ding
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhou
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
44
|
Shi H, Zhao Y. Astaxanthin inhibits apoptosis in a cell model of tauopathy by attenuating endoplasmic reticulum stress and unfolded protein response. Eur J Pharmacol 2024; 983:176962. [PMID: 39214273 DOI: 10.1016/j.ejphar.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of misfolded proteins is a common pathological characteristic shared by many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. The disruption of proteostasis triggers endoplasmic reticulum (ER) stress, during which the unfolded protein response (UPR) is initiated by the activation of protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6). These three branches of UPR signals act in concert to reduce the levels of abnormal proteins and restore ER homeostasis. However, the overactivation of UPR impairs cell function and induces apoptosis, which has been implicated in neurodegeneration. Astaxanthin is a xanthophyll carotenoid which has been shown to have neuroprotective effects in both cell and animal models; however, its effects on ER stress and UPR induced by disrupted proteostasis remain unclear. In this study, the effects of astaxanthin on ER stress and cytotoxicity were investigated in N2a cells stably expressing the pro-aggregant tau repeat domain carrying FTDP-17 mutation ΔK280 (Tau4RDΔK280). The results demonstrated that astaxanthin significantly inhibited Tau4RDΔK280-induced loss of cell viability and apoptosis, attenuating Tau4RDΔK280-induced caspase-3 activation and decrease of Bcl-2. Further studies revealed that astaxanthin treatment alleviated Tau4RDΔK280-induced ER stress and suppressed the activation of PERK, IRE1 and ATF6 signaling pathways. These findings suggested that astaxanthin might inhibit Tau4RDΔK280-induced cytotoxicity by attenuating UPR and ER stress. In addition, astaxanthin treatment resulted in a great reduction in the production of intracellular reactive oxygen species and a significant decrease in calcium influx induced by Tau4RDΔK280, which also contributed to the protective effects of astaxanthin against Tau4RDΔK280-induced cytotoxicity.
Collapse
Affiliation(s)
- Huahua Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
45
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
46
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
47
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 PMCID: PMC11698584 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D. Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
48
|
Mogollón García HD, de Andrade Ferrazza R, Ochoa JC, de Athayde FF, Vidigal PMP, Wiltbank M, Kastelic JP, Sartori R, Ferreira JCP. Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. Biol Res 2024; 57:76. [PMID: 39468655 PMCID: PMC11514973 DOI: 10.1186/s40659-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows. RESULTS Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses. CONCLUSIONS The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.
Collapse
Affiliation(s)
- Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
- Department of Genetic, Evolution, Microbiology and Immunology. Biology Institute, Campinas State University, Campinas, São Paulo, Brazil
- Computational Systems Biology Laboratory (CSBL), Institut Pasteur, University of São Paulo (USP), São Paulo, Brazil
| | | | - Julian Camilo Ochoa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
| | - Flávia Florencio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Milo Wiltbank
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, USA
| | | | - Roberto Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
| |
Collapse
|
49
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
50
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|