1
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
2
|
Sutherland BJ, Covello JM, Friend SE, Poley JD, Koczka KW, Purcell SL, MacLeod TL, Donovan BR, Pino J, González-Vecino JL, Gonzalez J, Troncoso J, Koop BF, Wadsworth SL, Fast MD. Host–parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Salmon lice ( Lepeophtheirus salmonis) are important ectoparasites of wild and farmed salmonids and cause major losses to the salmon farming industry throughout the Northern Hemisphere. With the emergence of resistance to several commonly used parasiticides, novel control strategies and integration of multiple treatment options are needed, including host immunostimulation. Here, we investigate the effects of a functional feed containing a peptidoglycan and nucleotide formulation on L. salmonis infection of Atlantic salmon ( Salmo salar) by characterizing lice infection levels, the expression of several host immune genes, and the parasite transcriptomic response to the immunostimulated host. Although initial infection intensities were low, the low dose (LD) immunostimulant diet reduced the total lice burden by 50% relative to controls. Immunostimulant fed hosts up-regulated interleukin-1β in the skin and spleen. This gene has been implicated in successful responses of several salmonid species to salmon lice but is typically not observed in Atlantic salmon, suggesting a favorable influence on the immune response. Lice infecting LD immunostimulated salmon overexpressed genes putatively involved in parasite immunity, including carboxylesterases, and underexpressed genes putatively involved in feeding (e.g., proteases). These lice response genes further improve the characterization of the transcriptome of the non-model parasite by identifying genes potentially involved in evading host immunity.
Collapse
Affiliation(s)
- Ben J.G. Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Jennifer M. Covello
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Sarah E. Friend
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Jordan D. Poley
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Kim W. Koczka
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Sara L. Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Tara L. MacLeod
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Bridget R. Donovan
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Jorge Pino
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | | | - Javier Gonzalez
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Jose Troncoso
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Ben F. Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Mark D. Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
3
|
Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, Lotto AA, Sacks H, Symonds ME, Budge H. Gene pathway development in human epicardial adipose tissue during early life. JCI Insight 2016; 1:e87460. [PMID: 27699231 DOI: 10.1172/jci.insight.87460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies in rodents and newborn humans demonstrate the influence of brown adipose tissue (BAT) in temperature control and energy balance and a critical role in the regulation of body weight. Here, we obtained samples of epicardial adipose tissue (EAT) from neonates, infants, and children in order to evaluate changes in their transcriptional landscape by applying a systems biology approach. Surprisingly, these analyses revealed that the transition to infancy is a critical stage for changes in the morphology of EAT and is reflected in unique gene expression patterns of a substantial proportion of thermogenic gene transcripts (~10%). Our results also indicated that the pattern of gene expression represents a distinct developmental stage, even after the rebound in abundance of thermogenic genes in later childhood. Using weighted gene coexpression network analyses, we found precise anthropometric-specific correlations with changes in gene expression and the decline of thermogenic capacity within EAT. In addition, these results indicate a sequential order of transcriptional events affecting cellular pathways, which could potentially explain the variation in the amount, or activity, of BAT in adulthood. Together, these results provide a resource to elucidate gene regulatory mechanisms underlying the progressive development of BAT during early life.
Collapse
Affiliation(s)
- Shalini Ojha
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham, United Kingdom
| | - Hernan P Fainberg
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham, United Kingdom
| | - Victoria Wilson
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham, United Kingdom
| | - Giuseppe Pelella
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre, School of Biosciences, The University of Nottingham, Nottingham, United Kingdom
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, The University of Nottingham, Nottingham, United Kingdom
| | - Attilio A Lotto
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Harold Sacks
- VA Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael E Symonds
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University Hospital, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 2015; 202:551-63. [PMID: 26627840 DOI: 10.1534/genetics.115.183715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.
Collapse
|
5
|
Durning SP, Flanagan-Steet H, Prasad N, Wells L. O-Linked β-N-acetylglucosamine (O-GlcNAc) Acts as a Glucose Sensor to Epigenetically Regulate the Insulin Gene in Pancreatic Beta Cells. J Biol Chem 2015; 291:2107-18. [PMID: 26598517 DOI: 10.1074/jbc.m115.693580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
The post-translational protein modification O-linked β-N-acetylglucosamine (O-GlcNAc) is a proposed nutrient sensor that has been shown to regulate multiple biological pathways. This dynamic and inducible enzymatic modification to intracellular proteins utilizes the end product of the nutrient sensing hexosamine biosynthetic pathway, UDP-GlcNAc, as its substrate donor. Type II diabetic patients have elevated O-GlcNAc-modified proteins within pancreatic beta cells due to chronic hyperglycemia-induced glucose overload, but a molecular role for O-GlcNAc within beta cells remains unclear. Using directed pharmacological approaches in the mouse insulinoma-6 (Min6) cell line, we demonstrate that elevating nuclear O-GlcNAc increases intracellular insulin levels and preserves glucose-stimulated insulin secretion during chronic hyperglycemia. The molecular mechanism for these observed changes appears to be, at least in part, due to elevated O-GlcNAc-dependent increases in Ins1 and Ins2 mRNA levels via elevations in histone H3 transcriptional activation marks. Furthermore, RNA deep sequencing reveals that this mechanism of altered gene transcription is restricted and that the majority of genes regulated by elevated O-GlcNAc levels are similarly regulated by a shift from euglycemic to hyperglycemic conditions. These findings implicate the O-GlcNAc modification as a potential mechanism for hyperglycemic-regulated gene expression in the beta cell.
Collapse
Affiliation(s)
- Sean P Durning
- From the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-1516 and
| | - Heather Flanagan-Steet
- From the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-1516 and
| | - Nripesh Prasad
- HudsonAlpha Institute of Biotechnology, Genomic Services Laboratory, Huntsville, Alabama 35806
| | - Lance Wells
- From the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-1516 and
| |
Collapse
|
6
|
Keating ST, Ziemann M, Okabe J, Khan AW, Balcerczyk A, El-Osta A. Deep sequencing reveals novel Set7 networks. Cell Mol Life Sci 2014; 71:4471-86. [PMID: 24875254 PMCID: PMC11113315 DOI: 10.1007/s00018-014-1651-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Methyl-dependent regulation of transcription has expanded from a traditional focus on histones to encompass transcription factor modulation. While the Set7 lysine methyltransferase is associated with pro-inflammatory gene expression in vascular endothelial cells, genome-wide regulatory roles remain to be investigated. From initial characterization of Set7 as specific for methyl-lysine 4 of H3 histones (H3K4m1), biochemical activity toward non-histone substrates has revealed additional mechanisms of gene regulation. RESULTS mRNA-Seq revealed transcriptional deregulation of over 8,000 genes in an endothelial model of Set7 knockdown. Gene ontology identified up-regulated pathways involved in developmental processes and extracellular matrix remodeling, whereas pathways regulating the inflammatory response as well as nitric oxide signaling were down-regulated. Chromatin maps derived from ChIP-Seq profiling of H3K4m1 identified several hundred loci with loss of H3K4m1 at gene regulatory elements associated with an unexpectedly subtle effect on gene expression. Transcription factor network analysis implicated six previously described Set7 substrates in mRNA-Seq changes, and we predict that Set7 post-translationally regulates other transcription factors associated with vascular endothelial gene expression through the presence of Set7 amino acid methylation motifs. CONCLUSION We describe a role for Set7 in regulating developmental pathways and response to stimuli (inflammation/immune response) in human endothelial cells of vascular origin. Set7-dependent gene expression changes that occurred independent of H3K4m1 may involve transcription factor lysine methylation events. The method of mapping measured transcriptional changes to transcription factors to identify putative substrates with strong associations to functional changes is applicable to substrate prediction for other broad-substrate histone modifiers.
Collapse
Affiliation(s)
- Samuel T. Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800 Australia
| | - Abdul Waheed Khan
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Aneta Balcerczyk
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
7
|
Wong KC, Li Y, Peng C, Zhang Z. SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles. ACTA ACUST UNITED AC 2014; 31:17-24. [PMID: 25192742 DOI: 10.1093/bioinformatics/btu604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MOTIVATION Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) measures the genome-wide occupancy of transcription factors in vivo. Different combinations of DNA-binding protein occupancies may result in a gene being expressed in different tissues or at different developmental stages. To fully understand the functions of genes, it is essential to develop probabilistic models on multiple ChIP-Seq profiles to decipher the combinatorial regulatory mechanisms by multiple transcription factors. RESULTS In this work, we describe a probabilistic model (SignalSpider) to decipher the combinatorial binding events of multiple transcription factors. Comparing with similar existing methods, we found SignalSpider performs better in clustering promoter and enhancer regions. Notably, SignalSpider can learn higher-order combinatorial patterns from multiple ChIP-Seq profiles. We have applied SignalSpider on the normalized ChIP-Seq profiles from the ENCODE consortium and learned model instances. We observed different higher-order enrichment and depletion patterns across sets of proteins. Those clustering patterns are supported by Gene Ontology (GO) enrichment, evolutionary conservation and chromatin interaction enrichment, offering biological insights for further focused studies. We also proposed a specific enrichment map visualization method to reveal the genome-wide transcription factor combinatorial patterns from the models built, which extend our existing fine-scale knowledge on gene regulation to a genome-wide level. AVAILABILITY AND IMPLEMENTATION The matrix-algebra-optimized executables and source codes are available at the authors' websites: http://www.cs.toronto.edu/∼wkc/SignalSpider.
Collapse
Affiliation(s)
- Ka-Chun Wong
- Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yue Li
- Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chengbin Peng
- Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhaolei Zhang
- Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada Department of Computer Science and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, K.S.A., Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bartling TR, Subbaram S, Clark RR, Chandrasekaran A, Kar S, Melendez JA. Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression. Free Radic Biol Med 2014; 74:99-107. [PMID: 24973648 PMCID: PMC4146650 DOI: 10.1016/j.freeradbiomed.2014.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/27/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022]
Abstract
Aberrant matrix metalloproteinase-1 (MMP-1) expression contributes to the pathogenesis of many degenerative disease processes that are associated with increased oxidative damage or stress. We and others have established that shifts in steady-state H2O2 production resulting from enforced antioxidant gene expression, senescence, or UV irradiation control MMP-1 expression. Here we establish that histone deacetylase-2 (HDAC2) protein levels and its occupancy of the MMP-1 promoter are decreased in response to enforced manganese superoxide dismutase (Sod2) expression. Inhibition of HDAC activity further accentuates the redox-dependent expression of MMP-1. Sod2-dependent decreases in HDAC2 are associated with increases in a proteasome-sensitive pool of ubiquitinylated HDAC2 and MMP-1-specific histone H3 acetylation. Sod2 overexpression also enhanced recruitment of Ets-1, c-Jun, c-Fos, and the histone acetyltransferase PCAF to the distal and proximal regions of the MMP-1 promoter. Furthermore, the Sod2-dependent expression of MMP-1 can be reversed by silencing the transcriptional activator c-Jun. All of the above Sod2-dependent alterations are largely reversed by catalase coexpression, indicating that the redox control of MMP-1 is H2O2-dependent. These findings identify a novel redox regulation of MMP-1 transcription that involves site-specific promoter recruitment of both activating factors and chromatin-modifying enzymes, which converge to maximally drive MMP-1 gene expression.
Collapse
Affiliation(s)
- Toni R Bartling
- College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA
| | - Sita Subbaram
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Ryan R Clark
- College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA
| | - Akshaya Chandrasekaran
- College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA
| | - Supriya Kar
- Pediatrics, Albany Medical College, Albany, NY 12208, USA
| | - J Andres Melendez
- College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA.
| |
Collapse
|
9
|
Shebzukhov YV, Horn K, Brazhnik KI, Drutskaya MS, Kuchmiy AA, Kuprash DV, Nedospasov SA. Dynamic changes in chromatin conformation at the TNF transcription start site in T helper lymphocyte subsets. Eur J Immunol 2013; 44:251-64. [PMID: 24009130 DOI: 10.1002/eji.201243297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) is one of the key primary response genes in the immune system that can be activated by a variety of stimuli. Previous analysis of chromatin accessibility to DNaseI demonstrated open chromatin conformation of the TNF proximal promoter in T cells. Here, using chromatin probing with restriction enzyme EcoNI and micrococcal nuclease we show that in contrast to the proximal promoter, the TNF transcription start site remains in a closed chromatin configuration in primary T helper (Th) cells, but acquires an open state after activation or polarization under Th1 and Th17 conditions. We further demonstrate that transcription factor c-Jun plays a pivotal role in the maintenance of open chromatin conformation at the transcription start site of the TNF gene.
Collapse
Affiliation(s)
- Yury V Shebzukhov
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Keating ST, El-Osta A. Transcriptional regulation by the Set7 lysine methyltransferase. Epigenetics 2013; 8:361-72. [PMID: 23478572 DOI: 10.4161/epi.24234] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Posttranslational histone modifications define chromatin structure and function. In recent years, a number of studies have characterized many of the enzymatic activities and diverse regulatory components required for monomethylation of histone H3 lysine 4 (H3K4me1) and the expression of specific genes. The challenge now is to understand how this specific chemical modification is written and the Set7 methyltransferase has emerged as a key regulatory enzyme mediating methylation of lysine residues of histone and non-histone proteins. In this review, we comprehensively explore the regulatory proteins modified by Set7 and highlight mechanisms of specific co-recruitment of the enzyme to activating promoters. With a focus on signaling and transcriptional control in disease we discuss recent experimental data emphasizing specific components of diverse regulatory complexes that mediate chromatin modification and reinterpretation of Set7-mediated gene expression.
Collapse
Affiliation(s)
- Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Epigenomics Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Department of Pathology; The University of Melbourne; Melbourne, VIC Australia; Faculty of Medicine; Monash University; Melbourne, VIC Australia
| |
Collapse
|
11
|
Shah K, Tyagi S. Barriers to transmission of transcriptional noise in a c-fos c-jun pathway. Mol Syst Biol 2013; 9:687. [PMID: 24022005 PMCID: PMC3792345 DOI: 10.1038/msb.2013.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
We explored how transcriptional noise propagates in gene-regulatory pathways by studying the induction of two downstream genes by transcription factors c-fos and c-jun. They are produced for a brief period following serum stimulation of cells and then activate the promoters of their target genes by binding to them as heterodimers. We found that, even though they are coordinately expressed at the population level, in individual cells the expression of c-fos and c-jun is noisy and uncorrelated with each other. The expression of the downstream genes is also noisy, but there is little or no effect of the noise in the upstream genes on the expression of the downstream genes. The noise is not transmitted, because the number of heterodimers present in single cells is relatively invariant, and the induction of downstream genes is insensitive to the number of heterodimers in individual cells. Sequestration of promoters of the downstream genes within compact chromatin is a likely cause of this insensitivity. These barriers to the propagation and amplification of noise are likely to be commonplace in higher eukaryotes.
Collapse
Affiliation(s)
- Khyati Shah
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
12
|
Chromatin modifications associated with diabetes. J Cardiovasc Transl Res 2012; 5:399-412. [PMID: 22639343 DOI: 10.1007/s12265-012-9380-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/16/2012] [Indexed: 01/04/2023]
Abstract
Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates.
Collapse
|
13
|
Schmucker AC, Wright JB, Cole MD, Brinckerhoff CE. Distal interleukin-1β (IL-1β) response element of human matrix metalloproteinase-13 (MMP-13) binds activator protein 1 (AP-1) transcription factors and regulates gene expression. J Biol Chem 2011; 287:1189-97. [PMID: 22102411 DOI: 10.1074/jbc.m111.264077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5' relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression.
Collapse
Affiliation(s)
- Adam C Schmucker
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
14
|
El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. ACTA ACUST UNITED AC 2011; 63:168-79. [PMID: 20862685 DOI: 10.1002/art.27762] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the role of histone H3 lysine 4 (H3K4) methylation in interleukin-1β (IL-1β)-induced cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in human osteoarthritic (OA) chondrocytes. METHODS Chondrocytes were stimulated with IL-1, and the expression of iNOS and COX-2 messenger RNA and proteins was evaluated by real-time reverse transcriptase-polymerase chain reaction analysis and Western blotting, respectively. H3K4 methylation and the recruitment of the histone methyltransferases SET-1A and MLL-1 to the iNOS and COX-2 promoters were evaluated using chromatin immunoprecipitation assays. The role of SET-1A was further evaluated using the methyltransferase inhibitor 5'-deoxy-5'-(methylthio)adenosine (MTA) and gene silencing experiments. SET-1A level in cartilage was determined using immunohistochemistry. RESULTS The induction of iNOS and COX-2 expression by IL-1 was associated with H3K4 di- and trimethylation at the iNOS and COX-2 promoters. These changes were temporally correlated with the recruitment of the histone methyltransferase SET-1A, suggesting an implication of SET-1A in these modifications. Treatment with MTA inhibited IL-1-induced H3K4 methylation as well as IL-1-induced iNOS and COX-2 expression. Similarly, SET-1A gene silencing with small interfering RNA prevented IL-1-induced H3K4 methylation at the iNOS and COX-2 promoters as well as iNOS and COX-2 expression. Finally, we showed that the level of SET-1A expression was elevated in OA cartilage as compared with normal cartilage. CONCLUSION These results indicate that H3K4 methylation by SET-1A contributes to IL-1-induced iNOS and COX-2 expression and suggest that this pathway could be a potential target for pharmacologic intervention in the treatment of OA and possibly other arthritic diseases.
Collapse
Affiliation(s)
- Fatima Ezzahra El Mansouri
- Research Centre of the University of Montreal Hospital Centre, Notre-Dame Hospital, and University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bozhkov AI, Dlubovskaya VL, Dmitriev YV, Meshaikina NI, Maleev VA, Klimova EM. Supposed role of “Metabolic memory” in formation of response reaction to stress factors in young and adult organisms. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kar S, Subbaram S, Carrico PM, Melendez JA. Redox-control of matrix metalloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir Physiol Neurobiol 2010; 174:299-306. [PMID: 20804863 PMCID: PMC2991541 DOI: 10.1016/j.resp.2010.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
Abstract
Many degenerative disease processes associated with aging result from enhanced extracellular matrix (ECM) breakdown. Concomitant with aberrant matrix destruction are alterations in levels of reactive oxygen species (ROS) generating and detoxification systems. ROS function as second messengers due to their ability to react with wide range of biomolecules resulting in modification of an array of signaling networks. ROS can activate upstream kinases (MKK) responsible for MAPK activation and restrict the activity of their inhibitory phosphatases. Here we focus on the redox-sensitive signaling components that control the expression of MMP-1, which is largely responsible for maintaining ECM homeostasis. Numerous disease processes are associated with shifts in steady state ROS levels that influence overall ECM degradation. This review highlights the redox-sensitive regulatory signals that control the expression of the primary initiating protease MMP-1 and provides strong rational for the use of antioxidant based therapies for treatment of degenerative disorders associated with aberrant matrix destruction.
Collapse
Affiliation(s)
- Supriya Kar
- Centers for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Sita Subbaram
- Cell Biology & Cancer Research, Albany Medical College, Albany, NY 12208
| | - Pauline M. Carrico
- Center for Distance Learning, SUNY Empire State College, Saratoga Springs, NY 12866
| | - J. Andrés Melendez
- Centers for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
17
|
Simboeck E, Sawicka A, Zupkovitz G, Senese S, Winter S, Dequiedt F, Ogris E, Di Croce L, Chiocca S, Seiser C. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem 2010; 285:41062-73. [PMID: 20952396 DOI: 10.1074/jbc.m110.184481] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells.
Collapse
Affiliation(s)
- Elisabeth Simboeck
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Matsubara S, Takahashi T, Kimura AP. Epigenetic patterns at the mouse prolyl oligopeptidase gene locus suggest the CpG island in the gene body to be a novel regulator for gene expression. Gene 2010; 465:17-29. [PMID: 20600704 DOI: 10.1016/j.gene.2010.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Prolyl oligopeptidase (POP) is a widely distributed serine peptidase which hydrolyzes small peptides on the carboxyl side of an internal proline residue. While its physiological role has been intensely studied, the regulatory mechanism of the gene expression is poorly understood. This time we assessed the POP mRNA expression in mouse embryos and tissues related to reproduction and development and found that POP mRNA was highly expressed in the ovarian granulosa cell, placental spongiotrophoblast, and blastocyst embryo. To elucidate the mechanism by which POP expression is regulated, we investigated DNA methylation and histone modification patterns of the two CpG islands (CGIs) found at the mouse POP locus. Whereas the CGI including the POP promoter (CGI-1) was completely hypomethylated in all the tissues examined, DNA methylation level of the CGI in the gene body (CGI-2) was lower in the granulosa cell, placenta, and blastocyst than in the liver. Some specific CpGs in CGI-2 were significantly demethylated in the three tissues. An in vitro reporter analysis indicated that CGI-2 enhanced POP promoter activity and its effect was significantly reduced by DNA methylation. Moreover, histone H3 acetylation and H3K4 methylation levels of CGI-2 were higher in the granulosa cell than liver. The results suggest that the CGI-2 region is a cis-element for the POP gene expression.
Collapse
Affiliation(s)
- Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
19
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
20
|
Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:3-19. [DOI: 10.1016/j.bbamcr.2009.07.004] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 12/19/2022]
|
21
|
Garcia-Manero G, Issa JP. Histone Deacetylase Inhibitors: A Review of Their Clinical Status as Antineoplastic Agents. Cancer Invest 2009; 23:635-42. [PMID: 16305991 DOI: 10.1080/07357900500283119] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The histone code refers to specific modifications in the biochemical composition of nucleosome-associated histone proteins involved in the regulation of gene transcription. These modifications include, among several, acetylation, methylation, and phosphorylation of several histone amino acid residues and are associated with different states of chromatin configuration and gene expression. In particular, acetylation of specific residues in histones H3 and H4 has been associated with an open chromatin configuration and a permissive gene transcription state. This particular modification is regulated by several enzymatic activities with the capacity to either transfer acetyl groups or to induce histone deacetylation. This last activity is associated with gene silencing. Several agents have been shown to have histone deacetylase inhibitory activity (HDACI). In vitro, experiments in multiple neoplastic cancer cell lines have demonstrated that treatment with HDACIs results in increased global and gene specific histone acetylation, and reactivation of aberrantly silenced genes. This phenomenon has been associated with cell differentiation and induction of apoptosis. Based on these observations, several of these agents are now in clinical development both for solid tumor and hematological malignancies. In this article, we provide a brief introduction to the field of histone deacetylation inhibition in cancer and review the most relevant clinical data so far published.
Collapse
Affiliation(s)
- Guillermo Garcia-Manero
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
22
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
23
|
Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1. Mol Cell Biol 2008; 28:5837-50. [PMID: 18662994 DOI: 10.1128/mcb.00535-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have made evident the fact that the 19S regulatory component of the proteasome has functions that extend beyond degradation, particularly in the regulation of transcription. Although 19S ATPases facilitate chromatin remodeling and acetylation events in yeast (Saccharomyces cerevisiae), it is unclear if they play similar roles in mammalian cells. We have recently shown that the 19S ATPase Sug1 positively regulates the transcription of the critical inflammatory gene for major histocompatibility complex class II (MHC-II) by stabilizing enhanceosome assembly at the proximal promoter. We now show that Sug1 is crucial for regulating histone H3 acetylation at the MHC-II proximal promoter. Sug1 binds to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at the proximal promoter, with a preferential loss of acetylation at H3 lysine 18. Sug1 also binds to the MHC-II histone acetyltransferase CREB-binding protein (CBP) and is critical for the recruitment of CBP to the MHC-II proximal promoter. Our current study strongly implicates the 19S ATPase Sug1 in modifying histones to initiate MHC-II transcription and provides novel insights into the role of the proteasome in the regulation of mammalian transcription.
Collapse
|
24
|
Diefenbacher M, Sekula S, Heilbock C, Maier JV, Litfin M, van Dam H, Castellazzi M, Herrlich P, Kassel O. Restriction to Fos family members of Trip6-dependent coactivation and glucocorticoid receptor-dependent trans-repression of activator protein-1. Mol Endocrinol 2008; 22:1767-80. [PMID: 18535250 DOI: 10.1210/me.2007-0574] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The term activator protein (AP)-1 describes homodimeric and heterodimeric transcription factors composed of members of the Jun, Fos, and cAMP response element-binding protein (CREB)/activating transcription factor (ATF) families of proteins. Distinct AP-1 dimers, for instance the prototypical c-Jun:c-Fos and c-Jun:ATF2 dimers, are differentially regulated by signaling pathways and bind related yet distinct response elements in the regulatory regions of AP-1 target genes. Little is known about the dimer-specific regulation of AP-1 activity at the promoter of its target genes. We have previously shown that nTrip6, the nuclear isoform of the LIM domain protein Trip6, acts as an AP-1 coactivator. Moreover, nTrip6 is an essential component of glucocorticoid receptor (GR)-mediated trans-repression of AP-1, in that it mediates the tethering of GR to the promoter-bound AP-1. We have now discovered a striking specificity of nTrip6 actions determined by the binding preference of its LIM domains. We show that nTrip6 interacts only with Fos family members. Consequently, nTrip6 is a selective coactivator for AP-1 dimers containing Fos. nTrip6 also assembles activated GR to c-Jun:c-Fos-driven promoters. Neither nTrip6 nor GR are recruited to a promoter occupied by c-Jun:ATF2. Thus, only Fos-containing dimers are trans-repressed by GR. Thus, the dimer composition of AP-1 determines the mechanism of both the positive and negative regulation of AP-1 transcriptional activity. Interestingly, on a second level of action, GR represses the increase in transcriptional activity of c-Jun:ATF2 induced by c-Jun N-terminal kinase (JNK)-dependent phosphorylation. This repression depends on GR-mediated induction of MAPK phosphatase 1 (MKP-1) expression, which results in c-Jun N-terminal kinase inactivation.
Collapse
Affiliation(s)
- Markus Diefenbacher
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz Platz 1, D- 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-jun. Mol Cell Biol 2008; 28:4240-50. [PMID: 18443043 DOI: 10.1128/mcb.01489-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid (RA) inhibits matrix metalloproteinase 9 (MMP-9) expression due to AP-1 inhibition resulting from retinoic acid receptors (RARs) competing for limiting amounts of coactivator proteins. However, given the rapid kinetics of MMP-9 transcription, it seems unlikely that these interactions can be explained passively. Our previous studies indicated that coactivator and transcription factor phosphorylation may allow for rapid regulation of MMP-9 expression. In the present study we tested this hypothesis directly. CREB binding protein (CBP) and p300/CBP-associated factor (PCAF) were displaced from transcription factor binding sites on the MMP-9 promoter within minutes of RA treatment. The RAR interaction domains of CBP and PCAF were not required for this displacement. RA and epidermal growth factor had opposing effects on phosphorylation of CBP by extracellular signal-regulated kinase 1 that correlated with altered CBP occupancy of AP-1 sites and differential MMP-9 promoter activation. We identified a novel phosphorylation site in the CBP carboxyl terminus that mediated association with AP-1 sites in the MMP-9 promoter. Inhibition of c-jun phosphorylation displaced PCAF from AP-1 sites and reduced promoter activity. Phosphorylation deficient c-jun was less able to recruit PCAF to AP-1 sites. We also demonstrated novel interactions between coactivators and AP-1 proteins. We propose that extracellular signal-mediated coactivator exchange at AP-1 sites is mediated via protein kinase pathways.
Collapse
|
26
|
Plachetka A, Chayka O, Wilczek C, Melnik S, Bonifer C, Klempnauer KH. C/EBPbeta induces chromatin opening at a cell-type-specific enhancer. Mol Cell Biol 2008; 28:2102-12. [PMID: 18195047 PMCID: PMC2268399 DOI: 10.1128/mcb.01943-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/16/2007] [Accepted: 01/01/2008] [Indexed: 12/16/2022] Open
Abstract
We have used the chicken mim-1 gene as a model to study the mechanisms by which transcription factors gain initial access to their target sites in compacted chromatin. The expression of mim-1 is restricted to the myelomonocytic lineage of the hematopoietic system where it is regulated synergistically by the Myb and CCAAT/enhancer binding protein (C/EBP) factors. Myb and C/EBPbeta cooperate at two distinct cis elements of mim-1, the promoter and a cell-type-specific enhancer, both of which are associated with DNase I hypersensitive sites in myelomonocytic cells but not in mim-1-nonexpressing cells. Previous work has shown that ectopic expression of Myb and C/EBPbeta activates the endogenous mim-1 gene in a nonhematopoietic cell type (fibroblasts), where the gene is normally completely silent. Here, we investigated the molecular details of this finding and show that the activation of mim-1 occurs by two independent mechanisms. In the absence of Myb, C/EBPbeta triggers the initial steps of chromatin opening at the mim-1 enhancer without inducing transcription of the gene. mim-1 transcription occurs only in the presence of Myb and is associated with chromatin opening at the promoter. Our work identifies a novel function for C/EBPbeta in the initial steps of a localized chromatin opening at a specific, physiologically relevant target region.
Collapse
Affiliation(s)
- Annette Plachetka
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Musri MM, Gomis R, Párrizas M. Chromatin and chromatin-modifying proteins in adipogenesis. Biochem Cell Biol 2008; 85:397-410. [PMID: 17713575 DOI: 10.1139/o07-068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long considered scarcely more than an uninteresting energy depot, adipose tissue has recently achieved star status. Far from being mere fat droplets, the adipocytes secrete a number of hormones and bioactive peptides, collectively known as adipokines, which participate in the regulation of a variety of functions, from haemostasis to angiogenesis to energy balance. Adipose tissue constitutes a bona-fide endocrine organ whose main dysfunctions, obesity and lipodystrophy, are related to the development of diabetes, hypertension, or dyslipidemia. The renewed interest in this tissue has prompted an escalation in the number of studies focusing on every aspect of the biology of the adipose cell, in the belief that a detailed knowledge of the mechanisms involved in the differentiation and function of adipocytes may contribute new therapeutical approaches to the treatment of such alarming medical problems. Adipogenesis is the result of an intertwined network of transcription factors and coregulators with chromatin-modifying activities that together, are responsible for the establishment of the gene expression pattern of mature adipocytes. Although the exquisitely regulated transcription factor cascade controlling adipogenesis has been extensively studied, the role of chromatin and chromatin-modifying proteins has become apparent only in recent times.
Collapse
Affiliation(s)
- Melina M Musri
- Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Universitat de Barcelona, Barcelona 08036, Spain
| | | | | |
Collapse
|
28
|
Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength. Mol Cell Biol 2007; 28:926-38. [PMID: 18025106 DOI: 10.1128/mcb.01344-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current concept postulates that histone acetylation is required for the recruitment of bromodomain-containing transcription complexes, such as the chromatin-remodeling machine SWI/SNF and the basal transcription factor TFIID. We generated simple NF-kappaB-dependent enhancers of increasing transcriptional strengths and found that the histone acetylation requirements for activation of transcription depended on the strengths of these enhancers. All enhancers function by recruiting SWI/SNF and TFIID to induce nucleosome sliding, a prerequisite for transcriptional activation. However, histone acetylation, although it occurs, is dispensable for TFIID and SWI/SNF recruitment by the strong enhancers, indicating that strong activators can overcome the chromatin barrier by directly recruiting the necessary transcriptional complexes. Weak enhancers depend on histone acetylation for recruitment, and this requirement is independent of a histone acetylation code. Thus, the need for nucleosome modifications is imposed on genes and translated according to the quality and strengths of the activators.
Collapse
|
29
|
Yoshioka H, Geyer CB, Hornecker JL, Patel KT, McCarrey JR. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis. Mol Cell Biol 2007; 27:7871-85. [PMID: 17875925 PMCID: PMC2169153 DOI: 10.1128/mcb.00990-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution.
Collapse
Affiliation(s)
- Hirotaka Yoshioka
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
30
|
Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007; 275:13-29. [PMID: 17689856 DOI: 10.1016/j.mce.2007.07.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/26/2007] [Accepted: 07/03/2007] [Indexed: 01/10/2023]
Abstract
Glucocorticoids (GCs) regulate cell fate by altering gene expression via the glucocorticoid receptor (GR). Ligand-bound GR can activate the transcription of genes carrying the specific GR binding sequence, the glucocorticoid response element (GRE). In addition, GR can modulate, positively or negatively, directly or indirectly, the activity of other transcription factors (TFs), a process referred to as "crosstalk". In the indirect crosstalk, GR interferes with transduction pathways upstream of other TFs. In the direct crosstalk, GR and other TFs modulate each other's activity when bound to the promoters of their target genes. The multiplicity of molecular actions exerted by TFs, particularly the GR, is not only fascinating in terms of molecular structure, it also implies that the TFs participate in a wide range of regulatory processes, broader than anticipated. This review focuses on the molecular mechanisms involved in the crosstalk, on both current ideas and unresolved questions, and discusses the possible significance of the crosstalk for the physiologic and therapeutic actions of GCs.
Collapse
Affiliation(s)
- Olivier Kassel
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany.
| | | |
Collapse
|
31
|
Alam HB, Shults C, Ahuja N, Ayuste EC, Chen H, Koustova E, Sailhamer EA, Li Y, Liu B, de Moya M, Velmahos GC. Impact of resuscitation strategies on the acetylation status of cardiac histones in a swine model of hemorrhage. Resuscitation 2007; 76:299-310. [PMID: 17822827 DOI: 10.1016/j.resuscitation.2007.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/16/2007] [Accepted: 07/23/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND Chromatin remodeling through histone acetylation is a key control mechanism in gene transcription. We have shown previously that fluid resuscitation in rodents is coupled with highly structured post-translational modifications of cardiac histones. The current experiment was performed to validate this concept in a clinically relevant large animal model of hemorrhage and resuscitation, and to correlate the changes in histone acetylation with altered expression of immediate-early response genes. STUDY DESIGN Yorkshire swine (n=49, 7/group, weight=40-58kg) were subjected to combined uncontrolled and controlled hemorrhage (40% of estimated blood volume) and randomly assigned to the following resuscitation groups: (1) 0.9% saline (NS), (2) racemic lactated Ringer's (dl-LR), (3) l-isomer lactated Ringer's (l-LR), (4) Ketone Ringer's (KR), (5) 6% hetastarch in saline (Hespan). KR contained an equimolar substitution of lactate with beta-hydroxybutyrate. No hemorrhage (NH) and no resuscitation (NR) groups were included as controls. Cardiac protein was used in Western blotting to analyze total protein acetylation and histone acetylation specifically. Lysine residue-specific acetylation of histone subunits H3 and H4 was further evaluated. In addition, Chromatin Immunoprecipitation (ChIP) technique was used to separate the DNA bound to acetylated histones (H3 and H4 subunits), followed by measurement of genes that are altered by hemorrhage/resuscitation, including immediate-early response genes (c-fos and c-myc), and heat shock protein (HSP) 70. RESULTS The type of fluid used for resuscitation influenced the patterns of cardiac histone acetylation. Resuscitation with dl-LR and KR induced hyperacetylation on H3K9. KR resuscitation was also associated with increased acetylation on H3K14 and H4K5, and hypoacetylation on H3K18. The expression of genes was also fluid specific, with the largest number of changes following KR resuscitation (increased c-fos and c-myc, HSP 70 linked with H3; and increased c-myc linked with H4). Among the histone subunits studied, altered H3 acetylations were associated with the majority of changes in immediate-early gene expression. CONCLUSIONS Acetylation status of cardiac histones, affected by hemorrhage, is further modulated by resuscitation producing a fluid-specific code that is preserved in different species. Resuscitation with KR causes histone acetylation at the largest number of lysine sites (predominately H3 subunit), and has the most pronounced impact on the transcriptional regulation of selected (immediate-early response) genes.
Collapse
Affiliation(s)
- Hasan B Alam
- Trauma Research and Readiness Institute for Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pal-Bhadra M, Bhadra U, Jackson DE, Mamatha L, Park PH, Shukla SD. Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes. Life Sci 2007; 81:979-87. [PMID: 17826801 PMCID: PMC2706023 DOI: 10.1016/j.lfs.2007.07.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 07/03/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
Ethanol induced liver injury is associated with a global change in gene expression but its mechanisms are not known. We studied whether alcohol-induced gene expression is associated with post-translational methylations of histone H3. Primary culture of rat hepatocytes was treated with ethanol (50 or 100 mM) for 24 h and the status of methylation of H3 at lys 4 (H3dimeK4) or lys 9 (H3dimeK9) was monitored by Western blotting using antibodies to dimethylated histone H3 at lys 4 or lys 9. The cells exposed to ethanol showed strikingly opposing behaviors in methylation patterns; H3dimeK9 methylation was decreased whereas H3dimeK4 increased. Similar results were obtained in the interphase nuclei. Their binding on the metaphase chromosomes exhibits distinct site specific pattern of accumulation. Next, chromatin immunoprecipitation of the ethanol treated samples with antibodies for methylated lys 4 or lys 9 histone H3 followed by amplification of the immunoprecipitated DNA, was used to determine their association with the promoters of genes up- or downregulated by ethanol. Lys4 methylation was associated with ethanol upregulated genes (Adh, GST-yc2) whereas lys 9 methylation with downregulated genes (Lsdh, cytP4502c11) demonstrating a difference between these two methylations. These results suggest that exposure of hepatocytes to ethanol changes the expression of several susceptible genes which are associated with site specific modification of dimethylated forms of histone H3 amino termini at their regulatory regions.
Collapse
Affiliation(s)
- Manika Pal-Bhadra
- Department of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Utpal Bhadra
- Functional Genomics & Gene Silencing Group, Centre for Cellular & Molecular Biology, Hyderabad-500007, India
| | - Daniel E. Jackson
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO-65212 USA
| | - Linga Mamatha
- Functional Genomics & Gene Silencing Group, Centre for Cellular & Molecular Biology, Hyderabad-500007, India
- Department of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Pil-Hoon Park
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO-65212 USA
| | - Shivendra D. Shukla
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, MO-65212 USA
| |
Collapse
|
33
|
He S, Dunn KL, Espino PS, Drobic B, Li L, Yu J, Sun JM, Chen HY, Pritchard S, Davie JR. Chromatin organization and nuclear microenvironments in cancer cells. J Cell Biochem 2007; 104:2004-15. [PMID: 17668423 DOI: 10.1002/jcb.21485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear morphometric descriptors such as nuclear size, shape, DNA content and chromatin organization are used by pathologists as diagnostic markers for cancer. However, our knowledge of events resulting in changes in nuclear shape and chromatin organization in cancer cells is limited. Nuclear matrix proteins, which include lamins, transcription factors (Sp1) and histone modifying enzymes (histone deacetylases), and histone modifications (histone H3 phosphorylation) have roles in organizing chromatin in the interphase nucleus, regulating gene expression programs and determining nuclear shape. Histone H3 phosphorylation, a downstream target of the Ras-mitogen activated protein kinase pathway, is involved in neoplastic transformation. This article will review genetic and epigenetic events that alter chromatin organization in cancer cells and the role of the nuclear matrix in determining nuclear morphology.
Collapse
Affiliation(s)
- Shihua He
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
35
|
16 Inhibition of mammalian protein methyltransferases by 5'-methylthioadenosine (MTA): A mechanism of action of dietary same? Enzymes 2007; 24:467-93. [PMID: 26718050 DOI: 10.1016/s1874-6047(06)80018-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5'-deoxy-5'-methylthioadenosine (5'-methylthioadenosine, MTA) is a naturally occurring metabolite. As an experimental reagent, it has proved useful in providing investigators a window onto the role of protein methylation reactions in intact cells, although its mode of action is poorly understood in most cases. This chapter reevaluates its utility as a reagent. It appears now that MTA is at best a poor direct inhibitor of methyltransferases and that its effectiveness in intact cells may depend on its ability to inhibit S-adenosyl-l-homocysteine hydrolase. This chapter reviews recent evidence that points to an important role for MTA as an intermediary in the beneficial pharmaceutical action of orally ingested S-adenosyl-l-methionine (AdoMet, SAMe). These new results suggest that oral AdoMet may function not by enhancing the activity of cellular methyltransferases, as has been previously surmised, but by inhibiting their action. Such inhibition, particularly of protein methyltransferases involved in intracellular communication, may attenuate signal transduction pathways otherwise leading to inflammatory damage to tissues.
Collapse
|
36
|
Ni Z, Bremner R. Brahma-related gene 1-dependent STAT3 recruitment at IL-6-inducible genes. THE JOURNAL OF IMMUNOLOGY 2007; 178:345-51. [PMID: 17182572 DOI: 10.4049/jimmunol.178.1.345] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-6 is an immunoregulatory cytokine with multiple functions in hemopoiesis, proliferation, and tumorigenesis. IL-6 triggers phosphorylation, dimerization, and nuclear translocation of STAT3, which binds to target promoters and activates transcription. Brahma-related gene 1 (BRG1), the enzymatic engine of the yeast-mating type-switching and sucrose-nonfermenting chromatin-remodeling complex, is essential for recruitment of STAT1 or STAT1/STAT2-containing complexes to IFN targets. We hypothesized that BRG1 might also be required for STAT3 recruitment. In this study, we show that induction of a subset of human IL-6-responsive genes is BRG1 dependent. BRG1 is constitutively present at these targets and is required for STAT3 recruitment, downstream histone modifications, and IL-6-induced chromatin remodeling. IL-6-induced recruitment of STAT3 to the IFN regulatory factor 1 promoter and subsequent mRNA synthesis is BRG1 dependent, even though IFN-gamma-mediated STAT1 recruitment to this locus is BRG1 independent. BRG1 also increased basal expression of IFN-induced transmembrane protein 3 and IFN-gamma-induced protein 16, and the basal chromatin accessibility at the promoter of IFN regulatory factor 1. The effect on basal expression was STAT3 independent, as revealed by small interfering RNA knockdown. Together with prior observations, these data reveal that BRG1 has a broad role in mediating STAT accessibility at multiple cytokine-responsive promoters and exposes promoter specific differences in both the effect of BRG1 on basal chromatin accessibility and on access of different STAT proteins to the same target.
Collapse
Affiliation(s)
- Zuyao Ni
- Toronto Western Research Institute, University Health Network, Department of Ophthalmology and Vision Science, Vision Science Research Program, University of Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Appanah R, Dickerson DR, Goyal P, Groudine M, Lorincz MC. An unmethylated 3' promoter-proximal region is required for efficient transcription initiation. PLoS Genet 2007; 3:e27. [PMID: 17305432 PMCID: PMC1797817 DOI: 10.1371/journal.pgen.0030027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/28/2006] [Indexed: 11/30/2022] Open
Abstract
The promoter regions of approximately 40% of genes in the human genome are embedded in CpG islands, CpG-rich regions that frequently extend on the order of one kb 3′ of the transcription start site (TSS) region. CpGs 3′ of the TSS of actively transcribed CpG island promoters typically remain methylation-free, indicating that maintaining promoter-proximal CpGs in an unmethylated state may be important for efficient transcription. Here we utilize recombinase-mediated cassette exchange to introduce a Moloney Murine Leukemia Virus (MoMuLV)-based reporter, in vitro methylated 1 kb downstream of the TSS, into a defined genomic site. In a subset of clones, methylation spreads to within ∼320 bp of the TSS, yielding a dramatic decrease in transcript level, even though the promoter/TSS region remains unmethylated. Chromatin immunoprecipitation analyses reveal that such promoter-proximal methylation results in loss of RNA polymerase II and TATA-box-binding protein (TBP) binding in the promoter region, suggesting that repression occurs at the level of transcription initiation. While DNA methylation-dependent trimethylation of H3 lysine (K)9 is confined to the intragenic methylated region, the promoter and downstream regions are hypo-acetylated on H3K9/K14. Furthermore, DNase I hypersensitivity and methylase-based single promoter analysis (M-SPA) experiments reveal that a nucleosome is positioned over the unmethylated TATA-box in these clones, indicating that dense DNA methylation downstream of the promoter region is sufficient to alter the chromatin structure of an unmethylated promoter. Based on these observations, we propose that a DNA methylation-free region extending several hundred bases downstream of the TSS may be a prerequisite for efficient transcription initiation. This model provides a biochemical explanation for the typical positioning of TSSs well upstream of the 3′ end of the CpG islands in which they are embedded. Genes, the functional units of heredity, are made up of DNA, which is packaged inside the nuclei of eukaryotic cells in association with a number of proteins in a structure called chromatin. In order for transcription, the process of transferring genetic information from DNA to RNA, to take place, chromatin must be decondensed to allow the transcription machinery to bind the genes that are to be transcribed. In mammals, promoters, the starting position of genes, are frequently embedded in “CpG islands,” regions with a relatively high density of the CpG dinucleotide. Paradoxically, while cytosines in the context of the CpG dinucleotide are generally methylated, CpGs flanking the start sites of genes typically remain methylation-free. As CpG methylation is associated with condensed chromatin, it is generally believed that promoter regions must remain free of methylation to allow for binding of the transcription machinery. Here, using a novel method for introducing methylated DNA into a defined genomic site, we demonstrate that DNA methylation in the promoter-proximal region of a gene is sufficient to block transcription via the generation of a chromatin structure that inhibits binding of the transcription machinery. Thus, methylation may inhibit transcription even when present outside the promoter region.
Collapse
Affiliation(s)
- Ruth Appanah
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David R Dickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Preeti Goyal
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Groudine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Matthew C Lorincz
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Froyen G, Bauters M, Voet T, Marynen P. X-linked mental retardation and epigenetics. J Cell Mol Med 2006; 10:808-25. [PMID: 17125586 PMCID: PMC3933076 DOI: 10.1111/j.1582-4934.2006.tb00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/23/2006] [Indexed: 01/08/2023] Open
Abstract
The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.
Collapse
Affiliation(s)
- Guy Froyen
- Human Genome Laboratory, VIB, Department Molecular and Developmental Genetics, University of Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
39
|
Mitra D, Parnell EJ, Landon JW, Yu Y, Stillman DJ. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol Cell Biol 2006; 26:4095-110. [PMID: 16705163 PMCID: PMC1489090 DOI: 10.1128/mcb.01849-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We use chromatin immunoprecipitation assays to show that the Gcn5 histone acetyltransferase in SAGA is required for SWI/SNF association with the HO promoter and that binding of SWI/SNF and SAGA are interdependent. Previous results showed that SWI/SNF binding to HO was Gcn5 independent, but that work used a strain with a mutation in the Ash1 daughter-specific repressor of HO expression. Here, we show that Ash1 functions as a repressor that inhibits SWI/SNF binding and that Gcn5 is required to overcome Ash1 repression in mother cells to allow HO transcription. Thus, Gcn5 facilitates SWI/SNF binding by antagonizing Ash1. Similarly, a mutation in SIN3, like an ash1 mutation, allows both HO expression and SWI/SNF binding in the absence of Gcn5. Although Ash1 has recently been identified in a Sin3-Rpd3 complex, our genetic analysis shows that Ash1 and Sin3 have distinct functions in regulating HO. Analysis of mutant strains shows that SWI/SNF binding and HO expression are correlated and regulated by histone acetylation. The defect in HO expression caused by a mutant SWI/SNF with a Swi2(E834K) substitution can be partially suppressed by ash1 or spt3 mutation or by a gain-of-function V71E substitution in the TATA-binding protein (TBP). Spt3 inhibits TBP binding at HO, and genetic analysis suggests that Spt3 and TBP(V71E) act in the same pathway, distinct from that of Ash1. We have detected SWI/SNF binding at the HO TATA region, and our results suggest that SWI/SNF, either directly or indirectly, facilitates TBP binding at HO.
Collapse
Affiliation(s)
- Doyel Mitra
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT 84132-2501, USA
| | | | | | | | | |
Collapse
|
40
|
Musri MM, Corominola H, Casamitjana R, Gomis R, Párrizas M. Histone H3 Lysine 4 Dimethylation Signals the Transcriptional Competence of the Adiponectin Promoter in Preadipocytes. J Biol Chem 2006; 281:17180-17188. [PMID: 16613853 DOI: 10.1074/jbc.m601295200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipogenesis is regulated by a coordinated cascade of sequence-specific transcription factors and coregulators with chromatin-modifying activities that are between them responsible for the establishment of the gene expression pattern of mature adipocytes. Here we examine the histone H3 post-translational modifications occurring at the promoters of key adipogenic genes during adipocyte differentiation. We show that the promoters of apM1, glut4, gpd1, and leptin are enriched in dimethylated histone H3 Lys4 (H3-K4) in 3T3-L1 fibroblasts, where none of these genes are yet expressed. A detailed study of the apM1 locus shows that H3-K4 dimethylation is restricted to the promoter region in undifferentiated cells and associates with RNA polymerase II (pol II) loading. The beginning of apM1 transcription at the early stages of adipogenesis coincides with promoter H3 hyperacetylation and H3-K4 trimethylation. At the coding region, H3 acetylation and dimethylation, as well as pol II binding, are found in cells at later stages of differentiation, when apM1 transcription reaches its maximal peak. This same pattern of histone modifications is detected in mouse primary preadipocytes and adipocytes but not in a related fibroblast cell line that is not committed to an adipocyte fate. Inhibition of H3-K4 methylation by treatment of 3T3-L1 cells with methylthioadenosine results in decreased apM1 gene expression as well as decreased adipogenesis. Taken together, our data indicate that H3-K4 dimethylation and pol II binding to the promoter of key adipogenic genes are distinguishing marks of cells that have undergone determination to a preadipocyte stage.
Collapse
Affiliation(s)
- Melina M Musri
- Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Helena Corominola
- Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Roser Casamitjana
- Biochemistry and Molecular Genetics Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Ramon Gomis
- Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Marcelina Párrizas
- Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
41
|
Percipalle P, Farrants AKO. Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 2006; 18:267-74. [PMID: 16574391 DOI: 10.1016/j.ceb.2006.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 01/29/2023]
Abstract
Transcription in eukaryotic cells requires dynamic changes of chromatin structure to facilitate or prevent RNA polymerase access to active genes. These structural modifications rely on the concerted action of ATP-dependent chromatin-remodelling complexes and histone-modifying enzymes, which generate a chromatin configuration that is either compatible with transcription (euchromatin) or incompatible (heterochromatin). Insights into how these structural changes might be coordinated for RNA polymerase I (pol I) genes come from the discoveries of the nucleolar-remodelling complex (NoRC) and B-WICH--a high molecular weight fraction of the WSTF/SNF2h chromatin-remodelling complex. NoRC produces a repressive chromatin state; B-WICH, together with nuclear myosin 1, activates pol I transcription directly on chromatin templates and might also function in the maintenance of ribosomal chromatin structure.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, P.O. Box 285, Stockholm SE-171 77, Sweden.
| | | |
Collapse
|
42
|
Nelson KK, Subbaram S, Connor KM, Dasgupta J, Ha XF, Meng TC, Tonks NK, Melendez JA. Redox-dependent matrix metalloproteinase-1 expression is regulated by JNK through Ets and AP-1 promoter motifs. J Biol Chem 2006; 281:14100-10. [PMID: 16569638 DOI: 10.1074/jbc.m601820200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species have been shown to play an important role in the regulation of distinct signaling cascades, many of which act upon the production of matrix metalloproteinases (MMP). Using a series of redox-engineered cell lines we have previously demonstrated that MMP-1 expression is sensitive to the alterations in the steady state production of H2O2 (Ranganathan, A. C., Nelson, K. K., Rodriguez, A. M., Kim, K. H., Tower, G. B., Rutter, J. L., Brinckerhoff, C. E., Epstein, C. J., Huang, T. T., Jeffrey, J. J., and Melendez, J. A. (2001) J. Biol. Chem. 276, 14264-14270). In the present study, we investigate the molecular mechanisms involved in the H2O2-mediated induction of MMP-1. Mutational analysis of an MMP-1 promoter indicates that both the single nucleotide polymorphism creating an Ets binding site at -1607 and a proximal AP-1 site at -1602 are required for maximal H2O2-dependent transcription. The redox-sensitive MMP-1 protein expression requires activation of both ERK1/2 and JNK pathways. Importantly, JNK signaling is largely responsible for the H2O2 sensitivity of the MMP-1 promoter, whereas ERK1/2 contributes to both its basal and H2O2 dependence. H2O2 control of Ets-1 expression was ERK1/2-dependent whereas that of c-Jun requires both ERK1/2 and JNK signaling. Chromatin immunoprecipitation assays indicate that binding of the histone acetyltransferase, p300, and the transcription factors Ets-1 and c-Jun to the MMP-1 promoter is redox sensitive. The redox sensitivity of MMP-1 expression is also associated with an increase in the abundance of oxidatively inactivated protein-tyrosine phosphatases. Targeted cytosolic or mitochondrial scavenging of H2O2 prevented all of the aforementioned signals. These studies provide substantial insight into the mechanisms underlying the redox-dependent control of MMP-1 and may lead to the development of novel targeted antioxidant-based inhibitory therapies for controlling MMP-1 expression during degenerative disease processes.
Collapse
Affiliation(s)
- Kristin K Nelson
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Couture JF, Collazo E, Hauk G, Trievel RC. Structural basis for the methylation site specificity of SET7/9. Nat Struct Mol Biol 2006; 13:140-6. [PMID: 16415881 DOI: 10.1038/nsmb1045] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/05/2005] [Indexed: 11/09/2022]
Abstract
Human SET7/9 is a protein lysine methyltransferase (PKMT) that methylates histone H3, the tumor suppressor p53 and the TBP-associated factor TAF10. To elucidate the determinants of its substrate specificity, we have solved the enzyme's structure bound to a TAF10 peptide and examined its ability to methylate histone H3, TAF10 and p53 substrates bearing either mutations or covalent modifications within their respective methylation sites. Collectively, our data reveal that SET7/9 recognizes a conserved K/R-S/T/A motif preceding the lysine substrate and has a propensity to bind aspartates and asparagines on the C-terminal side of the lysine target. We then used a sequence-based approach with this motif to identify novel substrates for this PKMT. Among the putative targets is TAF7, which is methylated at Lys5 by the enzyme in vitro. These results demonstrate the predictive value of the consensus motif in identifying novel substrates for SET7/9.
Collapse
Affiliation(s)
- Jean-François Couture
- Department of Biological Chemistry, University of Michigan, 1301 Catherine Road, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
44
|
Hill DA, Peterson CL, Imbalzano AN. Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling. J Biol Chem 2005; 280:41777-83. [PMID: 16253989 DOI: 10.1074/jbc.m509637200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic modulation of chromatin structure is determined by many factors, including enzymes that modify the core histone proteins, enzymes that remodel the structure of chromatin, and factors that bind to genomic DNA to affect its structure. Previous work indicates that the nucleosome binding family of high mobility group proteins (HMGN) facilitates the formation of a chromatin structure that is more conducive for transcription. SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that alter nucleosome structure to facilitate the binding of various regulatory proteins to chromatin. Here we examine the structural consequences of reconstituting chromatin with HMGN1 and the resulting effects on hSWI/SNF function. We demonstrate that HMGN1 decreases the sedimentation velocity of nucleosomal arrays in low ionic strength buffers but has little effect on the structure of more highly folded arrays. We further demonstrate that HMGN1 does not affect SWI/SNF-dependent chromatin remodeling on either mononucleosomes or nucleosomal arrays, indicating that SWI/SNF functions independently of HMGN1.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology at the University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
45
|
Espino PS, Drobic B, Dunn KL, Davie JR. Histone modifications as a platform for cancer therapy. J Cell Biochem 2005; 94:1088-102. [PMID: 15723344 DOI: 10.1002/jcb.20387] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.
Collapse
Affiliation(s)
- Paula S Espino
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | | | | | | |
Collapse
|
46
|
Scibetta AG, Copier J, Barrett A, Chaplin T, Taylor-Papadimitriou J. Gene expression changes induced by a recombinant E1-/E3- adenovirus type 5 vector in human mammary epithelial cells. Intervirology 2005; 48:350-61. [PMID: 16024939 DOI: 10.1159/000086062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Adenoviral vectors are used in transferring exogenous genes to a variety of cells and tissue types both in vitro and in vivo. Gene expression changes induced by an E1/E3-defective adenovirus vector have been studied in human mammary epithelial cells by comparing the gene expression profile in infected and uninfected cells. METHODS The human mammary epithelial cell line HB2 was infected with an E1/E3-defective adenovirus type 5 vector. Total RNA was extracted from infected and uninfected cells 24 and 72 h after infection and subjected to microarray analysis using the Affymetrix U133A genomic chip system. Semiquantitative RT-PCR confirmed the regulation of genes observed by microarray analysis. RESULTS The microarray analysis showed 24 and 95 transcripts to be regulated 24 and 72 h after infection, respectively. A relatively high number of genes involved in innate and inflammatory host immune responses, including interleukin-8, interleukin-6, NF-kappaB(2), RELB and fos, were induced. As expected from an E1-defective virus, changes in the expression of genes involved in the G1-S transition and in the activation of cell proliferation were not detected. CONCLUSION Our study provides insight into the host transcriptional response following transduction of an adenoviral vector into mammary epithelial cells.
Collapse
Affiliation(s)
- Angelo G Scibetta
- Cancer Research UK, Breast Cancer Biology Group, Guys Hospital, London, UK.
| | | | | | | | | |
Collapse
|
47
|
Ni Z, Karaskov E, Yu T, Callaghan SM, Der S, Park DS, Xu Z, Pattenden SG, Bremner R. Apical role for BRG1 in cytokine-induced promoter assembly. Proc Natl Acad Sci U S A 2005; 102:14611-6. [PMID: 16195385 PMCID: PMC1253546 DOI: 10.1073/pnas.0503070102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IFN-gamma induction of the CIITA (class II transactivator) promoter (pIV) requires Brahma-related gene 1 (BRG1), a chromatin-remodeling enzyme. However, the events that lead to pIV activation are only partially understood, and the point at which BRG1 acts is unknown. The first IFN-gamma-induced event triggers nuclear translocation of STAT1 (signal transducer and activator of transcription 1), which binds IFN-gamma-responsive promoters. BRG1 is recruited after activator binding at several other inducible loci, and STAT family members are known to bind BRG1, suggesting that BRG1 might act downstream of STAT1. Here, we delineate a comprehensive view of factor assembly and detailed histone modifications at pIV and show that all events, even STAT1 binding, require BRG1 at CIITA pIV and other IFN-gamma target promoters. Recruitment of IFN-stimulated gene factor-3 (ISGF3) [STAT1/STAT2/IFN regulatory factor 9 (IRF9)] to several IFN-alpha-responsive promoters is also BRG1-dependent. In contrast, constitutive BRG1 association at IFN targets is STAT1-independent. Furthermore, BRG1 is required for IFN-induced restriction enzyme and DNase I accessibility at promoters. Thus, BRG1 has an apical role in cytokine-induced promoter assembly, acting upstream of STAT complexes at multiple IFN target loci.
Collapse
Affiliation(s)
- Zuyao Ni
- Toronto Western Research Institute, University Health Network, Department of Ophthalmology and Vision Science, Vision Science Research Program, University of Toronto, Toronto, ON, Canada M5T 2S8
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ, Imbalzano AN. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 2005; 25:3997-4009. [PMID: 15870273 PMCID: PMC1087700 DOI: 10.1128/mcb.25.10.3997-4009.2005] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.
Collapse
Affiliation(s)
- Ivana L de la Serna
- University of Massachusetts Medical School, Department of Cell Biology, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Adachi S, Rothenberg EV. Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells. Nucleic Acids Res 2005; 33:3200-10. [PMID: 15937196 PMCID: PMC1142491 DOI: 10.1093/nar/gki637] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
T-cells retain cell-type-specific programming for IL-2 inducibility through many rounds of division without being stimulated to transcribe the locus. To understand the layering of controls needed to poise this gene heritably for activation, we have used chromatin immunoprecipitation to map histone modifications across the murine IL2 locus, from −10.2 through +0.25 kb, in induction-competent and incompetent cells. In highly inducible EL4 T-lineage cells, stimulation with PMA/A23187 induced strong acetylation of histone H3 and H4, in parallel with transcriptional activation, from −4.6 through +0.25 kb. However, dimethylation of histone H3/K4 was already fully elevated across the same restricted domain before stimulation, with little change after stimulation. RNA polymerase II binding, in contrast, was only found at the known promoter region after stimulation. Similar patterns of histone modifications were seen also in normal IL-2-inducible T-lineage cells. However, neither acetylated histone H3, H4 nor dimethylated histone H3/K4 marking was detected, with or without stimulation, in expression-incompetent cells (NIH/3T3 or Scid.adh). These results identify a discrete new domain of IL2 regulatory sequence marked by dimethylated histone H3/K4 in expression-permissive T-cells even when they are not transcribing IL2, setting boundaries for histone H3 and H4 acetylation when the IL2 gene is transcriptionally activated.
Collapse
Affiliation(s)
| | - Ellen V. Rothenberg
- To whom correspondence should be addressed. Tel: +1 626 395 4992; Fax: +1 626 449 0756;
| |
Collapse
|
50
|
Chen X, Wang J, Woltring D, Gerondakis S, Shannon MF. Histone dynamics on the interleukin-2 gene in response to T-cell activation. Mol Cell Biol 2005; 25:3209-19. [PMID: 15798206 PMCID: PMC1069623 DOI: 10.1128/mcb.25.8.3209-3219.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several models have been proposed for the mechanism of chromatin remodelling across the promoters of inducible genes in mammalian cells. The most commonly held model is one of cooccupation where histone proteins are modified by acetylation or phosphorylation and nucleosomes are remodelled, allowing the assembly of transcription factor complexes. Using chromatin immunoprecipitation, we observed an apparent decrease of histone acetylation and phosphorylation signals at the proximal promoter region of the inducible interleukin-2 and granulocyte-macrophage colony-stimulating factor genes in response to T-cell activation. We showed that this apparent decrease was due to a loss of histone H3 and H4 proteins corresponding to a decrease in nucleosome occupation of the promoter. This histone loss is reversible; it is dependent on the continual presence of appropriate activating signals and transcription factors and is not dependent on the acetylation status of the histone proteins. These data show for the first time that histone proteins are lost from a mammalian promoter upon activation of transcription and support a model of activation-dependent disassembly and reassembly of nucleosomes.
Collapse
Affiliation(s)
- Xinxin Chen
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|