1
|
Menezes APJ, Silber AM, Elias MC, da Cunha JPC. Trypanosoma cruzi cell cycle progression exhibits minimal variation in histone PTMs with unique histone H4 acetylation pattern. J Proteomics 2025; 315:105413. [PMID: 40010635 DOI: 10.1016/j.jprot.2025.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Histones are crucial proteins in eukaryotic cells that undergo extensive posttranslational modifications (PTMs) such as methylation, acetylation, and phosphorylation, which are associated to chromatin structure, gene expression, DNA damage/repair and cell cycle. In Trypanosoma cruzi, the primary sequence of histones differs from that of other eukaryotes. Despite this, they display a vast range of PTMs, though their modulation throughout the cell cycle remains largely unexplored. In this study, we investigated the dynamic modulation of histone PTMs across G1/S, S, and G2/M phases of T. cruzi cell cycle using hydroxyurea- synchronized parasites. We applied a workflow that included histone derivatization, trypsin digestion followed by a high-resolution mass spectrometry and data independent analysis. Quantitative analysis of 141 histone peptide isoforms revealed that there are only minor variations in histone PTM levels throughout the cell cycle. The H3K76 trimethylation remained predominant throughout all phases, with an increase in monomethylation during G2/M. Additionally, hyperacetylation of the N-terminal region of histone H4 was observed, particularly at lysine residues 2, 5, and 10, suggesting their importance in cell cycle progression. Striking, acetylation of histone H4 at K2 and K5 increases during the S-phase, mirroring the H4K5acK12ac pattern observed in mammals, which are related to histone nuclear import and chromatin deposition. Overall, the results suggest that the T. cruzi cell cycle maintains stable global levels of histone PTMs, relying on variations in only a few specific PTMs. Further investigations are warranted to elucidate the functional significance of these PTMs and their impact on cell cycle regulation and chromatin dynamics in T. cruzi. SIGNIFICANCE: Histone posttranslational modifications (PTMs) are key regulators of chromatin architecture and cellular processes such as gene expression and cell cycle control. In Trypanosoma cruzi, the etiological agent of Chagas disease, histones have a distinct primary structure compared to other eukaryotes, yet they display a wide variety of PTMs. This study provides a comprehensive analysis of histone PTM dynamics across the G1/S, S, and G2/M phases of the T. cruzi cell cycle, revealing that global histone PTM levels remain largely stable, with variations in a few specific marks. Notably, the study highlights the increased acetylation of histone H4 at lysines 2 and 5 during the S-phase, contrasting with the well-conserved acetylation at lysines 5 and 12 observed in mammals involved in nuclear import and chromatin assembly. These findings underscore the evolutionary divergence and functional specificity of histone modifications and provide a foundation for further investigations into their roles in parasite biology, with potential implications for understanding chromatin dynamics and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- A P J Menezes
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - A M Silber
- Instituto de Ciências Biomédicas - Universidade de São Paulo, Brazil
| | - M C Elias
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - J P C da Cunha
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Mihalas AB, Arora S, O'Connor SA, Feldman HM, Cucinotta CE, Mitchell K, Bassett J, Kim D, Jin K, Hoellerbauer P, Delegard J, Ling M, Jenkins W, Kufeld M, Corrin P, Carter L, Tsukiyama T, Aronow B, Plaisier CL, Patel AP, Paddison PJ. KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma. Nat Commun 2025; 16:4327. [PMID: 40346033 PMCID: PMC12064679 DOI: 10.1038/s41467-025-59503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Quiescence cancer stem-like cells may play key roles in promoting tumor cell heterogeneity and recurrence for many tumors, including glioblastoma (GBM). Here we show that the protein acetyltransferase KAT5 is a key regulator of transcriptional, epigenetic, and proliferative heterogeneity impacting transitions into G0-like states in GBM. KAT5 activity suppresses the emergence of quiescent subpopulations with neurodevelopmental progenitor characteristics, while promoting GBM stem-like cell (GSC) self-renewal through coordinately regulating E2F- and MYC- transcriptional networks with protein translation. KAT5 inactivation significantly decreases tumor progression and invasive behavior while increasing survival after standard of care. Further, increasing MYC expression in human neural stem cells stimulates KAT5 activity and protein translation, as well as confers sensitivity to homoharringtonine, to similar levels to those found in GSCs and high-grade gliomas. These results suggest that the dynamic behavior of KAT5 plays key roles in G0 ingress/egress, adoption of quasi-neurodevelopmental states, and aggressive tumor growth in gliomas.
Collapse
Affiliation(s)
- Anca B Mihalas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Samantha A O'Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Heather M Feldman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Christine E Cucinotta
- College of Arts and Sciences, Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John Bassett
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jennifer Delegard
- Department of Neurosurgery, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Ling
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Wesley Jenkins
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27710, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Shah K, Anastasakou E, Sejour L, Wang Y, Wert-Lamas L, Rauchet C, Studer S, Goller S, Distel RJ, Marasco W, Perera L, Vlachos IS, Novina CD. LncRNA SLNCR phenocopies the E2F1 DNA binding site to promote melanoma progression. Cell Rep 2025; 44:115608. [PMID: 40279246 DOI: 10.1016/j.celrep.2025.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/27/2025] Open
Abstract
The long non-coding RNA SLNCR and the transcription factor E2F1 are known melanoma oncogenes. We show that SLNCR binds to E2F1 to promote the proliferation, invasion, and migration of melanoma cells from the bloodstream into the lungs. Blocking SLNCR-E2F1 complex formation without reducing the levels of either SLNCR or E2F1 prevents lung extravasation in mice. A 60-nt fragment of SLNCR contains two RNA analogs of the E2F1 DNA binding site (BS) in opposite orientations and can form a hairpin RNA that phenocopies the E2F1 DNA BS. Molecular dynamics (MD) simulations and biochemical experiments indicate that this fragment of SLNCR binds to the E2F1 DNA-binding domain more effectively than the E2F1 DNA BS. MD simulations predict higher affinity for DNA-E2F1 complex formation but faster kinetics and a greater number of RNA-amino acid contacts for the RNA-E2F1 complex, suggesting that RNA binding to E2F1 is more kinetically favorable.
Collapse
Affiliation(s)
- Kushani Shah
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Eleni Anastasakou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Leinal Sejour
- Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Wert-Lamas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Christopher Rauchet
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Sabine Studer
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon Goller
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Robert J Distel
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Wayne Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
| | - Ioannis S Vlachos
- Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
4
|
Meert L, Pelicano de Almeida M, Dekker MR, Dekkers DHW, Nowosad K, Huylebroeck D, van den Hout M, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. A CHD8-TRRAP axis facilitates MYC and E2F target gene regulation in human neural stem cells. iScience 2025; 28:111978. [PMID: 40104050 PMCID: PMC11914185 DOI: 10.1016/j.isci.2025.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Mutations in ATP-dependent chromatin remodeler CHD8 cause one of the most frequent monogenetic forms of autism and are associated with brain overgrowth. Nevertheless, the activities of CHD8 in autism-relevant cell types are still poorly understood. Here, we purify the CHD8 protein from human neural stem cells and determine its interaction partners using mass spectrometry. We identify the TRRAP complex, a coactivator of MYC and E2F transcription factors, as a prominent CHD8 interaction partner. CHD8 colocalizes genome-wide with TRRAP and binds together at MYC and E2F target gene promoters in human neural stem cells. Depletion of CHD8 or TRRAP in human neural stem cells shows downregulation of MYC and E2F target genes as the most prominent gene-regulatory events. Depletion of CHD8 diminishes cell-cycle entry into S-phase. MYC and E2F transcription factors are established oncogenes and regulate cell growth. Our results link CHD8 to TRRAP in facilitating the regulation of MYC and E2F target genes in human neural stem cells.
Collapse
Affiliation(s)
- Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
5
|
Zhai Y, Zhang F, Shi X, Zou S, Hu X, Shan C, Zhang L, Zou B, Yang X, Kong P, Cheng X. YEATS2 promotes malignant phenotypes of esophageal squamous cell carcinoma via H3K27ac activated-IL6ST. Front Cell Dev Biol 2025; 13:1497290. [PMID: 40040791 PMCID: PMC11876388 DOI: 10.3389/fcell.2025.1497290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Histone acetylation modifications can regulate gene transcription and play crucial roles in multiple tumorigeneses processes. YEATS domain proteins are one important type of acetylation readers. We have found significant mutations and copy number amplifications of YEATS domain containing 2 (YEATS2) gene in esophageal squamous cell carcinoma (ESCC) through whole genome sequencing (WGS). However, the function and molecular mechanism of YEATS2 in ESCC remain elusive. Methods Chi-squared test and Kaplan-Meier methods were used to analyze the clinical significance of YEATS2. MTT, Colony Formation Assay, Transwell, Scratch Wound Healing, subcutaneous tumorigenesis model and lung metastatic tumor model were performed to detect YEATS2 effect on the proliferation and migration ability of ESCC cells in vivo and in vitro Co-IP-based mass spectrum (MS) assays and Chromatin immunoprecipitation (ChIP) were performed to explore the molecular mechanism of YEATS2 function in ESCC. Results ESCC patients with copy number amplification of YEATS2 had shorter postoperative survival. Furthermore, YEATS2 expression was positively correlated with copy number amplification. We have also found that YEATS2 expression was significantly upregulated in ESCC tissues and was correlated closely with the differentiation degree of ESCC cells. The results of in vivo and in vitro experiments revealed that YEATS2 enhanced the abilities of ESCC cells to proliferate and migrate. Mechanistically, YEATS2 activated NF-κB signaling to promote ESCC progression. YEATS2 and H3K27 acetylation (H3K27ac) were both enriched in the promoter region of IL6ST, which is involved in the regulation of YEATS2 on NF-κB signaling. Additionally, YEATS2 could recruit TAF15 and KAT5 to enhance H3K27ac enrichment in the promoter region of IL6ST to regulate its expression. Conclusion In conclusion, YEATS2 might function as a potential driver gene and a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuanfang Zhai
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fanyu Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Shi
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siwei Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoling Hu
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengyuan Shan
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Yang
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Watanabe K, Yamamoto T, Fujita T, Hino S, Hino Y, Yamazaki K, Ohashi Y, Sakuraba S, Kono H, Nakao M, Ochiai K, Dan S, Saitoh N. Metabolically inducing defects in DNA repair sensitizes BRCA-wild-type cancer cells to replication stress. Sci Signal 2024; 17:eadl6445. [PMID: 39531517 DOI: 10.1126/scisignal.adl6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration-using glyceollin I, metformin, or phenformin-induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)-associated DNA repair genes. These serial events created so-called "BRCAness," in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as BRCA1 and BRCA2, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell-specific potential of mitochondria-targeting drugs.
Collapse
Affiliation(s)
- Kenji Watanabe
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomoko Fujita
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Koji Ochiai
- PhytoMol-Tech Inc., 3-14-3 Minami-Kumamoto, Chuo-ku, Kumamoto City, Kumamoto 860-0812, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
7
|
Yi W, Dziadowicz SA, Mangano RS, Wang L, McBee J, Frisch SM, Hazlehurst LA, Adjeroh DA, Hu G. Molecular Signatures of CB-6644 Inhibition of the RUVBL1/2 Complex in Multiple Myeloma. Int J Mol Sci 2024; 25:9022. [PMID: 39201707 PMCID: PMC11354775 DOI: 10.3390/ijms25169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM). In this work, we defined transcriptional signatures corresponding to CB-6644 treatment in MM cells and determined underlying epigenetic changes in terms of chromatin accessibility. CB-6644 upregulated biological processes related to interferon response and downregulated those linked to cell proliferation in MM cells. Transcriptional regulator inference identified E2Fs as regulators for downregulated genes and MED1 and MYC as regulators for upregulated genes. CB-6644-induced changes in chromatin accessibility occurred mostly in non-promoter regions. Footprinting analysis identified transcription factors implied in modulating chromatin accessibility in response to CB-6644 treatment, including ATF4/CEBP and IRF4. Lastly, integrative analysis of transcription responses to various chemical compounds of the molecular signature genes from public gene expression data identified CB-5083, a p97 inhibitor, as a synergistic candidate with CB-6644 in MM cells, but experimental validation refuted this hypothesis.
Collapse
Affiliation(s)
- Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Rachel S. Mangano
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Joseph McBee
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Steven M. Frisch
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA;
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
8
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
10
|
Buddell T, Purdy AL, Patterson M. The genetics of cardiomyocyte polyploidy. Curr Top Dev Biol 2024; 156:245-295. [PMID: 38556425 DOI: 10.1016/bs.ctdb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The regulation of ploidy in cardiomyocytes is a complex and tightly regulated aspect of cardiac development and function. Cardiomyocyte ploidy can range from diploid (2N) to 8N or even 16N, and these states change during key stages of development and disease progression. Polyploidization has been associated with cellular hypertrophy to support normal growth of the heart, increased contractile capacity, and improved stress tolerance in the heart. Conversely, alterations to ploidy also occur during cardiac pathogenesis of diseases, such as ischemic and non-ischemic heart failure and arrhythmia. Therefore, understanding which genes control and modulate cardiomyocyte ploidy may provide mechanistic insight underlying cardiac growth, regeneration, and disease. This chapter summarizes the current knowledge regarding the genes involved in the regulation of cardiomyocyte ploidy. We discuss genes that have been directly tested for their role in cardiomyocyte polyploidization, as well as methodologies used to identify ploidy alterations. These genes encode cell cycle regulators, transcription factors, metabolic proteins, nuclear scaffolding, and components of the sarcomere, among others. The general physiological and pathological phenotypes in the heart associated with the genetic manipulations described, and how they coincide with the respective cardiomyocyte ploidy alterations, are further discussed in this chapter. In addition to being candidates for genetic-based therapies for various cardiac maladies, these genes and their functions provide insightful evidence regarding the purpose of widespread polyploidization in cardiomyocytes.
Collapse
Affiliation(s)
- Tyler Buddell
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexandra L Purdy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michaela Patterson
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
11
|
Endo M, Tanaka Y, Fukuoka M, Suzuki H, Minami Y. Wnt5a/Ror2 promotes Nrf2-mediated tissue protective function of astrocytes after brain injury. Glia 2024; 72:411-432. [PMID: 37904612 DOI: 10.1002/glia.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mayo Fukuoka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hayata Suzuki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Chen SN, Mai ZY, Mai JN, Liang W, Dong ZX, Ju FE, Chan SH, Fang Z, Xu Y, Uziel O, He C, Zhang XD, Zheng Y. E2F2 modulates cell adhesion through the transcriptional regulation of PECAM1 in multiple myeloma. Br J Haematol 2023; 202:840-855. [PMID: 37365680 DOI: 10.1111/bjh.18958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/26/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.
Collapse
Affiliation(s)
- Shu-Na Chen
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhi-Ying Mai
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Jun-Na Mai
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weiyao Liang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhao-Xia Dong
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Fei-Er Ju
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Sze-Hoi Chan
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhigang Fang
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichuan Xu
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Orit Uziel
- The Felsenstein Medical Research Center, Institute of Hematology Rabin Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Xing-Ding Zhang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yongjiang Zheng
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
14
|
Role of E2F transcription factor in Oral cancer: Recent Insight and Advancements. Semin Cancer Biol 2023; 92:28-41. [PMID: 36924812 DOI: 10.1016/j.semcancer.2023.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
|
15
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
16
|
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci 2022; 47:1009-1022. [PMID: 35835684 DOI: 10.1016/j.tibs.2022.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Amy E Schade
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Sajid A, Saeed MS, Malik RM, Fazal S, Malik S, Kamal MA. Prediction of Secondary and Tertiary Structure and Docking of Rb1WT
And Rb1R661W Proteins. CURRENT BIOTECHNOLOGY 2022. [DOI: 10.2174/2211550111666220127100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:
Retinoblastoma, a malignancy occurring in the juvenile cells of the retina,
is responsible for light detection. It is one of the most emerging ra re childhood and infant cancer.
It is initiated by the mutation in Rb1, a first tumor suppressor gene located on chromosome 13q14.
Rb1 protein is responsible for cell cycle regulation.
Methods:
In our study, secondary and 3D-Structural predictions of Rb1WT and Rb1R661W were made
by comparative or homology modeling to find any structural change leading to the disruption in its
further interactions. Quality assurance of the structures was done by Ramachandran Plot for a stable
structure. Both the proteins were then applied by docking process with proteins of interest.
Results:
Secondary structure showed a number of mutations in helixes, β-Hairpins of Rb1R661W. The
major change was the loss of β-Hairpin loop, extension and shortening of helixes. 3D comparison
structure showed a change in the groove of Rb1R661W. Docking results, unlike RB1 WT, had different
and no interactions with some of the proteins of interest. This mutation in Rb1 protein had a deleterious
effect on the protein functionality.
Conclusion:
This study will help to design the appropriate therapy and also understand the mechanism
of disease of retinoblastoma, for researchers and pharmaceuticals.
Collapse
Affiliation(s)
- Aimen Sajid
- Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Rabbiah Manzoor Malik
- Capital University of Science and Technology, Islamabad, Pakistan
- Wah Medical College, Wah Cantt, Pakistan
| | - Sahar Fazal
- Capital University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Malik
- Capital University of Science and Technology, Islamabad, Pakistan
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research
Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee
Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
19
|
Ahmad T, Ashraf W, Ibrahim A, Zaayter L, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Int J Oncol 2021; 59:89. [PMID: 34558642 PMCID: PMC8480382 DOI: 10.3892/ijo.2021.5269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tat interactive protein, 60 kDa (TIP60) is an important partner of ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1), ensuring various cellular processes through its acetyltransferase activity. TIP60 is believed to play a tumor suppressive role, partly explained by its downregulated expression in a number of cancers. The aim of the present study was to investigate the role and mechanisms of action of TIP60 in the regulation of UHRF1 expression. The results revealed that TIP60 overexpression downregulated the UHRF1 and DNA methyltransferase 1 (DNMT1) expression levels. TIP60 interfered with USP7-UHRF1 association and induced the degradation of UHRF1 in an auto-ubiquitination-dependent manner. Moreover, TIP60 activated the p73-mediated apoptotic pathway. Taken together, the data of the present study suggest that the tumor suppressor role of TIP60 is mediated by its regulation to UHRF1.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian D Muller
- Hubert Curien Pluridisciplinary Institute (IPHC), CNRS UMR‑7178, University of Strasbourg, 67401 Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| |
Collapse
|
20
|
E2F1 Maintains Gastric Cancer Stemness Properties by Regulating Stemness-Associated Genes. JOURNAL OF ONCOLOGY 2021; 2021:6611327. [PMID: 33986804 PMCID: PMC8093057 DOI: 10.1155/2021/6611327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Purpose To determine the regulatory role of E2F1 in maintaining gastric cancer stemness properties and the clinical significance of E2F1 in gastric cancer. Materials and Methods We conducted a tumor spheroid formation assay to enrich gastric cancer stem-like cells. The protein and mRNA expression levels of genes were measured using Western Blot and qRT-PCR. Lentivirus-mediated overexpression and downregulation of E2F1 were performed to evaluate the effect of E2F1 on the stemness properties of gastric cancer cells. The effect of E2F1 on gastric cancer cell sensitivity of 5-Fu was evaluated using cell viability assay and TdT-mediated dUTP Nick-End Labeling staining. We also analyzed the association between E2F1 expression and clinical characteristics in gastric cancer patients. The KM plotter database was used to analyze the relationship between E2F1 and overall survival in GC patients. Results We found that E2F1 expression was significantly higher in gastric cancer tissues than in the paired adjacent normal tissues (p < 0.05) and was positively correlated with tumor size (p < 0.05), T stage (p < 0.05), and differentiation degree (p < 0.05). KM plotter database demonstrated a close association between higher E2F1 expression level and worse overall survival of gastric cancer patients (p < 0.05). In vitro assay illustrated that E2F1 could regulate the expression of stemness-associated genes, such as BMI1, OCT4, Nanog, and CD44, and maintain the tumor spheroid formation ability of gastric cancer cells. E2F1 enhanced 5-Fu resistance in gastric cancer cells, and the E2F1 expression level was correlated with the prognosis of gastric cancer patients receiving 5-Fu therapy. The expression levels of stemness-associated genes were also significantly higher in gastric cancer tissues than the paired adjacent normal tissues (p < 0.05). A positive correlation was observed between E2F1 and BMI1 (r = 0.422, p < 0.05), CD44 (r = 0.634, p < 0.05), OCT4 (r = 0.456, p < 0.05), and Nanog (r = 0.337, p < 0.05) in gastric cancer tissues. The co-overexpression of E2F1 and stemness-associated genes was associated with worse overall survival. Conclusion E2F1 plays a significant role in gastric cancer progression by maintaining gastric cancer stemness properties through the regulation of stemness-associated genes. The close association between E2F1 and poor prognosis of patients suggests that E2F1 could serve as a prognostic biomarker and a therapeutic target in gastric cancer patients.
Collapse
|
21
|
Rather GM, Anyanwu M, Minko T, Garbuzenko O, Szekely Z, Bertino JR. Anti-Tumor Effects of a Penetratin Peptide Targeting Transcription of E2F-1, 2 and 3a Is Enhanced When Used in Combination with Pemetrexed or Cisplatin. Cancers (Basel) 2021; 13:cancers13050972. [PMID: 33652640 PMCID: PMC7956530 DOI: 10.3390/cancers13050972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The E2F family of transcription factors are essential for cell proliferation, differentiation, and DNA repair. They are commonly overexpressed or dysregulated in cancer as a consequence of inactivation or mutations in the retinoblastoma protein. Therefore, one or more of the activating E2Fs (E2F-1, 2, and 3a) have been recognized as antitumor targets. The combination of a peptide targeting transcription of E2F-1, 2, and 3a, with cisplatin, and especially with pemetrexed, showed enhanced antitumor activity in-vitro and in-vivo and has promise for the treatment of patients with various tumors, and in particular, lung adenocarcinoma. Abstract Background: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. Methods: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. Results: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. Conclusions: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.
Collapse
Affiliation(s)
- Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
| | - Michael Anyanwu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
| | - Tamara Minko
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Zoltan Szekely
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-732-235-8510; Fax: +1-732-235-8181
| |
Collapse
|
22
|
Wang R, Li X, Sun C, Yu L, Hua D, Shi C, Wang Q, Rao C, Luo W, Jiang Z, Zhou X, Yu S. The ATPase Pontin is a key cell cycle regulator by amplifying E2F1 transcription response in glioma. Cell Death Dis 2021; 12:141. [PMID: 33542204 PMCID: PMC7862657 DOI: 10.1038/s41419-021-03421-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/20/2023]
Abstract
Pontin (RUVBL1) is a highly conserved ATPase of the AAA + (ATPases Associated with various cellular Activities) superfamily and is implicated in various biological processes crucial for oncogenesis. Its overexpression is observed in multiple human cancers, whereas the relevance of Pontin to gliomagenesis remains obscure. To gain insights into Pontin involvement in glioma, we performed bioinformatics analyses of Pontin co-expressed genes, Pontin-affected genes, and carried out experimental studies. The results verified that Pontin was upregulated in gliomas. Its higher levels might predict the worse prognosis of glioma patients. The Pontin co-expressed genes were functionally enriched in cell cycle progression and RNA processing. In the nucleus, Pontin promoted cell growth via facilitating cell cycle progression. Using RNA-seq, we found that Pontin knockdown resulted in altered expression of multiple genes, among which the E2F1 targets accounted for a large proportion. Mechanistic studies found that Pontin interacted with E2F1 and markedly amplified the E2F1 transcription response in an ATPase domain-dependent manner. By analyzing the RNA-seq data, we also found that Pontin could impact on the alternative splicing (AS). Both differential expressed genes and AS events affected by Pontin were associated with cell cycle regulation. Taken together, our findings provide novel insights of the importance of Pontin in gliomagenesis by regulating cell cycle and AS, and shed light on the possible application of Pontin as an antineoplastic target in glioma.
Collapse
Affiliation(s)
- Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chun Rao
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.
| |
Collapse
|
23
|
Massenet J, Gardner E, Chazaud B, Dilworth FJ. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 2021; 11:4. [PMID: 33431060 PMCID: PMC7798257 DOI: 10.1186/s13395-020-00259-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment. Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy muscle stem cell epigenome are altered. Altered epigenome reduces the efficiency of cell fate transitions required for muscle repair and contributes to muscle pathology. However, the reversible nature of epigenetic changes holds out potential for restoring cell fate potential to improve muscle repair in myopathies. In this review, we will describe the current knowledge of the mechanisms allowing muscle stem cell fate transitions during regeneration and how it is altered in muscle disease. In addition, we provide some examples of how epigenetics could be harnessed therapeutically to improve regeneration in various muscle pathologies.
Collapse
Affiliation(s)
- Jimmy Massenet
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - Edward Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada. .,LIFE Research Institute, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
24
|
Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle 2020; 19:2260-2269. [PMID: 32787501 PMCID: PMC7513849 DOI: 10.1080/15384101.2020.1801190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.
Collapse
Affiliation(s)
- Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Renier Velez-Cruz
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Anup K. Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jie Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
25
|
Lee C, Kim JK. Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications. J Cell Physiol 2020; 236:2318-2332. [PMID: 32840881 PMCID: PMC7891620 DOI: 10.1002/jcp.30022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Retinoblastoma (RB) is a pediatric ocular tumor mostly occurring due to the biallelic loss of RB1 gene in the developing retina. Early studies of genomic aberrations in RB have provided a valuable insight into how RB can progress following the tumor-initiating RB1 mutations and have established a notion that inactivation of RB1 gene is critical to initiate RB but this causative genetic lesion alone is not sufficient for malignant progression. With the advent of high-throughput sequencing technologies, we now have access to the comprehensive genomic and epigenetic landscape of RB and have come to appreciate that RB tumorigenesis requires both genetic and epigenetic alterations that might be directly or indirectly driven by RB1 loss. This integrative perspective on RB tumorigenesis has inspired research efforts to better understand the types and functions of epigenetic mechanisms contributing to RB development, leading to the identification of multiple epigenetic regulators misregulated in RB in recent years. A complete understanding of the intricate network of genetic and epigenetic factors in modulation of gene expression during RB tumorigenesis remains a major challenge but would be crucial to translate these findings into therapeutic interventions. In this review, we will provide an overview of chromatin regulators identified to be misregulated in human RB among the numerous epigenetic factors implicated in RB development. For a subset of these chromatin regulators, recent findings on their functions in RB development and potential therapeutic applications are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
González-Medina A, Hidalgo E, Ayté J. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Res 2019; 47:8439-8451. [PMID: 31260531 PMCID: PMC6895280 DOI: 10.1093/nar/gkz561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.
Collapse
Affiliation(s)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
29
|
Urban I, Kerimoglu C, Sakib MS, Wang H, Benito E, Thaller C, Zhou X, Yan J, Fischer A, Eichele G. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci Rep 2019; 9:16173. [PMID: 31700011 PMCID: PMC6838100 DOI: 10.1038/s41598-019-50927-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant histone acetylation contributes to age-dependent cognitive decline and neurodegenerative diseases. We analyze the function of lysine acetyltransferase TIP60/KAT5 in neurons of the hippocampus using an inducible mouse model. TIP60-deficiency in the adult forebrain leads within days to extensive transcriptional dysfunction characterized by the presence of a neurodegeneration-related signature in CA1. Cell cycle- and immunity-related genes are upregulated while learning- and neuronal plasticity-related genes are downregulated. The dysregulated genes seen under TIP60-deficiency overlap with those in the well-characterized CK-p25 neurodegeneration model. We found that H4K12 is hypoacetylated at the transcriptional start sites of those genes whose expression is dampened in TIP60-deficient mice. Transcriptional dysregulation is followed over a period of weeks by activation of Caspase 3 and fragmentation of β-actin in CA1 neurites, eventually leading to severe neuronal loss. TIP60-deficient mice also develop mild memory impairment. These phenotypes point to a central role of TIP60 in transcriptional networks that are critical for neuronal viability.
Collapse
Affiliation(s)
- Inga Urban
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - M Sadman Sakib
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eva Benito
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany.,European Molecular Biology Organization (EMBO), 69117, Heidelberg, Germany
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Xunlei Zhou
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - André Fischer
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany. .,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
30
|
E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair. Nat Commun 2019; 10:4951. [PMID: 31666529 PMCID: PMC6821830 DOI: 10.1038/s41467-019-12861-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
E2F1 and retinoblastoma (RB) tumor-suppressor protein not only regulate the periodic expression of genes important for cell proliferation, but also localize to DNA double-strand breaks (DSBs) to promote repair. E2F1 is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here we demonstrate that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases and that this interaction is required for the recruitment of p300 and CBP to DSBs and the induction of histone acetylation at sites of damage. A knock-in mutation that blocks E2F1 acetylation abolishes the recruitment of p300 and CBP to DSBs and also the accumulation of other chromatin modifying activities and repair factors, including Tip60, BRG1 and NBS1, and renders mice hypersensitive to ionizing radiation (IR). These findings reveal an important role for E2F1 acetylation in orchestrating the remodeling of chromatin structure at DSBs to facilitate repair. E2F1, which localises to DNA double-strand breaks (DSBs) to promote repair, is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here the authors show that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases, which is required for recruitment of p300 and CBP to DSBs, to facilate repair.
Collapse
|
31
|
Kishkevich A, Cooke SL, Harris MRA, de Bruin RAM. Gcn5 and Rpd3 have a limited role in the regulation of cell cycle transcripts during the G1 and S phases in Saccharomyces cerevisiae. Sci Rep 2019; 9:10686. [PMID: 31337860 PMCID: PMC6650506 DOI: 10.1038/s41598-019-47170-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2019] [Indexed: 01/12/2023] Open
Abstract
Activation of cell cycle regulated transcription during the G1-to-S transition initiates S phase entry and cell cycle commitment. The molecular mechanisms involving G1/S transcriptional regulation are well established and have been shown to be evolutionary conserved from yeast to humans. Previous work has suggested that changes to the chromatin state, specifically through histone acetylation, has an important role in the regulation of G1/S transcription in both yeast and human cells. Here we investigate the role of histone acetylation in G1/S transcriptional regulation in the budding yeast Saccharomyces cerevisiae. Our work shows that histone acetylation at specific sites at G1/S target gene promoters peaks at the G1-to-S transition, coinciding with their peak transcription levels. Acetylation at G1/S target promoters is significantly reduced upon deletion of the previously implicated histone acetyltransferase Gcn5, but G1/S cell cycle regulated transcription is largely unaffected. The histone deacetylase Rpd3, suggested to have a role in Whi5-dependent repression, is required for full repression of G1/S target genes in the G1 and S phases. However, in the context of transcriptionally active levels during the G1-to-S transition, this seems to play a minor role in the regulation of cell cycle transcription. Our data suggests that histone acetylation might modulate the amplitude of G1/S cell cycle regulated transcription in Saccharomyces cerevisiae, but has a limited role in its overall regulation.
Collapse
Affiliation(s)
- A Kishkevich
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
- Department of Biochemistry, University of Oxford, OX3 1QU, Oxford, UK
| | - S L Cooke
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
| | - M R A Harris
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
| | - R A M de Bruin
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK.
- UCL Cancer Institute, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
32
|
Hsu J, Arand J, Chaikovsky A, Mooney NA, Demeter J, Brison CM, Oliverio R, Vogel H, Rubin SM, Jackson PK, Sage J. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun 2019; 10:2939. [PMID: 31270324 PMCID: PMC6610666 DOI: 10.1038/s41467-019-10901-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2019] [Indexed: 01/22/2023] Open
Abstract
E2F transcription factors are central regulators of cell division and cell fate decisions. E2F4 often represents the predominant E2F activity in cells. E2F4 is a transcriptional repressor implicated in cell cycle arrest and whose repressive activity depends on its interaction with members of the RB family. Here we show that E2F4 is important for the proliferation and the survival of mouse embryonic stem cells. In these cells, E2F4 acts in part as a transcriptional activator that promotes the expression of cell cycle genes. This role for E2F4 is independent of the RB family. Furthermore, E2F4 functionally interacts with chromatin regulators associated with gene activation and we observed decreased histone acetylation at the promoters of cell cycle genes and E2F targets upon loss of E2F4 in RB family-mutant cells. Taken together, our findings uncover a non-canonical role for E2F4 that provide insights into the biology of rapidly dividing cells. E2F transcription factors are regulators of cell division and cell fate decisions. Here the authors show that E2F4 is important for proliferation and survival of mouse ESCs, independent of the RB family, and that E2F4 interacts with chromatin regulators associated with gene activation.
Collapse
Affiliation(s)
- Jenny Hsu
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julia Arand
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Andrea Chaikovsky
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Caileen M Brison
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Romane Oliverio
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Pathology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julien Sage
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA. .,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Vangala JR, Radhakrishnan SK. Nrf1-mediated transcriptional regulation of the proteasome requires a functional TIP60 complex. J Biol Chem 2018; 294:2036-2045. [PMID: 30559296 DOI: 10.1074/jbc.ra118.006290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Inhibition of the proteasome leads to proteotoxic stress, which is characterized by the buildup of ubiquitinated proteins that cannot be degraded properly. The transcription factor Nrf1 (also called NFE2L1) counteracts proteotoxic stress by inducing transcription of proteasome subunit genes, resulting in the restoration of proteasome activity. Further understanding of the Nrf1 pathway is therefore of interest in both neurodegeneration, where proteasome activity could be enhanced, and cancer, where suppression of this pathway could potentiate the cell-killing effect mediated by proteasome inhibitor drugs. Here, to identify novel regulators of Nrf1, we performed an RNAi screen in an engineered cell line, reporting on Nrf1 transcriptional activity. In addition to validating known regulators, we discovered that the AAA+ ATPase RUVBL1 is necessary for Nrf1's transcriptional activity. Given that RUVBL1 is part of different multisubunit complexes that play key roles in transcription, we dissected this phenomenon further and found that the TIP60 chromatin-regulatory complex is essential for Nrf1-dependent transcription of proteasome genes. Consistent with these observations, Nrf1, RUVBL1, and TIP60 proteins were co-recruited to the promoter regions of proteasome genes after proteasome inhibitor treatments. More importantly, depletion of RUVBL1 or TIP60 in various cancer cells sensitized them to cell death induced by proteasome inhibition. Overall, our study provides a framework for manipulating the TIP60-Nrf1 axis to alter proteasome function in various human diseases, including cancer.
Collapse
Affiliation(s)
- Janakiram R Vangala
- From the Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Senthil K Radhakrishnan
- From the Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
34
|
Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 2018; 23:808-821. [PMID: 30092612 DOI: 10.1111/gtc.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Regulation of the expression of diverse genes is essential for making possible the complexity of higher organisms, and the temporal and spatial regulation of gene expression allows for the alteration of cell types and growth patterns. A critical component of this regulation is the DNA sequence-specific binding of transcription factors (TFs). However, most TFs do not independently participate in gene transcriptional regulation, because they lack an effector function. Instead, TFs are thought to work by recruiting cofactors, including Mediator complex (Mediator), chromatin-remodeling complexes (CRCs), and histone-modifying complexes (HMCs). Mediator associates with the majority of transcribed genes and acts as an integrator of multiple signals. On the other hand, CRCs and HMCs are selectively recruited by TFs. Although all the pairings between TFs and CRCs or HMCs are not fully known, there are a growing number of established TF-CRC and TF-HMC combinations. In this review, we focused on the most important of these pairings and discuss how they control gene expression.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshiaki Ohkuma
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
35
|
Lee SH, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 2018; 561:127-131. [PMID: 30150773 PMCID: PMC6527314 DOI: 10.1038/s41586-018-0465-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
DNA mutations are known cancer drivers. Here we investigated whether mRNA events that are upregulated in cancer can functionally mimic the outcome of genetic alterations. RNA sequencing or 3'-end sequencing techniques were applied to normal and malignant B cells from 59 patients with chronic lymphocytic leukaemia (CLL)1-3. We discovered widespread upregulation of truncated mRNAs and proteins in primary CLL cells that were not generated by genetic alterations but instead occurred by intronic polyadenylation. Truncated mRNAs caused by intronic polyadenylation were recurrent (n = 330) and predominantly affected genes with tumour-suppressive functions. The truncated proteins generated by intronic polyadenylation often lack the tumour-suppressive functions of the corresponding full-length proteins (such as DICER and FOXN3), and several even acted in an oncogenic manner (such as CARD11, MGA and CHST11). In CLL, the inactivation of tumour-suppressor genes by aberrant mRNA processing is substantially more prevalent than the functional loss of such genes through genetic events. We further identified new candidate tumour-suppressor genes that are inactivated by intronic polyadenylation in leukaemia and by truncating DNA mutations in solid tumours4,5. These genes are understudied in cancer, as their overall mutation rates are lower than those of well-known tumour-suppressor genes. Our findings show the need to go beyond genomic analyses in cancer diagnostics, as mRNA events that are silent at the DNA level are widespread contributors to cancer pathogenesis through the inactivation of tumour-suppressor genes.
Collapse
Affiliation(s)
- Shih-Han Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irtisha Singh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tri-I Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, USA
| | - Sarah Tisdale
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Rust K, Tiwari MD, Mishra VK, Grawe F, Wodarz A. Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila. EMBO J 2018; 37:embj.201798659. [PMID: 29997178 DOI: 10.15252/embj.201798659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells establish cortical polarity and divide asymmetrically to simultaneously maintain themselves and generate differentiating offspring cells. Several chromatin modifiers have been identified as stemness factors in mammalian pluripotent stem cells, but whether these factors control stem cell polarity and asymmetric division has not been investigated so far. We addressed this question in Drosophila neural stem cells called neuroblasts. We identified the Tip60 chromatin remodeling complex and its interaction partner Myc as regulators of genes required for neuroblast maintenance. Knockdown of Tip60 complex members results in loss of cortical polarity, symmetric neuroblast division, and premature differentiation through nuclear entry of the transcription factor Prospero. We found that aPKC is the key target gene of Myc and the Tip60 complex subunit Domino in regulating neuroblast polarity. Our transcriptome analysis further showed that Domino regulates the expression of mitotic spindle genes previously identified as direct Myc targets. Our findings reveal an evolutionarily conserved functional link between Myc, the Tip60 complex, and the molecular network controlling cell polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Katja Rust
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of Dermatology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ferdi Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
38
|
Ashraf W, Bronner C, Zaayter L, Ahmad T, Richert L, Alhosin M, Ibrahim A, Hamiche A, Mely Y, Mousli M. Interaction of the epigenetic integrator UHRF1 with the MYST domain of TIP60 inside the cell. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:188. [PMID: 29268763 PMCID: PMC5740878 DOI: 10.1186/s13046-017-0659-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
Abstract
Background The nuclear epigenetic integrator UHRF1 is known to play a key role with DNMT1 in maintaining the DNA methylation patterns during cell division. Among UHRF1 partners, TIP60 takes part in epigenetic regulations through its acetyltransferase activity. Both proteins are involved in multiple cellular functions such as chromatin remodeling, DNA damage repair and regulation of stability and activity of other proteins. The aim of this work was to investigate the interaction between UHRF1 and TIP60 in order to elucidate the dialogue between these two proteins. Methods Biochemical (immunoprecipitation and pull-down assays) and microscopic (confocal and fluorescence lifetime imaging microscopy; FLIM) techniques were used to analyze the interaction between TIP60 and UHRF1 in vitro and in vivo. Global methylation levels were assessed by using a specific kit. The results were statistically analyzed using Graphpad prism and Origin. Results Our study shows that UHRF1, TIP60 and DNMT1 were found in the same epigenetic macro-molecular complex. In vitro pull-down assay showed that deletion of either the zinc finger in MYST domain or deletion of whole MYST domain from TIP60 significantly reduced its interaction with UHRF1. Confocal and FLIM microscopy showed that UHRF1 co-localized with TIP60 in the nucleus and confirmed that both proteins interacted together through the MYST domain of TIP60. Moreover, overexpression of TIP60 reduced the DNA methylation levels in HeLa cells along with downregulation of UHRF1 and DNMT1. Conclusion Our data demonstrate for the first time that TIP60 through its MYST domain directly interacts with UHRF1 which might be of high interest for the development of novel oncogenic inhibitors targeting this interaction.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Liliyana Zaayter
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Tanveer Ahmad
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,BioTechnology Research Center (BTRC), Tripoli, Libya
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch Cedex, France.
| |
Collapse
|
39
|
Hanigan TW, Taha TY, Aboukhatwa SM, Frasor J, Petukhov PA. Scaffold dependent histone deacetylase (HDAC) inhibitor induced re-equilibration of the subcellular localization and post-translational modification state of class I HDACs. PLoS One 2017; 12:e0186620. [PMID: 29045501 PMCID: PMC5646865 DOI: 10.1371/journal.pone.0186620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
The mechanism of action of histone deacetylase inhibitors (HDACi) is mainly attributed to the inhibition of the deacetylase catalytic activity for their histone substrates. In this study, we analyzed the abundance of class I HDACs in the cytosolic, nuclear soluble and chromatin bound cellular fractions in breast cancer cells after HDACi treatment. We found that potent N-hydroxy propenamide-based HDACi induced a concentration dependent decrease in the HDAC1 associated with chromatin and a lasting concomitant increase in cytoplasmic HDAC1 while maintaining total protein expression. No such change occurred with HDAC2 or 8, however, an increase in cytoplasmic non-phosphorylated HDAC3 was also observed. The subcellular re-equilibration of HDAC1 was subsequent to the accumulation of acetylated histones and might be cell cycle dependent. This study suggests that the biological activity of a subset of N-hydroxy propenamide-based HDACi may stem from direct competition with histone substrates of HDACs as well as from spatial separation from their substrates in the nucleus and/or change in post-translational modification status of HDACs.
Collapse
Affiliation(s)
- Thomas W. Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Taha Y. Taha
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shaimaa M. Aboukhatwa
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Li JH, Wang M, Zhang R, Gao WL, Meng SH, Ma XL, Hou XH, Feng LM. E2F1-directed activation of nc886 mediates drug resistance in cervical cancer cells via regulation of major vault protein. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9233-9242. [PMID: 31966795 PMCID: PMC6965946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/26/2017] [Indexed: 06/10/2023]
Abstract
Non-coding RNAs are critical regulators of tumor biology. nc886, a recently identified non-coding RNA, is overexpressed in some tumors, but undetected in others. However, the precise role of nc886 remains unclear in cervical cancers. In this study, we found that nc886, major vault protein (MVP), and E2F1 exhibited coordinate expression as they were silenced in normal tissues but overexpressed in cervical cancer tissues. We subsequently demonstrate that nc886 upregulation was a critical response to chemotherapy treatment of cervical cancer cells. Mechanistically, inhibition of nc886 increased chemosensitivity, induced apoptosis, and suppressed the protein expression of MVP, a critical regulator of drug resistance. Furthermore, we identify E2F1 as a key transcription regulator of nc886 that directly interacts and modulates promoter activity. Taken together, we demonstrate that E2F1 sufficiently promotes nc886 transcription and in turn MVP expression to drive drug resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Jing-Hua Li
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Beijing You An Hospital, Capital Medical UniversityBeijing, China
| | - Rui Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Wan-Li Gao
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Shi-Hui Meng
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Xue-Lian Ma
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Hui Hou
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| | - Li-Min Feng
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
41
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
43
|
Su WP, Ho YC, Wu CK, Hsu SH, Shiu JL, Huang JC, Chang SB, Chiu WT, Hung JJ, Liu TL, Wu WS, Wu PY, Su WC, Chang JY, Liaw H. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Sci Rep 2017; 7:3879. [PMID: 28634400 PMCID: PMC5478611 DOI: 10.1038/s41598-017-04223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia pathway in coordination with homologous recombination is essential to repair interstrand crosslinks (ICLs) caused by cisplatin. TIP60 belongs to the MYST family of acetyltransferases and is involved in DNA repair and regulation of gene transcription. Although the physical interaction between the TIP60 and FANCD2 proteins has been identified that is critical for ICL repair, it is still elusive whether TIP60 regulates the expression of FA and HR genes. In this study, we found that the chemoresistant nasopharyngeal carcinoma cells, derived from chronic treatment of cisplatin, show elevated expression of TIP60. Furthermore, TIP60 binds to the promoters of FANCD2 and BRCA1 by using the chromatin immunoprecipitation experiments and promote the expression of FANCD2 and BRCA1. Importantly, the depletion of TIP60 significantly reduces sister chromatid exchange, a measurement of HR efficiency. The similar results were also shown in the FNACD2-, and BRCA1-deficient cells. Additionally, these TIP60-deficient cells encounter more frequent stalled forks, as well as more DNA double-strand breaks resulting from the collapse of stalled forks. Taken together, our results suggest that TIP60 promotes the expression of FA and HR genes that are important for ICL repair and the chemoresistant phenotype under chronic treatment with cisplatin.
Collapse
Affiliation(s)
- Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Sen-Huei Hsu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jheng-Cheng Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Tsung-Lin Liu
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
44
|
Zhang J, Jiang HY, Zhang LK, Xu WL, Qiao YT, Zhu XG, Liu W, Zheng QQ, Hua ZC. C-FLIP L Modulated Wnt/β-Catenin Activation via Association with TIP49 Protein. J Biol Chem 2016; 292:2132-2142. [PMID: 28028178 DOI: 10.1074/jbc.m116.753251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular FLICE-like inhibitory protein (c-FLIPL) is a key inhibitory protein in the extrinsic apoptotic pathway. Recent studies showed that c-FLIPL could translocate into the nucleus and might be involved in the Wnt signaling pathway. The nuclear function of c-FLIPL was still unclear. Here we found a novel c-FLIPL-associated protein TIP49, which is a nuclear protein identified as a cofactor in the transcriptional regulation of β-catenin. They had co-localization in the nucleus and the DED domain of c-FLIPL was required for the association with TIP49. By performing ChIP experiments, C-FLIPL was detected in the ITF-2 locus and facilitated TIP49 accumulation in the formation of complexes at the T-cell-specific transcription factor site of human ITF-2 promoter. When TIP49 knockdown, c-FLIPL-driven Wnt activation, and cell proliferation were inhibited, suggesting that a role of nuclear c-FLIPL involved in modulation of the Wnt pathway was in a TIP49-dependent manner. Elevated expression of c-FLIPL and TIP49 that coincided in human lung cancers were analyzed in silico using the Oncomine database. Their high expressions were reconfirmed in six lung cancer cell lines and correlated with cell growth. The association of c-FLIPL and TIP49 provided an additional mechanism involved in c-FLIPL-mediated functions, including Wnt activation.
Collapse
Affiliation(s)
- Jing Zhang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and .,the Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| | - Heng-Yi Jiang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Lin-Kai Zhang
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Wen-Ling Xu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Yi-Ting Qiao
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Xu-Guo Zhu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Wan Liu
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Qian-Qian Zheng
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and
| | - Zi-Chun Hua
- From The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu and .,the Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Ko E, Seo HW, Jung ES, Kim BH, Jung G. The TERT promoter SNP rs2853669 decreases E2F1 transcription factor binding and increases mortality and recurrence risks in liver cancer. Oncotarget 2016; 7:684-99. [PMID: 26575952 PMCID: PMC4808026 DOI: 10.18632/oncotarget.6331] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023] Open
Abstract
A common single-nucleotide polymorphism in the telomerase reverse transcriptase (TERT) promoter, rs2853669 influences patient survival rates and the risk of developing cancer. Recently, several lines of evidence suggest that the rs2853669 suppresses TERT promoter mutation-mediated TERT expression levels and cancer mortality as well as recurrence rates. However, no reports are available on the impact of rs2853669 on TERT expression in hepatocellular carcinoma (HCC) and its association with patient survival. Here, we found that HCC-related overall and recurrence-free survival rates were not associated with TERT promoter mutation individually, but rs2853669 and the TERT promoter mutation in combination were associated with poor survival rates. TERT mRNA expression and telomere fluorescence levels were greater in patients with HCC who had both the combination. The combination caused TERT promoter methylation through regulating the binding of DNA methyltransferase 1 and histone deacetylase 1 to the TERT promoter in HCC cell lines. The TERT expression level was significantly higher in HCC tumor with a methylated promoter than in that with an unmethylated promoter. In conclusion, we demonstrate a substantial role for the rs2853669 in HCC with TERT promoter mutation, which suggests that the combination of the rs2853669 and the mutation indicate poor prognoses in liver cancer.
Collapse
Affiliation(s)
- Eunkyong Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, 151-747, South Korea
| | - Hyun-Wook Seo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, 151-747, South Korea
| | - Eun Sun Jung
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seocho-Gu, Seoul, 133-782, South Korea
| | - Baek-hui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 152-703, South Korea
| | - Guhung Jung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, 151-747, South Korea
| |
Collapse
|
46
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
47
|
Hirsch CL, Wrana JL, Dent SYR. KATapulting toward Pluripotency and Cancer. J Mol Biol 2016; 429:1958-1977. [PMID: 27720985 DOI: 10.1016/j.jmb.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
Development is generally regarded as a unidirectional process that results in the acquisition of specialized cell fates. During this process, cellular identity is precisely defined by signaling cues that tailor the chromatin landscape for cell-specific gene expression programs. Once established, these pathways and cell states are typically resistant to disruption. However, loss of cell identity occurs during tumor initiation and upon injury response. Moreover, terminally differentiated cells can be experimentally provoked to become pluripotent. Chromatin reorganization is key to the establishment of new gene expression signatures and thus new cell identity. Here, we explore an emerging concept that lysine acetyltransferase (KAT) enzymes drive cellular plasticity in the context of somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Sharon Y R Dent
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| |
Collapse
|
48
|
Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster. Genetics 2016; 203:1265-81. [PMID: 27184390 DOI: 10.1534/genetics.116.188581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression.
Collapse
|
49
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
50
|
Ming Z, Ding W, Yuan R, Jin J, Li X. Differential co-expression analysis of venous thromboembolism based on gene expression profile data. Exp Ther Med 2016; 11:2193-2200. [PMID: 27284300 PMCID: PMC4887825 DOI: 10.3892/etm.2016.3208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/08/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to screen differentially co-expressed genes and the involved transcription factors (TFs) and microRNAs (miRNAs) in venous thromboembolism (VTE). Microarray data of GSE19151 were downloaded from Gene Expression Omnibus, including 70 patients with VTE and 63 healthy controls. Principal component analysis (PCA) was performed using R software. Differential co-expression analysis was performed using R, followed by screening of modules using Cytoscape. Functional annotation was performed using Database for Annotation, Visualization, and Integrated Discovery. Moreover, Fisher test was used to screen key TFs and miRNAs for the modules. PCA revealed the disease and healthy samples could not be distinguished at the gene expression level. A total of 4,796 upregulated differentially co-expressed genes (e.g. zinc finger protein 264, electron-transfer-flavoprotein, beta polypeptide and Janus kinase 2) and 3,629 downregulated differentially co-expressed genes (e.g. adenylate cyclase 7 and single-stranded DNA binding protein 2) were identified, which were further mined to obtain 17 and eight modules separately. Functional annotation revealed that the largest upregulated module was primarily associated with acetylation and the largest downregulated module was mainly involved in mitochondrion. Moreover, 48 TFs and 62 miRNA families were screened for the 17 upregulated modules, such as E2F transcription factor 4, miR-30 and miR-135 regulating the largest module. Conversely, 35 TFs and 18 miRNA families were identified for the 8 downregulated modules, including mitochondrial ribosomal protein S12 and miR-23 regulating the largest module. Differentially co-expressed genes regulated by TFs and miRNAs may jointly contribute to the abnormal acetylation and mitochondrion presentation in the progression of VTE.
Collapse
Affiliation(s)
- Zhibing Ming
- Department of Intervention Radiology, The Second Affiliated Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China; Department of Vascular Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wenbin Ding
- Department of Intervention Radiology, The Second Affiliated Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ruifan Yuan
- Department of Intervention Radiology, The Second Affiliated Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jie Jin
- Department of Intervention Radiology, The Second Affiliated Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|