1
|
Sturd NA, Knight LA, Wood MG, Durham L, Ouellette SP, Rucks EA. Chlamydia trachomatis Inc Ct226 is vital for FLI1 and LRRF1 recruitment to the chlamydial inclusion. mSphere 2024; 9:e0047324. [PMID: 39404459 PMCID: PMC11580450 DOI: 10.1128/msphere.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 11/22/2024] Open
Abstract
The obligate intracellular pathogen, Chlamydia trachomatis, establishes an intracellular niche within a host membrane-derived vacuole called the chlamydial inclusion. From within this inclusion, C. trachomatis orchestrates numerous host-pathogen interactions, in part, by utilizing a family of type III secreted effectors, termed inclusion membrane proteins (Incs). Incs are embedded within the inclusion membrane, and some function to recruit host proteins to the inclusion. Two such recruited host proteins are leucine rich repeat Flightless-1 interacting protein 1 (LRRF1/LRRFIP1) and its binding partner Flightless 1 (FLI1/FLII). Previously, LRRF1 has been shown to interact with Inc protein Ct226/CTL0478. This is the first study to examine interactions of FLI1 with candidate Incs or with LRRF1 during infection. We hypothesized that FLI1 recruitment to the inclusion would be dependent on LRRF1 localization. We demonstrated that FLI1 co-immunoprecipitated with Ct226 but only in the presence of LRRF1. Furthermore, FLI1 localized to the inclusion when LRRF1 was depleted via small interfering RNA, suggesting that FLI1 may have an alternative recruitment mechanism. We further developed a series of CRISPRi knockdown and complementation strains in C. trachomatis serovar L2 targeting ct226 and co-transcribed candidate Incs, ct225 and ct224. Simultaneous knockdown of ct226, ct225, and ct224 prevented localization of both FLI1 and LRRF1 to the inclusion, and only complementation of ct226 restored their localization. Thus, we demonstrated Ct226 is critical for FLI1 and LRRF1 localization to the inclusion. Our results also indicate an LRRF1-independent localization mechanism for FLI1, which likely influence their mechanism(s) of action during chlamydial infection.IMPORTANCEChlamydia trachomatis is a leading cause of both bacterial sexually transmitted infections and preventable infectious blindness worldwide. As an obligate intracellular pathogen, C. trachomatis has evolved multiple ways of manipulating the host to establish a successful infection. As such, it is important to understand host-chlamydial protein-protein interactions as these reveal strategies that C. trachomatis uses to shape its intracellular environment. This study looks in detail at interactions of two host proteins, FLI1 and LRRF1, during chlamydial infection. Importantly, the series of CRISPR inference knockdown and complement strains developed in this study suggest these proteins have both independent and overlapping mechanisms for localization, which ultimately will dictate how these proteins function during chlamydial infection.
Collapse
Affiliation(s)
- Natalie A. Sturd
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lindsey A. Knight
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Macy G. Wood
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Legacy Durham
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Fernandez MK, Sinha M, Kühnemuth R, Renz M. Repeated FRAP of the actin-binding protein CapG in the cell nucleus-a functional assay for EGF signaling in the single live breast cancer cell. Sci Rep 2024; 14:23159. [PMID: 39369027 PMCID: PMC11455965 DOI: 10.1038/s41598-024-73887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Compartmentalization and differential distribution of proteins within a cell maintain cellular function and viability. CapG is a gelsolin-related actin-binding protein that distributes in steady state diffusively throughout cytoplasm and cell nucleus. To detect changes in CapG's nucleocytoplasmic shuttling in response to external stimuli on the single cell level, we established repeated FRAP experiments of one and the same breast cancer cell. With this experimental set up, we found that ATP-depletion reversibly decreased CapG's shuttling into the cell nucleus. The addition of epidermal growth factor (EGF) increased CapG's nuclear shuttling within minutes. Serum-starvation doubled the number of breast cancer cells from 40 to 80% displaying increased CapG shuttling in response to EGF. Testing five different potential CapG phosphorylation sites, we found that serine 70 mediates the increase in CapG's nuclear shuttling triggered by EGF. Thus, repeated FRAP of CapG in the cell nucleus can be used as functional readout of signaling cascades in the same single live breast cancer cell.
Collapse
Affiliation(s)
| | - M Sinha
- Stanford University, Stanford, USA
| | - R Kühnemuth
- Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - M Renz
- Department of Gynecology With Center for Oncological Surgery, Charité - Universitätsmedizin Berlin, Mittelallee 9, 13353, Berlin, Germany.
| |
Collapse
|
3
|
Lyu X, Cui Y, Kong Y, Yang M, Shen H, Liao S, Li S, An C, Wang H, Zhang Z, Ong J, Li Y, Du P. A transient transcriptional activation governs unpolarized-to-polarized morphogenesis during embryo implantation. Mol Cell 2024; 84:2665-2681.e13. [PMID: 38955180 DOI: 10.1016/j.molcel.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.
Collapse
Affiliation(s)
- Xuehui Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Yingzi Cui
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Yinfei Kong
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Shuyun Liao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiyu Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Chenrui An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhe Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Amrute-Nayak M, Gand LV, Khan B, Holler T, Kefalakes E, Kosanke M, Kraft T, Nayak A. SENP7 deSUMOylase-governed transcriptional program coordinates sarcomere assembly and is targeted in muscle atrophy. Cell Rep 2022; 41:111702. [DOI: 10.1016/j.celrep.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
5
|
Lee J, Pang K, Kim J, Hong E, Lee J, Cho HJ, Park J, Son M, Park S, Lee M, Ooshima A, Park KS, Yang HK, Yang KM, Kim SJ. ESRP1-regulated isoform switching of LRRFIP2 determines metastasis of gastric cancer. Nat Commun 2022; 13:6274. [PMID: 36307405 PMCID: PMC9616898 DOI: 10.1038/s41467-022-33786-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1. Surprisingly, ectopic expression of the mesenchymal isoform of LRRFIP2 (variant 3) dramatically increased liver metastasis of gastric cancer cells, whereas deletion of exon 7 of LRRFIP2 by the CRISPR/Cas9 system caused an isoform switch, leading to marked suppression of liver metastasis. Mechanistically, the epithelial LRRFIP2 isoform (variant 2) inhibited the oncogenic function of coactivator-associated arginine methyltransferase 1 (CARM1) through interaction. Taken together, our data reveals a mechanism of LRRFIP2 isoform switches in gastric cancer with important implication for cancer metastasis.
Collapse
Affiliation(s)
- Jihee Lee
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | | | - Junil Kim
- grid.263765.30000 0004 0533 3568School of Systems Biomedical Science, Soongsil University, Seoul, 06978 Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Jeeyun Lee
- grid.264381.a0000 0001 2181 989XDivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351 Korea
| | - Hee Jin Cho
- grid.258803.40000 0001 0661 1556Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 Korea ,grid.414964.a0000 0001 0640 5613Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06531 Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Sihyun Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | | | | | - Kyung-Soon Park
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | - Han-Kwang Yang
- grid.412484.f0000 0001 0302 820XDepartment of Surgery, Seoul National University Hospital, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, 03080 Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,Medpacto Inc., Seoul, 06668 Korea
| |
Collapse
|
6
|
Expression analysis of plant intracellular Ras-group related leucine-rich repeat proteins (PIRLs) in Arabidopsis thaliana. Biochem Biophys Rep 2022; 30:101241. [PMID: 35280522 PMCID: PMC8904235 DOI: 10.1016/j.bbrep.2022.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Arabidopsis thaliana contains a family of nine genes known as plant intracellular Ras-group related leucine-rich repeat (LRR) proteins (PIRLs). These are structurally similar to animals and fungal LRR proteins and play important roles in developmental pathways. However, to date, no detailed tissue-specific expression analysis of these PIRLs has been performed. Therefore, in this study, we generated promoter:GUS transgenic plants for the nine A. thaliana PIRL genes and identified their expression patterns in seedlings and floral organs at different developmental stages. Most PIRL members showed expression in the root apical region and in the vascular tissue of primary and lateral roots. Shoot apex-specific expression was recorded for PIRL1 and PIRL8. Furthermore, PIRL1, PIRL3, PIRL5, PIRL6, and PIRL7 showed distinct expression patterns in flowers, especially in pollen and anthers. In addition, co-expression network analysis identified cases where PIRLs were co-expressed with other genes known to have specific functions related to growth and development. Taken together, the tissue-specific expression patterns of PIRL genes improve our understanding of the functions of this gene family in plant growth and development. PIRL constituting gene family in A. thaliana is widely distributed among plants. PIRL1, 2, 3, and 6 were strongly expressed in anther and/or pollen, consistent with their function in pollen development. PIRL7 was distinctively expressed in pollen and pollen tube, suggesting its role in pollen function.
Collapse
|
7
|
Idelfonso-García OG, Alarcón-Sánchez BR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Villa-Treviño S, Muriel P, Serrano H, Pérez-Carreón JI, Arellanes-Robledo J. Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies. Antioxidants (Basel) 2022; 11:antiox11040670. [PMID: 35453355 PMCID: PMC9030443 DOI: 10.3390/antiox11040670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer’s disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies. This review summarizes and discusses the current insights on NXN-dependent redox regulation and its implication in different pathologies.
Collapse
Affiliation(s)
- Osiris Germán Idelfonso-García
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Verónica Rocío Vásquez-Garzón
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, ‘Benito Juárez’ Autonomous University of Oaxaca–UABJO, Oaxaca 68020, Mexico; (V.R.V.-G.); (R.B.-H.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute–CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Héctor Serrano
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City 09340, Mexico;
| | - Julio Isael Pérez-Carreón
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine–INMEGEN, Mexico City 14610, Mexico; (O.G.I.-G.); (B.R.A.-S.); (J.I.P.-C.)
- Directorate of Cátedras, National Council of Science and Technology–CONACYT, Mexico City 03940, Mexico
- Correspondence: ; Tel.: +52-55-5350-1900 (ext. 1218)
| |
Collapse
|
8
|
Xu J, Wang P, Li Z, Li Z, Han D, Wen M, Zhao Q, Zhang L, Ma Y, Liu W, Jiang M, Zhang X, Cao X. IRF3-binding lncRNA-ISIR strengthens interferon production in viral infection and autoinflammation. Cell Rep 2021; 37:109926. [PMID: 34731629 DOI: 10.1016/j.celrep.2021.109926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3) is an essential transductor for initiation of many immune responses. Here, we show that lncRNA-ISIR directly binds IRF3 to promote its phosphorylation, dimerization, and nuclear translocation, along with enhanced target gene productions. In vivo lncRNA-ISIR deficiency results in reduced IFN production, uncontrolled viral replication, and increased mortality. The human homolog, AK131315, also binds IRF3 and promotes its activation. More important, AK131315 expression is positively correlated with type I interferon (IFN-I) level and severity in patients with lupus. Mechanistically, in resting cells, IRF3 is bound to suppressor protein Flightless-1 (Fli-1), which keeps its inactive state. Upon infection, IFN-I-induced lncRNA-ISIR binds IRF3 at DNA-binding domain in cytoplasm and removes Fli-1's association from IRF3, consequently facilitating IRF3 activation. Our results demonstrate that IFN-I-inducible lncRNA-ISIR feedback strengthens IRF3 activation by removing suppressive Fli-1 in immune responses, revealing a method of lncRNA-mediated modulation of transcription factor (TF) activation.
Collapse
Affiliation(s)
- Junfang Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pin Wang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| | - Zemeng Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Dan Han
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Mingyue Wen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Qihang Zhao
- National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuanwu Ma
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Wei Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Minghong Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
9
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
10
|
Ruan H, Bao L, Tao Z, Chen K. Flightless I Homolog Reverses Enzalutamide Resistance through PD-L1-Mediated Immune Evasion in Prostate Cancer. Cancer Immunol Res 2021; 9:838-852. [PMID: 34011528 DOI: 10.1158/2326-6066.cir-20-0729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/06/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Tumor cells can evade immune surveillance and immune killing during the emergence of endocrine therapy resistance in prostate cancer, but the mechanisms underlying this phenomenon are still unclear. Flightless I homolog (FLII) is a coregulator for transcription factors in several malignancies. Here, we have demonstrated that endocrine therapy resistance can induce an immunosuppressive prostate tumor microenvironment and immune evasion through FLII downregulation, which leads to activation of the YBX1/PD-L1 signaling pathway. FLII expression negatively correlated with expression of PD-L1 in tumors. Mechanism studies demonstrated that FLII physically interacted with YBX1 to inhibit nuclear localization of YBX1 and thereby suppress transcription of PDL1 in enzalutamide-resistant tumors. Restoration of FLII expression reversed enzalutamide resistance through activation of T-cell responses in the tumor microenvironment through inhibition of the YBX1/PD-L1 pathway. We also found that reversal of endocrine therapy resistance and immune evasion was mediated by proliferation of effector CD8+ T cells and inhibition of tumor infiltration by regulatory T cells and myeloid-derived suppressor cells. Taken together, our results demonstrate a functional and biological interaction between endocrine therapy resistance and immune evasion mediated through the FLII/YBX1/PD-L1 cascade. Combination therapy with FLII expression and endocrine therapy may benefit patients with prostate cancer by preventing tumor immune evasion.
Collapse
Affiliation(s)
- Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China.
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
11
|
Response of Leucine-Rich Repeat Domain-Containing Protein in Haemaphysalis longicornis to Babesia microti Infection and Its Ligand Identification. Infect Immun 2021; 89:IAI.00268-20. [PMID: 33593890 DOI: 10.1128/iai.00268-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/05/2021] [Indexed: 11/20/2022] Open
Abstract
Haemaphysalis longicornis is a blood-feeding hard tick known for transmitting a variety of pathogens, including Babesia How the parasites in the imbibed blood become anchored in the midgut of ticks is still unknown. Leucine-rich repeat domain (LRR)-containing protein, which is associated with the innate immune reaction and conserved in many species, has been detected in H. longicornis and has previously been indicated in inhibiting the growth of Babesia gibsoni However, the detailed mechanism is unknown. In this study, one of the ligands for LRR from H. longicornis (HlLRR) was identified in Babesia microti, designated BmActin, using glutathione transferase (GST) pulldown experiments and immunofluorescence assays. Moreover, RNA interference of HlLRR led to a decrease in the BmActin mRNA expression in the midgut of fully engorged ticks which fed on B. microti-infected mice. We also found that the expression level of the innate immune molecules in H. longicornis, defensin, antimicrobial peptides (AMPs), and lysozyme, were downregulated after the knockdown of HlLRR. However, subolesin expression was upregulated. These results indicate that HlLRR not only recognizes BmActin but may also modulate innate immunity in ticks to influence Babesia growth, which will further benefit the development of anti-Babesia vaccines or drugs.
Collapse
|
12
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
13
|
Thomas HM, Ahangar P, Hofma BR, Strudwick XL, Fitridge R, Mills SJ, Cowin AJ. Attenuation of Flightless I Increases Human Pericyte Proliferation, Migration and Angiogenic Functions and Improves Healing in Murine Diabetic Wounds. Int J Mol Sci 2020; 21:ijms21165599. [PMID: 32764293 PMCID: PMC7460558 DOI: 10.3390/ijms21165599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Pericytes are peri-vascular mural cells which have an important role in the homeostatic regulation of inflammatory and angiogenic processes. Flightless I (Flii) is a cytoskeletal protein involved in regulating cellular functions, but its involvement in pericyte activities during wound healing is unknown. Exacerbated inflammation and reduced angiogenesis are hallmarks of impaired diabetic healing responses, and strategies aimed at regulating these processes are vital for improving healing outcomes. To determine the effect of altering Flii expression on pericyte function, in vitro and in vivo studies were performed to assess the effect on healing, inflammation and angiogenesis in diabetic wounds. Here, we demonstrated that human diabetic wounds display upregulated expression of the Flii protein in conjunction with a depletion in the number of platelet derived growth factor receptor β (PDGFRβ) +/ neural glial antigen 2 (NG2) + pericytes present in the dermis. Human pericytes were found to be positive for Flii and attenuating its expression in vitro through siRNA knockdown led to enhanced proliferation, migration and angiogenic functions. Genetic knockdown of Flii in a streptozotocin-induced murine model of diabetes led to increased numbers of pericytes within the wound. This was associated with dampened inflammation, an increased rate of angiogenic repair and improved wound healing. Our findings show that Flii expression directly impacts pericyte functions, including proliferation, motility and angiogenic responses. This suggests that Flii regulation of pericyte function may be in part responsible for the changes in pericyte-related processes observed in diabetic wounds.
Collapse
Affiliation(s)
- Hannah M Thomas
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Cell Therapy Manufacturing Cooperative Research Centre, Adelaide 5000, Australia
| | - Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Cell Therapy Manufacturing Cooperative Research Centre, Adelaide 5000, Australia
| | - Benjamin R Hofma
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
- Cell Therapy Manufacturing Cooperative Research Centre, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
| | - Robert Fitridge
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia;
| | - Stuart J Mills
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
- Cell Therapy Manufacturing Cooperative Research Centre, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia; (H.M.T.); (P.A.); (B.R.H.); (X.L.S.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-883-025-018
| |
Collapse
|
14
|
Shamsi F, Xue R, Huang TL, Lundh M, Liu Y, Leiria LO, Lynes MD, Kempf E, Wang CH, Sugimoto S, Nigro P, Landgraf K, Schulz T, Li Y, Emanuelli B, Kothakota S, Williams LT, Jessen N, Pedersen SB, Böttcher Y, Blüher M, Körner A, Goodyear LJ, Mohammadi M, Kahn CR, Tseng YH. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat Commun 2020; 11:1421. [PMID: 32184391 PMCID: PMC7078224 DOI: 10.1038/s41467-020-15055-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Uncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription. Physiologically, FGF6/9 expression in adipose is upregulated by exercise and cold in mice, and FGF9/FGFR3 expression in human neck fat is significantly associated with UCP1 expression. Loss of FGF9 impairs BAT thermogenesis. In vivo administration of FGF9 increases UCP1 expression and thermogenic capacity. Thus, FGF6 and FGF9 are adipokines that can regulate UCP1 through a transcriptional network that is dissociated from brown adipogenesis, and act to modulate systemic energy metabolism.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ruidan Xue
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- Division of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Morten Lundh
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Yang Liu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Luiz O Leiria
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Elena Kempf
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Satoru Sugimoto
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Tim Schulz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Brice Emanuelli
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Steen Bønløkke Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Yvonne Böttcher
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Internal Medicine (Endocrinology and Nephrology), University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Blundon MA, Dasgupta S. Metabolic Dysregulation Controls Endocrine Therapy-Resistant Cancer Recurrence and Metastasis. Endocrinology 2019; 160:1811-1820. [PMID: 31157867 PMCID: PMC6620757 DOI: 10.1210/en.2019-00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/24/2019] [Indexed: 01/16/2023]
Abstract
Cancer recurrence and metastasis involves many biological interactions, such as genetic, transcription, environmental, endocrine signaling, and metabolism. These interactions add a complex understanding of cancer recurrence and metastatic progression, delaying the advancement in therapeutic opportunities. We highlight the recent advances on the molecular complexities of endocrine-related cancers, focusing on breast and prostate cancer, and briefly review how endocrine signaling and metabolic programs can influence transcriptional complexes for metastasis competence. Nuclear receptors and transcriptional coregulators function as molecular nodes for the crosstalk between endocrine signaling and metabolism that alter downstream gene expression important for tumor progression and metastasis. This exciting regulatory axis may provide insights to the development of cancer therapeutics important for these desensitized endocrine-dependent cancers.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Correspondence: Subhamoy Dasgupta, PhD, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14263. E-mail:
| |
Collapse
|
16
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|
17
|
Yang L, Jeong KW. Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells. Endocr J 2019; 66:65-74. [PMID: 30369516 DOI: 10.1507/endocrj.ej18-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human homologue of flightless-I (FLII) belong to the gelsolin protein family and contain a gelsolin-like domain at the C-terminus and a leucine-rich repeat (LRR) domain at the N-terminus. FLII regulates estrogen receptor alpha (ERα) and glucocorticoid receptor (GR)-mediated transcription by direct interaction through different domains, suggestive of its potential role in the crosstalk between the ERα and GR signaling pathway. Here, we demonstrate that FLII plays a critical role in GR-mediated repression of ERα target gene expression. In FLII-depleted cells, the reduction in 17-β-estradiol (E2)-induced ERα occupancy following treatment with dexamethasone (Dex) at the estrogen responsive element (ERE) site of the ERα target gene was significantly inhibited. The ERE binding of GR by the cotreatment with E2 and Dex was significantly inhibited by FLII depletion, indicating that FLII is required for the recruitment of GR at the ERE sites of ERα target genes. In addition, the recruitment of ERα-induced FLII to ERE sites was significantly reduced by Dex treatment. In protein binding assays, GR inhibited the E2-induced interaction between ERα and FLII, suggesting that GR interferes with the binding of ERα and FLII at the ERα target genes, resulting in the release of ERα and FLII from EREs. Taken together, our data reveal an unknown mechanism by which the transcription coactivator FLII regulates the GR-mediated repression of ERα target gene expression in MCF-7 cells.
Collapse
Affiliation(s)
- Liu Yang
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
18
|
Forsthoefel NR, Klag KA, McNichol SR, Arnold CE, Vernon CR, Wood WW, Vernon DM. Arabidopsis PIRL6 Is Essential for Male and Female Gametogenesis and Is Regulated by Alternative Splicing. PLANT PHYSIOLOGY 2018; 178:1154-1169. [PMID: 30206104 PMCID: PMC6236607 DOI: 10.1104/pp.18.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/29/2018] [Indexed: 05/07/2023]
Abstract
Plant intracellular Ras-group leucine-rich repeat (LRR) proteins (PIRLs) are related to Ras-interacting animal LRR proteins that participate in developmental cell signaling. Systematic knockout analysis has implicated some members of the Arabidopsis (Arabidopsis thaliana) PIRL family in pollen development. However, for PIRL6, no bona fide knockout alleles have been recovered, suggesting that it may have an essential function in both male and female gametophytes. To test this hypothesis, we investigated PIRL6 expression and induced knockdown by RNA interference. Knockdown triggered defects in gametogenesis, resulting in abnormal pollen and early developmental arrest in the embryo sac. Consistent with this, PIRL6 was expressed in gametophytes: functional transcripts were detected in wild-type flowers but not in sporocyteless (spl) mutant flowers, which do not produce gametophytes. A genomic PIRL6-GFP fusion construct confirmed expression in both pollen and the embryo sac. Interestingly, PIRL6 is part of a convergent overlapping gene pair, a scenario associated with an increased likelihood of alternative splicing. We detected multiple alternative PIRL6 mRNAs in vegetative organs and spl mutant flowers, tissues that lacked the functionally spliced transcript. cDNA sequencing revealed that all contained intron sequences and premature termination codons. These alternative mRNAs accumulated in the nonsense-mediated decay mutant upf3, indicating that they are normally subjected to degradation. Together, these results demonstrate that PIRL6 is required in both male and female gametogenesis and suggest that sporophytic expression is negatively regulated by unproductive alternative splicing. This posttranscriptional mechanism may function to minimize PIRL6 protein expression in sporophyte tissues while allowing the overlapping adjacent gene to remain widely transcribed.
Collapse
Affiliation(s)
- Nancy R Forsthoefel
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Kendra A Klag
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Savannah R McNichol
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Claire E Arnold
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Corina R Vernon
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Whitney W Wood
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Daniel M Vernon
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| |
Collapse
|
19
|
Park JE, Jang J, Lee EJ, Kim SJ, Yoo HJ, Lee S, Kang MJ. Potential involvement of Drosophila flightless-1 in carbohydrate metabolism. BMB Rep 2018. [PMID: 30060781 PMCID: PMC6177503 DOI: 10.5483/bmbrep.2018.51.9.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jinho Jang
- Department of Biological Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Semin Lee
- Department of Biological Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
20
|
Park JE, Lee EJ, Kim JK, Song Y, Choi JH, Kang MJ. Flightless-I Controls Fat Storage in Drosophila. Mol Cells 2018; 41:603-611. [PMID: 29890821 PMCID: PMC6030243 DOI: 10.14348/molcells.2018.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023] Open
Abstract
Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jung Kwan Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505,
Korea
| |
Collapse
|
21
|
Drew AE, Moradei O, Jacques SL, Rioux N, Boriack-Sjodin AP, Allain C, Scott MP, Jin L, Raimondi A, Handler JL, Ott HM, Kruger RG, McCabe MT, Sneeringer C, Riera T, Shapiro G, Waters NJ, Mitchell LH, Duncan KW, Moyer MP, Copeland RA, Smith J, Chesworth R, Ribich SA. Identification of a CARM1 Inhibitor with Potent In Vitro and In Vivo Activity in Preclinical Models of Multiple Myeloma. Sci Rep 2017; 7:17993. [PMID: 29269946 PMCID: PMC5740082 DOI: 10.1038/s41598-017-18446-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Jin
- Epizyme, Inc., Cambridge, Massachusetts, USA
| | | | - Jessica L Handler
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Heidi M Ott
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ryan G Kruger
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Michael T McCabe
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Jesse Smith
- Epizyme, Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Wang C, Chen K, Liao S, Gu W, Lian X, Zhang J, Gao X, Liu X, Wang T, He QY, Zhang G, Liu L. The flightless I protein interacts with RNA-binding proteins and is involved in the genome-wide mRNA post-transcriptional regulation in lung carcinoma cells. Int J Oncol 2017; 51:347-361. [PMID: 28498392 DOI: 10.3892/ijo.2017.3995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
The flightless I protein (FLII) belongs to the gelsolin family. Its function has been associated with actin remodeling, embryonic development, wound repair, and more recently with cancer. The structure of FLII is characterized by the N-terminal leucine-rich repeats (LRR) and C-terminal gesolin related repeated units that are both protein-protein inter-action domains, suggesting that FLII may exert its function by interaction with other proteins. Therefore, systematic study of protein interactions of FLII in cells is important for the understanding of FLII functions. In this study, we found that FLII was downregulated in lung carcinoma cell lines H1299 and A549 as compared with normal HBE (human bronchial epithelial) cell line. The investigation of FLII interactome in H1299 cells revealed that 74 of the total 132 putative FLII interactors are involved in RNA post-transcriptional modification and trafficking. Furthermore, by using high-throughput transcriptome and translatome sequencing combined with cell fractionation, we showed that the overexpression or knockdown of FLII impacts on the overall nuclear export, and translation of mRNAs. IPA analysis revealed that the majority of these target mRNAs encode the proteins whose functions are reminiscent of those previously reported for FLII, suggesting that the post-transcriptional regulation of mRNA might be a major mechanism of action for FLII.
Collapse
Affiliation(s)
- Cuihua Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Kezhi Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shengyou Liao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei Gu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xinlei Lian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
23
|
Jin HL, Yang L, Jeong KW. Flightless-I homolog regulates glucocorticoid receptor-mediated transcription via direct interaction of the leucine-rich repeat domain. Mol Biol Rep 2017; 44:243-250. [PMID: 28455686 DOI: 10.1007/s11033-017-4106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/26/2017] [Indexed: 01/22/2023]
Abstract
Flightless-I homolog (FLII) is a member of the gelsolin family of proteins, and has been identified as a coactivator of estrogen receptor-mediated transcription. Here, we investigate the role of FLII in the glucocorticoid receptor (GR) signaling pathway. Reporter gene assay and real-time quantitative PCR in A549 were performed to investigate the function of FLII in the expression of GR target genes. Co-immunoprecipitation assay and in vitro binding assay were used to identify binding domain of FLII. Chromatin immunoprecipitation assay were carried out with FLII-depleted A549 cells to determine the role of FLII at GR binding sites. We demonstrate that FLII potentiates GR-mediated reporter gene activity synergistically with CARM1 and p300 to enhance GR transcriptional activity in the presence of dexamethasone (Dex) in A549 cells. Depletion of endogenous FLII inhibited the expression of Dex-regulated GR target genes in A549 cells, indicating that FLII is required for GR-mediated transcription. Further, we observed that FLII binds to GR via its N-terminal leucine-rich repeat (LRR) region, suggesting that the enhancement of GR activation may occur through the interaction of GR and FLII. Moreover, chromatin immunoprecipitation analysis demonstrated that FLII is recruited to the GR binding sites. In addition, depletion of endogenous FLII decreased the recruitment of p300, and subsequently RNA polymerase II, to specific sites of GR target genes. Taken together, these studies reveal a functional involvement of FLII in activating transcription of GR target genes, suggesting a physiological role for FLII in the GR signaling pathway.
Collapse
Affiliation(s)
- Hong Lan Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Liu Yang
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
24
|
Nayak A, Reck A, Morsczeck C, Müller S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin 2017; 10:15. [PMID: 28344658 PMCID: PMC5364561 DOI: 10.1186/s13072-017-0122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite recent studies on the role of ubiquitin-related SUMO modifier in cell fate decisions, our understanding on precise molecular mechanisms of these processes is limited. Previously, we established that the SUMO isopeptidase SENP3 regulates chromatin assembly of the MLL1/2 histone methyltransferase complex at distinct HOX genes, including the osteogenic master regulator DLX3. A comprehensive mechanism that regulates SENP3 transcriptional function was not understood. RESULTS Here, we identified flightless-I homolog (FLII), a member of the gelsolin family of actin-remodeling proteins, as a novel regulator of SENP3. We demonstrate that FLII is associated with SENP3 and the MLL1/2 complex. We further show that FLII determines SENP3 recruitment and MLL1/2 complex assembly on the DLX3 gene. Consequently, FLII is indispensible for H3K4 methylation and proper loading of active RNA polymerase II at this gene locus. Most importantly, FLII-mediated SENP3 regulation governs osteogenic differentiation of human mesenchymal stem cells. CONCLUSION Altogether, these data reveal a crucial functional interconnection of FLII with the sumoylation machinery that converges on epigenetic regulation and cell fate determination.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Kopecki Z, Yang GN, Jackson JE, Melville EL, Calley MP, Murrell DF, Darby IA, O'Toole EA, Samuel MS, Cowin AJ. Cytoskeletal protein Flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget 2017; 6:36426-40. [PMID: 26497552 PMCID: PMC4742187 DOI: 10.18632/oncotarget.5536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023] Open
Abstract
Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/-), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/- mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth L Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Matthew P Calley
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dedee F Murrell
- Department of Dermatology, St. George Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Edel A O'Toole
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael S Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Strudwick XL, Waters JM, Cowin AJ. Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation. J Invest Dermatol 2016; 137:228-236. [PMID: 27595936 DOI: 10.1016/j.jid.2016.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| | - James M Waters
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
27
|
Liu M, Liu M, Li B, Zhou Y, Huang Y, Lan X, Qu W, Qi X, Bai Y, Chen H. Polymorphisms of FLII implicate gene expressions and growth traits in Chinese cattle. Mol Cell Probes 2016; 30:266-272. [DOI: 10.1016/j.mcp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 01/23/2023]
|
28
|
Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. Int J Mol Sci 2016; 17:ijms17071116. [PMID: 27420054 PMCID: PMC4964491 DOI: 10.3390/ijms17071116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lubeck, Lubeck 23562, Germany.
| | - Allison J Cowin
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| |
Collapse
|
29
|
Jin HL, Jeong KW. Regulation of aryl hydrocarbon receptor-mediated transcription in human retinal pigmented epithelial cells. Biochem Biophys Res Commun 2016; 472:366-72. [PMID: 26966070 DOI: 10.1016/j.bbrc.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with pleiotropic effects in normal physiology or vascular development, xenobiotic metabolism, and cancer. A previous study has reported that BRG1, a component of the SWI/SNF complex, is a coactivator for AHR and is recruited to the promoter region of the CYP1A1 gene in mouse hepatocytes. Recent data suggest that AHR is also expressed in human retinal pigment epithelial cells (ARPE-19), which play a crucial role in retinal physiology and the visual cycle. Multiple studies have shown that the AHR plays an important role in the pathogenesis of retinal diseases including age-related macular degeneration. However, the mechanism of AHR transcriptional activation in retinal pigment cells has not been reported. Here, we demonstrate that the AHR signaling pathway is active in ARPE-19 cells, as in hepatocytes, but with different target gene specificity. We also found that chromatin remodeling by the BRG1-containing SWI/SNF complex is required for the AHR-mediated expression of target genes in ARPE-19 cells. We identified a novel enhancer region (-12 kb) of the CYP1A1 gene in ARPE-19 cells, to which both AHR and BRG1 are recruited in a ligand-dependent manner. BRG1 is associated with the AHR in ARPE-19 cells, and the C-terminal activation domain of the AHR directly interacts with BRG1. Furthermore, depletion of BRG1 caused a reduction in chromatin accessibility at the CYP1A1 enhancer. These results suggest that ARPE-19 cells possess an AHR-mediated transcription pathway with different target gene specificity, and that BRG1 is required for AHR-mediated transcription in ARPE-19 cells.
Collapse
Affiliation(s)
- Hong Lan Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea.
| |
Collapse
|
30
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
31
|
Shrivastava A, Prasad A, Kuzontkoski PM, Yu J, Groopman JE. Slit2N Inhibits Transmission of HIV-1 from Dendritic Cells to T-cells by Modulating Novel Cytoskeletal Elements. Sci Rep 2015; 5:16833. [PMID: 26582347 PMCID: PMC4652184 DOI: 10.1038/srep16833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells are among the first cells to encounter sexually acquired human immunodeficiency virus (HIV-1), in the mucosa, and they can transmit HIV-1 to CD4(+) T-cells via an infectious synapse. Recent studies reveal that actin-rich membrane extensions establish direct contact between cells at this synapse and facilitate virus transmission. Genesis of these contacts involves signaling through c-Src and Cdc42, which modulate actin polymerization and filopodia formation via the Arp2/3 complex and Diaphanous 2 (Diaph2). We found that Slit2N, a ligand for the Roundabout (Robo) receptors, blocked HIV-1-induced signaling through Arp2/3 and Diaph2, decreased filopodial extensions on dendritic cells, and inhibited cell-to-cell transmission of HIV-1 in a Robo1-dependent manner. Employing proteomic analysis, we identified Flightless-1 as a novel, Robo1-interacting protein. Treatment with shRNAs reduced levels of Flightless-1 and demonstrated its role in efficient cell-to-cell transfer of HIV-1. These results suggest a novel strategy to limit viral infection in the host by targeting the Slit/Robo pathway with modulation of cytoskeletal elements previously unrecognized in HIV-1 transmission.
Collapse
Affiliation(s)
- Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Paula M. Kuzontkoski
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- DynaMed, EBSCO Information Services, 10 Estes Street, Ipswich, Massachusetts, USA
| | - Jinlong Yu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Mclean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, USA
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Wang T, Song W, Chen Y, Chen R, Liu Z, Wu L, Li M, Yang J, Wang L, Liu J, Ye Z, Wang C, Chen K. Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling. Clin Cancer Res 2015; 22:1531-44. [PMID: 26527749 DOI: 10.1158/1078-0432.ccr-15-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Flightless I (FLII), member of the gelsolin superfamily of actin-remodeling proteins, functions as a transcriptional coregulator. We aim to evaluate a tumor-suppressive function of FLII in regulating androgen receptor (AR) in prostate cancer progression. EXPERIMENTAL DESIGN We examined FLII protein and mRNA expression in clinical prostate cancer specimens by immunohistochemistry. Kaplan-Meier analysis was conducted to evaluate the difference in disease-overall survival associated with the expression levels of FLII and AR. Prostate cancer cells stably expressing FLII or shRNA knockdown were used for functional analyses. Immunoprecipitation, Luciferase reporter, and immunofluorescence staining assays were performed to examine the functional interaction between FLII and AR. RESULTS Our analysis of the expression levels of FLII in a clinical gene expression array dataset showed that the expression of FLII was positively correlated with the overall survival of prostate cancer patients exhibiting high levels of AR expression. Examination of protein and mRNA levels of FLII showed a significant decrease of FLII expression in human prostate cancers. AR and FLII formed a complex in a ligand-dependent manner through the ligand-binding domain (LBD) of AR. Subsequently, we observed a competitive binding to AR between FLII and the ligand. FLII inhibited AR transactivation and decreased AR nuclear localization. Furthermore, FLII contributed to castration-sensitive and castration-resistant prostate cancer cell growth through AR-dependent signaling, and reintroduction of FLII in prostate cancer cells sensitized the cells to bicalutamide and enzalutamide treatment. CONCLUSIONS FLII plays a tumor-suppressive role and serves as a crucial determinant of resistance of prostate cancer to endocrine therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruibao Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Licheng Wu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingchao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Szwarc MM, Lydon JP, O'Malley BW. Steroid receptor coactivators as therapeutic targets in the female reproductive system. J Steroid Biochem Mol Biol 2015; 154:32-8. [PMID: 26151740 PMCID: PMC5201167 DOI: 10.1016/j.jsbmb.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
The steroid receptor coactivators (SRCs/p160/NCOA) are a family of three transcriptional coregulators initially discovered to transactivate the transcriptional potency of steroid hormone receptors. Even though SRCs were also found to modulate the activity of multiple other transcription factors, their function is still strongly associated with regulation of steroid hormone action and many studies have found that they are critical for the regulation of reproductive biology. In the case of the female reproductive tract, SRCs have been found to play crucial roles in its physiology, ranging from ovulation, implantation, to parturition. Not surprisingly, SRCs' action has been linked to numerous abnormalities and debilitating disorders of female reproductive tissues, including infertility, cancer, and endometriosis. Many of these pathologies are still in critical need of therapeutic intervention and "proof-of-principle" studies have found that SRCs are excellent targets in pathological states. Therefore, small molecule modulators of SRCs' activity could be applied in the future in the treatment of many diseases of the female reproductive system.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
34
|
Purcell DJ, Chauhan S, Jimenez-Stinson D, Elliott KR, Tsewang TD, Lee YH, Marples B, Lee DY. Novel CARM1-Interacting Protein, DZIP3, Is a Transcriptional Coactivator of Estrogen Receptor-α. Mol Endocrinol 2015; 29:1708-19. [PMID: 26505218 DOI: 10.1210/me.2015-1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is known to promote estrogen receptor (ER)α-mediated transcription in breast cancer cells. To further characterize the regulation of ERα-mediated transcription by CARM1, we screened CARM1-interacting proteins by yeast two-hybrid. Here, we have identified an E3 ubiquitin ligase, DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3), as a novel CARM1-binding protein. DZIP3-dependent ubiquitination of histone H2A has been associated with repression of transcription. However, ERα reporter gene assays demonstrated that DZIP3 enhanced ERα-mediated transcription and cooperated synergistically with CARM1. Interaction with CARM1 was observed with the E3 ligase RING domain of DZIP3. The methyltransferase activity of CARM1 partially contributed to the synergy with DZIP3 for transcription activation, but the E3 ubiquitin ligase activity of DZIP3 was dispensable. DZIP3 also interacted with the C-terminal activation domain 2 of glucocorticoid receptor-interacting protein 1 (GRIP1) and enhanced the interaction between GRIP1 and CARM1. Depletion of DZIP3 by small interfering RNA in MCF7 cells reduced estradiol-induced gene expression of ERα target genes, GREB1 and pS2, and DZIP3 was recruited to the estrogen response elements of the same ERα target genes. These results indicate that DZIP3 is a novel coactivator of ERα target gene expression.
Collapse
Affiliation(s)
- Daniel J Purcell
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Swati Chauhan
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Diane Jimenez-Stinson
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Kathleen R Elliott
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Tenzin D Tsewang
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Young-Ho Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Brian Marples
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - David Y Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| |
Collapse
|
35
|
Szwarc MM, Lydon JP, O'Malley BW. Reprint of "Steroid receptor coactivators as therapeutic targets in the female reproductive system". J Steroid Biochem Mol Biol 2015; 153:144-50. [PMID: 26291832 DOI: 10.1016/j.jsbmb.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/22/2022]
Abstract
The steroid receptor coactivators (SRCs/p160/NCOA) are a family of three transcriptional coregulators initially discovered to transactivate the transcriptional potency of steroid hormone receptors. Even though SRCs were also found to modulate the activity of multiple other transcription factors, their function is still strongly associated with regulation of steroid hormone action and many studies have found that they are critical for the regulation of reproductive biology. In the case of the female reproductive tract, SRCs have been found to play crucial roles in its physiology, ranging from ovulation, implantation, to parturition. Not surprisingly, SRCs' action has been linked to numerous abnormalities and debilitating disorders of female reproductive tissues, including infertility, cancer, and endometriosis. Many of these pathologies are still in critical need of therapeutic intervention and "proof-of-principle" studies have found that SRCs are excellent targets in pathological states. Therefore, small molecule modulators of SRCs' activity could be applied in the future in the treatment of many diseases of the female reproductive system.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
36
|
Turner CT, Waters JM, Jackson JE, Arkell RM, Cowin AJ. Fibroblast-specific upregulation of Flightless I impairs wound healing. Exp Dermatol 2015; 24:692-7. [DOI: 10.1111/exd.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Christopher T. Turner
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - James M. Waters
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - Jessica E. Jackson
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| | - Ruth M. Arkell
- Research School of Biological Sciences; Australian National University; Canberra ACT Australia
| | - Allison J. Cowin
- Regenerative Medicine; Mawson Institute; University of South Australia; Adelaide SA Australia
| |
Collapse
|
37
|
Zhang S, Qiu W, Chen YG, Yuan FH, Li CZ, Yan H, Weng SP, He JG. Flightless-I (FliI) is a potential negative regulator of the Toll pathway in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 42:413-425. [PMID: 25449702 DOI: 10.1016/j.fsi.2014.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Flightless-I (FliI) is a protein negatively modulates the Toll-like receptor (TLR) pathway through interacting with Myeloid differentiation factor 88 (MyD88). To investigate the function of FliI in innate immune responses in invertebrates, Litopenaeus vannamei FliI (LvFliI) was identified and characterized. The full-length cDNA of LvFliI is 4, 304 bp long, with an open reading frame (ORF) encoding a putative protein of 1292 amino acids, including 12 leucine-rich repeat (LRR) domains at the N-terminus and 6 gelsolin homology (GEL) domains at the C-terminus. The LvFliI protein was located in the cytoplasm and LvFliI mRNA was constitutively expressed in healthy L. vannamei, with the highest expression level in the muscle. LvFliI could be up-regulated in hemocytes after lipopolysaccharide (LPS), poly I:C, CpG-ODN2006, Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus (WSSV) challenges, suggesting a stimulation response of LvFliI to bacterial and immune stimulant challenges. Upon LPS stimulation, overexpression of LvFliI in Drosophila Schneider 2 cells led to downregulation of Drosophila and shrimp antimicrobial peptide (AMP) genes. Knockdown of LvFliI by RNA interference (RNAi) resulted in an increase of the expression of three shrimp AMP genes (PEN2, crustin, and Lyz1). However, the mortality rates of LvFliI-knockdown shrimp in response to V. parahaemolyticus, S. aureus or WSSV infections were not significantly different from those of the control group. Taken together, all the results suggested that LvFliI may play a negative role in TLR signaling response in L. vannamei.
Collapse
Affiliation(s)
- Shuang Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Wei Qiu
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China
| | - Yong-gui Chen
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China
| | - Feng-Hua Yuan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Chao-Zheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hui Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 51027, PR China.
| |
Collapse
|
38
|
Choi JS, Choi SS, Kim ES, Seo YK, Seo JK, Kim EK, Suh PG, Choi JH. Flightless-1, a novel transcriptional modulator of PPARγ through competing with RXRα. Cell Signal 2014; 27:614-20. [PMID: 25479590 DOI: 10.1016/j.cellsig.2014.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor family and plays key roles in glucose and lipid metabolism. Its transcriptional control of target genes is mediated by ligand-dependent recruitment of coactivators. In this study, we demonstrate that a novel transcriptional modulator of PPARγ, Flightless-I (FLII) binds directly to and suppresses the transcriptional activity of PPARγ. The LXXLL motif within the leucine-rich repeat (LRR) domain of FLII interacts directly with the DNA-binding domain of PPARγ. Interestingly, in the presence of PPARγ ligands, such as rosiglitazone and SR1664, this interaction was abolished in vitro. When FLII was overexpressed, both the transcriptional activity of PPARγ and adipogenesis were suppressed significantly, whereas specific knockdown of FLII reversed these effects. Furthermore, DNA occupancy of PPARγ on its target gene promoters was enhanced by FLII knockdown, and the interaction between PPARγ and retinoid X receptor α (RXRα) was blocked by FLII. Together, these findings strongly suggest that FLII functions in PPARγ activation as a molecular switch to repress transcriptional activity by interrupting formation of the PPARγ/RXRα complex, and FLII may serve as a novel therapeutic target in the treatment of adiposity-related metabolic syndromes.
Collapse
Affiliation(s)
- Jin Sil Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Sun-Sil Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Eun Sun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Young-Kyo Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea.
| |
Collapse
|
39
|
Szwarc MM, Kommagani R, Lessey BA, Lydon JP. The p160/steroid receptor coactivator family: potent arbiters of uterine physiology and dysfunction. Biol Reprod 2014; 91:122. [PMID: 25297546 PMCID: PMC4434928 DOI: 10.1095/biolreprod.114.125021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 11/01/2022] Open
Abstract
The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3; otherwise known as NCOA1, NCOA2, and NCOA3, respectively), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor and non-nuclear receptor signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From "dovetailing" clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and to colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells, SRC-2 was shown to act as a molecular "pacemaker" of the glycolytic flux. This finding is significant because acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for endometrial stromal cells to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Although studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies, particularly in the mouse, to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, South Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Lim MS, Jeong KW. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta. Biochem Biophys Res Commun 2014; 454:393-8. [PMID: 25451260 DOI: 10.1016/j.bbrc.2014.10.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
Abstract
Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene through its role in recruiting the SWI/SNF complex to facilitate chromatin accessibility.
Collapse
Affiliation(s)
- Mi-Sun Lim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea.
| |
Collapse
|
41
|
Jeong KW. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2014; 446:608-13. [PMID: 24632205 DOI: 10.1016/j.bbrc.2014.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
Abstract
The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.
Collapse
Affiliation(s)
- Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea.
| |
Collapse
|
42
|
Rajakylä EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 2014; 5:e27539. [PMID: 24603113 DOI: 10.4161/sgtp.27539] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| |
Collapse
|
43
|
Hahm JB, Schroeder AC, Privalsky ML. The two major isoforms of thyroid hormone receptor, TRα1 and TRβ1, preferentially partner with distinct panels of auxiliary proteins. Mol Cell Endocrinol 2014; 383:80-95. [PMID: 24325866 DOI: 10.1016/j.mce.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Thyroid hormone receptors (TRs) are expressed primarily as two major isoforms, TRα1 and TRβ1, which are expressed at different times in development and at different tissue abundances in the adult. The transcription properties and biological properties of TRα1 and TRβ1 can differ. We report here that although overlapping, TRα1 and TRβ1 recruit distinct panels of partner proteins that may account for their divergent biological functions, and which appear to explain their distinct target gene regulatory properties.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Amy C Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Flightless I homolog negatively regulates ChREBP activity in cancer cells. Int J Biochem Cell Biol 2013; 45:2688-97. [PMID: 24055811 DOI: 10.1016/j.biocel.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2022]
Abstract
The glucose-responsive transcription factor carbohydrate responsive element binding protein (ChREBP) plays an important role in regulating glucose metabolism in support of anabolic synthesis in both hepatocytes and cancer cells. In order to further investigate the molecular mechanism by which ChREBP regulates transcription, we used a proteomic approach to identify proteins interacting with ChREBP. We found several potential ChREBP-interacting partners, one of which, flightless I homolog (FLII) was verified to interact and co-localize with ChREBP in HCT116 colorectal cancer and HepG2 hepatocellular carcinoma cells. FLII is a member of the gelsolin superfamily of actin-remodeling proteins and can function as a transcriptional co-regulator. The C-terminal 227 amino acid region of ChREBP containing the DNA-binding domain interacted with FLII. Both the N-terminal leucine-rich repeat (LRR) domain and C-terminal gelsolin homolog domain (GLD) of FLII interacted and co-localized with ChREBP. ChREBP and FLII localized in both the cytoplasm and nucleus of cancer cells. Glucose increased expression and nuclear localization of ChREBP, and had minimal effect on the level and distribution of FLII. FLII knockdown using siRNAs increased mRNA and protein levels of ChREBP-activated genes and decreased transcription of ChREBP-repressed genes in cancer cells. Conversely, FLII overexpression negatively regulated ChREBP-mediated transcription in cancer cells. Our findings suggest that FLII is a component of the ChREBP transcriptional complex and negatively regulates ChREBP function in cancer cells.
Collapse
|
45
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
46
|
RhoA regulation of cardiomyocyte differentiation. ScientificWorldJournal 2013; 2013:491546. [PMID: 23935420 PMCID: PMC3712199 DOI: 10.1155/2013/491546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/14/2013] [Indexed: 12/03/2022] Open
Abstract
Earlier findings from our laboratory implicated RhoA in heart developmental processes. To investigate factors that potentially regulate RhoA expression, RhoA gene organisation and promoter activity were analysed. Comparative analysis indicated strict conservation of both gene organisation and coding sequence of the chick, mouse, and human RhoA genes. Bioinformatics analysis of the derived promoter region of mouse RhoA identified putative consensus sequence binding sites for several transcription factors involved in heart formation and organogenesis generally. Using luciferase reporter assays, RhoA promoter activity was shown to increase in mouse-derived P19CL6 cells that were induced to differentiate into cardiomyocytes. Overexpression of a dominant negative mutant of mouse RhoA (mRhoAN19) blocked this cardiomyocyte differentiation of P19CL6 cells and led to the accumulation of the cardiac transcription factors SRF and GATA4 and the early cardiac marker cardiac α-actin. Taken together, these findings indicate a fundamental role for RhoA in the differentiation of cardiomyocytes.
Collapse
|
47
|
Gokhale K, Patil DP, Dhotre DP, Dixit R, Mendki MJ, Patole MS, Shouche YS. Transcriptome analysis of Anopheles stephensi embryo using expressed sequence tags. J Biosci 2013; 38:301-309. [PMID: 23660664 DOI: 10.1007/s12038-013-9320-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage in insects. Here, we report generation, annotation and analysis of ESTs from the embryonic stage (16-22 h post fertilization) of laboratoryreared Anopheles stephensi mosquitoes. A total of 1002 contigs were obtained upon clustering of 1140 high-quality ESTs, which demonstrates an astonishingly low transcript redundancy (12.1 percent). Putative functions were assigned only to 213 contigs (21 percent), comprising mainly of transcripts encoding protein synthesis machinery. Approximately 78 percent of the transcripts remain uncharacterized, illustrating a lack of sequence information about the genes expressed in the embryonic stages of mosquitoes. This study highlights several novel transcripts, which apart from insect development, may significantly contribute to the essential biological complexity underlying insect viability in adverse environments. Nonetheless, the generated sequence information from this work provides a comprehensive resource for genome annotation, microarray development, phylogenetic analysis and other molecular biology applications in entomology.
Collapse
Affiliation(s)
- Kaustubh Gokhale
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | | | |
Collapse
|
48
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The influence of Flightless I on Toll-like-receptor-mediated inflammation in a murine model of diabetic wound healing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:389792. [PMID: 23555084 PMCID: PMC3595111 DOI: 10.1155/2013/389792] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis. Flii has the potential to modulate inflammation through its interaction with MyD88 which it an adaptor protein for TLR4. To assess the effect of Flii on the inflammatory response of diabetic wounds, we used a murine model of streptozocin-induced diabetes and Flii genetic mice. Increased levels of Flii were detected in Flii transgenic murine wounds resulting in impaired healing which was exacerbated when diabetes was induced. When Flii levels were reduced in diabetic wounds of Flii-deficient mice, healing was improved and decreased levels of TLR4 were observed. In contrast, increasing the level of Flii in diabetic mouse wounds led to increased TLR4 and NF- κ B production. Treatment of murine diabetic wounds with neutralising antibodies to Flii led to an improvement in healing with decreased expression of TLR4. Decreasing the level of Flii in diabetic wounds may therefore reduce the inflammatory response and improve healing.
Collapse
|
50
|
Cowin AJ, Lei N, Franken L, Ruzehaji N, Offenhäuser C, Kopecki Z, Murray RZ. Lysosomal secretion of Flightless I upon injury has the potential to alter inflammation. Commun Integr Biol 2013; 5:546-9. [PMID: 23336022 PMCID: PMC3541319 DOI: 10.4161/cib.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Collapse
Affiliation(s)
- Allison J Cowin
- Women's and Children's Health Research Institute; North Adelaide; SA Australia ; Discipline of Paediatrics; The University of Adelaide; Adelaide, SA Australia
| | | | | | | | | | | | | |
Collapse
|