1
|
Ramzan K, Hazari Y, Bashir A, Majeed Y, Ashraf A, Fazili KM. Elucidating the interaction between MTDH, an oncoprotein with UPR signalling molecule IRE1α under cellular stress. J Biomol Struct Dyn 2025:1-15. [PMID: 40286277 DOI: 10.1080/07391102.2025.2487697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
IRE1α (inositol-requiring enzyme type 1) is one of the primary sensor arms of UPR signalling pathway with special ability to detect unfolded/misfolded proteins in the ER lumen. It is a bifunctional protein with kinase and endoribonuclease activity, playing a crucial role in managing ER stress. The C-terminal domain of IRE1α, facing towards the cytosol, acts as a scaffold for various effector proteins to regulate IRE1α activity. Our previous mass spectroscopic studies has revealed Metadherin (MTDH) as one of the binding partner of IRE1α. MTDH is an oncoprotein implicated in cancer metastasis and survival, affecting various cell signalling pathways to drive cancer progression. The presence of this protein in the immune complex in our IRE1α driven immunoprecipitation experiments of stressed cells was significant as the UPR is believed to facilitate cell apoptosis during prolonged stress, which is compromised in cancerous cells to allow metastasis. This prompted us to study and explore the interaction between the two proteins IRE1α and MTDH, a positive interaction pointing to a cross talk between the homeostatic and metastatic signalling pathways. Various experiments, including co-immunoprecipitation, Yeast-two Hybrid assay, and bioinformatics analyses established a positive interaction between IRE1α and MTDH supporting the argument that these proteins interact and might influence IRE1α's role in cellular stress response.
Collapse
Affiliation(s)
- Khalida Ramzan
- UPR Signalling Laboratory, Department of Biotechnology, University of Kashmir, J&K, India
| | - Younis Hazari
- Department of Biotechnology, University of Kashmir, J&K, India
| | - Arif Bashir
- UPR Signalling Laboratory, Department of Biotechnology, University of Kashmir, J&K, India
| | - Younis Majeed
- UPR Signalling Laboratory, Department of Biotechnology, University of Kashmir, J&K, India
| | - Ariha Ashraf
- UPR Signalling Laboratory, Department of Biotechnology, University of Kashmir, J&K, India
| | - Khalid Majid Fazili
- UPR Signalling Laboratory, Department of Biotechnology, University of Kashmir, J&K, India
| |
Collapse
|
2
|
Sun J, Lee K, Kutseikin S, Guerrero A, Rius B, Madhavan A, Buasakdi C, Cheong KN, Chatterjee P, Rosen DA, Yoon L, Ardejani MS, Mendoza A, Rosarda JD, Saez E, Kelly JW, Wiseman RL. Identification of a Selective Pharmacologic IRE1/XBP1s Activator with Enhanced Tissue Exposure. ACS Chem Biol 2025. [PMID: 40231944 DOI: 10.1021/acschembio.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) has emerged as a promising strategy to mitigate etiologically diverse diseases. Despite this promise, few compounds are available to selectively activate IRE1/XBP1s signaling to probe the biologic and therapeutic implications of this pathway in human disease. Recently, we identified the compound IXA4 as a highly selective activator of protective IRE1/XBP1s signaling. While IXA4 has proven useful for increasing IRE1/XBP1s signaling in cultured cells and mouse liver, the utility of this compound is restricted by its limited activity in other tissues. To broaden our ability to pharmacologically interrogate the impact of IRE1/XBP1s signaling in vivo, we sought to identify IRE1/XBP1s activators with greater tissue activity than IXA4. We reanalyzed 'hits' from the high throughput screen used to identify IXA4, selecting compounds from structural classes not previously pursued. We then performed global RNAseq to confirm that these compounds showed transcriptome-wide selectivity for IRE1/XBP1s activation. Functional profiling revealed compound IXA62 as a selective IRE1/XBP1s activator that reduced Aβ secretion from CHO7PA2 cells and enhanced glucose-stimulated insulin secretion from rat insulinoma cells, mimicking the effects of IXA4 in these assays. IXA62 robustly and selectively activated IRE1/XBP1s signaling in the liver of mice dosed compound intraperitoneally or orally. In treated mice, IXA62 showed broader tissue activity, relative to IXA4, inducing expression of IRE1/XBP1s target genes in additional tissues such as kidney and lung. Collectively, our results designate IXA62 as a selective IRE1/XBP1s signaling activating compound with enhanced tissue activity, which increases our ability to pharmacologically probe the biologic significance and potential therapeutic utility of enhancing adaptive IRE1/XBP1s signaling in vivo.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Adrian Guerrero
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Bibiana Rius
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Aparajita Madhavan
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Ka-Neng Cheong
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Priyadarshini Chatterjee
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Dorian A Rosen
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alejandra Mendoza
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Enrique Saez
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037, United States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Tuncay A, Yilmaz Y, Baran O, Kelesoglu S. Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker. J Clin Med 2025; 14:2634. [PMID: 40283466 PMCID: PMC12027724 DOI: 10.3390/jcm14082634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Coronary artery bypass grafting (CABG) for the treatment of ischemic heart disease is still considered an effective treatment option to improve clinical outcomes and reduce mortality. However, the patency rates of saphenous vein grafts (SVGs) are significantly lower compared to those of arterial grafts. Atherosclerosis has emerged as one of the main causes of SVG stenosis (SVGS), especially stenoses that develop after one year. In this study, we aimed to investigate the association of glucose-to-lymphocyte ratio (GLR), a novel inflammatory biomarker, with LVG patency status in patients undergoing CABG surgery. Methods: A total of 778 patients who were diagnosed with chronic coronary syndromes (CCS) according to the 2019 ESC guidelines for the diagnosis and treatment of CCS; had undergone CABG more than one year previously; and had at least one SVG used during surgery were included in this study. GLR was calculated as blood glucose level (mg/dL) divided by lymphocyte count (K/uL). Results: SVGS was detected in 341 patients, while SVGs were intact in 437 patients. Patients with SVGS had a higher prevalence of diabetes mellitus (DM) (p = 0.002) and significantly higher blood glucose levels (p < 0.001). In addition, the interval between CABG operation and coronary angiography (CAG) was longer in the SVGS group (p < 0.001). Neutrophil levels were higher, and lymphocyte levels were lower in this group (p = 0.010 and p = 0.034, respectively). Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), glucose/lymphocyte ratio (GLR) and high-sensitivity C-reactive protein (CRP) levels were significantly higher in patients with SVGS (p < 0.001 for all). According to multivariate logistic regression analysis, DM, CRP level, time since CABG, and GLR were identified as independent predictors of SVGS (p = 0.004, p = 0.048, p < 0.001, and p < 0.001, respectively). ROC analysis showed that SVGS could be predicted with 75.8% sensitivity and 68.6% specificity when the cut-off value for GLR was >315.5 (area under the curve [AUC]: 0.801, 95% CI: 0.765-0.837, p < 0.001). Conclusions: Higher GLR levels are associated with SVGS in patients with coronary artery disease.
Collapse
Affiliation(s)
- Aydin Tuncay
- Department of Cardiovascular Surgery, Faculty of Medicine, Erciyes University, 38280 Kayseri, Türkiye;
| | - Yucel Yilmaz
- Department of Cardiology, University of Health Sciences, Kayseri City Training and Research Hospital, 38060 Kayseri, Türkiye; (Y.Y.); (O.B.)
| | - Oguzhan Baran
- Department of Cardiology, University of Health Sciences, Kayseri City Training and Research Hospital, 38060 Kayseri, Türkiye; (Y.Y.); (O.B.)
| | - Saban Kelesoglu
- Department of Cardiology, Faculty of Medicine, Erciyes University, 38280 Kayseri, Türkiye
- Kosk Mah. Prof. Dr. Turhan Feyzioglu Cad. Erciyes Universitesi Saglik Uygulama ve Arastirma Merkezi No: 42, Faculty of Medicine, Heart Hospital, Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
4
|
Lai P, Liu L, Bancaro N, Troiani M, Calì B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, Pernigoni N, Pasquini E, Mosole S, Rinaldi A, Sgrignani J, Qiu S, Song P, Li Y, Desbats MA, Ángel AR, Mestre RP, Cavalli A, Barile L, de Bono J, Alimonti A. Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity 2025; 58:811-825.e7. [PMID: 40203808 DOI: 10.1016/j.immuni.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence. Here, we investigated whether senescent cells release mitochondrial (mt)DNA into the extracellular space and its impact on innate immunity. We found that both primary senescent cells and tumor cells undergoing therapy-induced senescence actively released mtDNA into the extracellular environment. mtDNA released by senescent cells was packaged within extracellular vesicles and selectively transferred to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the tumor microenvironment. Upon uptake, extracellular mtDNA enhanced the immunosuppressive activity of PMN-MDSCs via cGAS-STING-NF-κB signaling, thereby promoting tumor progression. While STING activation directly induced NF-κB signaling, it also activated PKR-like endoplasmic reticulum kinase (PERK), which further amplified NF-κB activity, in PMN-MDSCs. mtDNA release from senescent cells was mediated by voltage-dependent anion channels (VDACs), and pharmacological inhibition of VDAC reduced extracellular mtDNA levels, reversed PMN-MDSC-driven immunosuppression, and enhanced chemotherapy efficacy in prostate cancer mouse models. These findings suggest that targeting mtDNA release could reprogram the immunosuppressive tumor microenvironment, improving therapeutic outcomes for chemotherapy-treated patients.
Collapse
Affiliation(s)
- Ping Lai
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1011, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Lei Liu
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Bianca Calì
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Yuxin Li
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Prafull Kumar Singh
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Jacopo Sgrignani
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona 6500, Switzerland
| | - Shi Qiu
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pan Song
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingrui Li
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Maria Andrea Desbats
- Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy; Department of Medicine, Università degli Studi di Padova, Padova 35129, Italy
| | - Azucena Rendón Ángel
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Laboratory of Cellular and Molecular Cardiology and Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano 6900, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI) Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland
| | - Andrea Cavalli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona 6500, Switzerland
| | - Lucio Barile
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Laboratory of Cellular and Molecular Cardiology and Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano 6900, Switzerland
| | - Johann de Bono
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy; Department of Medicine, Università degli Studi di Padova, Padova 35129, Italy; Oncology Institute of Southern Switzerland (IOSI) Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland; Department of Health Sciences and Technology (D-HEST), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8092, Switzerland.
| |
Collapse
|
5
|
Li X, Liu Y, Duan C, Yang L, Zhou D, Zhang Z, Chen H, Li G, Zhu C, Tian C. Effects of chronic high-temperature stress on muscle tissue integrity and metabolism-related genes in Clarias fuscus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101497. [PMID: 40174404 DOI: 10.1016/j.cbd.2025.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The increasing prevalence of high-temperature days due to global warming presents significant challenges for aquatic ecosystems and aquaculture practices. This study investigates the effects of chronic high-temperature stress on Clarias fuscus, a catfish species native to subtropical and tropical regions. The fish were cultured for 90 days under high-temperature conditions (HT, 34 °C) and normal temperature conditions (CT, 26 °C). Histological and transcriptomic analyses were conducted to assess the impact of continuous high-temperature stress on muscle tissue. Histological examination revealed significant damage in the HT group, characterized by irregular tissue arrangement, widened muscle fiber gaps, broken muscle filaments, and cracked nuclei. Transcriptomic analysis identified 975 differentially expressed genes (DEGs) in muscle tissue under high-temperature stress, with 512 genes up-regulated and 463 down-regulated. Notably, heat shock protein (Hsp) family genes, including Hsp40, Hsp70 and Hsp90, were significantly up-regulated under heat stress. Enrichment analysis of these DEGs revealed significant alterations in protein processing, the PPAR signaling pathway, and fatty acid oxidation and metabolism within the endoplasmic reticulum. These findings suggest that C. fuscus experiences substantial tissue damage and a reduced metabolic response under high-temperature stress. This study provides a scientific foundation for future research on the adaptability of fish to temperature fluctuations.
Collapse
Affiliation(s)
- Xiaolong Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Yong Liu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Bagheri R, Daneshi SS, Bina S, Haghshenas M, Khoshnoud MJ, Asadi-Yousefabad SL, Khodaei F, Rashedinia M. Metformin Mitigates the Impact of Arsenic Exposure on the Maternal and Offspring Reproductive System of Female Mice. Biol Trace Elem Res 2025:10.1007/s12011-025-04577-2. [PMID: 40119994 DOI: 10.1007/s12011-025-04577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Exposure to arsenic causes health problems and is associated with adverse effects on fertility and development. Humans are facing increasing exposure to arsenic from multiple sources, such as drinking water, food products, and industrial processes. The mechanisms behind arsenic-induced reproductive toxicity and its impact on fertility and the development of future generations are investigated by the protective role of metformin (200 mg/kg) against arsenic-induced (20 ppm As2O3) ovarian damage in both maternal and offspring generations. Results showed arsenic exposure caused significant weight loss, increased mortality, reduced serum anti-Mullerian hormone (AMH) levels, and heightened oxidative stress, indicated by increased reactive oxygen species (ROS), malondialdehyde (MDA), and reduced ovarian antioxidant activity. Gene expression changes related to apoptosis and inflammation, such as BAX, Bcl-2, Bcl-2, caspase-3, tumor necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1), were also noted, along with a decrease in HO-1 expression. Arsenic exposure led to a reduction in ovarian follicles and an increase in atretic follicles and uterine thickness. However, metformin significantly reduced ROS and MDA levels, enhanced antioxidant capacity, and protected ovarian tissue by upregulating heme oxygenase-1 (HO-1) and Bcl-2, modulating apoptotic and inflammatory genes, and preserving AMH levels. The possible protective role of metformin against arsenic-induced toxicity and its detrimental effects aims to improve therapeutic approaches to alleviate the harmful consequences of environmental pollutants, especially arsenic.
Collapse
Affiliation(s)
- Razieh Bagheri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Sajad Daneshi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Bina
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Marziyeh Haghshenas
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Chen L, Zhao X, Sheng R, Lazarovici P, Zheng W. Artemisinin alleviates astrocyte overactivation and neuroinflammation by modulating the IRE1/NF-κB signaling pathway in in vitro and in vivo Alzheimer's disease models. Free Radic Biol Med 2025; 229:96-110. [PMID: 39826816 DOI: 10.1016/j.freeradbiomed.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Recent studies have shown that neuroinflammation and heightened glial activity, particularly astrocyte overactivation, are associated with Alzheimer's disease (AD). Abnormal accumulation of amyloid-beta (Aβ) induces endoplasmic reticulum (ER) stress and activates astrocytes. Artemisinin (ART), a frontline anti-malarial drug, has been found to have neuroprotective properties. However, its impact on astrocytes remains unclear. In this study, we used Aβ1-42 induced astrocyte cultures and 3 × Tg-AD mice as in vitro and in vivo models, respectively, to investigate the effects of ART on AD related astrocyte overactivation and its underlying mechanisms. ART attenuated Aβ1-42-induced astrocyte activation, ER stress, and inflammatory responses in astrocyte cultures by inhibiting IRE1 phosphorylation and the NF-κB pathway, as evidenced by the overexpression of IRE1 WT and IRE1-K599A (kinase activity invalidated), along with application of activators and inhibitors related to ER stress. Furthermore, ART alleviated the detrimental effects and restored neurotrophic function of astrocytes on co-cultured neurons, preventing neuronal apoptosis during Aβ1-42 treatment. In 3 × Tg-AD mice, ART treatment improved cognitive function and reduced astrocyte overactivation, neuroinflammation, ER stress, and neuronal apoptosis. Moreover, ART attenuated the upregulation of IRE1/NF-κB pathway activity in AD mice. Astrocyte-specific overexpression of IRE1 via adeno-associated virus in AD mice reversed the ameliorating effects of ART. Our findings suggest that ART inhibits astrocyte overactivation and neuroinflammation in both in vitro and in vivo AD models by modulating the IRE1/NF-κB signaling pathway, thereby enhancing neuronal functions. This study underscores the therapeutic potential of ART in AD and highlights the significance of modulating the ER stress-inflammatory cycle and normalizing astrocyte-neuron communication.
Collapse
Affiliation(s)
- Lei Chen
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China
| | - Xia Zhao
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China
| | - Rui Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112002, Israel
| | - Wenhua Zheng
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China.
| |
Collapse
|
8
|
Sharma S, Satheesan A, Majumdar A, Mukherjee S, Basu A. PARP-16 regulates the PERK and IRE-1α Mediated Unfolded Protein Response in Japanese Encephalitis Virus-Infected Neural Stem/Progenitor Cells. Mol Neurobiol 2025:10.1007/s12035-025-04748-1. [PMID: 39979689 DOI: 10.1007/s12035-025-04748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
The viral infection and subsequent accumulation of viral proteins in the infected cells leads to endoplasmic reticulum (ER) stress. Japanese encephalitis virus (JEV) infection in the Central Nervous System (CNS) has been shown to induce unfolded protein response (UPR). The ER stress is resolved by the UPR which comprises certain signals that are transduced from the ER either to both the cytoplasm or nucleus, resulting in the adaptation for survival or may even lead to apoptosis. Here, we demonstrate that Poly ADP-ribose polymerase-16 (PARP-16) expression is regulating the ER stress response following JEV infection of Neural Stem/Progenitor cells (NSPCs) in the BALB/c mouse model. Activation of the key sensors of UPR, namely, protein kinase R (PKR)-like ER kinase (PERK) and Inositol-requiring enzyme-1α (IRE-1α) by PARP-16 upon JEV infection, led to the activation of their downstream signalling cascade. The siRNA-mediated in vitro downregulation of PARP-16 in NSPCs alleviated the overall UPR, as the abundance of UPR markers and their downstream modulators of signalling cascade was found to be downregulated. These results highlight an important role of PARP-16 during JEV infection of NSPCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- National Brain Research Centre, Manesar, Haryana, 122052, India
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E0J9, Canada
| | | | - Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Sriparna Mukherjee
- National Brain Research Centre, Manesar, Haryana, 122052, India
- Department of Pharmacology and Physiology, Pavilion Roger-Gaudry, Universite de Montréal, Montréal, Québec, Canada
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
9
|
Prasad V. Transmission of unfolded protein response-a regulator of disease progression, severity, and spread in virus infections. mBio 2025; 16:e0352224. [PMID: 39772778 PMCID: PMC11796368 DOI: 10.1128/mbio.03522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The unfolded protein response (UPR) is a cell-autonomous stress response aimed at restoring homeostasis due to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Viruses often hijack the host cell machinery, leading to an accumulation of misfolded proteins in the ER. The cell-autonomous UPR is the immediate response of an infected cell to this stress, aiming to restore normal function by halting protein translation, degrading misfolded proteins, and activating signaling pathways that increase the production of molecular chaperones. The cell-non-autonomous UPR involves the spreading of UPR signals from initially stressed cells to neighboring unstressed cells that lack the stressor. Though viruses are known modulators of cell-autonomous UPR, recent advancements have highlighted that cell-non-autonomous UPR plays a critical role in elucidating how local infections cause systemic effects, thereby contributing to disease symptoms and progression. Additionally, by utilizing cell-non-autonomous UPR, viruses have devised novel strategies to establish a pro-viral state, promoting virus spread. This review discusses examples that have broadened the understanding of the role of UPR in virus infections and disease progression by looking beyond cell-autonomous to non-autonomous processes and mechanistic details of the inducers, spreaders, and receivers of UPR signals.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Di Mattia M, Sallese M, Lopetuso LR. Unfolded protein response: An essential element of intestinal homeostasis and a potential therapeutic target for inflammatory bowel disease. Acta Physiol (Oxf) 2025; 241:e14284. [PMID: 39822064 DOI: 10.1111/apha.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development. Importantly, we also highlighted the promising potential of UPR components as therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
11
|
Wang Z, Zhang L, Wu T, Pan X, Li L, Yang X, Zhang M, Liu Y. Mechanism of dexmedetomidine in brain injury of infant rats via the IRE1α/NF-κB/CHOP pathway. World J Biol Psychiatry 2025; 26:103-115. [PMID: 39815639 DOI: 10.1080/15622975.2024.2446817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE We investigated the mechanism of Dexmedetomidine (Dex) in infant rats with brain injury. METHODS The infant rats underwent brain injury modelling. The motor function, spatial learning and memory abilities in rats, and the hippocampal CA1 region Nissl body level and apoptosis were evaluated by behavioural tests and histological stainings. Levels of the hippocampal CA1 region p-IRE1α, nuclear/cytoplasmic p65, CHOP, Bax and Bcl-2 proteins were determined by Western blot. RESULTS Propofol anaesthesia caused brain injury in infant rats. Dex increased the hippocampal CA1 region Nissl body level, abated cell apoptosis, reduced p-IRE1α, ATF6, p-PERK/PERK and CHOP levels, decreased the Bax protein level, elevated the Bcl-2 protein level, and alleviated brain injury in infant rats. After ERS induction and the NF-κB pathway inhibition, the hippocampal CA1 region nuclear/cytoplasmic p65 ratio, CHOP level, and apoptosis were reduced in infant rats with brain injury treated with Dex, while the learning and memory abilities of rats were enhanced. CONCLUSION Dex reduced the hippocampal CA1 region cell apoptosis and enhanced learning and memory abilities by inhibiting the ERS-mediated IRE1α/NF-κB/CHOP pathway, thereby alleviating brain injury in infant rats.
Collapse
Affiliation(s)
- Zhi Wang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lina Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Wu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xu Pan
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Le Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Yang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ying Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
12
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
13
|
Serhatlioglu F, Cetinkaya Z, Yilmaz Y. The Role of Glucose-Lymphocyte Ratio in Evaluating the Severity of Coronary Artery Disease. J Clin Med 2024; 13:6711. [PMID: 39597855 PMCID: PMC11595217 DOI: 10.3390/jcm13226711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Recently, a new inflammatory and prognostic marker called glucose/lymphocyte ratio (GLR) has been used in patients with coronary artery disease. In this study, we analyzed the correlation between GLR and coronary artery disease (CAD) severity in patients with chronic coronary syndrome (CCS). Methods: The study included 341 patients with CCS who underwent coronary angiography and documented coronary stenosis of 50% or more in at least one major coronary artery and 437 individuals with coronary atherosclerosis between 1% and 50% or no coronary atherosclerosis (control group). Blood samples for GLR and other laboratory parameters were obtained from all patients on admission. GLR was obtained by dividing the glucose level by the lymphocyte count. Results: There were more patients with diabetes mellitus (DM) in the critical CAD group, and glucose levels (p < 0.001), neutrophil counts (p < 0.001), C-reactive protein (CRP) levels (p < 0.001), neutrophil/lymphocyte ratio (NLR) (p < 0.001), platelet/lymphocyte ratio (PLR) (p < 0.001), and GLR (p < 0.001) were higher. In contrast, lymphocyte counts were lower (p < 0.034). Multivariate logistic regression analysis showed that DM and high CRP were independent predictors of critical CAD (p = 0.004 and p = 0.048, respectively). However, high GLR was found to be an independent predictor of critical CAD (p < 0.001). Conclusions: GLR, a simple and easily measured marker, has shown strong predictive value for CAD severity in CCS patients.
Collapse
Affiliation(s)
- Faruk Serhatlioglu
- Department of Cardiovascular Surgery, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde 51100, Turkey;
| | - Zeki Cetinkaya
- Department of Cardiology, Ministry of Health, Elazıg Fethi Sekin City Hospital, Elazig 23280, Turkey;
| | - Yucel Yilmaz
- Department of Cardiology, Kayseri City Training and Research Hospital, University of Health Sciences, Kayseri 38080, Turkey
| |
Collapse
|
14
|
Kheira HS, Elsayed GR, El-Adl M. Liraglutide and resveratrol alleviated cyclosporin A induced nephrotoxicity in rats through improving antioxidant status, apoptosis and pro-inflammatory markers. Biochem Biophys Res Commun 2024; 730:150337. [PMID: 38986220 DOI: 10.1016/j.bbrc.2024.150337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The recent study delves into the role of both liraglutide and/or resveratrol on the nephropathic affection in rats treated with cyclosporine A (CsA). Rats were intoxicated with CsA (25 mg/kg) orally for 21 days and were supplemented with liraglutide (30 μg/kg) s/c daily and 20 mg/kg of resveratrol (20 mg/kg) orally. At the end of the experiment, serum samples and renal tissues were collected to determine renal damage markers, apoptotic markers, proinflammatory markers, and antioxidant status markers. Kidney function tests and antioxidant activity notably improved in the treated rats (CsA + Lir/CsA + Res/CsA + Lir + Res). Moreover, both Lir and/or Res enhanced Bcl-2 levels while down-regulating the Bax levels in rats treated with CsA. Interestingly, the immune-staining for tumor necrosis factor (TNF-α) was tested negative and mild positive in renal tissue of rats given Lir and/or Res while being treated with Cs A which indicated their anti-inflammatory effect that reduced the renal damage. The findings of this investigation revealed the ameliorative anti-inflammatory in addition to the antioxidant role of both liraglutide and resveratrol against the kidney damage caused due to CsA administration.
Collapse
Affiliation(s)
- Hend Samy Kheira
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad Ramadan Elsayed
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
15
|
Duara J, Torres M, Gurumani M, Molina David J, Njeim R, Kim JJ, Mitrofanova A, Ge M, Sloan A, Müller-Deile J, Schiffer M, Merscher S, Fornoni A. Oxysterol-binding protein-like 7 deficiency leads to ER stress-mediated apoptosis in podocytes and proteinuria. Am J Physiol Renal Physiol 2024; 327:F340-F350. [PMID: 38961844 PMCID: PMC11460532 DOI: 10.1152/ajprenal.00319.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein-like 7 (OSBPL7) modulates the expression and function of ATP-binding cassette subfamily A member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Using mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. Although as expected, the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7 deficiency-related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7 deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study sheds new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthens the role of OSBPL7 as a novel therapeutic target.NEW & NOTEWORTHY OSBPL7 and ER stress comprise a central mechanism in glomerular injury. This study highlights a crucial link between OSBPL7 deficiency and ER stress in CKD. OSBPL7 deficiency causes ER stress, leading to podocyte apoptosis. There is a selective effect on lipid homeostasis in that OSBPL7 deficiency affects lipid homeostasis, altering cellular triglyceride but not cholesterol content. The interaction of ER stress and apoptosis supports that ER stress, not reduced autophagy, is the main driver of apoptosis in OSBPL7-deficient podocytes.
Collapse
Affiliation(s)
- Joanne Duara
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Maria Torres
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Margaret Gurumani
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Judith Molina David
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Rachel Njeim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jin-Ju Kim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Mengyuan Ge
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alexis Sloan
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Mount Desert Island Biological Laboratories, Salisbury Cove, Maine, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
16
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
17
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
18
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
19
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
20
|
Wang L, Li W, Li Y, Chen G, Zhao L, Li W, Wang S, Wang C, Feng Y, Zhang Y. Dried tangerine peel polysaccharide (DTPP) alleviates hepatic steatosis by suppressing TLR4/MD-2-mediated inflammation and endoplasmic reticulum stress. Bioorg Chem 2024; 147:107369. [PMID: 38640721 DOI: 10.1016/j.bioorg.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/17/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Wenxi Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yinggang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Gengrui Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Lijuan Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wu Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shengwei Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yanxian Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
21
|
Obacz J, Archambeau J, Lafont E, Nivet M, Martin S, Aubry M, Voutetakis K, Pineau R, Boniface R, Sicari D, Pelizzari-Raymundo D, Ghukasyan G, McGrath E, Vlachavas EI, Le Gallo M, Le Reste PJ, Barroso K, Fainsod-Levi T, Obiedat A, Granot Z, Tirosh B, Samal J, Pandit A, Négroni L, Soriano N, Monnier A, Mosser J, Chatziioannou A, Quillien V, Chevet E, Avril T. IRE1 endoribonuclease signaling promotes myeloid cell infiltration in glioblastoma. Neuro Oncol 2024; 26:858-871. [PMID: 38153426 PMCID: PMC11066906 DOI: 10.1093/neuonc/noad256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.
Collapse
Affiliation(s)
- Joanna Obacz
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | - Elodie Lafont
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Manon Nivet
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Sophie Martin
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Raphael Pineau
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | - Daria Sicari
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Eoghan McGrath
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Pierre Jean Le Reste
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
- Hospital of St Malo, France
| | - Kim Barroso
- IGBMC, Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | - Tanya Fainsod-Levi
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Israel
| | | | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Israel
| | | | | | | | - Luc Négroni
- IGBMC, Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | | | | | | | - Aristotelis Chatziioannou
- ICB, NHRF, Athens, Greece
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Eric Chevet
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Tony Avril
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| |
Collapse
|
22
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Vivacqua G, Mancinelli R, Leone S, Vaccaro R, Garro L, Carotti S, Ceci L, Onori P, Pannarale L, Franchitto A, Gaudio E, Casini A. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders. Neurogastroenterol Motil 2024; 36:e14780. [PMID: 38462652 DOI: 10.1111/nmo.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovica Garro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
25
|
Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024; 14:7434. [PMID: 38548778 PMCID: PMC10978894 DOI: 10.1038/s41598-024-57300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
- Department of Pharmacology, Faculty of Medicine, Merit University, Sohâg, Egypt.
| | | | | | - Hanan H Abd-Elhafeez
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
26
|
Zhang H, Zheng C, Xu Y, Hu X. Comprehensive molecular and cellular characterization of endoplasmic reticulum stress-related key genes in renal ischemia/reperfusion injury. Front Immunol 2024; 15:1340997. [PMID: 38495888 PMCID: PMC10940334 DOI: 10.3389/fimmu.2024.1340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Renal ischemia-reperfusion injury (RIRI) is an inevitable complication in the process of kidney transplantation and lacks specific therapy. The study aims to determine the underlying mechanisms of RIRI to uncover a promising target for efficient renoprotection. Method Four bulk RNA-seq datasets including 495 renal samples of pre- and post-reperfusion were collected from the GEO database. The machine learning algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes. Then, we incorporated correlation analysis and determined the interaction pathways of these key genes. Considering the heterogeneous nature of bulk-RNA analysis, the single-cell RNA-seq analysis was performed to investigate the mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to inhibit endoplasmic reticulum stress and hence validate the pathological role of these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles were used to assess the prognostic role of these key genes in renal allograft outcomes after RIRI. Results In the bulk-RNA analysis, endoplasmic reticulum stress was identified as the top enriched pathway and three endoplasmic reticulum stress-related genes (PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and Boruta analyses. The three genes were found to significantly interact with kidney injury-related pathways, including apoptosis, inflammatory response, oxidative stress, and pyroptosis. For oxidative stress, these genes were more strongly related to oxidative markers compared with antioxidant markers. In single-cell transcriptome, the three genes were primarily upregulated in endothelium, distal convoluted tubule cells, and collecting duct principal cells among 12 cell types of renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting duct principal cells exhibited pro-inflammatory status and the highest pyroptosis levels, suggesting their potential as main effectors of three key genes for mediating RIRI-associated injuries. Importantly, inhibition of these key genes using 4-phenyl butyric acid alleviated functional and histological damage in a mouse RIRI model. Finally, the three genes demonstrated highly prognostic value in predicting graft survival outcomes. Conclusion The study identified three key endoplasmic reticulum stress-related genes and demonstrated their prognostic value for graft survival, providing references for individualized clinical prevention and treatment of postoperative complications after renal transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Chaoyue Zheng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
28
|
Du Y, Kusama K, Hama K, Chen X, Tahara Y, Kajiwara S, Shibata S, Orihara K. Protective Effects of Inulin on Stress-Recurrent Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:2494. [PMID: 38473746 DOI: 10.3390/ijms25052494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the digestive tract and is closely associated with the homeostasis of the gut microbiota. Inulin, as a natural prebiotic, displays anti-inflammatory activity and maintains equilibrium of the intestinal microbiota. In this study, our research aimed to explore the potential of inulin in enhancing intestinal immunity and reducing inflammation in stress-recurrent IBD. In this study, a co-culture intestinal epithelium model and a stress-recurrent IBD mouse model was used to examine the protective effects of inulin. It was observed that inulin digesta significantly reduced pro-inflammatory cytokine expression (CXCL8/IL8 and TNFA) and increased MUC2 expression in intestinal epithelial cells. In vivo, our findings showed that Inulin intake significantly prevented IBD symptoms. This was substantiated by a decrease in serum inflammatory markers (IL-6, CALP) and a downregulation of inflammatory cytokine (Il6) in colon samples. Additionally, inulin intake led to an increase in short-chain fatty acids (SCFAs) in cecal contents and a reduction in the expression of endoplasmic reticulum (ER) stress markers (CHOP, BiP). Our results highlight that inulin can improve stress-recurrent IBD symptoms by modulating microbiota composition, reducing inflammation, and alleviating ER stress. These findings suggested the therapeutic potential of inulin as a dietary intervention for ameliorating stress-recurrent IBD.
Collapse
Affiliation(s)
- Yao Du
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kanta Kusama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Koki Hama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
29
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
30
|
Son J, Bailey JT, Worrell S, Glick AB. IRE1α regulates ROS and immune responses after UVB irradiation. REDOX EXPERIMENTAL MEDICINE 2024; 2024:e230030. [PMID: 39301051 PMCID: PMC11412578 DOI: 10.1530/rem-23-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Objective UV irradiation of the skin induces photo damage and generates cytotoxic intracellular reactive oxygen species (ROS), activating the unfolded protein response (UPR) to adapt or reduce these UVB-mediated damages. This study was designed to understand the role of the UPR mediator IRE1α in the antioxidant response following UVB irradiation of mouse skin and keratinocytes. Methods We used mice with an epidermal deletion of IRE1α and primary mouse keratinocytes to examine effects of UV on different parameters of the antioxidant response in the presence and absence of functional IRE1α. Results In the absence of IRE1α, PERK activity and protein levels are significantly compromised following UVB irradiation. Additionally, the loss of IRE1α suppressed phosphorylation of the PERK target, nuclear factor erythroid-2-related factor 2 (NRF2), and NRF2-dependent antioxidant gene expression after UVB irradiation. Interestingly, IRE1α-deficient keratinocytes exhibit elevated basal ROS levels, while a robust ROS induction upon UVB exposure is abolished. Because UVB-induced ROS plays an essential role in regulating skin inflammation, we analyzed recruited immune cell populations and the expression of pro-inflammatory cytokines, Il-6 and Tnfα in mice with epidermally-targeted deletion of Ire1α. Following UVB irradiation, there was significantly less recruitment of neutrophils and leukocytes and reduced expression of pro-inflammatory cytokine genes in the skin of mice lacking IRE1α. Furthermore, keratinocyte proliferation was also significantly reduced after chronic UVB exposure in the skin of these mice. Conclusions Collectively, our findings indicate that IRE1α is essential for basal and UVB-induced oxidative stress response, UV-induced skin immune responses, and keratinocyte proliferation. Significance These findings shed new light on the protective function of IRE1α in the response to UV. IRE1α plays an important role in the regulation of ROS, PERK stability, and antioxidant gene expression in response to UVB in mouse keratinocytes and epidermis.
Collapse
Affiliation(s)
- Jeongin Son
- The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA 16802, USA
| | - Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Stephen Worrell
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam B Glick
- The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA 16802, USA
| |
Collapse
|
31
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
32
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
33
|
Khamis T, Abdelkhalek A, Abdellatif H, Dwidar N, Said A, Ahmed R, Wagdy K, Elgarhy R, Eltahan R, Mohamed H, Said Amer E, Hanna M, Ragab T, Kishk A, Wael J, Sarhan E, Saweres L, Reda M, Elkomy S, Mohamed A, Samy A, Khafaga A, Shaker Y, Yehia H, Alanazi A, Alassiri M, Tîrziu E, Bucur IM, Arisha AH. BM-MSCs alleviate diabetic nephropathy in male rats by regulating ER stress, oxidative stress, inflammation, and apoptotic pathways. Front Pharmacol 2023; 14:1265230. [PMID: 38044936 PMCID: PMC10690373 DOI: 10.3389/fphar.2023.1265230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Diabetic nephropathy (DN), a chronic kidney disease, is a major cause of end-stage kidney disease worldwide. Mesenchymal stem cells (MSCs) have become a promising option to mitigate several diabetic complications. Methods: In this study, we evaluated the therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of STZ-induced DN. After the confirmation of diabetes, rats were treated with BM-MSCs and sacrificed at week 12 after treatment. Results: Our results showed that STZ-induced DN rats had extensive histopathological changes, significant upregulation in mRNA expression of renal apoptotic markers, ER stress markers, inflammatory markers, fibronectin, and intermediate filament proteins, and reduction of positive immunostaining of PCNA and elevated P53 in kidney tissue compared to the control group. BM-MSC therapy significantly improved renal histopathological changes, reduced renal apoptosis, ER stress, inflammation, and intermediate filament proteins, as well as increased positive immunostaining of PCNA and reduced P53 in renal tissue compared to the STZ-induced DN group. Conclusion: In conclusion, our study indicates that BM-MSCs may have therapeutic potential for the treatment of DN and provide important insights into their potential use as a novel therapeutic approach for DN.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nourelden Dwidar
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ahmed Said
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rama Ahmed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Kerolos Wagdy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rowina Elgarhy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rawan Eltahan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hisham Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman Said Amer
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Maria Hanna
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Tarek Ragab
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdallah Kishk
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Judy Wael
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eyad Sarhan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Linda Saweres
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mohamed Reda
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Sara Elkomy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdalah Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdullah Samy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ateya Khafaga
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Youliana Shaker
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hamdy Yehia
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Wan L, Chen Z, Yang J, Wu G, Xu Y, Cui J, Zhao X. Identification of endoplasmic reticulum stress-related signature characterizes the tumor microenvironment and predicts prognosis in lung adenocarcinoma. Sci Rep 2023; 13:19462. [PMID: 37945620 PMCID: PMC10636162 DOI: 10.1038/s41598-023-45690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Lung adenocarcinoma (LUAD) remains one of the most lethal malignancies worldwide, with a high mortality rate and unfavorable prognosis. Endoplasmic reticulum (ER) stress is a key regulator of tumour growth, metastasis, and the response to chemotherapy, targeted therapies and immune response. It acts via responding to misfolded proteins and triggering abnormal activation of ER stress sensors and downstream signalling pathways. Notably, the expression patterns of ER-stress-related-genes (ERSRGs) are indicative of survival outcomes, especially in the context of immune infiltration. Through consensus clustering of prognosis-associated ERSRGs, we delineated two distinct LUAD subtypes: Cluster 1 and Cluster 2. Comprehensive analyses revealed significant disparities between these subtypes in terms of prognosis, immune cell infiltration, and tumor progression. Leveraging the robustness of LASSO regression and Multivariate stepwise regression, we constructed and validated an ER Stress-associated risk signature for LUAD. This signature underwent assessments for its prognostic value, correlation with clinical attributes, and interaction within the tumour immune microenvironment. By integrating this signature with multivariate cox analysis of distinct pathological stages, we devised an enhanced nomogram, validated through various statistical metrics, with an area under the curve for overall survival at 1, 3, and 5 years post-diagnosis being 0.79, 0.80, and 0.81, respectively. In conclusion, our findings introduce a composite signature of 11 pivotal ERSRGs, holding promise as a potent prognostic tool for LUAD, and offering insights for immunotherapeutic and targeted intervention strategies.
Collapse
Affiliation(s)
- Li Wan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaotian Wu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Cui
- Department of Thoracic Surgery, Wuzhong District People's Hospital, Suzhou, China.
| | - Xueping Zhao
- School of Nursing, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
35
|
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, Coto-Montes A. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity. Antioxidants (Basel) 2023; 12:1962. [PMID: 38001815 PMCID: PMC10669624 DOI: 10.3390/antiox12111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Juan C. Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Beatriz de Luxán-Delgado
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
- Immunology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Juan J. Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
36
|
Li Y, Ji Y, Li F. A review: Mechanism and prospect of gastrodin in prevention and treatment of T2DM and COVID-19. Heliyon 2023; 9:e21218. [PMID: 37954278 PMCID: PMC10637887 DOI: 10.1016/j.heliyon.2023.e21218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrodin is an extract from the dried tuber of the Chinese herb Gastrodia elata (Tian ma), with anti-inflammatory, antioxidant, and antiviral properties. Recent studies have shown that, compared to commonly used diabetes drugs, gastrodin has antidiabetic effects in multiple ways, with characteristics of low cost, high safety, less side effects, protection of β-cell function, relieving insulin resistance and alleviating multiple complications. In addition, it is confirmed that gastrodin can protect the function of lung and other organs, enhance antiviral activity via upregulating the type I interferon (IFN-I), and inhibit angiotensin II (AngII), a key factor in "cytokine storm" caused by COVID-19. Therefore, we reviewed the effect and mechanism of gastrodin on type 2 diabetes mellitus (T2DM), and speculated other potential mechanisms of gastrodin in alleviating insulin resistance from insulin signal pathway, inflammation, mitochondrial and endoplasmic reticulum and its potential in the prevention and treatment of COVID-19. We hope to provide new direction and treatment strategy for basic research and clinical work: gastrodin is considered as a drug for the prevention and treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fenglan Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Huang X, Zhu H, Lu W, Cao L, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Jiang X, Sun M, Wu D, Feng B. Acute Endoplasmic Reticulum Stress Suppresses Hepatic Gluconeogenesis by Stimulating MAPK Phosphatase 3 Degradation. Int J Mol Sci 2023; 24:15561. [PMID: 37958545 PMCID: PMC10647389 DOI: 10.3390/ijms242115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Drug-induced liver injury (DILI) is a widespread and harmful disease, and is closely linked to acute endoplasmic reticulum (ER) stress. Previous reports have shown that acute ER stress can suppress hepatic gluconeogenesis and even leads to hypoglycemia. However, the mechanism is still unclear. MAPK phosphatase 3 (MKP-3) is a positive regulator for gluconeogenesis. Thus, this study was conducted to investigate the role of MKP-3 in the suppression of gluconeogenesis by acute ER stress, as well as the regulatory role of acute ER stress on the expression of MKP-3. Results showed that acute ER stress induced by tunicamycin significantly suppressed gluconeogenesis in both hepatocytes and mouse liver, reduced glucose production level in hepatocytes, and decreased fasting blood glucose level in mice. Additionally, the protein level of MKP-3 was reduced by acute ER stress in both hepatocytes and mouse liver. Mkp-3 deficiency eliminated the inhibitory effect of acute ER stress on gluconeogenesis in hepatocytes. Moreover, the reduction effect of acute ER stress on blood glucose level and hepatic glucose 6-phosphatase (G6pc) expression was not observed in the liver-specific Mkp-3 knockout mice. Furthermore, activation of protein kinase R-like ER kinase (PERK) decreased the MKP-3 protein level, while inactivation of PERK abolished the reduction effect of acute ER stress on the MKP-3 protein level in hepatocytes. Taken together, our study suggested that acute ER stress could suppress hepatic gluconeogenesis by stimulating MKP-3 degradation via PERK, at least partially. Thus, MKP-3 might be a therapeutic target for DILI-related hypoglycemia.
Collapse
Affiliation(s)
- Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Heng Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (H.Z.); (W.L.); (L.C.); (Z.F.); (L.C.); (Y.L.); (S.X.); (Y.Z.); (L.H.); (X.J.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
38
|
Lei F, Wu Y, Li C, Yan B, Chen S, Peng Q, Yang X, Ma P. Mediation of endoplasmic reticulum stress and NF-κB signaling pathway in DINP-exacerbated allergic asthma: A toxicological study with Balb/c mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132392. [PMID: 37657325 DOI: 10.1016/j.jhazmat.2023.132392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Epidemiological evidence indicates a significant relationship between exposure to diisononyl phthalate and allergic asthma. Despite this, the mechanism underlying this association remains unclear. Previous toxicological researches have suggested that the development of allergic asthma may involve the activation of endoplasmic reticulum stress (ERS) and the nuclear factor κ-B (NF-κB) pathways. Nevertheless, it is currently unknown whether these specific signaling pathways are implicated in diisononyl phthalate (DINP)-induced allergic asthma. The objective of this research was to understand how DINP exacerbates allergic asthma in Balb/c mice through ERS and NF-κB pathways. To systematically examine the aggravated effects of DINP in Balb/c mice, we measured airway hyperresponsiveness (AHR), lung tissue pathology, cytokines, and ERS and NF-κB pathway biomarkers. Additionally, we applied the ERS antagonist phenylbutyric acid (4-PBA) or the NF-κB antagonist pyrrolidine dithiocarbamate (PDTC) to verify the mediating effects of ERS and NF-κB on DINP-exacerbated allergic asthma. The results of our experiment show that oral DINP exposure may exacerbate airway hyperresponsiveness and airway remodeling. This deterioration is accompanied by an imbalance in immunoglobulin levels, Th17/Treg cells, ERS, and NF-κB biomarkers, leading to the activation of pro-inflammatory pathways. Furthermore, our study found that the blocking effect of 4-PBA or PDTC can inhibit the Th17/Treg imbalance and effectively alleviate symptoms resembling allergic asthma. In conclusion, ERS and NF-κB signaling pathways play an important role in regulating DINP-induced allergic asthma exacerbations.
Collapse
Affiliation(s)
- Fan Lei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Department of Pharmacy, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chongyao Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Shaohui Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Qi Peng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
39
|
Akhter N, Wilson A, Arefanian H, Thomas R, Kochumon S, Al-Rashed F, Abu-Farha M, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. Endoplasmic Reticulum Stress Promotes the Expression of TNF-α in THP-1 Cells by Mechanisms Involving ROS/CHOP/HIF-1α and MAPK/NF-κB Pathways. Int J Mol Sci 2023; 24:15186. [PMID: 37894865 PMCID: PMC10606873 DOI: 10.3390/ijms242015186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.
Collapse
Affiliation(s)
- Nadeem Akhter
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Ajit Wilson
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Ashraf Al-Madhoun
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (H.A.); (R.T.); (S.K.); (F.A.-R.); (R.A.)
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
40
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
41
|
Jo SL, Yang H, Lee HW, Hong EJ. Curcumae radix Reduces Endoplasmic Reticulum Stress in Mice with Chronic Neuroinflammation. Biomedicines 2023; 11:2107. [PMID: 37626603 PMCID: PMC10452873 DOI: 10.3390/biomedicines11082107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the ER protein-folding machinery is impaired, leading to the accumulation of improperly folded proteins and triggering an unfolded-protein response. Excessive ER stress causes cell death and contributes to the development of chronic diseases. Interestingly, there is a bidirectional relationship between ER stress and the nuclear factor-kappa B (NF-κB) pathway. Curcumin, a natural polyphenolic compound found in Curcumae radix, exerts its neuroprotective effects by regulating ER stress and inflammation. Therefore, investigating the potential protective and regulatory effects of curcumin on ER stress, inflammation, and neurodegeneration under chronic neuroinflammatory conditions is of great interest. Mice were pretreated with Curcumae radix extract (CRE) for 19 days and then treated with CRE plus lipopolysaccharide for 1 week. We monitored pro-inflammatory cytokine levels in the serum and ER stress-, inflammation-, and neurodegeneration-related markers in the mouse cerebrum and hippocampus using Western blotting and qRT-PCR. CRE reduced Interleukin-1 beta levels in the blood and brain of mice with lipopolysaccharide-induced chronic inflammation. CRE also suppressed the expression of markers related to the ER stress and NF-κB signaling pathways. The expression of neurodegeneration-related markers was reduced in the mouse cerebrum and hippocampus. CRE exerts neuroprotective effects under chronic inflammatory conditions via multifaceted anti-inflammatory and ER stress-pathway regulatory mechanisms.
Collapse
Affiliation(s)
- Seong-Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
42
|
Sannino S, Manuel AM, Shang C, Wendell SG, Wipf P, Brodsky JL. Non-Essential Amino Acid Availability Influences Proteostasis and Breast Cancer Cell Survival During Proteotoxic Stress. Mol Cancer Res 2023; 21:675-690. [PMID: 36961392 PMCID: PMC10330057 DOI: 10.1158/1541-7786.mcr-22-0843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Protein homeostasis (proteostasis) regulates tumor growth and proliferation when cells are exposed to proteotoxic stress, such as during treatment with certain chemotherapeutics. Consequently, cancer cells depend to a greater extent on stress signaling, and require the integrated stress response (ISR), amino acid metabolism, and efficient protein folding and degradation pathways to survive. To define how these interconnected pathways are wired when cancer cells are challenged with proteotoxic stress, we investigated how amino acid abundance influences cell survival when Hsp70, a master proteostasis regulator, is inhibited. We previously demonstrated that cancer cells exposed to a specific Hsp70 inhibitor induce the ISR via the action of two sensors, GCN2 and PERK, in stress-resistant and sensitive cells, respectively. In resistant cells, the induction of GCN2 and autophagy supported resistant cell survival, yet the mechanism by which these events were induced remained unclear. We now report that amino acid availability reconfigures the proteostasis network. Amino acid supplementation, and in particular arginine addition, triggered cancer cell death by blocking autophagy. Consistent with the importance of amino acid availability, which when limited activates GCN2, resistant cancer cells succumbed when challenged with a potentiator for another amino acid sensor, mTORC1, in conjunction with Hsp70 inhibition. IMPLICATIONS These data position amino acid abundance, GCN2, mTORC1, and autophagy as integrated therapeutic targets whose coordinated modulation regulates the survival of proteotoxic-resistant breast cancer cells.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison M. Manuel
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT, USA
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Li S, Li Y, Wang X, Xia Z, Hu R. TRAF2 decreases lipid accumulation in hepatocytes under endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1511-1514. [PMID: 37403454 PMCID: PMC10520476 DOI: 10.3724/abbs.2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Siqi Li
- School of MedicineGuizhou UniversityGuiyang550025China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Yang Li
- College of Life Science and TechnologyKey Laboratory of Molecular Biophysics of MOEand International Research Center for Sensory Biology and Technology of MOSTHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoxia Wang
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Ronggui Hu
- School of MedicineGuizhou UniversityGuiyang550025China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
44
|
d'Aiello A, Bonanni A, Vinci R, Pedicino D, Severino A, De Vita A, Filomia S, Brecciaroli M, Liuzzo G. Meta-Inflammation and New Anti-Diabetic Drugs: A New Chance to Knock Down Residual Cardiovascular Risk. Int J Mol Sci 2023; 24:ijms24108643. [PMID: 37239990 DOI: 10.3390/ijms24108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Type 2 diabetes mellitus (DM) represents, with its macro and microvascular complications, one of the most critical healthcare issues for the next decades. Remarkably, in the context of regulatory approval trials, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) proved a reduced incidence of major adverse cardiovascular events (MACEs), i.e., cardiovascular death and heart failure (HF) hospitalizations. The cardioprotective abilities of these new anti-diabetic drugs seem to run beyond mere glycemic control, and a growing body of evidence disclosed a wide range of pleiotropic effects. The connection between diabetes and meta-inflammation seems to be the key to understanding how to knock down residual cardiovascular risk, especially in this high-risk population. The aim of this review is to explore the link between meta-inflammation and diabetes, the role of newer glucose-lowering medications in this field, and the possible connection with their unexpected cardiovascular benefits.
Collapse
Affiliation(s)
- Alessia d'Aiello
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Anna Severino
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Antonio De Vita
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Simone Filomia
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Mattia Brecciaroli
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
45
|
Chang J, Yan S, Geng Z, Wang Z. The interaction between Hsp90-mediated unfolded protein response and autophagy contributes to As 3+/ Se 4+ combination-induced apoptosis of acute promyelocytic leukemia cells. Toxicol Appl Pharmacol 2023; 467:116511. [PMID: 37031722 DOI: 10.1016/j.taap.2023.116511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
The interaction between the unfolded protein response (UPR) and autophagy plays either pro-survival or pro-apoptotic roles in the treatment of acute promyelocytic leukemia (APL). Our previous study has shown that the combination therapy of arsenite (As3+) and selenite (Se4+) induces apoptosis in APL NB4 cells, although the mechanisms are not clear. Here, we demonstrate that the interaction between heat shock protein 90 (Hsp90)-mediated UPR and autophagy is the core module for As3+/Se4+ combination-induced apoptosis. Hsp90 overexpression and knockdown assays indicate that Hsp90 inhibition by PERK modulates two branches of the UPR, leading to the activation of ATF4 and CHOP, causing the degradation of IRE1α and the dephosphorylation of eIF2α, thereby contributing to switching the cytoprotective UPR into an apoptotic pathway. Assays using pretreatment with inducers and inhibitors of endoplasmic reticulum stress (ERS) and autophagy reveal that autophagy is stimulated by ERS but suppressed by As3+/Se4+ combination via the mTOR signaling pathway. However, inhibition of autophagy decreases GRP78 expression and eIF2α phosphorylation, thereby further promoting ERS-induced apoptosis. Moreover, As3+/Se4+ combination blocks hepatic infiltration in an APL-NCG mouse model of extramedullary infiltration. Taken together, these findings provide novel agents and therapeutic approaches for APL.
Collapse
Affiliation(s)
- Jiayin Chang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, PR China..
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
46
|
Li M, Fang Q, Xiu L, Yu L, Peng S, Wu X, Chen X, Niu X, Wang G, Kong Y. The molecular mechanisms of alpha-lipoic acid on ameliorating aflatoxin B 1-induced liver toxicity and physiological dysfunction in northern snakehead (Channa argus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106466. [PMID: 36871483 DOI: 10.1016/j.aquatox.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to evaluate the protective mechanism of alpha-lipoic acid (α-LA) on the food-borne aflatoxin B1 (AFB1) exposure-induced liver toxicity and physiological dysfunction in the northern snakehead (Channa argus). 480 fish (9.24±0.01 g) were randomly assigned to four treatment groups and fed with four experimental diets for 56 d including the control group (CON), AFB1 group (200 ppb AFB1), 600 α-LA group (600 ppm α-LA+200 ppb AFB1), and 900 α-LA group (900 ppm α-LA+200 ppb AFB1). The results revealed that 600 and 900 ppm α-LA attenuated AFB1-induced growth inhibition and immunosuppression in northern snakehead. 600 ppm α-LA significantly decreased the serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase levels, and AFB1 bioaccumulation, and attenuated the changes of hepatic histopathological and ultrastructure induced by AFB1. Moreover, 600 and 900 ppm α-LA significantly up-regulated phase I metabolism genes (cytochrome P450-1a, 1b, and 3a) mRNA expression, inhibited the levels of malondialdehyde, 8‑hydroxy-2 deoxyguanosine and reactive oxygen species in the liver. Notably, 600 ppm α-LA significantly up-regulated the expression levels of nuclear factor E2 related factor 2 and its related downstream antioxidant molecules (heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1, etc.), increased the phase II detoxification enzyme-related molecules (glutathione-S-transferase and glutathione), antioxidant parameters (catalase and superoxide dismutase, etc.), and the expressions of Nrf2 and Ho-1 protein in the presence of AFB1 exposure. Furthermore, 600 and 900 ppm α-LA significantly reduced the characteristic indices of AFB1-induced endoplasmic reticulum stress (glucose-regulated protein 78 and inositol requiring enzyme 1, etc.), apoptosis (caspase-3 and cytochrome c, etc.) and inflammation (nuclear factor kappa B and tumor necrosis factor α, etc.), while increased the B-cell lymphoma-2 and inhibitor of κBα in the liver after being exposed to AFB1. To summarize, the above results indicate that dietary α-LA could modulate the Nrf2 signaling pathway to ameliorate AFB1-induced growth inhibition, liver toxicity, and physiological dysfunction in northern snakehead. Although the concentration of α-LA increased to 900 ppm from 600 ppm, the protective effects of the 900 ppm α-LA do not show an advantage over the 600 ppm α-LA, and even show inferiority in some respects. So that the recommended concentration of α-LA is 600 ppm. The present study provides the theoretical foundation for developing α-LA as the prevention and treatment of AFB1-induced liver toxicity in aquatic animals.
Collapse
Affiliation(s)
- Min Li
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Qiongya Fang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Lei Xiu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Linhai Yu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Sibo Peng
- Jilin Academy of Fishery Sciences, Changchun 130033, PR. China
| | - Xueqin Wu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiumei Chen
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiaotian Niu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Guiqin Wang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| | - Yidi Kong
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| |
Collapse
|
47
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
48
|
Sun J, Mai K, Ai Q. Effects of GRP78 on Endoplasmic Reticulum Stress and Inflammatory Response in Macrophages of Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2023; 24:ijms24065855. [PMID: 36982929 PMCID: PMC10054070 DOI: 10.3390/ijms24065855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Endoplasmic reticulum (ER) homeostasis plays a vital role in cell physiological functions. Various factors can destroy the homeostasis of the ER and cause ER stress. Moreover, ER stress is often related to inflammation. Glucose-regulated protein 78 (GRP78) is an ER chaperone, which plays a vital role in maintaining cellular homeostasis. Nevertheless, the potential effects of GRP78 on ER stress and inflammation is still not fully elucidated in fish. In the present study, ER stress and inflammation was induced by tunicamycin (TM) or palmitic acid (PA) in the macrophages of large yellow croakers. GRP78 was treated with an agonist/inhibitor before or after the TM/PA treatment. The results showed that the TM/PA treatment could significantly induce ER stress and an inflammatory response in the macrophages of large yellow croakers whereas the incubation of the GRP78 agonist could reduce TM/PA-induced ER stress and an inflammatory response. Moreover, the incubation of the GRP78 inhibitor could further induce TM/PA-induced ER stress and an inflammatory response. These results provide an innovative idea to explain the relationship between GRP78 and TM/PA-induced ER stress or inflammation in large yellow croakers.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
49
|
Tanaka M, Moniwa N, Nogi C, Kano T, Matsumoto M, Sakai A, Maeda T, Takizawa H, Ogawa Y, Asanuma K, Suzuki Y, Furuhashi M. Glomerular expression and urinary excretion of fatty acid-binding protein 4 in IgA nephropathy. J Nephrol 2023; 36:385-395. [PMID: 36622635 DOI: 10.1007/s40620-022-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fatty acid-binding protein 4 (FABP4) is secreted from adipocytes and macrophages in adipose tissue and acts as an adipokine. It has recently been reported that FABP4, but not liver-type FABP (L-FABP/FABP1), is also expressed in injured glomerular endothelial cells and infiltrating macrophages in the glomerulus and that urinary FABP4 (U-FABP4) is associated with proteinuria and kidney function impairment in nephrotic patients. However, the link between glomerular FABP4 and U-FABP4 has not been fully addressed in IgA nephropathy (IgAN). METHODS We investigated the involvement of FABP4 in human and mouse IgAN. RESULTS In patients with IgAN (n = 23), the ratio of FABP4-positive area to total area within glomeruli (G-FABP4-Area) and U-FABP4 were positively correlated with proteinuria and were negatively correlated with eGFR. In 4-28-week-old male grouped ddY mice, a spontaneous IgAN-prone mouse model, FABP4 was detected in glomerular endothelial cells and macrophages, and G-FABP4-Area was positively correlated with urinary albumin-to-creatinine ratio (r = 0.957, P < 0.001). Endoplasmic reticulum stress markers were detected in glomeruli of human and mouse IgAN. In human renal glomerular endothelial cells, FABP4 was induced by treatment with vascular endothelial growth factor and was secreted from the cells. Treatment of human renal glomerular endothelial cells or mouse podocytes with palmitate-bound recombinant FABP4 significantly increased gene expression of inflammatory cytokines and endoplasmic reticulum stress markers, and the effects of FABP4 in podocytes were attenuated in the presence of an anti-FABP4 antibody. CONCLUSION FABP4 in the glomerulus contributes to proteinuria in IgAN, and U-FABP4 level is a useful surrogate biomarker for glomerular damage in IgAN.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Norihito Moniwa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Chieko Nogi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Kano
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Takuto Maeda
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hideki Takizawa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yayoi Ogawa
- Hokkaido Renal Pathology Center, Sapporo, Japan
| | | | - Yusuke Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
50
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|