1
|
Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, Celotto V, Gualillo O, Cossu AM, Nasti G, Caraglia M, Ottaiano A. p53: From Fundamental Biology to Clinical Applications in Cancer. BIOLOGY 2022; 11:1325. [PMID: 36138802 PMCID: PMC9495382 DOI: 10.3390/biology11091325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mitochondrial function, global regulation of gene expression, miRNAs, etc. Its crucial importance is denounced by the high percentage of amino acid sequence identity between very different species (Homo sapiens, Drosophila melanogaster, Rattus norvegicus, Danio rerio, Canis lupus familiaris, Gekko japonicus). Many of its activities allowed life on Earth (e.g., repair from radiation-induced DNA damage) and directly contribute to its tumour suppressor function. In this review, we provide paramount information on p53, from its discovery, which is an interesting paradigm of science evolution, to potential clinical applications in anti-cancer treatment. The description of the fundamental biology of p53 is enriched by specific information on the structure and function of the protein as well by tumour/host evolutionistic perspectives of its role.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
2
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
3
|
Levine AJ. The Evolution of Tumor Formation in Humans and Mice with Inherited Mutations in the p53 Gene. Curr Top Microbiol Immunol 2019; 407:205-221. [PMID: 28349284 PMCID: PMC6383363 DOI: 10.1007/82_2017_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
While tumors are very heterogeneous in their origins, mutations in the p53 gene and inactivation of p53 gene functions are the most common feature that predispose to the formation of cancers in humans. Inherited p53 mutations lead to different tumor types at very different frequencies and at very different ages than somatic p53 mutations. The reasons for this are explored. When the first mutation arises in a stem cell (a gatekeeper mutation) it selects for a specific subset of second mutations which in turn select for mutations in a third subset of genes. The nature of the first mutation in a tumor determines, by selection, the functional types of subsequent mutations. Inherited mutations occur at different developmental times and in different orders of mutational sequences than somatic mutations. The excess risk of developing a cancer with an inherited p53 mutation is two- to three-fold in endodermal derived tissues compared with 100- to 1000-fold for ectodermal and mesenchymal derived tissues. By contrast, endodermal derived tumors with somatic p53 mutations occur at very high frequencies (70-100%). These evolutionary restrictions upon the mutational path that tumor development may take could open up new avenues for therapy and prevention.
Collapse
|
4
|
Suchánková J, Legartová S, Ručková E, Vojtěšek B, Kozubek S, Bártová E. Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after γ-irradiation that depleted MDC1 protein in specific TP53 mutants. Histochem Cell Biol 2017; 148:239-255. [PMID: 28397142 DOI: 10.1007/s00418-017-1567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
53BP1 is a very well-known protein that is recruited to DNA lesions. The focal accumulation of p53 binding protein, 53BP1, is a main feature indicating the repair of spontaneous or irradiation-induced foci (IRIF). Thus, here, we addressed the question of whether mutations in the TP53 gene, which often affect the level of p53 protein, can change the recruitment of 53BP1 to γ- or UVA-irradiated chromatin. In various TP53 mutants, we observed a distinct accumulation of 53BP1 protein to UV-induced DNA lesions: in R273C mutants, 53BP1 appeared transiently at DNA lesions, during 10-30 min after irradiation; the mutation R282W was responsible for accumulation of 53BP1 immediately after UVA-damage; and in L194F mutants, the first appearance of 53BP1 protein at the lesions occurred during 60-70 min. These results showed that specific mutations in the TP53 gene stand behind not only different levels of p53 protein, but also affect the localized kinetics of 53BP1 protein in UVA-damaged chromatin. However, after γ-irradiation, only G245S mutation in TP53 gene was associated with surprisingly decreased level of 53BP1 protein. In other mutant cell lines, levels of 53BP1 were not affected by γ-rays. To these effects, we conversely found a distinct number of 53BP1-positive irradiation-induced foci in various TP53 mutants. The R280K, G245S, L194F mutations, or TP53 deletion were also characterized by radiation-induced depletion in MDC1 protein. Moreover, in mutant cells, an interaction between MDC1 and 53BP1 proteins was abrogated when compared with wild-type counterpart. Together, the kinetics of 53BP1 accumulation at UV-induced DNA lesions is different in various TP53 mutant cells. After γ-irradiation, despite changes in a number and a volume of 53BP1-positive foci, levels of 53BP1 protein were relatively stable. Here, we showed a link between the status of MDC1 protein and TP53 gene, which specific mutations caused radiation-induced MDC1 down-regulation. This observation is significant, especially with regard to radiotherapy of tumors with abrogated function of TP53 gene.
Collapse
Affiliation(s)
- Jana Suchánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Eva Ručková
- Masaryk Memorial Cancer Institute, Žlutý kopec 543/7, 656 53, Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Masaryk Memorial Cancer Institute, Žlutý kopec 543/7, 656 53, Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Abstract
Unlike the rather stereotypic image by which it was portrayed until not too many years ago, p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes exert opposing effects on biological processes. This includes pro-survival activities that seem to contradict p53's canonical proapoptotic features, as well as opposing effects on cell migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis. The molecular mechanisms underpinning the paradoxical activities of p53 may be related to a protein conformational spectrum (from canonical wild-type to "pseudomutant"), diversity of DNA response elements, and/or higher-order chromatin configuration. Altogether, this functional flexibility positions p53 as a transcriptional "super hub" that dictates cell homeostasis, and ultimately cell fate, by governing a hierarchy of other functional hubs. Deciphering the mechanisms by which p53 determines which hubs to engage, and how one might modulate the preferences of p53, remains a major challenge for both basic science and translational cancer medicine.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Elkholi R, Chipuk JE. How do I kill thee? Let me count the ways: p53 regulates PARP-1 dependent necrosis. Bioessays 2013; 36:46-51. [PMID: 24323920 DOI: 10.1002/bies.201300117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the impact of the p53 tumor suppressor pathway on the regulation of genome integrity, cancer development, and cancer treatment has intrigued scientists and clinicians for decades. It appears that the p53 pathway is a central node for nearly all cell stress responses, including: gene expression, DNA repair, cell cycle arrest, metabolic adjustments, apoptosis, and senescence. In the past decade, it has become increasingly clear that p53 function is directly regulated by poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme involved in DNA repair signaling. Here, we will discuss the impact of PARP-1 on p53 function, along with a recently described novel role for the reciprocal regulation of p53 regulated, PARP-1 dependent necrosis following DNA damage.
Collapse
Affiliation(s)
- Rana Elkholi
- Icahn School of Medicine at Mount Sinai, Department of Oncological Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, The Graduate School of Biomedical Sciences, New York, NY, USA
| | | |
Collapse
|
7
|
de Assis LVM, Isoldi MC. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumour Biol 2013; 35:889-901. [PMID: 24081673 DOI: 10.1007/s13277-013-1210-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16(INK4A), p14(ARF), and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.
Collapse
|
8
|
Abstract
There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
Collapse
|
9
|
Spike BT, Wahl GM. p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes Cancer 2011; 2:404-19. [PMID: 21779509 DOI: 10.1177/1947601911410224] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
p53 is well recognized as a potent tumor suppressor. In its classic role, p53 responds to genotoxic insults by inducing cell cycle exit or programmed cell death to limit the propagation of cells with corrupted genomes. p53 is also implicated in a variety of other cellular processes in which its involvement is less well understood including self-renewal, differentiation, and reprogramming. These activities represent an emerging area of intense interest for cancer biologists, as they provide potential mechanistic links between p53 loss and the stem cell-like cellular plasticity that has been suggested to contribute to tumor cell heterogeneity and to drive tumor progression. Despite accumulating evidence linking p53 loss to stem-like phenotypes in cancer, it is not yet understood how p53 contributes to acquisition of "stemness" at the molecular level. Whether and how stem-like cells confer survival advantages to propagate the tumor also remain to be resolved. Furthermore, although it seems reasonable that the combination of p53 deficiency and the stem-like state could contribute to the genesis of cancers that are refractory to treatment, direct linkages and mechanistic underpinnings remain under investigation. Here, we discuss recent findings supporting the connection between p53 loss and the emergence of tumor cells bearing functional and molecular similarities to stem cells. We address several potential molecular and cellular mechanisms that may contribute to this link, and we discuss implications of these findings for the way we think about cancer progression.
Collapse
Affiliation(s)
- Benjamin T Spike
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
10
|
Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2:a000893. [PMID: 20463001 DOI: 10.1101/cshperspect.a000893] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thirty years of research on the p53 family of genes has generated almost fifty thousand publications. The first of these papers detected the p53 protein associated with a viral oncogene product in transformed cells and tumors and focused the field on cancer biology. Subsequent manuscripts have shown a wide variety of functions for the p53 family of genes and their proteins. These proteins are involved in reproduction, genomic repair, fidelity and recombination, the regulation of metabolic processes, longevity, surveillance of the stability of development, the production of stem cells and changes in epigenetic marks, the development of the nervous system (p73), the immune system (p73) and skin (p63), as well as the better known roles for the family in tumor suppression. The p53 family of genes has been found in the modern day ancestors of organisms with over one billion years of evolutionary history where they play a role in germ-line fidelity over that time span. As the body plan of the vertebrates emerged with the regeneration of tissues by stem cells over a lifetime, the p53 gene and its protein were adapted to be a tumor suppressor of somatic stem and progenitor cells complementing its' past functions in the germ line. Because the p53 family of genes has played a role in germ-line fidelity and preservation of the species, even in times of stress, these genes have been under constant selection pressure to change and adapt to new situations. This has given rise to this diversity of functions all working to preserve homeostatic processes that permit growth and reproduction in a world that is constantly challenging the fidelity of information transfer at each generation. The p53 family of gene products has influenced the rates of evolutionary change, just as evolutionary changes have altered the p53 family and its functions.
Collapse
Affiliation(s)
- David Lane
- p53 Laboratory (A-Star) 8A Biomedical Grove Immunos Singapore 138648
| | | |
Collapse
|
11
|
Abstract
Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus. The first decade of p53 research saw the cloning of p53 DNA and the realization that p53 is not an oncogene but a tumour suppressor that is very frequently mutated in human cancer. In the second decade of research, the function of p53 was uncovered: it is a transcription factor induced by stress, which can promote cell cycle arrest, apoptosis and senescence. In the third decade after its discovery new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation. The fourth decade of research may see new p53-based drugs to treat cancer. What is next is anybody's guess.
Collapse
Affiliation(s)
- Arnold J Levine
- Arnold J. Levine is at the Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, New Jersey 08540, USA.
| | | |
Collapse
|
12
|
Jenab-Wolcott J, Rodriguez-Correa D, Reitmair AH, Mak T, Rosenberg N. The absence of Msh2 alters abelson virus pre-B-cell transformation by influencing p53 mutation. Mol Cell Biol 2000; 20:8373-81. [PMID: 11046134 PMCID: PMC102144 DOI: 10.1128/mcb.20.22.8373-8381.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defects in DNA mismatch repair predispose cells to the development of several types of malignant disease. The absence of Msh2 or Mlh1, two key molecules that mediate mismatch repair in eukaryotic cells, increases the frequency of mutation and also alters the response of some cells to apoptosis and cell cycle arrest. To understand the way these changes contribute to cancer predisposition, we examined the effects of defective mismatch repair on the multistep process of pre-B-cell transformation by Abelson murine leukemia virus. In this model, primary transformants undergo a prolonged apoptotic crisis followed by the emergence of fully transformed cell lines. The latter event is correlated to a loss of function of the p53 tumor suppressor protein and down-modulation of the p53 regulatory protein p19Arf. Analyses of primary transformants from Msh2 null mice and their wild-type littermates revealed that both types of cells undergo crisis. However, primary transformants from Msh2 null animals recover with accelerated kinetics, a phenomenon that is strongly correlated to the appearance of cells that have lost p53 function. Analysis of the kinetics with which p53 function is lost revealed that this change provides the dominant stimulus for emergence from crisis. Therefore, the absence of mismatch repair alters the molecular mechanisms involved in transformation by affecting a gene that controls apoptosis and cell cycle progression, rather than by affecting these processes directly.
Collapse
Affiliation(s)
- J Jenab-Wolcott
- Departments of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
13
|
Mostecki J, Halgren A, Radfar A, Sachs Z, Ravitz J, Thome KC, Rosenberg N. Loss of heterozygosity at the Ink4a/Arf locus facilitates Abelson virus transformation of pre-B cells. J Virol 2000; 74:9479-87. [PMID: 11000217 PMCID: PMC112377 DOI: 10.1128/jvi.74.20.9479-9487.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 07/17/2000] [Indexed: 12/24/2022] Open
Abstract
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.
Collapse
Affiliation(s)
- J Mostecki
- Departments of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Unnikrishnan I, Radfar A, Jenab-Wolcott J, Rosenberg N. p53 mediates apoptotic crisis in primary Abelson virus-transformed pre-B cells. Mol Cell Biol 1999; 19:4825-31. [PMID: 10373532 PMCID: PMC84281 DOI: 10.1128/mcb.19.7.4825] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1998] [Accepted: 04/22/1999] [Indexed: 01/26/2023] Open
Abstract
Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19(Arf), a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53(-/-) mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21(Cip-1), a major downstream target of p53; however, consistent with a role of p19(Arf), transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.
Collapse
Affiliation(s)
- I Unnikrishnan
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
15
|
Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci U S A 1998; 95:13194-9. [PMID: 9789064 PMCID: PMC23757 DOI: 10.1073/pnas.95.22.13194] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ink4a/Arf locus encodes p16(Ink4a) and p19(Arf) and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19(Arf) and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16(Ink4a) and p19(Arf) are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19(Arf) but not p16 (Ink4a) induced apoptosis in Ab-MLV-transformed pre-B cells, p19(Arf) appears to be responsible for these events. Consistent with the link between p19(Arf) and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19(Arf) is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19(Arf)-p53 regulatory loop plays an important role in lymphoma induction.
Collapse
Affiliation(s)
- A Radfar
- The Immunology Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
16
|
Thome KC, Radfar A, Rosenberg N. Mutation of Tp53 contributes to the malignant phenotype of Abelson virus-transformed lymphoid cells. J Virol 1997; 71:8149-56. [PMID: 9343165 PMCID: PMC192271 DOI: 10.1128/jvi.71.11.8149-8156.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abelson murine leukemia virus transforms pre-B cells in vitro and induces rapid-onset pre-B-cell lymphoma in vivo. Expression of an active v-Abl protein tyrosine kinase is required for the oncogenic functions of the virus. Despite the strong growth-stimulatory signal provided by v-Abl, the virus-induced tumors are clonal or oligoclonal, and changes in the growth and oncogenic potential of in vitro transformants occur during the derivation of the cell lines. Both of these features suggest that v-Abl expression must be complemented by changes in expression of one or more cellular genes for cells to acquire a fully malignant phenotype. Such genes could include other oncogenes or tumor suppressor genes. Among the latter is Tp53, a gene mutated in many spontaneous cancers. To determine if mutation of the Tp53 tumor suppressor gene plays a role in Abelson virus transformation, conformation-specific monoclonal antibodies were used to examine p53 expression in a panel of Abelson virus-transformed pre-B cells. Expression of mutant forms of p53 was detected in over 40% of the isolates. Sequence analysis revealed the presence of point mutations affecting the highly conserved central portion of the protein. These mutations interfered with the ability of p53 to activate transcription from a promoter containing p53-responsive elements and to induce apoptosis in response to DNA damage. In addition, cells expressing mutant forms of p53 induced a higher frequency of tumors with a more rapid course compared to transformants expressing wild-type p53. These data suggest that Tp53 is one important cellular gene involved in malignant transformation by Abelson virus.
Collapse
Affiliation(s)
- K C Thome
- Department of Pathology and Graduate Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
17
|
Chandar N, Billig B, McMaster J, Novak J. Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 1992; 65:208-14. [PMID: 1739619 PMCID: PMC1977714 DOI: 10.1038/bjc.1992.43] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We examined structure and expression of the p53 and Rb genes in a C3HOS transplantable mouse model of osteosarcoma. The results were compared to analogous studies conducted with five human osteosarcoma cell lines. The p53 gene was found rearranged in the mouse tumour. The rearrangement mapped to the first intron region of the p53 gene and as a result, no p53 expression could be detected in C3HOS tumours. Using p53 genomic probes, we have detected the same rearrangement in the original radiation-induced tumour and the various clones that were isolated from it. Deletion and rearrangement of the p53 gene were also found in three out of five of the human osteosarcoma cell lines (MG-63, G-292, Saos-2). No p53 expression could be detected in these three cell lines. In the affected human osteosarcoma cell lines, the rearrangement involved the first intron region. In addition, the mouse tumor was analysed for structural and expression changes in the Rb and the c-myc genes. Normal expression of both genes were detected in the murine tumour. Only one (Saos-2) human osteosarcoma cell line exhibited gross structural alteration in the retinoblastoma gene. The results suggest that the inactivation of p53 may be an important step in the development of osteosarcomas, and that a rearrangement affecting the first intron is common in osteosarcomas.
Collapse
Affiliation(s)
- N Chandar
- Orthopaedic Research Laboratory, Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania 15212
| | | | | | | |
Collapse
|
18
|
Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proc Natl Acad Sci U S A 1991; 88:8982-6. [PMID: 1924360 PMCID: PMC52635 DOI: 10.1073/pnas.88.20.8982] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Wild-type p53 protein is a growth modulator whose inactivation has been found to be a key event in malignant transformation. Reconstitution of wild-type p53 in the p53-nonproducer, Abelson murine leukemia virus-transformed pre-B-cell line L12 gave rise to stably growing clones. Wild-type p53-producer derived cell lines exhibit an altered cell cycle, however. More cells with an extended G0/G1 phase were found than in the p53-nonproducer parental cell line. Furthermore, when injected into syngeneic mice, these cells induced a lower incidence of tumors and these tumors were less aggressive. Analysis of immunoglobulin expression revealed that wild-type p53 induced the expression of cytoplasmic immunoglobulin mu heavy chain. In addition, these derived cells lines exhibited increased levels of a B-cell-specific surface marker, B220. These results suggest that wild-type p53 may function as a cell differentiation factor that can induce development of pre-B cells into a more advanced stage in the pathway of B-cell maturation. In these pre-B cells, wild-type p53 may induce cell differentiation without terminal growth arrest of the cell population.
Collapse
Affiliation(s)
- G Shaulsky
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- I J Jackson
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| |
Collapse
|
20
|
Ahuja H, Bar-Eli M, Arlin Z, Advani S, Allen SL, Goldman J, Snyder D, Foti A, Cline M. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest 1991; 87:2042-7. [PMID: 2040694 PMCID: PMC296960 DOI: 10.1172/jci115234] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA from 135 patients with chronic myelogenous leukemia (CML) at various clinical stages and Philadelphia (Ph1) chromosome positive acute lymphoblastic leukemia was investigated for alterations in a variety of proto-oncogenes which have been implicated in the evolution of CML from its chronic phase to blast crisis. The most common genetic change found in the evolution of typical Ph1 chromosome positive CML to blast crisis was an alteration of the p53 gene involving either a rearrangement, a deletion, or a point mutation in the coding sequence of the gene. Alterations of the p53 gene were found in the myeloid and the rare megakaryocytic variant of blast crisis but were absent in the lymphoid leukemic transformants. Gross structural alterations were seen in 11 of 54 (20%) of myeloid or unknown phenotypes of blast crisis and in only 1 of 44 chronic phase cases. Eight examples of mutations in the open reading frame of the p53 gene at codons 49, 53, 60, 140, 202, 204, 238, and 239 were observed in blast crisis patients. Mutations in the N-RAS gene were rare in typical blast crisis (2 of 27 cases) but were found in megakaryocytic and Ph1 negative myeloid blast crisis. We concluded that heterogeneous alterations in the p53 gene and occasionally in the N-RAS genes accompany the evolution of chronic phase CML to blast crisis.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- DNA, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mutation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Proto-Oncogene Proteins p21(ras)/genetics
- Transcription, Genetic
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- H Ahuja
- UCLA Department of Medicine 90024
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 1991. [PMID: 2247074 DOI: 10.1128/mcb.10.12.6565] [Citation(s) in RCA: 197] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.
Collapse
|
22
|
Shaulsky G, Goldfinger N, Ben-Ze'ev A, Rotter V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 1990; 10:6565-77. [PMID: 2247074 PMCID: PMC362933 DOI: 10.1128/mcb.10.12.6565-6577.1990] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.
Collapse
Affiliation(s)
- G Shaulsky
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
23
|
Scherdin U, Rhodes K, Breindl M. Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 1990; 64:907-12. [PMID: 2296087 PMCID: PMC249188 DOI: 10.1128/jvi.64.2.907-912.1990] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have analyzed the transcriptional activity of cellular target sequences for Moloney murine leukemia virus integration in mouse fibroblasts. At least five of the nine random, unselected integration target sequences studied showed direct evidence for transcriptional activity by hybridization to nuclear run-on transcripts prepared from uninfected cells. At least four of the sequences contained multiple recognition sites for several restriction enzymes that cut preferentially in CpG-rich islands, indicating integration into 5' or 3' ends or flanking regions of genes. Assuming that only a minor fraction (less than 20%) of the genome is transcribed in mammalian cells, we calculated the probability that this association of retroviral integration sites with transcribed sequences is due to chance to be very low (1.6 x 10(-2]. Thus, our results strongly suggest that transcriptionally active genome regions are preferred targets for retrovirus integration.
Collapse
Affiliation(s)
- U Scherdin
- Department of Biology, San Diego State University, California 92182-0057
| | | | | |
Collapse
|
24
|
Abstract
Transfection of a cloned p53 gene into a murine bladder carcinoma cell with a low metastatic capacity led to elevated levels of p53 protein in clonal transfectants. After intravenous inoculation into syngeneic mice, p53-transfected clones showed significantly increased metastatic potential in comparison with control transfectants. The observed change did not seem to be due to a change in growth potential per se since the cell lines showed similar growth properties in vitro.
Collapse
|
25
|
Pohl J, Goldfinger N, Radler-Pohl A, Rotter V, Schirrmacher V. p53 increases experimental metastatic capacity of murine carcinoma cells. Mol Cell Biol 1988; 8:2078-81. [PMID: 3290647 PMCID: PMC363387 DOI: 10.1128/mcb.8.5.2078-2081.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transfection of a cloned p53 gene into a murine bladder carcinoma cell with a low metastatic capacity led to elevated levels of p53 protein in clonal transfectants. After intravenous inoculation into syngeneic mice, p53-transfected clones showed significantly increased metastatic potential in comparison with control transfectants. The observed change did not seem to be due to a change in growth potential per se since the cell lines showed similar growth properties in vitro.
Collapse
Affiliation(s)
- J Pohl
- Institute for Immunology and Genetics, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
26
|
Lübbert M, Miller CW, Crawford L, Koeffler HP. p53 in chronic myelogenous leukemia. Study of mechanisms of differential expression. J Exp Med 1988; 167:873-86. [PMID: 3280726 PMCID: PMC2188905 DOI: 10.1084/jem.167.3.873] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The p53 is a nuclear protein that is associated with normal cellular proliferation and can cooperate with Ha-ras in causing cellular transformation in vitro. Lineage association is known to exist between p53 expression and normal lymphopoiesis, but not myelopoiesis. We studied the expression of p53 using chronic myelogenous leukemia (CML) cell lines, somatic hybrids of these cells, and leukemic cells from CML patients. Lymphoid CML lines expressed both p53 mRNA and protein. We also analyzed p53 synthesis by two B-lymphoid lines from the same CML patient; cells of one line were derived from the neoplastic clone, cells of the other were derived from the normal clone. Both synthesized equal amounts of a phosphorylated p53 protein. None of the myeloid CML lines expressed detectable p53 protein and two of four expressed negligible p53 mRNA. Two other myeloid CML lines and myeloid cells from three of four patients expressed p53 mRNA. These findings suggest that expression of the gene is not regulated normally in CML. Several approaches were pursued to explore the differential expression of p53. Southern blot analyses showed no gross alterations in the p53 gene from cells of either the expressing or the nonexpressing lines. No difference in the pattern of demethylated CpG sites was noted in the region of the p53 gene in cells from K562 (myeloid p53 nonexpressor) and in BV173 (lymphoid p53 expressor). The sites of demethylation clustered in and around the p53 promoter in both cell lines. Somatic hybrids formed between a p53 mRNA nonexpressor myeloid line (K562) and the parental p53 expressor lymphoid lines (Daudi, PUT) produced p53 mRNA and protein, suggesting that p53 is a dominantly expressed protein and that lack of expression in myeloid cells is not mediated by a trans-acting negative regulatory protein. DNA transfection experiments performed using the indicator gene chloramphenicol acetyltransferase attached to promoter sequences of p53 showed that these constructs were equally activated in BV173 (p53 expressor) and K562 (p53 mRNA nonexpressor). The mechanism of p53 regulation in CML remains unclear.
Collapse
Affiliation(s)
- M Lübbert
- Department of Medicine, UCLA Medical Center 90024
| | | | | | | |
Collapse
|
27
|
Lovett M, Epstein CJ. The lethal yellow allele-associated provirus results in the production of chimeric viral-host RNAs. Proc Natl Acad Sci U S A 1987; 84:2853-7. [PMID: 2437585 PMCID: PMC304758 DOI: 10.1073/pnas.84.9.2853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lethal yellow (Ay) mutation is the most dominant allele at the agouti locus of the mouse. Mice heterozygous for this allele have a yellow coat color, are genetically obese with an increased susceptibility to cancer, and have other metabolic derangements. Mice homozygous for Ay die early in embryogenesis, possibly because of a trophectoderm defect. The Ay mutation is distinguished from the many alleles described at the agouti locus in being associated with an endogenous provirus, designated endogenous ecotropic murine leukemia viral locus 15 (Emv-15). To obtain DNA sequences from regions close to or within the agouti locus, we have isolated the Emv-15 provirus and have found that the DNA sequences adjacent to the provirus are part of a mouse gene that is expressed in the same transcriptional orientation as the proviral genes. These mouse DNA sequences recognize two distinct size classes of RNA in various adult wild-type tissues including skin. In Ay heterozygotes both types of transcript hybridize to the proviral long terminal repeat, and, in heterozygous spleens, the shorter transcript is present at an enhanced steady-state level. These results suggest that the Ay-associated provirus (Emv-15) is distinguished from the endogenous C-type proviruses described to date in having altered the expression of a flanking host gene by promoter insertion, resulting in the production of chimeric viral-host fusion transcripts.
Collapse
|
28
|
Deletion of 5'-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol Cell Biol 1987. [PMID: 3547084 DOI: 10.1128/mcb.7.2.847] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p53 gene is rearranged in an erythroleukemic cell line (DP15-2) transformed by Friend retrovirus. Here, we characterize the mutation and identify a deletion of approximately equal to 3.0 kilobases that removes exon 2 coding sequences. The gene is expressed in DP15-2 cells and results in synthesis of a 44,000-dalton protein that is missing the N-terminal amino acid residues of p53. The truncated protein is unusually stable and accumulates to high levels intracellularly. Moreover, it appears to have undergone a change in conformation as revealed by epitope mapping studies. This study represents the first description of an altered p53 gene product arising by mutation during neoplastic progression and identifies a region in the p53 protein molecule that plays a role in determining p53 stability in vivo.
Collapse
|
29
|
Abstract
The human p53 tumor antigen comprises several physically distinct proteins. Two p53 proteins, separable by polyacrylamide gel electrophoresis, are expressed by the human transformed cell line SV-80. The individual cDNAs which code for these proteins were isolated and constructed into the SP6 transcription vector. The proteins encoded by these clones were identified by in vitro transcription with the SP6 vector and translation in a cell-free system. p53-H-1 and p53-H-19 cDNA clones code for the faster- and slower-migrating p53 protein species, respectively, of SV-80. The in vitro-expressed proteins of p53-H-1 and p53-H-19 had the same antigenic determinants and were structurally indistinguishable from their in vivo counterparts. By expressing defined restricted cDNA fragments in vitro, the region of heterogeneity between the respective cDNAs was located at the 5' end of the cDNAs. Exchanging the 5' fragments of interest and expressing the chimeric clones in vitro confirmed that the DNA heterogeneity was responsible for the difference in the electrophoretic mobility of these proteins. The sequences of the two cDNAs revealed a single base pair difference (G versus C) in the coding region of the clones. This sequence difference resulted in an arginine being coded for in clone p53-H-1 and a proline being coded for at the equivalent position in clone p53-H-19. This variation accounted for the change in the electrophoretic mobility of the individual p53 protein species.
Collapse
|
30
|
Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M. Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 1987; 61:336-43. [PMID: 3027365 PMCID: PMC253954 DOI: 10.1128/jvi.61.2.336-343.1987] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The chromatin conformation of mouse genome regions containing Moloney murine leukemia proviral intergration sites in two Mov mouse strains and randomly selected integration sites in virus-infected mouse 3T3 fibroblasts was analyzed. All integrations have occurred into chromosomal regions containing several DNase-hypersensitive sites, and invariably the proviral integration sites map within a few hundred base pairs of a DNase-hypersensitive site. The probability that this close association between proviral integration sites and DNase-hypersensitive sites was due to chance was calculated to be extremely low (2 X 10(-4]. Because the proviral integrations analyzed were not selected for an altered phenotype, our results suggest that DNase-hypersensitive regions are preferred targets for retrovirus integration.
Collapse
|
31
|
Rovinski B, Munroe D, Peacock J, Mowat M, Bernstein A, Benchimol S. Deletion of 5'-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol Cell Biol 1987; 7:847-53. [PMID: 3547084 PMCID: PMC365143 DOI: 10.1128/mcb.7.2.847-853.1987] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The p53 gene is rearranged in an erythroleukemic cell line (DP15-2) transformed by Friend retrovirus. Here, we characterize the mutation and identify a deletion of approximately equal to 3.0 kilobases that removes exon 2 coding sequences. The gene is expressed in DP15-2 cells and results in synthesis of a 44,000-dalton protein that is missing the N-terminal amino acid residues of p53. The truncated protein is unusually stable and accumulates to high levels intracellularly. Moreover, it appears to have undergone a change in conformation as revealed by epitope mapping studies. This study represents the first description of an altered p53 gene product arising by mutation during neoplastic progression and identifies a region in the p53 protein molecule that plays a role in determining p53 stability in vivo.
Collapse
|
32
|
Herpes simplex virus type 2 mutagenesis: characterization of mutants induced at the hprt locus of nonpermissive XC cells. Mol Cell Biol 1987. [PMID: 3023954 DOI: 10.1128/mcb.6.8.2977] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In a previous report, herpes simplex virus type 2 (HSV-2) was shown to increase the frequency of mutation at the hypoxanthine phosphoribosyltransferase (hprt) locus of nonpermissive rat XC cells (L. Pilon, A. Royal, and Y. Langelier, J. Gen. Virol. 66:259-265, 1985). A series of 17 independent mutants were isolated after viral infection together with 12 spontaneous noninfected mutants to characterize the nature of the mutations induced by the virus at the molecular level. The DNA of the mutants isolated after viral infection was probed with cloned HSV-2 fragments representing the entire genome. In these mutants, no authentic HSV-2 hybridization could be detected. This was indicative of a mechanism of mutagenesis which did not require the permanent integration of viral sequences in the host genome. The structure of the hprt gene was determined by the method of Southern (J. Mol. Biol. 98:503-517, 1975), and the level of hprt mRNA was analyzed by Northern blots. Except for the identification of one deletion mutant in each of the two groups, the HPRT- clones showed no evidence of alteration in their hprt gene. A total of 7 of 12 spontaneous mutants and 11 of 15 mutants isolated from the infected population transcribed an hprt mRNA of the same size and abundance as did the wild-type cells. Thus, the majority of the mutants seemed to have a point mutation in their hprt structural gene. Interestingly, the proportion of the different types of mutations was similar in the two groups of mutants. This analysis revealed that HSV-2 infection did not increase the frequency of rearrangements but rather that it probably induced a general increase of the level of mutations in the cells. This type of response is thought to be compatible with the biology of the virus, and the possible mechanisms by which HSV-2 induces somatic mutations in mammalian cells are discussed.
Collapse
|
33
|
Colombo MP, Jaenisch R, Wettstein PJ. Endogenous retroviruses lead to the expression of a histocompatibility antigen detectable by skin graft rejection. Proc Natl Acad Sci U S A 1987; 84:189-93. [PMID: 2948187 PMCID: PMC304168 DOI: 10.1073/pnas.84.1.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mov mouse strains differ from their respective, coisogenic partner strains by the embryonic, germ-line introduction of Moloney murine leukemia virus genomes. The possibility that retroviral insertions into the mouse genome resulted in gain or loss mutations at non-H-2 histocompatibility loci was investigated by reciprocal skin grafting between Mov mice and mice from coisogenic, background strains. Two B6-derived and eight 129-derived Mov strains were analyzed. B6 mice rejected skin from the viremic Mov-3 and Mov-14 strains, indicating that these mice had new histocompatibility antigens. No rejections were observed with reciprocal skin grafts exchanged between mice of the 129 background strain and 129-derived Mov strains, one of which (Mov-9) is viremic. To investigate the potential viral origin of the new histocompatibility antigen in Mov-14, lymphocytes from B6 mice primed in vivo with Mov-14 cells or skin were restimulated in vitro with Mov-14 spleen cells and with two retroviral-induced B6 lymphomas, MBL-2 and RBL-5. All three cell types stimulated cytotoxic lymphocytes that lysed Mov-14 Con A lymphoblasts, MBL-2 and RBL-5. The same cytotoxic lymphocytes lysed only lymphoblasts from the viremic Mov-9 strain when tested on cells from 129 and 129 Mov mice. Thus the insertion and expression of exogenous Moloney murine leukemia virus results in the appearance of a new histocompatibility antigen as defined by its stimulation of skin-graft rejection and cytotoxic effector T-cell generation. The non-H-2 histocompatibility antigen identified in this study has been designated H-43 and is encoded by genes mapping to different loci in different Mov strains. These observations suggest that at least a subgroup of non-H-2 histocompatibility antigens is encoded by endogenous retroviruses; the implications of these results for understanding the origin and the identity of non-H-2 histocompatibility antigens are discussed.
Collapse
|
34
|
Abstract
Transfection of a functional cloned p53 gene into an L12 p53 nonproducer cell line efficiently reconstituted p53 expression. The p53 protein synthesized in these clones was indistinguishable from that occurring naturally in tumor cells. When a p53 cDNA clone was used instead, we observed that the L12-derived clones exhibited a distinct immunological profile. In the present experiments we compared the immunological epitopes of p53 proteins encoded by several full-length cDNA clones. Immunoprecipitation of p53 proteins generated by in vitro transcription and translation of the various cDNA clones indicated variations in the content of immunological epitopes. Basically, two p53 protein species were detected. Both species contained the same antigenic determinants except the PAb421-PAb122 site, which was present in proteins encoded by p53-M11 and pcD-p53, but not in the p53 protein encoded by the p53-M8 cDNA clone. Sequence analysis of the various cDNA clones indicated the existence of a 96-base-pair (bp) insert in clone p53-M8 as compared with clone p53-M11 or pCD-p53. The 96-bp insert contained a termination signal which caused the premature termination of the protein, leading to the generation of a p53 product 9 amino acids shorter than usual. The existence of this insert also accounted for the lack of the PAb421-PAb122 epitope which was mapped to the 3' end of the cDNA clone, following the 96-bp insert. This insert shared complete homology with the p53 intron 10 sequences mapping 96 bp upstream of the 5' acceptor splicing site of p53 exon 11. It was therefore concluded that the different cDNA clones represented p53 mRNA species which were generated by an alternative splicing mechanism. Differential hybridization of the mRNA population of transformed fibroblastic or lymphoid cells with either the 96-bp synthetic oligonucleotide or the p53-M11 cDNA indicated that the various mRNA species are expressed in vivo.
Collapse
|
35
|
Harris N, Brill E, Shohat O, Prokocimer M, Wolf D, Arai N, Rotter V. Molecular basis for heterogeneity of the human p53 protein. Mol Cell Biol 1986; 6:4650-6. [PMID: 3025664 PMCID: PMC367250 DOI: 10.1128/mcb.6.12.4650-4656.1986] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human p53 tumor antigen comprises several physically distinct proteins. Two p53 proteins, separable by polyacrylamide gel electrophoresis, are expressed by the human transformed cell line SV-80. The individual cDNAs which code for these proteins were isolated and constructed into the SP6 transcription vector. The proteins encoded by these clones were identified by in vitro transcription with the SP6 vector and translation in a cell-free system. p53-H-1 and p53-H-19 cDNA clones code for the faster- and slower-migrating p53 protein species, respectively, of SV-80. The in vitro-expressed proteins of p53-H-1 and p53-H-19 had the same antigenic determinants and were structurally indistinguishable from their in vivo counterparts. By expressing defined restricted cDNA fragments in vitro, the region of heterogeneity between the respective cDNAs was located at the 5' end of the cDNAs. Exchanging the 5' fragments of interest and expressing the chimeric clones in vitro confirmed that the DNA heterogeneity was responsible for the difference in the electrophoretic mobility of these proteins. The sequences of the two cDNAs revealed a single base pair difference (G versus C) in the coding region of the clones. This sequence difference resulted in an arginine being coded for in clone p53-H-1 and a proline being coded for at the equivalent position in clone p53-H-19. This variation accounted for the change in the electrophoretic mobility of the individual p53 protein species.
Collapse
|
36
|
Bautch VL. Genetic background affects integration frequency of ecotropic proviral sequences into the mouse germ line. J Virol 1986; 60:693-701. [PMID: 3773055 PMCID: PMC288943 DOI: 10.1128/jvi.60.2.693-701.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Germ line acquisition of ecotropic proviruses occurs at a high frequency in the progeny of SWR/J-RF/J hybrid mice carrying two genetically linked RF/J ecotropic proviral loci, Emv-16 and Emv-17 (N. A. Jenkins and N. G. Copeland, Cell 43:811-819, 1985). To determine if genetic background affects proviral integration frequency, I analyzed a series of crosses in which the two RF/J proviral loci were transferred onto different provirus-negative background strains. Unlike SWR/J-RF/J hybrid progeny, few CBA/CaJ-RF/J hybrid mice were identified that carried new germ line proviral loci. These results indicate that genetic factors other than the linked RF/J proviral loci contribute to the increased frequency of germ line provirus integration seen in the SWR/J-RF/J hybrids. The frequency of proviral acquisition appeared to increase when females carrying Emv-16, Emv-17, and at least one new proviral locus were further backcrossed, suggesting that integration frequency can be increased by genetic manipulation. The breeding data are consistent with the hypothesis that virus from the mother infects the egg or the early embryo. Analysis of the transmission frequency and cosegregation patterns of new proviral loci indicated that viral integration occurs after the first round of DNA replication and before the germ line is set aside during embryogenesis, with a majority of viral integrations occurring at the two-cell stage of development, and independent viral integrations can occur in the same or in different cells of the embryo.
Collapse
|
37
|
In vitro expression of human p53 cDNA clones and characterization of the cloned human p53 gene. Mol Cell Biol 1986. [PMID: 3018534 DOI: 10.1128/mcb.5.8.1887] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human p53 gene was cloned and characterized by using a battery of p53 DNA clones. A series of human cDNA clones of various sizes and relative localizations to the mRNA molecule were isolated by using the human p53-H14 (2.35-kilobase) cDNA probe which we previously cloned. One such isolate, clone p53-H7 (2.65 kilobases), spans the entire human mature p53 mRNA molecule. Construction of the human cDNA clones in the pSP65 RNA transcription vector facilitated the generation of p53 transcripts by the SP6 bacteriophage RNA polymerase. The p53-specific RNA transcripts obtained without further processing were translated into p53 proteins in a cell-free system. By using this rapid in vitro transcription-translation assay, we found that whereas clone p53-H7 (2.65 kilobases) coded for a mature-sized p53 protein, a shorter cDNA clone, p53-H13 (1.8 kilobases), dictated the synthesis of a smaller-sized p53 protein (45 kilodaltons). The p53 proteins synthesized in vitro immunoprecipitated efficiently with human-specific anti-p53 antibodies. Genomic analysis of human DNA revealed the presence of a single p53 gene residing within two EcoRI fragments. Heteroduplex analysis between the full-length cDNA clone p53-H7 and the cloned p53 gene indicated the presence of seven major exons.
Collapse
|
38
|
Arai N, Nomura D, Yokota K, Wolf D, Brill E, Shohat O, Rotter V. Immunologically distinct p53 molecules generated by alternative splicing. Mol Cell Biol 1986; 6:3232-9. [PMID: 3023970 PMCID: PMC367060 DOI: 10.1128/mcb.6.9.3232-3239.1986] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transfection of a functional cloned p53 gene into an L12 p53 nonproducer cell line efficiently reconstituted p53 expression. The p53 protein synthesized in these clones was indistinguishable from that occurring naturally in tumor cells. When a p53 cDNA clone was used instead, we observed that the L12-derived clones exhibited a distinct immunological profile. In the present experiments we compared the immunological epitopes of p53 proteins encoded by several full-length cDNA clones. Immunoprecipitation of p53 proteins generated by in vitro transcription and translation of the various cDNA clones indicated variations in the content of immunological epitopes. Basically, two p53 protein species were detected. Both species contained the same antigenic determinants except the PAb421-PAb122 site, which was present in proteins encoded by p53-M11 and pcD-p53, but not in the p53 protein encoded by the p53-M8 cDNA clone. Sequence analysis of the various cDNA clones indicated the existence of a 96-base-pair (bp) insert in clone p53-M8 as compared with clone p53-M11 or pCD-p53. The 96-bp insert contained a termination signal which caused the premature termination of the protein, leading to the generation of a p53 product 9 amino acids shorter than usual. The existence of this insert also accounted for the lack of the PAb421-PAb122 epitope which was mapped to the 3' end of the cDNA clone, following the 96-bp insert. This insert shared complete homology with the p53 intron 10 sequences mapping 96 bp upstream of the 5' acceptor splicing site of p53 exon 11. It was therefore concluded that the different cDNA clones represented p53 mRNA species which were generated by an alternative splicing mechanism. Differential hybridization of the mRNA population of transformed fibroblastic or lymphoid cells with either the 96-bp synthetic oligonucleotide or the p53-M11 cDNA indicated that the various mRNA species are expressed in vivo.
Collapse
|
39
|
Abstract
We have investigated whether the p53 oncogene is expressed in the blast cells of patients with acute myeloblastic leukemia. p53 protein was detected in the blast cells of 19 out of 34 patients, but not in normal myelopoietic cells. We find a highly significant correlation between p53 protein synthesis in leukemic blast cells and the secondary plating efficiency of these cells (p = 0.0001). The latter provides an estimate for the self renewal capacity of progenitor cells in the blast population. These data indicate that p53 may be involved in leukemic stem cell renewal.
Collapse
|
40
|
Pilon L, Langelier Y, Royal A. Herpes simplex virus type 2 mutagenesis: characterization of mutants induced at the hprt locus of nonpermissive XC cells. Mol Cell Biol 1986; 6:2977-83. [PMID: 3023954 PMCID: PMC367868 DOI: 10.1128/mcb.6.8.2977-2983.1986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In a previous report, herpes simplex virus type 2 (HSV-2) was shown to increase the frequency of mutation at the hypoxanthine phosphoribosyltransferase (hprt) locus of nonpermissive rat XC cells (L. Pilon, A. Royal, and Y. Langelier, J. Gen. Virol. 66:259-265, 1985). A series of 17 independent mutants were isolated after viral infection together with 12 spontaneous noninfected mutants to characterize the nature of the mutations induced by the virus at the molecular level. The DNA of the mutants isolated after viral infection was probed with cloned HSV-2 fragments representing the entire genome. In these mutants, no authentic HSV-2 hybridization could be detected. This was indicative of a mechanism of mutagenesis which did not require the permanent integration of viral sequences in the host genome. The structure of the hprt gene was determined by the method of Southern (J. Mol. Biol. 98:503-517, 1975), and the level of hprt mRNA was analyzed by Northern blots. Except for the identification of one deletion mutant in each of the two groups, the HPRT- clones showed no evidence of alteration in their hprt gene. A total of 7 of 12 spontaneous mutants and 11 of 15 mutants isolated from the infected population transcribed an hprt mRNA of the same size and abundance as did the wild-type cells. Thus, the majority of the mutants seemed to have a point mutation in their hprt structural gene. Interestingly, the proportion of the different types of mutations was similar in the two groups of mutants. This analysis revealed that HSV-2 infection did not increase the frequency of rearrangements but rather that it probably induced a general increase of the level of mutations in the cells. This type of response is thought to be compatible with the biology of the virus, and the possible mechanisms by which HSV-2 induces somatic mutations in mammalian cells are discussed.
Collapse
|
41
|
Cohen JB, Liebermann D, Kedes L. Tsp transposons: a heterogeneous family of mobile sequences in the genome of the sea urchin Strongylocentrotus purpuratus. Mol Cell Biol 1985; 5:2814-25. [PMID: 3016516 PMCID: PMC367020 DOI: 10.1128/mcb.5.10.2814-2825.1985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the preceding paper (J.B. Cohen, B. Hoffman-Liebermann, and L. Kedes, Mol. Cell. Biol., 5:2804-2813, 1985), we described the nucleotide sequence of ISTU4, which is a member of a new family of repetitive sequences, the Tsp family, present in a higher eucaryote, the sea urchin Strongylocentrotus purpuratus. We provided evidence that individual members of this family can act as transposable elements. Here we describe our structural analysis of the Tsp element family, which numbers about 1,000 members per haploid genome. Hybridization and nucleotide sequence analysis of several genomic Tsp clones demonstrate that structurally most Tsp elements resemble ISTU4. Tsp elements range in size up to about 1.3 kilobase pairs, have terminal domains that are conserved between the various examples studied, and contain a central portion of varying size, which may be extensively diverged. Structurally, however, the central portions are very similar and consist of several approximately 150-base-pairs-long, tandemly arranged, imperfect repeats, which are followed by a truncated repeat. The structural analysis is consistent with the possibility that the individual Tsp elements differ by multiples of these 150-base-pair repeats. One variant genomic clone has a solitary repeat and lacks the truncated repeat. The nucleotide sequences of different repeats of a single Tsp element can diverge extensively. The truncated repeat is divergent from most of the repeats, but in one case it is almost identical to a repeat of the same element. Comparison of the sequences from different elements enabled us to determine the boundaries of each structural domain and allows us to propose that each of these domains may be independent units of genetic information. Analysis of the population of Tsp-related sequences in the S. purpuratus genome by genomic blot hybridization suggests that most Tsp family members share the same overall structure. In addition, there is a structural element, about 70 base pairs long, that appears to interrupt the tandem arrangement of the 150-base-pair repeats at regular intervals.
Collapse
|
42
|
Tsp transposons: a heterogeneous family of mobile sequences in the genome of the sea urchin Strongylocentrotus purpuratus. Mol Cell Biol 1985. [PMID: 3016516 DOI: 10.1128/mcb.5.10.2814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the preceding paper (J.B. Cohen, B. Hoffman-Liebermann, and L. Kedes, Mol. Cell. Biol., 5:2804-2813, 1985), we described the nucleotide sequence of ISTU4, which is a member of a new family of repetitive sequences, the Tsp family, present in a higher eucaryote, the sea urchin Strongylocentrotus purpuratus. We provided evidence that individual members of this family can act as transposable elements. Here we describe our structural analysis of the Tsp element family, which numbers about 1,000 members per haploid genome. Hybridization and nucleotide sequence analysis of several genomic Tsp clones demonstrate that structurally most Tsp elements resemble ISTU4. Tsp elements range in size up to about 1.3 kilobase pairs, have terminal domains that are conserved between the various examples studied, and contain a central portion of varying size, which may be extensively diverged. Structurally, however, the central portions are very similar and consist of several approximately 150-base-pairs-long, tandemly arranged, imperfect repeats, which are followed by a truncated repeat. The structural analysis is consistent with the possibility that the individual Tsp elements differ by multiples of these 150-base-pair repeats. One variant genomic clone has a solitary repeat and lacks the truncated repeat. The nucleotide sequences of different repeats of a single Tsp element can diverge extensively. The truncated repeat is divergent from most of the repeats, but in one case it is almost identical to a repeat of the same element. Comparison of the sequences from different elements enabled us to determine the boundaries of each structural domain and allows us to propose that each of these domains may be independent units of genetic information. Analysis of the population of Tsp-related sequences in the S. purpuratus genome by genomic blot hybridization suggests that most Tsp family members share the same overall structure. In addition, there is a structural element, about 70 base pairs long, that appears to interrupt the tandem arrangement of the 150-base-pair repeats at regular intervals.
Collapse
|
43
|
Frankel W, Potter TA, Rosenberg N, Lenz J, Rajan TV. Retroviral insertional mutagenesis of a target allele in a heterozygous murine cell line. Proc Natl Acad Sci U S A 1985; 82:6600-4. [PMID: 2995973 PMCID: PMC391257 DOI: 10.1073/pnas.82.19.6600] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A clonal murine cell line that is heterozygous at the beta 2-microglobulin locus (B2m) was obtained by Abelson murine leukemia virus (Ab-MuLV) transformation of liver cells from (C57BL/6 X BALB/c) F1 fetuses. To obtain proviral insertional mutants, we superinfected a subclone of these cells, which does not express the env surface protein of the Moloney leukemia virus (Mo-MuLV, the helper virus that was used to transmit the defective Ab-MuLV genome during transformation), with Mo-MuLV. Mutant clones that fail to express the C57BL/6 allele of B2m (B2mb) were then immunoselected by using a monoclonal antibody that specifically recognizes the B2mb gene product and not that of the B2ma allele. Of 22 independent clones obtained, one contains a proviral insertion that is near or in the first exon of the B2mb gene. Surprisingly, the insertion is of the Ab-MuLV genome and not of replication-competent Mo-MuLV. This indicates that superinfection with Mo-MuLV "rescued" the defective Ab-MuLV genome, which then inserted into the B2mb gene. We conclude that when an allele-specific selection procedure exists, proviral insertion is a potential method for obtaining mutations in heterozygous mammalian cells. This approach may thereby provide a method for molecular cloning of such selectable genes, using a retroviral hybridization probe.
Collapse
|
44
|
Wolf D, Laver-Rudich Z, Rotter V. In vitro expression of human p53 cDNA clones and characterization of the cloned human p53 gene. Mol Cell Biol 1985; 5:1887-93. [PMID: 3018534 PMCID: PMC366904 DOI: 10.1128/mcb.5.8.1887-1893.1985] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human p53 gene was cloned and characterized by using a battery of p53 DNA clones. A series of human cDNA clones of various sizes and relative localizations to the mRNA molecule were isolated by using the human p53-H14 (2.35-kilobase) cDNA probe which we previously cloned. One such isolate, clone p53-H7 (2.65 kilobases), spans the entire human mature p53 mRNA molecule. Construction of the human cDNA clones in the pSP65 RNA transcription vector facilitated the generation of p53 transcripts by the SP6 bacteriophage RNA polymerase. The p53-specific RNA transcripts obtained without further processing were translated into p53 proteins in a cell-free system. By using this rapid in vitro transcription-translation assay, we found that whereas clone p53-H7 (2.65 kilobases) coded for a mature-sized p53 protein, a shorter cDNA clone, p53-H13 (1.8 kilobases), dictated the synthesis of a smaller-sized p53 protein (45 kilodaltons). The p53 proteins synthesized in vitro immunoprecipitated efficiently with human-specific anti-p53 antibodies. Genomic analysis of human DNA revealed the presence of a single p53 gene residing within two EcoRI fragments. Heteroduplex analysis between the full-length cDNA clone p53-H7 and the cloned p53 gene indicated the presence of seven major exons.
Collapse
|
45
|
Isolation of a full-length mouse cDNA clone coding for an immunologically distinct p53 molecule. Mol Cell Biol 1985. [PMID: 2580227 DOI: 10.1128/mcb.5.1.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfection of a cloned p53 gene into a p53 nonproducer Abelson murine leukemia virus-transformed cell line, L12, reconstituted p53 expression. The protein expressed in these cells was indistinguishable from that naturally expressed in p53 producer tumor cells. Conversely, p53 protein expressed in L12-derived clones that were established by transfection with a full-length p53 cDNA clone (pM8) exhibited a discrete immunological form. Immunoprecipitation of p53 with a panel of monoclonal anti-p53 antibodies showed that L12-derived clones that were transfected with the genomic p53 clone contained the same antigenic determinants as those found in the p53 protein expressed in tumor cells. These p53 proteins bound all monoclonal antibody types as well as the polyclonal anti-p53 tested. However, L12-derived clones established by transfection of the p53 cDNA clone (pM8) expressed a p53 protein that bound the RA3-2C2 and PAb200.47 anti-p53 monoclonal antibodies as well as polyclonal anti-p53 serum but totally lacked the antigenic receptor for the PAb122 and PAb421 monoclonal antibodies. The p53 proteins expressed by either genomic or cDNA p53 clones exhibited the same apparent molecular sizes and identical partial peptide maps. We suggest that transfection of the p53 gene induced expression of the entire group of the possible mRNA species, whereas cloned p53 cDNA (pM8) represented a single mRNA molecule that codes for a discrete species of p53 protein.
Collapse
|
46
|
Dilute-coat-color locus of mice: nucleotide sequence analysis of the d+2J and d+Ha revertant alleles. Mol Cell Biol 1985. [PMID: 6098826 DOI: 10.1128/mcb.4.12.2899] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The unstable dilute-coat-color mutation (d) of DBA/2J mice has been shown to be the result of integration of an ecotropic murine leukemia virus within the mouse genome. Molecular cloning and restriction enzyme analysis of the dilute allele and the viral preintegration site (+ allele), as well as two independent dilute revertants (d+2J and d+Ha), suggested that reversion is due to virus excision occurring by homologous recombination involving the viral long terminal repeats. The DNA sequence has now been determined for the cell-virus junctions of the provirus associated with the d mutation, for the viral preintegration site, and for the two revertant sites. These data (i) indicate that the d mutation was caused by a normal virus integration, (ii) confirm that virus excision occurs by precise homologous recombination, as exactly one long terminal repeat is present in each revertant site, and (iii) suggest that the virus induced the d mutation by integration into a noncoding sequence.
Collapse
|
47
|
Transposition of two different intracisternal A particle elements into an immunoglobulin kappa-chain gene. Mol Cell Biol 1985. [PMID: 6098810 DOI: 10.1128/mcb.4.12.2565] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each of two severely defective mouse kappa-chain genes has acquired a different intracisternal A particle (IAP) element within one of its introns. One IAP element generated 6-base-pair direct repeats upon insertion. In contrast, the other IAP element was not flanked by direct repeats and was missing a single nucleotide from its 3' terminus. Sequence analysis of the latter IAP element demonstrated that its long terminal repeats were not identical. Nevertheless, the long terminal repeats were organized like proviral long terminal repeats, and this IAP element did contain two regions that were analogous to retroviral priming sites for RNA-directed DNA synthesis. The region that corresponded to a retroviral tRNA primer binding site was complementary to the 3' ends of all mammalian phenylalanine tRNAs. These findings are discussed in the context of the presumed mode of transposition of IAP elements involving the reverse transcription of IAP RNA.
Collapse
|
48
|
Reik W, Weiher H, Jaenisch R. Replication-competent Moloney murine leukemia virus carrying a bacterial suppressor tRNA gene: selective cloning of proviral and flanking host sequences. Proc Natl Acad Sci U S A 1985; 82:1141-5. [PMID: 3883352 PMCID: PMC397210 DOI: 10.1073/pnas.82.4.1141] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A bacterial suppressor tRNA gene was introduced into the long terminal repeat of the Moloney murine leukemia virus (Mo-MuLV) proviral genome to construct a retrovirus that allows easy cloning of the provirus with flanking host sequences. A replication competent virus, Mo-MuLV sup containing a tRNA amber suppressor gene, was derived that replicates to high titers in tissue culture cells and stably transduces the bacterial gene. The recombinant virus can efficiently replicate in vivo when microinjected into midgestation embryos or when injected into newborn mice and displays the same tissue tropism as wild-type Mo-MuLV. The suppressor gene in Mo-MuLV sup is functional in bacteria and allows efficient recovery of proviral genomes. This was shown by ligation of DNA from infected cells to phage lambda Charon 4A arms and selective growth of recombinant phages on su- host cells. All recovered phages contained Mo-MuLV proviral sequences and, because of the high cloning capacity of phage lambda, 1-11 kilobases of flanking host DNA. This virus should facilitate studying virus-host interactions in tissue culture cells and in animals.
Collapse
|
49
|
Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A 1985; 82:790-4. [PMID: 2858093 PMCID: PMC397132 DOI: 10.1073/pnas.82.3.790] [Citation(s) in RCA: 295] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The tumor antigen p53 is overproduced in transformed cells of various species, including man. HL-60 is an exceptional human tumor cell line that does not express this protein. Hybridization of polyadenylylated mRNA of these cells with a human p53 cDNA probe (p53-H14), which we cloned, had indicated a total absence of the mature-size (3.0 kilobases) or any aberrant p53 mRNA species. Analysis of the genomic HL-60 DNA indicated that the p53 gene in these cells was significantly altered. Most of the gene was deleted, and the residual p53 sequences of these cells, which show weak homology, mapped to the corresponding 5' region of the p53 gene. In agreement with previously documented results, we found that HL-60 cells have an amplified c-myc gene. We suggest that the deficiency of the p53 protein in HL-60 cells could have been overcome by using an alternative metabolic pathway. The c-myc product is a candidate for such an alternative protein.
Collapse
|
50
|
Wolf D, Harris N, Goldfinger N, Rotter V. Isolation of a full-length mouse cDNA clone coding for an immunologically distinct p53 molecule. Mol Cell Biol 1985; 5:127-32. [PMID: 2580227 PMCID: PMC366686 DOI: 10.1128/mcb.5.1.127-132.1985] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transfection of a cloned p53 gene into a p53 nonproducer Abelson murine leukemia virus-transformed cell line, L12, reconstituted p53 expression. The protein expressed in these cells was indistinguishable from that naturally expressed in p53 producer tumor cells. Conversely, p53 protein expressed in L12-derived clones that were established by transfection with a full-length p53 cDNA clone (pM8) exhibited a discrete immunological form. Immunoprecipitation of p53 with a panel of monoclonal anti-p53 antibodies showed that L12-derived clones that were transfected with the genomic p53 clone contained the same antigenic determinants as those found in the p53 protein expressed in tumor cells. These p53 proteins bound all monoclonal antibody types as well as the polyclonal anti-p53 tested. However, L12-derived clones established by transfection of the p53 cDNA clone (pM8) expressed a p53 protein that bound the RA3-2C2 and PAb200.47 anti-p53 monoclonal antibodies as well as polyclonal anti-p53 serum but totally lacked the antigenic receptor for the PAb122 and PAb421 monoclonal antibodies. The p53 proteins expressed by either genomic or cDNA p53 clones exhibited the same apparent molecular sizes and identical partial peptide maps. We suggest that transfection of the p53 gene induced expression of the entire group of the possible mRNA species, whereas cloned p53 cDNA (pM8) represented a single mRNA molecule that codes for a discrete species of p53 protein.
Collapse
|