1
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
2
|
Bresolin de Souza K, Jutfelt F, Kling P, Förlin L, Sturve J. Effects of increased CO2 on fish gill and plasma proteome. PLoS One 2014; 9:e102901. [PMID: 25058324 PMCID: PMC4109940 DOI: 10.1371/journal.pone.0102901] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.
Collapse
Affiliation(s)
- Karine Bresolin de Souza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Fredrik Jutfelt
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lars Förlin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Rescue of tropomyosin deficiency in Drosophila and human cancer cells by synaptopodin reveals a role of tropomyosin α in RhoA stabilization. EMBO J 2011; 31:1028-40. [PMID: 22157816 DOI: 10.1038/emboj.2011.464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 11/23/2011] [Indexed: 12/15/2022] Open
Abstract
Tropomyosins are widespread actin-binding proteins that influence numerous cellular functions including actin dynamics, cell migration, tumour suppression, and Drosophila oocyte development. Synaptopodin is another actin-binding protein with a more restricted expression pattern in highly dynamic cell compartments such as kidney podocyte foot processes, where it promotes RhoA signalling by blocking the Smurf1-mediated ubiquitination of RhoA. Here, we show that synaptopodin has a shorter half-life but shares functional properties with the highly stable tropomyosin. Transgenic expression of synaptopodin restores oskar mRNA localization in Drosophila oocytes mutant for TmII, thereby rescuing germline differentiation and fertility. Synaptopodin restores stress fibres in tropomyosin-deficient human MDA-MB 231 breast cancer cells and TPMα-depleted fibroblasts. Gene silencing of TPMα but not TPMβ causes loss of stress fibres by promoting Smurf1-mediated ubiquitination and proteasomal degradation of RhoA. Functionally, overexpression of synaptopodin or RhoA(K6,7R) significantly reduces MDA-MB 231 cell migration. Our findings elucidate RhoA stabilization by structurally unrelated actin-binding proteins as a conserved mechanism for regulation of stress fibre dynamics and cell motility in a cell type-specific fashion.
Collapse
|
4
|
Choi C, Kim D, Kim S, Jeong S, Song E, Helfman DM. From skeletal muscle to cancer: insights learned elucidating the function of tropomyosin. J Struct Biol 2011; 177:63-9. [PMID: 22119848 DOI: 10.1016/j.jsb.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
The tropomyosins (Tms) are a family of actin filament binding proteins that possess a simple dimeric α-helical coiled-coil structure along their entire length. Our knowledge of Tm structure and function has greatly expanded since they were first discovered in skeletal muscle almost 65 years ago. In multicellular organisms they exhibit extensive cell type specific isoform diversity. In this essay we discuss the genetic mechanisms by which this diversity is generated and its significance to actin-based cellular functions.
Collapse
Affiliation(s)
- Cheolwon Choi
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Lees JG, Bach CTT, O'Neill GM. Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adh Migr 2011; 5:181-6. [PMID: 21173575 DOI: 10.4161/cam.5.2.14438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.
Collapse
Affiliation(s)
- Justin G Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | |
Collapse
|
6
|
Assinder SJ, Au E, Dong Q, Winnick C. A novel splice variant of the beta-tropomyosin (TPM2) gene in prostate cancer. Mol Carcinog 2010; 49:525-31. [PMID: 20336778 DOI: 10.1002/mc.20626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Decreased expression of high molecular weight isoforms of tropomyosin (Tm) is associated with oncogenic transformation and is evident in cancers, with isoform Tm1 seemingly an important tumor suppressor. Tm1 expression in prostate cancer has not previously been described. In this study, while demonstrating suppressed levels of Tm1 in the prostate cancer cell lines LNCaP, PC3, and DU-145 compared to normal prostate epithelial cell primary isolates (PrEC), a novel splice variant of the TPM2 gene was identified. Quantitative RT-PCR determined significantly greater levels of the transcript variant in all three prostate cancer cell lines than in normal prostate epithelial cells. Characterization of this novel variant demonstrated it to include exon 6b, previously thought unique to the muscle-specific beta-Tm isoform, with an exon arrangement of 1-2-3-4-5-6a-6b-7-8-10. Inclusion of exon 6b introduces a premature stop codon directly following the 6a-6b exon boundary. Western blot analysis demonstrated the presence of a truncated protein in prostate cancer cell lines that was absent in normal prostate epithelial cells. It is hypothesized that this truncated protein will result in suppression of Tm1 polymer formation required for actin filament association. The lack of Tm polymer-actin association will result in loss of the stable actin microfilament organization and stress fiber formation, a state associated with cell transformation.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
7
|
Helfman DM, Flynn P, Khan P, Saeed A. Tropomyosin as a regulator of cancer cell transformation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 644:124-31. [PMID: 19209818 DOI: 10.1007/978-0-387-85766-4_10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tropomyosins (Tms) are among the most studied structural proteins of the actin cytoskeleton that are implicated in neoplastic-specific alterations in actin filament organization. Decreased expression of specific nonmuscle Tm isoforms is commonly associated with the transformed phenotype. These changes in Tm expression appear to contribute to the rearrangement of microfilament bundles and morphological alterations, increased cell motility and oncogenic signaling properties of transformed cells. Below we review aspects of Tm biology as it specifically relates to transformation and cancer including its expression in culture models of transformed cells and human tumors, mechanisms that regulate Tm expression and the role of Tm in oncogenic signaling.
Collapse
Affiliation(s)
- David M Helfman
- Department of Cell Biology and Anatomy, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, Papanicolaou Building, Room 317, 1550 NW 10th Avenue (M-877), Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
8
|
Alvite G, Esteves A. Echinococcus granulosus tropomyosin isoforms: from gene structure to expression analysis. Gene 2008; 433:40-9. [PMID: 19100819 DOI: 10.1016/j.gene.2008.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
Abstract
Tropomyosins (Trps) constitute a family of actin filament-binding proteins found in all eukaryotic cells. In muscle cells, they play a central role in contraction by regulating calcium-sensitive interaction of actin and myosin. In non-muscle cells, tropomyosins regulate actin filament organization and dynamics. Trps genes exhibit extensive cell type-specific isoform diversity generated by alternative splicing. Here, we report the characterization of tropomyosin gene transcribed sequences from the parasitic platyhelminth Echinococcus granulosus. Using RT-PCR approach we isolated three isoforms (egtrpA, egtrpB and egtrpC), which display significant homologies to know tropomyosins of different phylogenetic origin. The corresponding gene, egtrp (5656 bp), contains eight introns and nine exons. Southern blot hybridization studies showed that egtrp is present as single copy locus in E. granulosus. We demonstrated that egtrp expresses three different transcripts which differ in alternatively spliced exon 4 and intron VI. Interestingly, intron VI suffers intron retention and contains an internal stop codon in frame. Three major bands are also detected by Western blot analysis using a specific anti-rEgTrp antiserum. Immune-localization and in situ hybridization studies showed that egtrp transcription and translation is mostly localized at the protoscoleces suckers. This is the first report of alternative splicing in this parasite.
Collapse
Affiliation(s)
- Gabriela Alvite
- Biochemistry Section, Cellular and Molecular Biology Department, Faculty of Sciences, University of the Republic, Montevideo, Uruguay.
| | | |
Collapse
|
9
|
Lange K, Kammerer M, Saupe F, Hegi ME, Grotegut S, Fluri E, Orend G. Combined lysophosphatidic acid/platelet-derived growth factor signaling triggers glioma cell migration in a tenascin-C microenvironment. Cancer Res 2008; 68:6942-52. [PMID: 18757408 DOI: 10.1158/0008-5472.can-08-0347] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antiadhesive extracellular matrix molecule tenascin-C abrogates cell spreading on fibronectin through competitive inhibition of syndecan-4, thereby preventing focal adhesion kinase (FAK) activation and triggering enhanced proteolytic degradation of both RhoA and tropomyosin 1 (TM1). Here, we show that simultaneous signaling by lysophosphatidic acid (LPA) and platelet-derived growth factor (PDGF) initiates glioma cell spreading and migration through syndecan-4-independent activation of paxillin and FAK and by stabilizing expression of RhoA, TM1, TM2, and TM3. By using gene silencing methods, we show that paxillin, TM1, TM2, and TM3 are essential for LPA/PDGF-induced cell spreading on a fibronectin/tenascin-C (FN/TN) substratum. LPA/PDGF-induced cell spreading and migration on FN/TN depends on phosphatidylinositol 3-kinase, RhoKinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 but is independent of phospholipase C and Jun kinase. RNA microarray data reveal expression of tenascin-C, PDGFs, LPA, and the respective receptors in several types of cancer, suggesting that the TN/LPA/PDGF axis exists in malignant tumors. These findings may in turn be relevant for diagnostic or therapeutic applications targeting cancer.
Collapse
Affiliation(s)
- Katrin Lange
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
11
|
Tropomyosin Gene Expression in Vivo and in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-85766-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Hitchcock-DeGregori SE, Greenfield NJ, Singh A. Tropomyosin: regulator of actin filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:87-97. [PMID: 17278358 DOI: 10.1007/978-4-431-38453-3_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
13
|
Zheng Q, Safina A, Bakin AV. Role of high-molecular weight tropomyosins in TGF-β-mediated control of cell motility. Int J Cancer 2007; 122:78-90. [PMID: 17721995 DOI: 10.1002/ijc.23025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transforming growth factor beta1 (TGF-beta1) suppresses tumor development at early stages of cancer, but enhances tumor invasion and formation of metastasis. TGF-beta1-mediated tumor invasion is associated with epithelial to mesenchymal transition (EMT) and matrix proteolysis. The mechanisms of these TGF-beta1 responses in normal and tumor cells are not well understood. Recently, we have reported that TGF-beta1 increases expression of high-molecular weight tropomyosins (HMW-tropomyosins) and formation of actin stress fibers in normal epithelial cells. The present study investigated the role of tropomyosin in TGF-beta1-mediated cell motility and invasion. We found that TGF-beta1 restricts motility of normal epithelial cells although it promotes EMT and formation of actin stress fibers and focal adhesions. Cell motility was enhanced by siRNA-mediated suppression of HMW-tropomyosins. TGF-beta1 stimulated migration and matrix proteolysis in breast cancer MDA-MB-231 cells that express low levels of HMW-tropomyosins. Tet-Off-regulated expression of HMW-tropomyosin inhibited cell migration and matrix proteolysis without affecting expression of matrix metalloproteinases. Tropomyosin increased cell adhesion to matrix by enhancing actin fibers and focal adhesions. Finally, tropomyosin impaired the ability of tumor cells to form lung metastases in SCID mice. Thus, these results suggest that HMW-tropomyosins are important for TGF-beta-mediated control of cell motility and acquisition of the metastatic potential.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
14
|
Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2006; 15:333-41. [PMID: 15953552 DOI: 10.1016/j.tcb.2005.04.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/12/2005] [Accepted: 04/26/2005] [Indexed: 01/14/2023]
Abstract
Actin filament functional diversity is paralleled by variation in the composition of isoforms of tropomyosin in these filaments. Although the role of tropomyosin is well understood in skeletal muscle, where it regulates the actin-myosin interaction, its role in the cytoskeleton has been obscure. The intracellular sorting of tropomyosin isoforms indicated a role in spatial specialization of actin filament function. Genetic manipulation and protein chemistry studies have confirmed that these isoforms are functionally distinct. Tropomyosins differ in their recruitment of myosin motors and their interaction with actin filament regulators such as ADF-cofilin. Tropomyosin isoforms have therefore provided a powerful mechanism to diversify actin filament function in different intracellular compartments.
Collapse
Affiliation(s)
- Peter W Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead NSW 2145, Australia.
| | | | | | | |
Collapse
|
15
|
Prasad GL. Regulation of the Expression of Tropomyosins and Actin Cytoskeleton by ras Transformation. Methods Enzymol 2006; 407:410-22. [PMID: 16757342 DOI: 10.1016/s0076-6879(05)07034-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Neoplastic transformation by Ras proteins markedly suppresses the expression of certain isoforms of tropomyosins (TMs), which are important regulators of actin cytoskeleton. Downregulation of TMs and other actin-associated proteins is believed to result in the assembly of aberrant cytoskeleton, which in turn contributes to the malignant transformation by Ras. Oncogenic activation of ras, in addition to suppressing TMs by means of epigenetic mechanisms, also rapidly inhibits their cytoskeletal fractionation, leading to the disruption of cytoskeleton. Restoration of expression of certain isoforms of TMs reorganizes microfilaments and suppresses the malignant growth of ras-transformed cells. This chapter discusses some of the approaches to the analysis of TM isoform expression in normal and ras-transformed cells.
Collapse
Affiliation(s)
- G L Prasad
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
16
|
Armstrong F, Duplantier MM, Trempat P, Hieblot C, Lamant L, Espinos E, Racaud-Sultan C, Allouche M, Campo E, Delsol G, Touriol C. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 2005; 23:6071-82. [PMID: 15208656 DOI: 10.1038/sj.onc.1207813] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Majority of anaplastic large-cell lymphomas (ALCLs) are associated with the t(2;5)(p23;q35) translocation, fusing the NPM (nucleophosmin) and ALK (anaplastic lymphoma kinase) genes (NPM-ALK). Recent studies demonstrated that ALK may also be involved in variant translocations, namely, t(1;2)(q25;p23), t(2;3)(p23;q21), t(2;17)(p23;q23) and inv(2)(p23q35), which create the TPM3-ALK, TFG-ALK5, CLTC-ALK, and ATIC-ALK fusion genes, respectively. Although overexpression of NPM-ALK has previously been shown to transform fibroblasts, the transforming potential of variant X-ALK proteins has not been precisely investigated. We stably transfected the cDNAs coding for NPM-ALK, TPM3-ALK, TFG-ALK, CLTC-ALK or ATIC-ALK into nonmalignant NIH3T3 cells. All X-ALK variants are tyrosine phosphorylated and their subcellular distribution was in agreement with that observed in tumors. Moreover, our results show that the in vitro transforming capacity of NIH3T3-transfected cells are in relation to the level of X-ALK fusion proteins excepted for TPM3-ALK for which there is an inverse correlation. The differences between the five X-ALK variants with regard to proliferation rate, colony formation in soft agar, invasion, migration through the endothelial barrier and tumorigenicity seem to be due to differential activation of various signaling pathways such as PI3-kinase/AKT. These findings may have clinical implications in the pathogenesis and prognosis of ALK-positive ALCLs.
Collapse
Affiliation(s)
- Florence Armstrong
- Inserm U.563, Centre de Physiopathologie de Toulouse-Purpan, Department of 'Oncogenesis and Signaling in Hematopoietic cells', Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Orend G. Potential oncogenic action of tenascin-C in tumorigenesis. Int J Biochem Cell Biol 2005; 37:1066-83. [PMID: 15743679 DOI: 10.1016/j.biocel.2004.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/26/2004] [Accepted: 12/07/2004] [Indexed: 12/21/2022]
Abstract
The prominent expression of tenascin-C in the stroma of most solid tumors, first observed in the mid 1980s, implicates tenascin-C in tumorigenesis. This is also supported by in vitro experiments that demonstrate the capacity of tenascin-C to stimulate tumor growth by various mechanisms including promotion of proliferation, escaping immuno-surveillance and positively influencing angiogenesis. However, tumorigenesis in tenascin-C knock-out mice is not significantly different from that observed in control animals. Perhaps this is not unexpected if one considers that tenascin-C may act as an oncogene. The potential role of tenascin-C in tumorigenesis through its oncogenic action on cellular signaling will be discussed in this review, including how tenascin-C mediated tumor cell detachment might affect genome stability.
Collapse
Affiliation(s)
- Gertraud Orend
- Institute of Biochemistry and Genetics, Departement fiir Klinisch Biologische Wissenschaften (DKBW), Center for Biomedicine, University Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
18
|
Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, Fluri E, Oakeley EJ, Chiquet-Ehrismann R, Orend G. Growth promoting signaling by tenascin-C [corrected]. Cancer Res 2004; 64:7377-85. [PMID: 15492259 DOI: 10.1158/0008-5472.can-04-1234] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.
Collapse
Affiliation(s)
- Christian Ruiz
- Friedrich Miescher Institute for Biomedical Research, Novartis Forschungsstiftung, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bharadwaj S, Hitchcock-DeGregori S, Thorburn A, Prasad GL. N Terminus Is Essential for Tropomyosin Functions. J Biol Chem 2004; 279:14039-48. [PMID: 14722123 DOI: 10.1074/jbc.m310934200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Down-regulation of several key actin-binding proteins, such as alpha-actinin, vinculin, gelsolin, and tropomyosins (TMs), is considered to contribute to the disorganized cytoskeleton present in many neoplastic cells. TMs stabilize actin filaments against the gel severing actions of proteins such as cofilin. Among multiple TMs expressed in non-muscle cells, tropomyosin-1 (TM1) isoform induces stress fibers and functions as a suppressor of malignant transformation. However, the molecular mechanisms of TM1-mediated cytoskeletal effects and tumor suppression remain poorly understood. We have hypothesized that the ability of TM1 to stabilize microfilaments is crucial for tumor suppression. In this study, by employing a variant TM1, which contains an N-terminal hemagglutinin epitope tag, we demonstrate that the N terminus is a key determinant of tropomyosin-1 function. Unlike the wild type TM1, the modified protein fails to restore stress fibers and inhibit anchorage-independent growth in transformed cells. Furthermore, the N-terminal modification of TM1 disorganizes the cytoskeleton and delays cytokinesis in normal cells, abolishes binding to F-actin, and disrupts the dimeric associations in vivo. The functionally defective TM1 allows the association of cofilin to stress fibers and disorganizes the microfilaments, whereas wild type TM1 appears to restrict the binding of cofilin to stress fibers. TM1-induced cytoskeletal reorganization appears to be mediated through preventing cofilin interaction with microfilaments. Our studies provide in vivo functional evidence that the N terminus is a critical determinant of TM1 functions, which in turn determines the organization of stress fibers.
Collapse
Affiliation(s)
- Shantaram Bharadwaj
- Departments of General Surgery and Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
20
|
Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, Prasad GL. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003; 22:6194-203. [PMID: 13679858 DOI: 10.1038/sj.onc.1206719] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suppression of tropomyosins (TMs), a family of actin-binding, microfilament-associated proteins, is a prominent feature of many transformed cells. Yet it is unclear whether downregulation of TMs occur in human tumors. We have investigated the expression of tropomyosin-1 (TM1) in human breast carcinoma tissues by in situ hybridization and immunofluorescence. TM1 mRNA and protein are readily detectable in normal mammary tissue. In contrast, TM1 expression is abolished in the primary human breast tumors. Expression of other TM isoforms, however, is variable among the tumors. The consistent and profound downregulation of TM1 suggests that TM1 may be a novel and useful biomarker of mammary neoplasms. These data also support the hypothesis that suppression of TM1 expression during the malignant conversion of mammary epithelium as a contributing factor of breast cancer. In support of this hypothesis, we show that the ability to suppress malignant growth properties of breast cancer cells is specific to TM1 isoform. Investigations into the mechanisms of TM1-induced tumor suppression reveal that TM1 induces anoikis (detachment induced apoptosis) in breast cancer cells. Downregulation of TM1 in breast tumors may destabilize microfilament architecture and confer resistance to anoikis, which facilitates survival of neoplastic cells outside the normal microenvironment and promote malignant growth.
Collapse
Affiliation(s)
- Gira N Raval
- Surgical Oncology and Vascular Surgery Services, Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Yager ML, Hughes JAI, Lovicu FJ, Gunning PW, Weinberger RP, O'Neill GM. Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br J Cancer 2003; 89:860-3. [PMID: 12942118 PMCID: PMC2394486 DOI: 10.1038/sj.bjc.6601201] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tropomyosin 1 (TM1) is downregulated in a number of transformed cell types, and exogenous expression of TM1 can restore actin organisation and reverse cellular transformation. We find that TM1 is also downregulated in human neuroblastoma cell lines, correlating with increasing malignancy. However, exogenous TM1 does not restore actin cytoskeleton organisation in neuroblastoma cells.
Collapse
Affiliation(s)
- M L Yager
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Department of Anatomy and Histology, The University of Sydney, Sydney 2000, NSW, Australia
| | - J A I Hughes
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - F J Lovicu
- Department of Anatomy and Histology, The University of Sydney, Sydney 2000, NSW, Australia
| | - P W Gunning
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - R P Weinberger
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - G M O'Neill
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
- The Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia. E-mail:
| |
Collapse
|
22
|
Hughes JAI, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 2003; 42:25-35. [PMID: 12594734 DOI: 10.1002/glia.10174] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tropomyosin has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. In order to gain insight into the role of tropomyosins in cell division, we examined their expression in developing and neoplastic brain tissue. We found that the high-molecular-weight tropomyosins are downregulated at birth, which correlates with glial cell differentiation and withdrawal of most cells from the cell cycle. Expression of these isoforms was restricted to proliferative areas in the embryonic brain and was absent from the adult, where the majority of cells are quiescent. However, they were induced under conditions where glial cells became proliferative in response to injury. During cytokinesis, these tropomyosin isoforms were associated with the contractile ring. We also investigated tropomyosin expression in neoplastic CNS tissues. Low-grade astrocytic tumors expressed high-molecular-weight tropomyosins, while highly malignant CNS tumors of diverse origin did not (P </= 0.001). Furthermore, high-molecular-weight tropomyosins were absent from the contractile ring in highly malignant astrocytoma cells. Our findings suggest a role for high-molecular-weight tropomyosins in astrocyte cytokinesis, although highly malignant CNS tumors are still able to undergo cell division in their absence. Additionally, the correlation between high-molecular-weight tropomyosin expression and tumor grade suggests that tropomyosins are potentially useful as indicators of CNS tumor grade.
Collapse
Affiliation(s)
- Julie A I Hughes
- Oncology Research Unit, Children's Hospital at Westmead, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Bharadwaj S, Prasad GL. Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett 2002; 183:205-13. [PMID: 12065096 DOI: 10.1016/s0304-3835(02)00119-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomyosins (TMs) are a family of microfilament binding proteins, which are suppressed in the transformed cells. We have investigated the mechanism of suppression of TMs, in particular that of tropomyosin-1 (TM1), in breast cancer cells. Inhibition of DNA methyl transferase with 5-aza-2'-deoxycytidine (AZA) alone did not induce TM1 expression. However, combined treatment of trichostatin A (TSA) and AZA resulted in readily detectable expression of TM1, but not that of other TM isoforms. Upregulation of TM1 expression paralleled with the reemergence of TM1 containing microfilaments, and in abolition of anchorage-independent growth. The synergistic action of AZA and TSA in reactivation of TM1 gene was also evident in ras-transformed fibroblasts. These data, for the first time, show that hypermethylation of TM1 gene and chromatin remodeling are the predominant mechanisms by which TM1 expression is downregulated in breast cancer cells.
Collapse
Affiliation(s)
- Shantaram Bharadwaj
- Department of General Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
24
|
Shah V, Bharadwaj S, Kaibuchi K, Prasad GL. Cytoskeletal organization in tropomyosin-mediated reversion of ras-transformation: Evidence for Rho kinase pathway. Oncogene 2001; 20:2112-21. [PMID: 11360195 DOI: 10.1038/sj.onc.1204291] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Revised: 01/19/2001] [Accepted: 01/23/2001] [Indexed: 01/08/2023]
Abstract
Tropomyosin (TM) family of cytoskeletal proteins is implicated in stabilizing actin microfilaments. Many TM isoforms, including tropomyosin-1 (TM1), are down-regulated in transformed cells. Previously we demonstrated that TM1 is a suppressor of the malignant transformation, and that TM1 reorganizes microfilaments in the transformed cells. To investigate how TM1 induces microfilament organization in transformed cells, we utilized ras-transformed NIH3T3 (DT) cells, and those transduced to express TM1, and/or TM2. Enhanced expression of TM1 alone, but not TM2, results in re-emergence of microfilaments; TM1, together with TM2 remarkably improves microfilament architecture. TM1 induced cytoskeletal reorganization involves an enhanced expression of caldesmon, but not vinculin, alpha-actinin, or gelsolin. In addition, TM1-induced cytoskeletal reorganization and the revertant phenotype appears to involve re-activation of RhoA controlled pathways in DT cells. RhoA expression, which is suppressed in DT cells, is significantly increased in TM1-expressing cells, without detectable changes in the expression of Rac or Cdc42. Furthermore, expression of a dominant negative Rho kinase, or treatment with Y-27632 disassembled microfilaments in normal NIH3T3 and in TM1 expressing cells. These data suggest that reactivation of Rho kinase directed pathways are critical for TM1-mediated microfilament assemblies.
Collapse
Affiliation(s)
- V Shah
- Wistar Institute of Anatomy and Cell Biology, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
25
|
Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CDM, Fletcher JA. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:377-84. [PMID: 10934142 PMCID: PMC1850130 DOI: 10.1016/s0002-9440(10)64550-6] [Citation(s) in RCA: 505] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory myofibroblastic tumors (IMTs) are neoplastic mesenchymal proliferations featuring an inflammatory infiltrate composed primarily of lymphocytes and plasma cells. The myofibroblastic cells in some IMTs contain chromosomal rearrangements involving the ALK receptor tyrosine-kinase locus region (chromosome band 2p23). ALK-which is normally restricted in its expression to neural tissues-is expressed strikingly in the IMT cells with 2p23 rearrangements. We now report a recurrent oncogenic mechanism, in IMTs, in which tropomyosin (TPM) N-terminal coiled-coil domains are fused to the ALK C-terminal kinase domain. We have cloned two ALK fusion genes, TPM4-ALK and TPM3-ALK, which encode approximately 95-kd fusion oncoproteins characterized by constitutive kinase activity and tyrosylphosphorylation. Immunohistochemical and molecular correlations, in other IMTs, implicate non-TPM ALK oncoproteins that are predominantly cytoplasmic or pre- dominantly nuclear, presumably depending on the subcellular localization of the ALK fusion partner. Notably, a TPM3-ALK oncogene was reported recently in anaplastic lymphoma, and TPM3-ALK is thereby the first known fusion oncogene that transforms, in vivo, both mesenchymal and lymphoid human cell lineages.
Collapse
Affiliation(s)
- Brandon Lawrence
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Antonio Perez-Atayde
- Children’s Hospital Boston, Massachusetts; and the Department of Pediatric Oncology,§
| | - Michele K. Hibbard
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Brian P. Rubin
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Paola Dal Cin
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Jack L. Pinkus
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Geraldine S. Pinkus
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Sheng Xiao
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| | - Eunhee S. Yi
- University of California, San Diego Medical Center, San Diego, California
| | | | - Jonathan A. Fletcher
- Brigham and Women’s Hospital, Boston, Massachusetts; the Department of Pathology,†
| |
Collapse
|
26
|
Wong K, Wessels D, Krob SL, Matveia AR, Lin JL, Soll DR, Lin JJ. Forced expression of a dominant-negative chimeric tropomyosin causes abnormal motile behavior during cell division. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:121-32. [PMID: 10658208 DOI: 10.1002/(sici)1097-0169(200002)45:2<121::aid-cm4>3.0.co;2-#] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Forced expression of the chimeric human fibroblast tropomyosin 5/3 (hTM5/3) in CHO cell was previously shown to affect cytokinesis [Warren et al., 1995: J. Cell Biol. 129:697-708]. To further investigate the phenotypic consequences of misexpression, we have compared mitotic spindle organization and dynamic 2D and 3D shape changes during mitosis in normal cells and in a hTM5/3 misexpressing (mutant) cell line. Immunofluorescence microscopy of wild type and mutant cells stained with monoclonal anti-tubulin antibody revealed that the overall structures of mitotic spindles were not significantly different. However, the axis of the mitotic spindle in mutant cells was more frequently misaligned with the long axis of the cell than that of wild type cells. To assess behavioral differences during mitosis, wild type and mutant cells were reconstructed in 2D and 3D and motion analyzed with the computer-assisted 2D and 3D Dynamic Image Analysis Systems (2D-DIAS, 3D-DIAS). Mutant cells abnormally formed large numbers of blebs during the later stages of mitosis and took longer to proceed from the start of anaphase to the start of cytokinesis. Furthermore, each mutant cell undergoing mitosis exhibited greater shape complexity than wild type cells, and in every case lifted one of the two evolving daughter cells off the substratum and abnormally twisted. These results demonstrate that misexpression of hTM5/3 in CHO cells leads to morphological instability during mitosis. Misexpression of hTM5/3 interferes with normal tropomyosin function, suggesting in turn that tropomyosin plays a role through its interaction with actin microfilaments in the regulation of the contractile ring, in the localized suppression of blebbing, in the maintenance of polarity and spatial symmetry during cytokinesis, and in cell spreading after cytokinesis is complete.
Collapse
Affiliation(s)
- K Wong
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Prasad GL, Masuelli L, Raj MH, Harindranath N. Suppression of src-induced transformed phenotype by expression of tropomyosin-1. Oncogene 1999; 18:2027-31. [PMID: 10208425 DOI: 10.1038/sj.onc.1202264] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suppression of high M(r) tropomyosins (TMs) is a common feature of transformed cells. Previous work from this laboratory has demonstrated that the isoform 1 of TM, TM1, acts as an anti-oncogene in ras-transformed murine fibroblasts. In this study, we have investigated whether TM1 is a ras-specific suppressor, or a general suppressor protein of the cellular transformation. V-src transformed fibroblasts, which express decreased TM1, were transduced with a full-length cDNA to overexpress TM1. Both the control and the transduced cells expressed v-src kinase at comparable levels. TM1 expressing (src-T1) cells grew at a lower rate in monolayer, exhibited well spread, flat morphology than the control cells. Enhanced expression of TM1 resulted in improved microfilamental architecture. More significantly, src-T1 cells completely failed to grow under anchorage independent conditions. These data demonstrate that TM1 is as an anti-oncogene of functionally diverse oncogenes, and it is a class II tumor suppressor protein.
Collapse
Affiliation(s)
- G L Prasad
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
28
|
Ishikawa R, Yamashiro S, Kohama K, Matsumura F. Regulation of actin binding and actin bundling activities of fascin by caldesmon coupled with tropomyosin. J Biol Chem 1998; 273:26991-7. [PMID: 9756949 DOI: 10.1074/jbc.273.41.26991] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human fascin is an actin-bundling protein and is thought to play a role in the formation of microfilament bundles of microspikes and stress fibers in cultured cells. To explore the regulation of fascin-actin interaction, we have examined the effects of culture cell caldesmon and tropomyosin (TM) on actin binding activity of human fascin. Caldesmon alone or TM alone has little or no effect on the actin binding of fascin. However, caldesmon together with TM completely inhibits actin binding of human fascin. When calmodulin is added, the inhibition of fascin-actin interaction by caldesmon and TM becomes Ca2+ dependent because Ca2+/calmodulin blocks actin binding of caldesmon. Furthermore, as phosphorylation of caldesmon by cdc2 kinase inhibits actin binding of caldesmon, phosphorylation can also control actin binding of fascin in the presence of TM. As expected by the inhibition of fascin-actin binding, caldesmon coupled with TM also inhibits actin bundling activity of fascin. Whereas smooth muscle caldesmon alone or TM alone shows no effect, caldesmon together with TM completely inhibits actin bundling activity of fascin. This inhibition is again Ca2+ dependent when calmodulin is added to the system. These results suggest important roles for caldesmon and TM in the regulation of the function of human fascin.
Collapse
Affiliation(s)
- R Ishikawa
- Department of Molecular Biology and Biochemistry, Nelson Laboratory, Busch Campus, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
29
|
Clayton L, Johnson MH. Tropomyosin in preimplantation mouse development: identification, expression, and organization during cell division and polarization. Exp Cell Res 1998; 238:450-64. [PMID: 9473354 DOI: 10.1006/excr.1997.3854] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tropomyosin is an actin-binding cytoskeletal protein which has been extensively characterized in a variety of cell types and tissues, with the exception of very early developmental stages during which cellular polarization first occurs. We have identified five polypeptides in mouse preimplantation conceptuses which show many of the characteristics of tropomyosin. They form the major portion of the heat-stable cytoskeletal protein fraction of blastomeres and have the characteristic isoelectric and SDS-PAGE migration characteristics on 1-D and 2-D gels. All five polypeptides were synthesized in late 2- and 4-cell, and all 8-cell stages, with three of the five polypeptides showing lower synthetic levels in fertilized eggs and early 2-cell conceptuses. These heat-stable proteins showed specific differences from proteins isolated from mouse 3T3 fibroblasts by the same method, namely higher Mr isoforms were not represented, also some of the isoforms can be labeled by incorporation of [14C]proline. The cellular distribution of tropomyosin in early stage conceptuses was examined using monoclonal and affinity-purified polyclonal antibodies. Tropomyosin becomes associated both with the blastomere cortex postfertilization and with the cleavage furrow during cytokinesis. The interphase cortical association is uniform until the 8-cell stage, when tropomyosin becomes associated with the developing apical pole and is excluded from the basolateral cortex. This polar localization is inherited along with the pole at the 8- to 16-cell division, but experiments in which cell division is artificially prolonged show that tropomyosin localization does not represent a permanent marking of the pole. We conclude that the early mouse conceptus contains a unique and specific set of tropomyosins which respond to polarizing signals.
Collapse
Affiliation(s)
- L Clayton
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom.
| | | |
Collapse
|
30
|
Tada A, Kato H, Takenaga K, Hasegawa S. Transforming growth factor beta1 increases the expressions of high molecular weight tropomyosin isoforms and vinculin and suppresses the transformed phenotypes in human lung carcinoma cells. Cancer Lett 1997; 121:31-7. [PMID: 9459171 DOI: 10.1016/s0304-3835(97)00319-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure of the human lung carcinoma cell line, A549 cells, to transforming growth factor beta1 (TGFbeta1) resulted in an alteration in the morphology from epithelial-like to fibroblastic flat cells. Immunofluorescent study revealed that microfilament organization was partially restored in the TGFbeta1-treated cells. We also investigated the effects of TGFbeta1 on the transformed phenotypes including the anchorage-independent growth and invasive ability of A549 cells and found that the phenotypes were strikingly suppressed in TGFbeta1-treated A549 cells. Accompanying these changes, the levels of the expression of high molecular weight tropomyosin (TM) isoforms, especially TM1 and TM2, were significantly increased in the TGFbeta1-treated cells. The expression level of vinculin was also increased in these cells. These results suggest that the increased tropomyosin and vinculin syntheses may be involved in the suppression of the transformed phenotypes of A549 cells.
Collapse
Affiliation(s)
- A Tada
- Chiba City Health Center, Chiba, Japan
| | | | | | | |
Collapse
|
31
|
Warren RH. TGF-alpha-induced breakdown of stress fibers and degradation of tropomyosin in NRK cells is blocked by a proteasome inhibitor. Exp Cell Res 1997; 236:294-303. [PMID: 9344610 DOI: 10.1006/excr.1997.3728] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of NRK cells with TGF-alpha in the presence of serum initiates disassembly of cytoskeletal stress fibers and suppresses the synthesis of tropomyosin isoforms (TMs) 1, 2, and 3 but not TMs 4 and 5 (Cooper et al., Cancer Res. 47, 4493-4500, 1987). In order to determine how the loss of tropomyosin is induced and what role it plays in cytoskeletal disruption, the turnover of tropomyosin was studied in the presence of the transforming growth factor and protease inhibitors. Cells were pulse-labeled with [35S]methionine and chased in the absence or the presence of the growth factor. It was found that TMs 1, 2, and 3 are degraded at about twice the rate of TMs 4 and 5 in control cells and that the rate of degradation of TMs 1-3 is accelerated by the growth factors. Degradation of TMs in control and growth factor-treated cells is blocked by a membrane-permeable inhibitor of cysteine proteases (LLnL) that acts upon calpains and proteasomes, and the cells maintain a flattened shape with a normal complement of stress fibers. Application of inhibitors that block calpains but not proteasomes does not block TM degradation. Treatments (suspension culture or cytochalasin B) that disrupt stress fibers without application of the growth factors also accelerate TM degradation, suggesting that acceleration of TM degradation is a consequence of its release from stress fibers during their breakdown. The normally more rapid turnover of the TM isoforms 1-3 that are lost in the phenotypically transformed cells could serve to facilitate the cytoskeletal reorganization that follows the activation of signal transduction pathways by the transforming growth factors observed in this study or during other rearrangements of the cytoskeleton such as occur during cell migration or mitosis.
Collapse
Affiliation(s)
- R H Warren
- Department of Cell Biology and Anatomy, School of Medicine, University of Miami, Florida 33101, USA
| |
Collapse
|
32
|
Wirth PJ, Luo LD, Hoang T, Benjamin T. Two-dimensional polyacrylamide gel electrophoresis of cancer-associated proteins. Recent Results Cancer Res 1997; 143:145-60. [PMID: 8912417 DOI: 10.1007/978-3-642-60393-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P J Wirth
- Biopolymer Chemistry Section, National Cancer Institute, Bethesda, MD 20893, USA
| | | | | | | |
Collapse
|
33
|
Dong G, Loukinova E, Smith CW, Chen Z, Van Waes C. Genes differentially expressed with malignant transformation and metastatic tumor progression of murine squamous cell carcinoma. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(1997)28/29+<90::aid-jcb10>3.0.co;2-k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Miyado K, Sato M, Taniguchi S. Transformation-related expression of a low-molecular-mass tropomyosin isoform TM5/TM30nm in transformed rat fibroblastic cell lines. J Cancer Res Clin Oncol 1997; 123:331-6. [PMID: 9222299 DOI: 10.1007/bf01438309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We cloned a full-length rat TM5/TM30nm cDNA. Using this cDNA as a probe, we demonstrated that expression of TM5/TM30nm mRNA was higher in the tumorigenic rat fibroblastic cell lines SR-3Y1-2 and fos-SR-3Y1-202 than in the normal cell line 3Y1. High expression of TM5/TM30nm protein in SR-3Y1-2 and fos-SR-3Y1-202 cells was also detected by Western blot analysis using anti-TM5/TM30nm antiserum. In addition, the cellular localization of this protein differed between 3Y1 cells and tumorigenic ones. These findings suggest that TM5/TM30nm is involved in malignant transformation of rat fibroblastic cells.
Collapse
Affiliation(s)
- K Miyado
- Department of Molecular and Developmental Science, Tokai University, Ischara, Japan
| | | | | |
Collapse
|
35
|
Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:1-38. [PMID: 9002235 DOI: 10.1016/s0074-7696(08)61619-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vertebrate nonmuscle cells, such as human and rat fibroblasts, express multiple isoforms of tropomyosin, which are generated from four different genes and a combination of alternative promoter activities and alternative splicing. The amino acid variability among these isoforms is primarily restricted to three alternatively spliced exon regions; an amino-terminal region, an internal exon, and a carboxyl-terminal exon. Recent evidence reveals that these variable exon regions encode amino acid sequences that may dictate isoform-specific functions. The differential expression of tropomyosin isoforms found in cell transformation and cell differentiation, as well as the differential localization of tropomyosin isoforms in some types of culture cells and developing neurons suggest a differential isoform function in vivo. Tropomyosin in striated muscle works together with the troponin complex to regulate muscle contraction in a Ca(2+)-dependent fashion. Both in vitro and in vivo evidence suggest that multiple isoforms of tropomyosin in nonmuscle cells may be required for regulating actin filament stability, intracellular granule movement, cell shape determination, and cytokinesis. Tropomyosin-binding proteins such as caldesmon, tropomodulin, and other unidentified proteins may be required for some of these functions. Strong evidence for the distinct functions carried out by different tropomyosin isoforms has been generated from genetic analysis of yeast and Drosophila tropomyosin mutants.
Collapse
Affiliation(s)
- J J Lin
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | |
Collapse
|
36
|
Estellés A, Yokoyama M, Nothias F, Vincent JD, Glowinski J, Vernier P, Chneiweiss H. The major astrocytic phosphoprotein PEA-15 is encoded by two mRNAs conserved on their full length in mouse and human. J Biol Chem 1996; 271:14800-6. [PMID: 8662970 DOI: 10.1074/jbc.271.25.14800] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Specific phosphoproteins are targets of numerous extracellular signals received by astrocytes. One such target, which we previously described, is PEA-15, a protein kinase C substrate associated with microtubules. Two cDNAs differing in the length of their 3'-untranslated region (3'UTR) were cloned from a mouse astrocytic library. Accordingly, Northern blots revealed two transcripts (1.7 and 2.5 kilobase pairs) abundant brain regions but also found in peripheral tissues. PEA-15-deduced protein sequence (130 amino acids) shared no similarity with known proteins but is 96% identical to its human counterpart. In addition, several regions of the 3'UTR share more than 90% identity between mouse and human. Different potential regulatory sequences are found in the 3'UTR, which also completely includes the proto-oncogene MAT1. The high level of conservation of both the coding and the untranslated regions and the differential tissular distribution of the two transcripts of this major brain phosphoprotein suggest that not only the protein but also the 3'UTR of PEA-15 mRNA play a role in astrocytic functions.
Collapse
Affiliation(s)
- A Estellés
- INSERM U114 and Chaire de Neuropharmacologie du Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Tobita T, Ishimoda-Takagi T. Changes of tropomyosin isoforms during development of cross-fertilized sea urchin embryos. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.t01-1-00011.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Ishimoda-Takagi T, Yamazaki K, Ando T, Minami H, Nagata A. Sea urchin egg tropomyosin isoforms with muscle-type and nonmuscle-type antigenicities. Comp Biochem Physiol B Biochem Mol Biol 1995; 112:415-27. [PMID: 8529020 DOI: 10.1016/0305-0491(95)00092-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Egg tropomyosins were prepared from four sea urchin species, Stronglyocentrotus intermedius, Anthocidaris crassispina, Hemicentrotus pulcherrimus and Pseudocentrotus depressus, and their molecular heterogeneity was investigated by electrophoresis and immunoblotting. The molecular heterogeneity of egg tropomyosins was species-specific, and two to four kinds of tropomyosin isoforms were detected, the apparent molecular weights of which were 29,000-32,000. The egg tropomyosin isoforms could be classified into two groups with muscle- and nonmuscle-type antigenicities in each species. No obvious difference in their cytological localization was observed immunocytochemically in S. intermedius and H. pulcherrimus.
Collapse
|
39
|
Gariboldi M, Manenti G, Dragani TA, Pierotti MA. Chromosome mapping of nine tropomyosin-related sequences in mice. Mamm Genome 1995; 6:273-7. [PMID: 7613033 DOI: 10.1007/bf00352415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tropomyosins are a group of actin-binding proteins expressed as different isoforms in muscle and non-muscle cells. Two tropomyosin loci have already been mapped in the mouse genome, on Chromosomes (Chrs) 6 and 9. By using a human cDNA fragment of tropomyosin non-muscle isoform (TPM3) gene that maps on human Chr 1q, and a mapping panel from a murine interspecific cross, we mapped nine distinct tropomyosin-related loci in the mouse genome, on seven different chromosomes: Chrs 3, 4, 6, 7, 14, 17, and X.
Collapse
Affiliation(s)
- M Gariboldi
- Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | |
Collapse
|
40
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
41
|
Nakamura Y, Sakiyama S, Takenaga K. Suppression of syntheses of high molecular weight nonmuscle tropomyosins in macrophages. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:273-82. [PMID: 7553914 DOI: 10.1002/cm.970310404] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In mouse fibroblasts, at least five TM isoforms are identified and they can be grouped into the high (TM1, TM2, and TM3) and low molecular weight TM isoforms (TM4 and TM5). Suppression of one of the high molecular weight tropomyosin (TM) isoforms in nonmuscle cells is implicated to be one of the causes for disorganization of actin microfilament bundles and subsequent changes in cell motility and cell shape. In this study, we studied the expression of tropomyosin isoforms in macrophages that exhibit high motility and ability to change cell shape. Two-dimensional gel electrophoresis followed by Western blot analysis using polyclonal anti-TM antiserum revealed that the high molecular weight TM isoforms were lacking in both resident and activated mouse peritoneal macrophages. Analyses of newly synthesized TM isoforms, Northern blot analyses using isoform-specific cDNA probes, and immunostaining with monoclonal anti-TM antibody that recognizes only the high molecular weight TM isoforms also demonstrated that the syntheses of the high molecular weight TM isoforms (TM1, TM2, and TM3) were completely suppressed, whereas the low molecular weight TM isoforms (TM4 and TM5) were expressed in macrophages. These results indicate that macrophages intrinsically lack the high molecular weight TM isoforms. In order to obtain information about cellular localization of the low molecular weight TM isoforms in macrophages, they were immunostained with polyclonal anti-TM antiserum that recognizes both the high and low molecular weight TM isoforms. The results showed that the low molecular weight TM isoforms were co-localized with F-actin in punctate and short fibrous structures. In addition, we performed in situ hybridization analysis to examine localizations of the TM mRNAs in fibroblasts and macrophages. The results showed that TM mRNAs were localized throughout the cytoplasm.
Collapse
Affiliation(s)
- Y Nakamura
- Division of Biochemistry, Chiba Cancer Center Research Institute, Japan
| | | | | |
Collapse
|
42
|
Takenaga K, Masuda A. Restoration of microfilament bundle organization in v-raf-transformed NRK cells after transduction with tropomyosin 2 cDNA. Cancer Lett 1994; 87:47-53. [PMID: 7954369 DOI: 10.1016/0304-3835(94)90408-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The syntheses of tropomyosin (TM) isoforms, especially those of TM1 and TM2, were suppressed in v-raf-transformed NRK cells. To test whether restoration of one of the suppressed TM expressions affects cellular phenotypes of v-raf-transformed NRK cells, the cells were transduced with mouse fibroblast TM2 cDNA by retrovirally mediated DNA transfer method. Clones expressing the inserted TM2 cDNA and accordingly higher amounts of TM2 than the parental and control clones displayed a flatter morphology which was accompanied by partial restoration of microfilament organization, indicating that restoration of one of the diminished TM isoforms results in reorganization of microfilament bundles. However, no significant decrease in cell growth rate and the ability to grow in soft agar was observed in the TM2 cDNA-transduced cells.
Collapse
MESH Headings
- Actin Cytoskeleton/physiology
- Animals
- Blotting, Northern
- Cell Division
- Cell Line, Transformed
- Cell Transformation, Neoplastic
- Clone Cells
- DNA/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Neoplastic
- Isomerism
- Kidney/pathology
- Kidney/ultrastructure
- Mice
- Microscopy, Fluorescence
- Molecular Weight
- Oncogene Proteins v-raf
- Plasmids
- RNA, Messenger/analysis
- Rats
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/physiology
- Signal Transduction
- Tropomyosin/biosynthesis
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/physiology
Collapse
Affiliation(s)
- K Takenaga
- Division of Chemotherapy, Chiba Cancer Center Research Institute, Japan
| | | |
Collapse
|
43
|
McCormack SA, Wang JY, Johnson LR. Polyamine deficiency causes reorganization of F-actin and tropomyosin in IEC-6 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C715-22. [PMID: 7524334 DOI: 10.1152/ajpcell.1994.267.3.c715] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In earlier work we have shown that polyamine-deficient IEC-6 cells lose most of their ability to migrate. In this report we describe the effect of polyamine deficiency on the cytoskeleton of migrating IEC-6 cells. Cells were grown on cover slips for 4 days. One-third of the monolayer was removed, and the remainder was incubated for 6 h. The monolayers were fixed and stained with rhodamine phalloidin for actin filaments and by immunocytochemistry for tropomyosin. In control cells, actin filaments were found as stress fibers traversing the cell, in a thin actin cortex often visible on only one edge of the cell, and in fine fibers extending into the lamellipodia. Tropomyosin was found in the same distribution. A Western blot showed that tropomyosin was present as 35- and 37-kDa isoforms. In polyamine-deficient cells, actin stress fibers were less dense, whereas the actin cortex was greatly increased in density and lamellipodia were less extensive. Tropomyosin distribution was similar and included a 30-kDa isoform not seen previously. In spite of the obvious changes in the distribution of these cytoskeletal proteins, the concentrations of filamentous actin, beta-actin mRNA, and the higher molecular weight tropomyosin isoforms did not change. In all cases the addition of putrescine to polyamine-deficient cells prevented the changes described. We conclude that polyamines are essential for migration in this system because of their effects on the organization of cytoskeletal actin, tropomyosin, and perhaps other proteins as well.
Collapse
Affiliation(s)
- S A McCormack
- Department of Physiology and Biophysics, University of Tennessee College of Medicine, Memphis 38163
| | | | | |
Collapse
|
44
|
Prasad GL, Fuldner RA, Braverman R, McDuffie E, Cooper HL. Expression, cytoskeletal utilization and dimer formation of tropomyosin derived from retroviral-mediated cDNA transfer. Metabolism of tropomyosin from transduced cDNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:1-10. [PMID: 8076628 DOI: 10.1111/j.1432-1033.1994.tb19988.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression of the tropomyosin-1 isoform was enhanced by cDNA transfer in non-transformed murine 3T3 fibroblasts and also in v-Ki-ras transformed fibroblasts in which native tropomyosin-1 expression had been reduced and tropomyosin-2 synthesis virtually eliminated by action of the oncogene. The level of synthesis of insert-derived tropomyosin-1 was similar in normal and transformed transductants (3-5 times normal levels). The high level of insert-derived tropomyosin-1 expression resulted in a considerable increase in tropomyosin-1 utilization in the cytoskeleton of transformed cells, but this expression still did not reach normal levels, suggesting an oncogene-related inhibition of tropomyosin utilization. A large proportion of newly synthesized native tropomyosin-1 in normal, unmodified fibroblasts appeared in homodimers which, upon prolonged incubation, were largely converted to the heterodimers. Excess tropomyosin-1 derived from the inserted cDNA also appeared largely as the homodimer in both normal and transformed cells. This homodimer was utilized effectively in the formation of cytoskeletal structures but was partially converted to heterodimer by chain exchange. Under steady-state conditions, approximately 33% of the cytoskeletal tropomyosin-1-containing dimers were homodimers, compared to approximately 10% in normal fibroblasts. The results show that the increased amount of tropomyosin-1 homodimer entering the cytoskeleton under conditions of tropomyosin-1 excess, results in an atypical microfilament composition. The effect of this excess of tropomyosin-1 homodimers on stability or function of microfilament fibers remains to be determined. The results also confirm that the mechanisms of rapid homodimer formation with conversion to heterodimers by chain exchange, known from in vitro studies, also occur in vivo.
Collapse
Affiliation(s)
- G L Prasad
- Cell and Molecular Physiology Section, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
45
|
Celis JE, Olsen E. A qualitative and quantitative protein database approach identifies individual and groups of functionally related proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes: an overview of the functional changes associated with the transformed phenotype. Electrophoresis 1994; 15:309-44. [PMID: 8055864 DOI: 10.1002/elps.1150150153] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A qualitative and quantitative two-dimensional (2-D) gel database approach has been used to identify individual and groups of proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes (K14). Five hundred and sixty [35S]methionine-labeled proteins (462 isoelectric focusing, IEF; 98 nonequilibrium pH gradient electrophoresis, NEPHGE), out of the 3038 recorded in the master keratinocyte database, were excised from dry, silver-stained gels of normal proliferating primary keratinocytes and K14 cells and the radioactivity was determined by liquid scintillation counting. Two hundred and thirty five proteins were found to be either up- (177) or down-regulated (58) in the transformed cells by 50% or more, and of these, 115 corresponded to known proteins in the keratinocyte database (J.E. Celis et al., Electrophoresis 1993, 14, 1091-1198). The lowest abundance acidic protein quantitated was present in about 60,000 molecules per cell, assuming a value of 10(8) molecules per cell for total actin. The results identified individual, and groups of functionally related proteins that are differentially regulated in K14 keratinocytes and that play a role in a variety of cellular activities that include general metabolism, the cytoskeleton, DNA replication and cell proliferation, transcription and translation, protein folding, assembly, repair and turnover, membrane traffic, signal transduction, and differentiation. In addition, the results revealed several transformation sensitive proteins of unknown identity in the database as well as known proteins of yet undefined functions. Within the latter group, members of the S100 protein family--whose genes are clustered on human chromosome 1q21--were among the highest down-regulated proteins in K14 keratinocytes. Visual inspection of films exposed for different periods of time revealed only one new protein in the transformed K14 keratinocytes and this corresponded to keratin 18, a cytokeratin expressed mainly by simple epithelia. Besides providing with the first global overview of the functional changes associated with the transformed phenotype of human keratinocytes, the data strengthened previous evidence indicating that transformation results in the abnormal expression of normal genes rather than in the expression of new ones.
Collapse
Affiliation(s)
- J E Celis
- Institute of Medical Biochemistry, Aarhus University, Denmark
| | | |
Collapse
|
46
|
Wirth PJ. Two-dimensional polyacrylamide gel electrophoresis in experimental hepatocarcinogenesis studies. Electrophoresis 1994; 15:358-71. [PMID: 8055866 DOI: 10.1002/elps.1150150155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High resolution two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) in combination with computer-assisted densitometry was used to analyze sequential changes in polypeptide expression during chemically (aflatoxin Bl; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-raflv-myc)-induced experimental rat hepatocarcinogenesis. Two-dimensional mapping of [35S]methionine and [32P]orthophosphate-labeled whole cell lysate and nuclear polypeptides revealed subsets of polypeptides specific for each transformation modality in the in vitro rat liver epithelial (RLE) transformation model. Many of the observed changes in whole cell lysate preparations were localized to specific subcellular organelles. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin- and intermediate filament-related polypeptides (vimentin, beta-tubulin, cytokeratins 8, 14, and 18, and actin) were observed among the various transformant cell lines. Whereas alterations in the tropomyosin isoforms appeared to be transformation specific, concomitant modulation of intermediate filament expression was related more to the differentiation state of the individual cell lines than to the transformed phenotype. To integrate protein and DNA information of polypeptides believed to be critically involved during cellular transformation, N-terminal amino acid microsequencing of selected nuclear polypeptides was performed. Preliminary results suggest that N-terminal blockage of rat liver epithelial nuclear proteins to be minor (approximately 20%) with sequencing sensitivity of one pmol. These studies extend our on-going efforts toward the establishment of computerized database of rat liver epithelial cellular proteins (Wirth et al., Electrophoresis, 1991, 12, 931-954) to aid in the delineation of polypeptides critically involved in cellular growth and differentiation as well as transformation.
Collapse
Affiliation(s)
- P J Wirth
- Biopolymer Chemistry Section, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
47
|
Ferrier R, Had L, Rabié A, Faivre-Sarrailh C. Coordinated expression of five tropomyosin isoforms and beta-actin in astrocytes treated with dibutyryl cAMP and cytochalasin D. CELL MOTILITY AND THE CYTOSKELETON 1994; 28:303-16. [PMID: 7954857 DOI: 10.1002/cm.970280404] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochalasin D and dBcAMP cause cultured astrocytes to change from flat cells to retracted process-bearing cells. F-actin was present throughout cells stimulated with dBcAMP for 16 h, whereas cytochalasin D caused F-actin to form massive aggregates at the tips of the cell processes. The two drugs differently regulated the expression of both beta-actin and tropomyosin genes in astrocytes cultured in the presence or absence of serum: dBcAMP caused down-regulation and cytochalasin D caused up-regulation. Northern blot analyses indicated that: (1) serum deprivation halved the concentration of all tropomyosin transcripts (TM-1, TM-2, TM-4, TMBr-1, TMBr-2). Serum induced TM-4 via transcriptional activation, independent of protein synthesis, (2) dBcAMP induced down-regulation of beta-actin (-50%) and tropomyosin transcripts (-35 to 52%) even in the presence of serum. The concentration of profilin mRNA decreased in dBcAMP-reactive astrocytes (-46%). The decrease in beta-actin mRNA concentration was not blocked by cycloheximide, whereas down-regulation of tropomyosin transcripts was completely reversed when protein synthesis was inhibited, and (3) cytochalasin D induced an increase in the concentration of tropomyosin transcripts (+69 to 185%) which was cumulative with serum stimulation. Cytochalasin D induction of both beta-actin and TM-4 operated through transcriptional activation, independent of protein synthesis. The production of all tropomyosin transcripts examined here were strictly coordinated with beta-actin expression in serum-, dBcAMP- and cytochalasin D-treated astrocytes. This indicates that the differential expression of tropomyosin isoforms occurring during astrocyte maturation is due to more complex regulation than that involved in serum- or cAMP-stimulated astrocytes.
Collapse
Affiliation(s)
- R Ferrier
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université Montpellier II, France
| | | | | | | |
Collapse
|
48
|
Rastinejad F, Conboy MJ, Rando TA, Blau HM. Tumor suppression by RNA from the 3' untranslated region of alpha-tropomyosin. Cell 1993; 75:1107-17. [PMID: 7505203 DOI: 10.1016/0092-8674(93)90320-p] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMU2, a nondifferentiating mutant myogenic cell line, gives rise to rhabdomyosarcomas in mice. We show that constitutive expression of RNA from 0.2 kb of the alpha-tropomyosin (Tm) 3' untranslated region (UTR), but not control 3'UTRs, suppresses anchorage-independent growth and tumor formation by NMU2 cells. When beta-galactosidase (beta-gal)-labeled cells were implanted into muscles of adult mouse hindlimbs, Tm 3'UTR expression suppressed the proliferation, invasion, and destruction of muscle tissues characteristic of NMU2. In the rare tumors that developed from Tm 3'UTR transfectants, RNA expression was extinguished. These results suggest that suppression of tumorigenicity is dependent on the continued expression of Tm transcripts lacking a coding region. We conclude that untranslated RNAs can function as regulators (riboregulators) that suppress tumor formation.
Collapse
Affiliation(s)
- F Rastinejad
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | | | | | |
Collapse
|
49
|
Pienta KJ, Murphy BC, Getzenberg RH, Coffey DS. The Tissue Matrix and The Regulation of Gene Expression in Cancer Cells. BIOLOGY OF THE CANCER CELL 1993. [DOI: 10.1016/s1569-2558(08)60238-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Miller MJ, Maher VM, McCormick JJ. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes. Electrophoresis 1992; 13:862-70. [PMID: 1483428 DOI: 10.1002/elps.11501301188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P < 0.01, T test, mean ratio of intensity > 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M J Miller
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-0037
| | | | | |
Collapse
|