1
|
Zhgun A, Dumina M, Valiakhmetov A, Eldarov M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS One 2020; 15:e0238452. [PMID: 32866191 PMCID: PMC7458343 DOI: 10.1371/journal.pone.0238452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022] Open
Abstract
The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50–100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.
Collapse
Affiliation(s)
- Alexander Zhgun
- Research Center of Biotechnology RAS, Moscow, Russia
- * E-mail:
| | - Mariya Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Ayrat Valiakhmetov
- Skryabin Institute of Biophysics and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | |
Collapse
|
2
|
Caspeta L, Coronel J, Montes de Oca A, Abarca E, González L, Martínez A. Engineering high‐gravity fermentations for ethanol production at elevated temperature withSaccharomyces cerevisiae. Biotechnol Bioeng 2019; 116:2587-2597. [DOI: 10.1002/bit.27103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos México
- Departamento de Ingeniería Celular y BiocatálisisInstituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca Morelos México
| | - Jesús Coronel
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos México
| | - Arturo Montes de Oca
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos México
| | - Eduardo Abarca
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos México
| | - Lidia González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos México
| | - Alfredo Martínez
- Departamento de Ingeniería Celular y BiocatálisisInstituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca Morelos México
| |
Collapse
|
3
|
Wong JH, Alfatah M, Kong KW, Hoon S, Yeo WL, Ching KC, Jie Hui Goh C, Zhang MM, Lim YH, Wong FT, Arumugam P. Chemogenomic profiling in yeast reveals antifungal mode-of-action of polyene macrolactam auroramycin. PLoS One 2019; 14:e0218189. [PMID: 31181115 PMCID: PMC6557514 DOI: 10.1371/journal.pone.0218189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization. This was verified by disruption of vacuolar structure and membrane integrity of yeast cells with auroramycin treatment. Addition of salt but not sorbitol to the medium rescued the growth of auroramycin-treated yeast cells suggesting that auroramycin causes ionic stress. Furthermore, auroramycin caused hyperpolarization of the yeast plasma membrane and displayed a synergistic interaction with cationic hygromycin. Our data strongly suggest that auroramycin inhibits yeast cells by causing leakage of cations from the cytoplasm. Thus, auroramycin’s mode-of-action is distinct from known antifungal polyenes, reinforcing the importance of natural products in the discovery of new anti-infectives.
Collapse
Affiliation(s)
| | | | | | - Shawn Hoon
- Molecular Engineering Laboratory, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Kuan Chieh Ching
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | - Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Yee Hwee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | | |
Collapse
|
4
|
Rane HS, Hayek SR, Frye JE, Abeyta EL, Bernardo SM, Parra KJ, Lee SA. Candida albicans Pma1p Contributes to Growth, pH Homeostasis, and Hyphal Formation. Front Microbiol 2019; 10:1012. [PMID: 31143168 PMCID: PMC6521590 DOI: 10.3389/fmicb.2019.01012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Candida albicans occupies diverse ecological niches within the host and must tolerate a wide range of environmental pH. The plasma membrane H+-ATPase Pma1p is the major regulator of cytosolic pH in fungi. Pma1p extrudes protons from the cytosol to maintain neutral-to-alkaline pH and is a potential drug target due to its essentiality and fungal specificity. We characterized mutants in which one allele of PMA1 has been deleted and the other truncated by 18-38 amino acids. Increasing C-terminal truncation caused corresponding decreases in plasma membrane ATPase-specific activity and cytosolic pH. Pma1p is regulated by glucose: glucose rapidly activates the ATPase, causing a sharp increase in cytosolic pH. Increasing Pma1p truncation severely impaired this glucose response. Pma1p truncation also altered cation responses, disrupted vacuolar morphology and pH, and reduced filamentation competence. Early studies of cytosolic pH and filamentation have described a rapid, transient alkalinization of the cytosol preceding germ tube formation; Pma1p has been proposed as a regulator of this process. We find Pma1p plays a role in the establishment of cell polarity, and distribution of Pma1p is non-homogenous in emerging hyphae. These findings suggest a role of PMA1 in cytosolic alkalinization and in the specialized form of polarized growth that is filamentation.
Collapse
Affiliation(s)
- Hallie S. Rane
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Summer R. Hayek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Jillian E. Frye
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States
| | - Esteban L. Abeyta
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Stella M. Bernardo
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Karlett J. Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Samuel A. Lee
- Medicine Service, White River Junction VA Medical Center, White River Junction, VT, United States
- Infectious Disease Section, Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
5
|
Liu P, Zhang G, Chen Y, Zhao J, Wang W, Wei D. Enhanced cellulase production by decreasing intercellular pH through H +-ATPase gene deletion in Trichoderma reesei RUT-C30. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:195. [PMID: 31417630 PMCID: PMC6691542 DOI: 10.1186/s13068-019-1536-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/03/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cellulolytic enzymes produced by Trichoderma reesei are widely used for the industrial production of biofuels and chemicals from lignocellulose. We speculated that intracellular pH during the fermentation process can affect cellulase induction. RESULTS In this study, two H+-ATPase genes, tre76238 and tre78757, were first identified in T. reesei. Deletion of tre76238 and tre78757 in T. reesei RUT-C30 confirmed that tre76238 has a major function in maintaining intracellular pH, whereas tre78757 has a minor function. The tre76238 deletion strain Δ76238 displayed a high level of cellulase production using cellulase-repressive glucose as a sole carbon source, along with intracellular acid accumulation and growth retardation. Our results indicated that intracellular acid accumulation in Δ76238 stimulated a significant increase in the cytosolic Ca2+ levels. Ca2+ channels were shown to be necessary for cellulase production using glucose as the carbon source in Δ76238. Delayed Δ76238 growth could be reversed by optimizing the medium's nitrogen sources to produce ammonia for intracellular acid neutralization in the early phase. This may be useful for scale-up of cellulase production using glucose as the carbon source. CONCLUSIONS This study provides a new perspective for significant alterations in the cellulase expression pattern of T. reesei Δ76238, indicating a new mechanism for cellulase regulation under conditions of low intracellular pH.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Guoxiu Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
6
|
Louis EJ. Historical Evolution of Laboratory Strains of Saccharomyces cerevisiae. Cold Spring Harb Protoc 2016; 2016:2016/7/pdb.top077750. [PMID: 27371602 DOI: 10.1101/pdb.top077750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Budding yeast strains used in the laboratory have had a checkered past. Historically, the choice of strain for any particular experiment depended on the suitability of the strain for the topic of study (e.g., cell cycle vs. meiosis). Many laboratory strains had poor fermentation properties and were not representative of the robust strains used for domestic purposes. Most strains were related to each other, but investigators usually had only vague notions about the extent of their relationships. Isogenicity was difficult to confirm before the advent of molecular genetic techniques. However, their ease of growth and manipulation in laboratory conditions made them "the model" model organism, and they still provided a great deal of fundamental knowledge. Indeed, more than one Nobel Prize has been won using them. Most of these strains continue to be powerful tools, and isogenic derivatives of many of them-including entire collections of deletions, overexpression constructs, and tagged gene products-are now available. Furthermore, many of these strains are now sequenced, providing intimate knowledge of their relationships. Recent collections, new isolates, and the creation of genetically tractable derivatives have expanded the available strains for experiments. But even still, these laboratory strains represent a small fraction of the diversity of yeast. The continued development of new laboratory strains will broaden the potential questions that can be posed. We are now poised to take advantage of this diversity, rather than viewing it as a detriment to controlled experiments.
Collapse
Affiliation(s)
- Edward J Louis
- Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
7
|
Goldgof GM, Durrant JD, Ottilie S, Vigil E, Allen KE, Gunawan F, Kostylev M, Henderson KA, Yang J, Schenken J, LaMonte GM, Manary MJ, Murao A, Nachon M, Murray R, Prescott M, McNamara CW, Slayman CW, Amaro RE, Suzuki Y, Winzeler EA. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Sci Rep 2016; 6:27806. [PMID: 27291296 PMCID: PMC4904242 DOI: 10.1038/srep27806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/20/2016] [Indexed: 11/30/2022] Open
Abstract
The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity.
Collapse
Affiliation(s)
- Gregory M. Goldgof
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
- Department of Synthetic Biology and Bioenergy, J. Craig Venter
Institute, La Jolla, California, USA
| | - Jacob D. Durrant
- Department of Chemistry & Biochemistry and the National
Biomedical Computation Resource, University of California, San
Diego, La Jolla, California, USA
| | - Sabine Ottilie
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Edgar Vigil
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Kenneth E. Allen
- Department of Genetics, Yale University School of
Medicine, New Haven, Connecticut, USA
| | - Felicia Gunawan
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Maxim Kostylev
- Department of Synthetic Biology and Bioenergy, J. Craig Venter
Institute, La Jolla, California, USA
| | | | - Jennifer Yang
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Jake Schenken
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Gregory M. LaMonte
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Micah J. Manary
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Ayako Murao
- Department of Synthetic Biology and Bioenergy, J. Craig Venter
Institute, La Jolla, California, USA
| | - Marie Nachon
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Rebecca Murray
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Maximo Prescott
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| | - Case W. McNamara
- Genomics Institute of the Novartis Research Foundation,
San Diego, California, USA
| | - Carolyn W. Slayman
- Department of Genetics, Yale University School of
Medicine, New Haven, Connecticut, USA
| | - Rommie E. Amaro
- Department of Chemistry & Biochemistry and the National
Biomedical Computation Resource, University of California, San
Diego, La Jolla, California, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter
Institute, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Division of Pharmacology and Drug Discovery, Department of
Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, California, USA
| |
Collapse
|
8
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Abstract
Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.
Collapse
|
10
|
Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance. PLoS One 2015; 10:e0126350. [PMID: 25951180 PMCID: PMC4423874 DOI: 10.1371/journal.pone.0126350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/01/2015] [Indexed: 01/11/2023] Open
Abstract
Objective To identify a novel class of inhibitors of fungal transporters involved in drug resistance. Methods A series of structurally-related low molecular mass compounds was synthesized using combinatorial chemistry of a cyclobutene-dione (squarile) core. These compounds were screened for their inhibition of plasma membrane Major Facilitator Superfamily (MFS) and ATP-binding cassette (ABC) transporters responsible for efflux pump-mediated drug resistance in the fungal pathogen Candida albicans. Strains of Saccharomyces cerevisiae that specifically overexpress the MFS pump CaMdr1p or the ABC transporter CaCdr1p were used in primary screens and counterscreens, respectively, and to detect inhibition of glucose-dependent Nile Red efflux. Efflux pump inhibition, activity as pump substrates and antifungal activity against yeast and clinical isolates expressing efflux pumps were determined using agarose diffusion susceptibility assays and checkerboard liquid chemosensitization assays with fluconazole. Results The screen identified five structurally-related compounds which inhibited CaMdr1p. Two compounds, A and B, specifically chemosensitized AD/CaMDR1 to FLC in a pH-dependent fashion and acted synergistically with FLC in checkerboard liquid MIC assays but compound B had limited solubility. Compound A chemosensitized to FLC the azole-resistant C. albicans strain FR2, which over-expresses CaMdr1p, inhibited Nile Red efflux mediated by CaMdr1p but not CaCdr1p and was not toxic to cultured human cells. A minor growth-inhibitory effect of B on AD/CaMDR1, but not on AD/CaCDR1 and AD/CaCDR2, indicated that compound B may be a substrate of these transporters. The related compound F was found to have antifungal activity against the three pump over-expressing strains used in the study. Conclusions Compound A is a ‘first in class’ small molecule inhibitor of MFS efflux pump CaMdr1p.
Collapse
|
11
|
Biotin enhances salt tolerance of Torulopsis mogii. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Henderson KA, Hughes AL, Gottschling DE. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 2014; 3:e03504. [PMID: 25190112 PMCID: PMC4175738 DOI: 10.7554/elife.03504] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
Replicative aging in yeast is asymmetric–mother cells age but their daughter cells are rejuvenated. Here we identify an asymmetry in pH between mother and daughter cells that underlies aging and rejuvenation. Cytosolic pH increases in aging mother cells, but is more acidic in daughter cells. This is due to the asymmetric distribution of the major regulator of cytosolic pH, the plasma membrane proton ATPase (Pma1). Pma1 accumulates in aging mother cells, but is largely absent from nascent daughter cells. We previously found that acidity of the vacuole declines in aging mother cells and limits lifespan, but that daughter cell vacuoles re-acidify. We find that Pma1 activity antagonizes mother cell vacuole acidity by reducing cytosolic protons. However, the inherent asymmetry of Pma1 increases cytosolic proton availability in daughter cells and facilitates vacuole re-acidification and rejuvenation. DOI:http://dx.doi.org/10.7554/eLife.03504.001 Aging is a part of life—but its biological basis and, in particular, how aged cells give rise to young offspring (or progeny) has not been clearly established for any organism. Budding yeast is a microorganism that is a valuable model to understand aging in more complex organisms like humans. Budding yeast cells undergo a process called ‘replicative aging’, meaning that each yeast mother cell produces a set number of daughter cells in her lifetime. However, when daughter cells arise from an aging mother cell, the daughter's age is ‘reset to zero’. How mother cells age, and how their daughters are rejuvenated, are questions that have been studied for decades. Previously, researchers discovered that a mother cell's vacuole (an acidic compartment that stores important molecules that can become toxic) becomes less acidic as the mother cell ages. Daughter cells, on the other hand, have very acidic vacuoles, which was linked to their renewed lifespans. However, the mechanism behind this difference in the acidity of the vacuole between mother and daughter cells was unknown. Now, Henderson et al. have found that a protein (called Pma1), which is found at the cell surface and pumps protons out of the cell, is present in mother cells but not in their newly-formed daughter cells. Furthermore, the Pma1 protein also accumulates as mother cells age. By pumping protons out of the cell, Pma1 effectively reduces the number of protons available to acidify the vacuole in the mother cell. However, because at first the daughter does not have Pma1, there are still plenty of protons inside the cell to acidify the vacuole. When Henderson et al. reduced the activity of Pma1 in mother cells, the entire cell became more acidic, and so did their vacuoles. Conversely daughter cells engineered to have more Pma1 were less acidic and had less acidic vacuoles than normal. Henderson et al. next asked whether reducing Pma1 activity to create a more acidic cell, could extend the lifespan of cells, and found that indeed cells with less Pma1 activity lived longer. As such, these findings indicate that an asymmetry in the acidity of the cell—caused by unequal levels of the Pma1 protein—contributes to reducing the lifespan of the mother cell and to rejuvenating the daughter cell. Thus Henderson et al. have identified one of the earliest events in the cellular aging process in budding yeast. Their findings suggest that an imbalance in an activity that is normally essential for cell survival (in this case, the activity of Pma1) can have long-term consequences for the cell that lead to aging. DOI:http://dx.doi.org/10.7554/eLife.03504.002
Collapse
Affiliation(s)
- Kiersten A Henderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam L Hughes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Daniel E Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
13
|
Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata. Microbiology (Reading) 2014; 160:1705-1713. [DOI: 10.1099/mic.0.078600-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells.
Collapse
|
14
|
|
15
|
Elicharova H, Sychrova H. Fluconazole treatment hyperpolarizes the plasma membrane ofCandidacells. Med Mycol 2013; 51:785-94. [DOI: 10.3109/13693786.2013.779038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Ke R, Ingram PJ, Haynes K. An integrative model of ion regulation in yeast. PLoS Comput Biol 2013; 9:e1002879. [PMID: 23341767 PMCID: PMC3547829 DOI: 10.1371/journal.pcbi.1002879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022] Open
Abstract
Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na+ influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na+ in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na+ under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation. Ion regulation is fundamental to cell physiology. The concentrations of monovalent ions, such as H+, K+ and Na+, determine many physiological parameters such as cell volume, plasma membrane potential and intracellular pH. In yeast cells, these parameters are maintained within a narrow range during the adaptation to external perturbations, including ionic, osmotic and alkaline pH stress. This is achieved by the remarkably coordinated activities of ion transporters, regulatory molecules and signaling pathways. The response characteristics of individual components in adaptation have been studied extensively. However, a coherent understanding of the coordinated adaptation process is lacking. In this study, we address this gap by constructing a mathematical model that integrates the characteristics of the ion transporters, regulatory molecules, signaling pathways and changes in cell volume. Using this model, we characterize the impact of ionic, osmotic and alkaline pH stresses on cellular physiology and analyze the role that individual components play in the cellular adaptation processes. Our results also reveal system level properties achieved by the concerted regulatory responses. Therefore, this integrated model serves as a suitable tool to understand the coordinated processes of ion regulation in response to environmental stresses, and to make predictions that are experimentally testable.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
17
|
Geijer C, Pirkov I, Vongsangnak W, Ericsson A, Nielsen J, Krantz M, Hohmann S. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics 2012; 13:554. [PMID: 23066959 PMCID: PMC3577491 DOI: 10.1186/1471-2164-13-554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/10/2012] [Indexed: 12/01/2022] Open
Abstract
Background Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. Results Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. Conclusions Resumption of growth in germinating spores is characterized by a highly synchronized temporal organisation of up- and down-regulated genes which reflects the metabolic reshaping of the quickening spores.
Collapse
Affiliation(s)
- Cecilia Geijer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, S-40530, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 2012; 7:e39703. [PMID: 22808051 PMCID: PMC3392263 DOI: 10.1371/journal.pone.0039703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H(+) pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.
Collapse
|
19
|
Haruta M, Sussman MR. The effect of a genetically reduced plasma membrane protonmotive force on vegetative growth of Arabidopsis. PLANT PHYSIOLOGY 2012; 158:1158-71. [PMID: 22214817 PMCID: PMC3291248 DOI: 10.1104/pp.111.189167] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 05/19/2023]
Abstract
The plasma membrane proton gradient is an essential feature of plant cells. In Arabidopsis (Arabidopsis thaliana), this gradient is generated by the plasma membrane proton pump encoded by a family of 11 genes (abbreviated as AHA, for Arabidopsis H(+)-ATPase), of which AHA1 and AHA2 are the two most predominantly expressed in seedlings and adult plants. Although double knockdown mutant plants containing T-DNA insertions in both genes are embryonic lethal, under ideal laboratory growth conditions, single knockdown mutant plants with a 50% reduction in proton pump concentration complete their life cycle without any observable growth alteration. However, when grown under conditions that induce stress on the plasma membrane protonmotive force (PMF), such as high external potassium to reduce the electrical gradient or high external pH to reduce the proton chemical gradient, aha2 mutant plants show a growth retardation compared with wild-type plants. In this report, we describe the results of studies that examine in greater detail AHA2's specific role in maintaining the PMF during seedling growth. By comparing the wild type and aha2 mutants, we have measured the effects of a reduced PMF on root and hypocotyl growth, ATP-induced skewed root growth, and rapid cytoplasmic calcium spiking. In addition, genome-wide gene expression profiling revealed the up-regulation of potassium transporters in aha2 mutants, indicating, as predicted, a close link between the PMF and potassium uptake at the plasma membrane. Overall, this characterization of aha2 mutants provides an experimental and theoretical framework for investigating growth and signaling processes that are mediated by PMF-coupled energetics at the cell membrane.
Collapse
|
20
|
|
21
|
Orij R, Brul S, Smits GJ. Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta Gen Subj 2011; 1810:933-44. [PMID: 21421024 DOI: 10.1016/j.bbagen.2011.03.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nearly all processes in living cells are pH dependent, which is why intracellular pH (pH(i)) is a tightly regulated physiological parameter in all cellular systems. However, in microbes such as yeast, pH(i) responds to extracellular conditions such as the availability of nutrients. This raises the question of how pH(i) dynamics affect cellular function. SCOPE OF REVIEW We discuss the control of pH(i,) and the regulation of processes by pH(i), focusing on the model organism Saccharomyces cerevisiae. We aim to dissect the effects of pH(i) on various aspects of cell physiology, which are often intertwined. Our goal is to provide a broad overview of how pH(i) is controlled in yeast, and how pH(i) in turn controls physiology, in the context of both general cellular functioning as well as of cellular decision making upon changes in the cell's environment. MAJOR CONCLUSIONS Besides a better understanding of the regulation of pH(i), evidence for a signaling role of pH(i) is accumulating. We conclude that pH(i) responds to nutritional cues and relays this information to alter cellular make-up and physiology. The physicochemical properties of pH allow the signal to be fast, and affect multiple regulatory levels simultaneously. GENERAL SIGNIFICANCE The mechanisms for regulation of processes by pH(i) are tightly linked to the molecules that are part of all living cells, and the biophysical properties of the signal are universal amongst all living organisms, and similar types of regulation are suggested in mammals. Therefore, dynamic control of cellular decision making by pH(i) is therefore likely a general trait. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Rick Orij
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands.
| | | | | |
Collapse
|
22
|
Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. BIORESOURCE TECHNOLOGY 2011; 102:3020-7. [PMID: 20980141 DOI: 10.1016/j.biortech.2010.09.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 05/13/2023]
Abstract
In this study, a systemic analysis was initially performed to investigate the relationship between fermentation-related stress tolerances and ethanol yield. Based on the results obtained, two elite Saccharomyces cerevisiae strains, Z8 and Z15, with variant phenotypes were chosen to construct strains with improved multi-stress tolerance by genome shuffling in combination with optimized initial selection. After three rounds of genome shuffling, a shuffled strain, YZ1, which surpasses its parent strains in osmotic, heat, and acid tolerances, was obtained. Ethanol yields of YZ1 were 3.11%, 10.31%, and 10.55% higher than those of its parent strains under regular, increased heat, and high gravity fermentation conditions, respectively. YZ1 was applied to bioethanol production at an industrial scale. Results demonstrated that the variant phenotypes from available yeast strains could be used as parent stock for yeast breeding and that the genome shuffling approach is sufficiently powerful in combining suitable phenotypes in a single strain.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maresová L, Hosková B, Urbánková E, Chaloupka R, Sychrová H. New applications of pHluorin--measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 2010; 27:317-25. [PMID: 20148390 DOI: 10.1002/yea.1755] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
pHluorin is a pH-sensitive variant of green fluorescent protein for measuring intracellular pH (pH(in)) in living cells. We constructed a new pHluorin plasmid with the dominant selection marker KanMX. This plasmid allows pH measurements in cells without auxotrophic mutations and/or grown in chemically indefinite media. We observed differing values of pH(in) for three prototrophic wild-types. The new construct was also used to determine the pH(in) in strains differing in the activity of the plasma membrane Pma1 H(+)-ATPase and the influence of glucose on pH(in). We describe in detail pHluorin measurements performed in a microplate reader, which require much less hands-on time and much lower cell culture volumes compared to standard cuvettes measurements. We also utilized pHluorin in a new method of measuring the buffering capacity of yeast cell cytosol in vivo, shown to be ca. 52 mM/pH for wild-type yeast and moderately decreased in mutants with affected potassium transport.
Collapse
Affiliation(s)
- Lydie Maresová
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Teixeira MC, Raposo LR, Palma M, Sá-Correia I. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:201-10. [PMID: 20210661 DOI: 10.1089/omi.2009.0149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemogenomics, the study of genomic responses to chemical compounds, has the potential to elucidate the basis of cellular resistance to those chemicals. This knowledge can be applied to improve the performance of strains of industrial interest. In this study, a collection of approximately 5,000 haploid single deletion mutants of Saccharomyces cerevisiae in which each nonessential yeast gene was individually deleted, was screened for strains with increased susceptibility toward stress induced by high-glucose concentration (30% w/v), one of the main stresses occurring during industrial alcoholic fermentation processes aiming the production of alcoholic beverages or bio-ethanol. Forty-four determinants of resistance to high-glucose stress were identified. The most significant Gene Ontology (GO) terms enriched in this dataset are vacuolar organization, late endosome to vacuole transport, and regulation of transcription. Clustering the identified resistance determinants by their known physical and genetic interactions further highlighted the importance of nutrient metabolism control in this context. A concentration of 30% (w/v) of glucose was found to perturb vacuolar function, by reducing cell ability to maintain the physiological acidification of the vacuolar lumen. This stress also affects the active rate of proton efflux through the plasma membrane. Based on results of published studies, the present work revealed shared determinants of yeast resistance to high-glucose and ethanol stresses, including genes involved in vacuolar function, cell wall biogenesis (ANP1), and in the transcriptional control of nutrient metabolism (GCN4 and GCR1), with possible impact on the design of more robust strains to be used in industrial alcoholic fermentation processes.
Collapse
Affiliation(s)
- Miguel C Teixeira
- IBB-Institute for Biotechnology and BioEngineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | |
Collapse
|
25
|
|
26
|
Kinclova-Zimmermannova O, Gaskova D, Sychrova H. The Na+,K+/H+-antiporter Nha1 influences the plasma membrane potential ofSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:792-800. [PMID: 16879429 DOI: 10.1111/j.1567-1364.2006.00062.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.
Collapse
|
27
|
Thornton G, Wilkinson CRM, Toone WM, Jones N. A novel pathway determining multidrug sensitivity in Schizosaccharomyces pombe. Genes Cells 2005; 10:941-51. [PMID: 16164595 DOI: 10.1111/j.1365-2443.2005.00891.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S. cerevisiae, and previous evidence indicates that these kinases positively regulate the major potassium transporter Trk1,2 and thereby maintain the plasma membrane potential. Disruption of this ion homeostasis pathway results in a hyperpolarized membrane and a concomitant increased sensitivity to cations. We demonstrate that a mutation in hal4+ results in hyperpolarization of the plasma membrane. In addition to the original selection agent, the hal4-1 mutant is sensitive to a variety of chemotherapeutic agents and stress-inducing compounds. Furthermore, this wider chemosensitive phenotype is also displayed by corresponding mutants in S. cerevisiae, and in a trk1deltatrk2delta double deletion mutant in S. pombe. We propose that this pathway and its role in regulating the plasma membrane potential may act as a pleiotropic determinant of sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Gemma Thornton
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | |
Collapse
|
28
|
Gatti X, de Bettignies G, Claret S, Doignon F, Crouzet M, Thoraval D. RGD1, encoding a RhoGAP involved in low-pH survival, is an Msn2p/Msn4p regulated gene in Saccharomyces cerevisiae. Gene 2005; 351:159-69. [PMID: 15922872 DOI: 10.1016/j.gene.2005.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 02/14/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant. Transcriptional regulation of RGD1 was studied in several stress conditions and we observed an activation of RGD1 transcription at low pH and after heat and oxidative shocks. The transcription level at low pH and after heat shock was demonstrated to depend on the STRE box located in the RGD1 promoter. The general stress-activated transcription factors Msn2p and Msn4p as well as the HOG pathway were shown to mainly act on the basal RGD1 transcriptional level in normal and stress conditions.
Collapse
Affiliation(s)
- Xavier Gatti
- Laboratoire de Biologie Moléculaire et de Séquençage, Institut de Biochimie et Génétique Cellulaires, UMR Université Victor Segalen Bordeaux 2-CNRS 5095, France
| | | | | | | | | | | |
Collapse
|
29
|
Kinclová-Zimmermannová O, Flegelová H, Sychrová H. Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters. Folia Microbiol (Praha) 2005; 49:519-25. [PMID: 15702539 DOI: 10.1007/bf02931527] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A triple mutant strain of Saccharomyces cerevisiae lacking its own Na+-ATPases and Na+/H+ antiporters (enal-4delta nha1delta nhx1delta) was used for the expression of the Oryza sativa NHX1 gene encoding a putative vacuolar Na+/H+ exchanger. Upon expression in yeast cells, the OsNhx 1p is not a transport system specific only for sodium cations but it has a broad substrate specificity for at least four alkali metal cations (Na+, Li+, K+ and Rb+) and is able to substitute for the endogenous yeast ScNhx1 antiporter. Its activity contributes to sequestration of alkali metal cations in intracellular vesicles.
Collapse
|
30
|
Maresova L, Sychrova H. Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 2004; 55:588-600. [PMID: 15659172 DOI: 10.1111/j.1365-2958.2004.04410.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintenance of intracellular K+ homeostasis is one of the crucial requisites for the survival of yeast cells. In Saccharomyces cerevisiae, the high K+ content corresponds to a steady state between simultaneous influx and efflux across the plasma membrane. One of the transporters formerly believed to extrude K+ from the yeast cells (besides Ena1-4p and Nha1p) was named Kha1p and presumed as a putative plasma membrane K+/H+ antiporter. We prepared kha1 and tok1-kha1 deletion strains in the B31 and MAB 2d background. Both the strains contain the ena1-4 and nha1 deletions; that means they lack the main active sodium and potassium efflux systems. MAB 2d has additional trk1 and trk2 deletions, i.e. is impaired in active K+ uptake as well. We performed a large physiological study with these strains to specify the phenotype of kha1 deletion. In our experiments, no difference in K+ content or efflux was observed in strains lacking the KHA1 gene compared with control strains. Two main phenotype manifestations of the kha1 deletion were growth defect on high external pH and hygromycin sensitivity. The correlation between these phenotypes and the kha1 deletion was confirmed by plasmid complementation. Fluorescence microscopy of green fluorescent protein (GFP)-tagged Kha1p showed that this antiporter is localized preferentially intracellularly (in contrast to the plasma membrane Na+/H+ antiporter Nha1p). Based on these findings, Kha1p is probably not localized in plasma membrane and does not mediate efflux of alkali metal cations from cells, but is important for the regulation of intracellular cation homeostasis and optimal pH control, similarly as the Nhx1p.
Collapse
Affiliation(s)
- Lydie Maresova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
31
|
Marín-Manzano MC, Rodríguez-Rosales MP, Belver A, Donaire JP, Venema K. Heterologously expressed protein phosphatase calcineurin downregulates plant plasma membrane H+-ATPase activity at the post-translational level. FEBS Lett 2004; 576:266-70. [PMID: 15474049 DOI: 10.1016/j.febslet.2004.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/04/2004] [Accepted: 09/04/2004] [Indexed: 11/23/2022]
Abstract
To investigate the effects of calcineurin expression on cellular ion homeostasis in plants, we have obtained a transgenic cell culture of tomato, expressing constitutively activated yeast calcineurin. Transgenic cells exhibited reduced growth rates and proton extrusion activity in vivo. We show that reduction of plasma membrane H+-ATPase activity by expression of calcineurin is the basis for the observed phenotypes. Transgenic calli and cell suspensions displayed also increased salt tolerance and contained slightly higher Ca2+ and K+ levels. This demonstrates that calcineurin can modulate ion homeostasis in plants as it does in yeast by affecting the activity of primary ion transporters.
Collapse
Affiliation(s)
- Mari Carmen Marín-Manzano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Apartado 419, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
32
|
Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b100196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
33
|
Mehlgarten C, Schaffrath R. After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 2004; 6:569-80. [PMID: 15104597 DOI: 10.1111/j.1462-5822.2004.00383.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | |
Collapse
|
34
|
Lisman Q, Urli-Stam D, Holthuis JCM. HOR7, a multicopy suppressor of the Ca2+-induced growth defect in sphingolipid mannosyltransferase-deficient yeast. J Biol Chem 2004; 279:36390-6. [PMID: 15208314 DOI: 10.1074/jbc.m406197200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast mutants defective in sphingolipid mannosylation accumulate inositol phosphorylceramide C (IPC-C), which renders cells Ca(2+)-sensitive. A screen for loss of function suppressors of the Ca(2+)-sensitive phenotype previously led to the identification of numerous genes involved in IPC-C synthesis. To better understand the molecular basis of the Ca(2+)-induced growth defect in IPC-C-overaccumulating cells, we searched for genes whose overexpression restored Ca(2+) tolerance in a mutant lacking the IPC mannosyltransferases Csg1p and Csh1p. Here we report the isolation of HOR7 as a multicopy suppressor of the Ca(2+)-sensitive phenotype of Deltacsg1Deltacsh1 cells. HOR7 belongs to a group of hyperosmolarity-responsive genes and encodes a small (59-residue) type I membrane protein that localizes at the plasma membrane. Hor7p is not required for high Ca(2+) or Na(+) tolerance. Instead, we find that Hor7p-overproducing cells display an increased resistance to high salt, sensitivity to low pH, and a reduced uptake of methylammonium, an indicator of the plasma membrane potential. These phenotypes are induced through a mechanism independent of the plasma membrane H(+)-ATPase, Pma1p. Our findings suggest that induction of Hor7p causes a depolarization of the plasma membrane that may counteract a Ca(2+)-induced influx of toxic cations in IPC-C-overaccumulating cells.
Collapse
Affiliation(s)
- Quirine Lisman
- Department of Membrane Enzymology, Faculty of Chemistry, Utrecht University, H.R. Kruytgebouw N605, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
35
|
Mercier RW, Rabinowitz NM, Ali R, Gaxiola RA, Berkowitz GA. Yeast hygromycin sensitivity as a functional assay of cyclic nucleotide gated cation channels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:529-536. [PMID: 15246066 DOI: 10.1016/j.plaphy.2004.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 04/05/2004] [Indexed: 05/24/2023]
Abstract
Cyclic nucleotide gated cation channels (CNGCs) are a large (20 genes in Arabidopsis thaliana) family of plant ligand gated (i.e. cyclic nucleotides activate currents) ion channels, however, little is known about their functional properties. One reason for this is the recalcitrance of plant CNGC expression in heterologous systems amenable to patch clamp studies. Here, we show results demonstrating the efficacy of using growth of a K+ uptake-deficient yeast (trk1,2) as a functional assay of CNGCs as inwardly-conducting cell membrane cation (K+) transporters. Prior work demonstrated that trk1,2 is hypersensitive to the antibiotic hygromycin (hyg) and that expression of an inwardly conducting K+ transporter suppresses hyg hypersensitivity. We find that increasing [hyg] in solid YPD medium inhibits trk1,2 growth around a filter disk saturated with 3 M K+. Northern analysis indicated that message is transcribed in trk1,2 transformed with the CNGC coding sequences. Confocal imaging of yeast expressing CNGC-fluorescent fusion proteins indicated channel targeting to the cell membrane. Trk1,2 expressing several plant CNGCs grown in the presence of hyg demonstrated (a) greater growth than trk1,2 transformed with empty plasmid, and (b) enhanced growth when cAMP was added to the medium. Alternatively, cAMP inhibited growth of yeast transformed with either the empty plasmid, or the plant K+ channel KAT1; this channel is not a CNGC. Growth of trk1,2 was dependent on filter disk [K+]; suggesting that complementation of hyg hypersensitivity due to presence of a functional plant CNGC was dependent on K+ movement into the cytosol. We conclude that plant CNGC functional characterization can be facilitated by this assay system.
Collapse
Affiliation(s)
- Richard W Mercier
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | | | | | | | | |
Collapse
|
36
|
Aviezer-Hagai K, Padler-Karavani V, Nelson N. Biochemical support for the V-ATPase rotary mechanism: antibody against HA-tagged Vma7p or Vma16p but not Vma10p inhibits activity. J Exp Biol 2003; 206:3227-37. [PMID: 12909704 DOI: 10.1242/jeb.00543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
V-ATPase null mutants in yeast have a distinct, conditionally lethal phenotype that can be obtained through disruption of any one of its subunits. This enables supplementation of this mutant with the relevant subunit tagged with an epitope against which an antibody is available. In this system, the effect of antibody on the activity of the enzyme can be analyzed. Towards this end we used HA to tag subunits Vma7p, Vma10p and Vma16p, which are assumed to represent, respectively, the shaft, stator and turbine of the enzyme, and used them to supplement the corresponding yeast V-ATPase null mutants. The anti-HA epitope antibody inhibited both the ATP-dependent proton uptake and the ATPase activities of the Vma16p-HA and Vma7p-HA containing complexes, in intact vacuoles and in the detergent-solubilized enzyme. Neither of these activities was inhibited by the antibody in Vma10p-HA containing enzyme. These results support the function of Vma10p as part of the stator, while the other tagged subunits are part of the rotor apparatus. The HA-tag was attached to the N terminus of Vma16p; thus the antibody inhibition points to its accessibility outside the vacuolar membrane. This assumption is supported by the supplementation of the yeast mutant by the homologues of Vma16p isolated from Arabidopsis thaliana and lemon fruit c-DNA. Contrary to yeast, which has five predicted helices, the plant subunit Vma16p has only four. Our results confirm a recent report that only four of the yeast Vma16p complexes are actually transmembrane helices.
Collapse
Affiliation(s)
- Keren Aviezer-Hagai
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
37
|
Wloch DM, Szafraniec K, Borts RH, Korona R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 2001; 159:441-52. [PMID: 11606524 PMCID: PMC1461830 DOI: 10.1093/genetics/159.2.441] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estimates of the rate and frequency distribution of deleterious effects were obtained for the first time by direct scoring and characterization of individual mutations. This was achieved by applying tetrad analysis to a large number of yeast clones. The genomic rate of spontaneous mutation deleterious to a basic fitness-related trait, that of growth rate, was U = 1.1 x 10(-3) per diploid cell division. Extrapolated to the fruit fly and humans, the per generation rate would be 0.074 and 0.92, respectively. This is likely to be an underestimate because single mutations with selection coefficients s < 0.01 could not be detected. The distribution of s > or = 0.01 was studied both for spontaneous and induced mutations. The latter were induced by ethyl methanesulfonate (EMS) or resulted from defective mismatch repair. Lethal changes accounted for approximately 30-40% of the scored mutations. The mean s of nonlethal mutations was fairly high, but most frequently its value was between 0.01 and 0.05. Although the rate and distribution of very small effects could not be determined, the joint share of such mutations in decreasing average fitness was probably no larger than approximately 1%.
Collapse
Affiliation(s)
- D M Wloch
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | | | | | | |
Collapse
|
38
|
Martínez de Marañón I, Tourdot-Marechal R, Gervais P. Involvement of osmotic cell shrinkage on the proton extrusion rate in Saccharomyces cerevisiae. Int J Food Microbiol 2001; 67:241-6. [PMID: 11518433 DOI: 10.1016/s0168-1605(01)00459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Saccharomyces cerevisiae has been subjected to hyperosmotic shocks by using permeating (sorbitol, xylitol, glycerol, NaCl) and nonpermeating (PEG 600) solutes. The proton extrusion rate decreased as the osmotic pressure increased, whichever solute was used. However, the total inhibition of the cellular H+ extrusion depended on the solute used. A total inhibition was observed at about 20 MPa with glycerol, xylitol and sorbitol. With PEG 600, a total inhibition of extracellular acidification was obtained at 8.5 MPa. NaCl, with an extracellular pressure of 37.8 MPa (near saturation), did not completely inhibit the extracellular acidification. These results showed that the total inhibition of proton extrusion, involving probably the membrane H+-ATPase. was not correlated to the hydric state of the external medium but was strictly linked to the degree of permeation of solutes across the plasma membrane. The extracellular acidification was totally inhibited by a critical final cell volume reached after the osmotic shrinkage, whichever solute was used. This critical final cell volume represented 50% of the initial cell volume. This result suggests that the final cell volume reached after an osmotic stress represents a key thermodynamic parameter for cell osmoregulation in which H+-ATPase would be implicated.
Collapse
Affiliation(s)
- I Martínez de Marañón
- Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, ENSBANA, Dijon, France
| | | | | |
Collapse
|
39
|
Soteropoulos P, Valiakhmetov A, Kashiwazaki R, Perlin DS. Helical stalk segments S4 and S5 of the plasma membrane H+-ATPase from Saccharomyces cerevisiae are optimized to impact catalytic site environment. J Biol Chem 2001; 276:16265-70. [PMID: 11278840 DOI: 10.1074/jbc.m011115200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stalk segments of P-type ion-translocating enzymes are presumed to play important roles in energy coupling. In this work, stalk segments S4 and S5 of the yeast H(+)-ATPase were examined for helical character, optimal length, and segment orientation by a combination of proline substitution, insertion/deletion mutagenesis, and second-site suppressor analyses. The substitution of various residues for helix-disrupting proline in both S4 (L353P,L353G; A354P; and G371P) and S5 (D676P and I684P) resulted in highly defective or inactive enzymes supporting the importance of helical character and/or the maintenance of essential interactions. The contiguous helical nature of transmembrane segment M5 and stalk element S5 was explored and found to be favorable, although not essential. The deletion or addition of one or more amino acids at positions Ala(354) in S4 and Asp(676) in S5, which were intended to either rotate helical faces or extend/reduce the length of helical segments, resulted in enzyme destabilization that abolished most enzyme assembly. Second-site suppressor mutations were obtained to primary site mutations G371A (S4) and D676G (S5) and were analyzed with a molecular structure model of the H(+)-ATPase. Primary site mutations were predicted to alter the site of phosphorylation either directly or indirectly. The suppressor mutations either directly changed packing around the primary site or altered the environment of the site of phosphorylation. Overall, these data support the view that stalk segments S4 and S5 of the H(+)-ATPase are helical elements that are optimized for length and interactions with other stalk elements and can influence the phosphorylation domain.
Collapse
Affiliation(s)
- P Soteropoulos
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
40
|
Szafraniec K, Borts RH, Korona R. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98:1107-12. [PMID: 11158602 PMCID: PMC14716 DOI: 10.1073/pnas.98.3.1107] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The negative effect of permanent contamination of populations because of spontaneous mutations does not appear to be very high if judged from the relatively good health of humans or many wild and domesticated species. This is partly explained by the fact that, in diploids, the new mutations are usually located in heterozygous loci and therefore are masked by wild-type alleles. The expression of mutations at the phenotypic level may also strongly depend on environmental factors if, for example, deleterious alleles are more easily compensated under favorable conditions. The present experiment uses diploid strains of yeast in which mutations arise at high rates because a mismatch-repair protein is missing. This mutagenesis resulted in a number of new alleles that were in heterozygous loci. They had no detectable effect on fitness when the environment was benign. A very different outcome was seen when thermal shock was applied, where fitness of the mutation-contaminated clones was lower and more diverse than that of the nonmutagenized clones. This shows that the genetic load conferred by spontaneous mutations can be underestimated or even overlooked in favorable conditions. Therefore, genetic variation can be higher and natural selection more intense when environmental conditions are getting poorer. These conclusions apply, at least, to that component of variation that directly originates from spontaneous mutations (as opposed to the variation resulting from the history of selection).
Collapse
Affiliation(s)
- K Szafraniec
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
| | | | | |
Collapse
|
41
|
Lamb TM, Xu W, Diamond A, Mitchell AP. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 2001; 276:1850-6. [PMID: 11050096 DOI: 10.1074/jbc.m008381200] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Environmental pH exerts broad control over growth and differentiation, but the molecular responses to external pH changes are poorly understood. Here we have used open reading frame macroarray hybridization to identify alkaline response genes in Saccharomyces cerevisiae. Northern or lacZ fusion assays confirmed the alkaline induction of two ion pump genes (ENA1 and VMA4), several ion limitation genes (CTR3, FRE1, PHO11/12, and PHO84), a siderophore-iron transporter gene (ARN4/ENB1), two transcription factor genes (NRG2 and TIS11), and two predicted membrane protein genes (YAR068W/YHR214W and YOL154W). Unlike ENA1 and SHC1, these new alkaline response genes are not induced by high salinity. The known pH-responsive genes in other fungi depend on the conserved PacC/Rim101p transcription factor, but induction of several of these new genes relied upon Rim101p-independent pH signaling mechanisms. Rim101p-dependent genes were also dependent on Rim13p, a protease required for Rim101p processing. The Rim101p-dependent gene VMA4 is required for growth in alkaline conditions, illustrating how Rim101p may control adaptation. Because Rim101p activates ion pump genes, we tested the role of RIM101 in ion homeostasis and found that RIM101 promotes resistance to elevated cation concentrations. Thus, gene expression surveys can reveal new functions for characterized transcription factors in addition to uncovering physiological responses to environmental conditions.
Collapse
Affiliation(s)
- T M Lamb
- Department of Microbiology, the Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
42
|
Perzov N, Nelson H, Nelson N. Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem 2000; 275:40088-95. [PMID: 11007788 DOI: 10.1074/jbc.m007011200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of vacuolar H(+)-ATPase (V-ATPase) null mutations on the targeting of the plasma membrane H(+)-ATPase (Pma1p) through the secretory pathway was analyzed. Gas1p, which is another plasma membrane component, was used as a control for the experiments with Pma1p. Contrary to Gas1p, which is not affected by the deletion of the V-ATPase complex in the V-ATPase null mutants, the amount of Pma1p in the plasma membrane is markedly reduced, and there is a large accumulation of the protein in the endoplasmic reticulum. Kex2p and Gef1p, which are considered to reside in the post-Golgi vesicles, were suggested as required for the V-ATPase function; hence, their null mutant phenotype should have been similar to the V-ATPase null mutants. We show that, in addition to the known differences between those yeast phenotypes, deletions of KEX2 or GEF1 in yeast do not affect the distribution of Pma1p as the V-ATPase null mutant does. The possible location of the vital site of acidification by V-ATPase along the secretory pathway is discussed.
Collapse
Affiliation(s)
- N Perzov
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
43
|
de la Fuente N, Portillo F. The cell wall integrity/remodeling MAPK cascade is involved in glucose activation of the yeast plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:189-94. [PMID: 11118530 DOI: 10.1016/s0005-2736(00)00293-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucose triggers transcriptional and post-transcriptional mechanisms that increase the amount and the activity of Saccharomyces cerevisiae plasma membrane H(+)-ATPase. In a previous study, we found that a mutation in the Rsp5 ubiquitin-protein ligase enzyme affected the post-transcriptional activation of the enzyme by glucose. Mutations at the RSP5 locus alter the glucose-triggered K(m) decrease. In a genetic screening for multicopy suppressors of the rsp5 mutation, we identified the WSC2/YNL283c gene. Deletion of the WSC2 gene disturbs ATPase activation by glucose, abolishing the K(m) decrease that occurs during this process. Wsc2 is a component of the PKC1-MPK1 mitogen-activated protein kinase (MAPK) signaling pathway that controls the cell wall integrity. Deletion of the MPK1/SLT2 gene disturbs the glucose-triggered K(m) decrease in ATPase.
Collapse
Affiliation(s)
- N de la Fuente
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, E-28029, Madrid, Spain
| | | |
Collapse
|
44
|
Morsomme P, Slayman CW, Goffeau A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:133-57. [PMID: 11063881 DOI: 10.1016/s0304-4157(00)00015-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgium
| | | | | |
Collapse
|
45
|
Abstract
The alpha and beta subunits of the amiloride-sensitive rat epithelial sodium channel (alpha beta ENaC) were expressed in the yeast Saccharomyces cerevisiae. We used a combination of yeast strains, including a mutant in the secretory pathway (sec6), and Western blotting techniques, to show that alpha beta ENaC was synthesized and targeted through the secretory system to the plasma membrane. Yeasts expressing alpha beta ENaC were more sensitive to salt than the parent strain. In addition, amiloride, a specific blocker of ENaC, was found to suppress salt sensitivity in the yeast strain expressing alpha beta ENaC.
Collapse
Affiliation(s)
- S S Gupta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
46
|
Kamińska J, Tobiasz A, Gniewosz M, Zoładek T. The growth of mdp1/rsp5 mutants of Saccharomyces cerevisiae is affected by mutations in the ATP-binding domain of the plasma membrane H+ -ATPase. Gene 2000; 242:133-40. [PMID: 10721705 DOI: 10.1016/s0378-1119(99)00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in the PMA1 gene, encoding plasma membrane H+ -ATPase, were isolated that are able to suppress the temperature sensitivity (ts) phenotype of mdp1 mutations located in RSP5, the ubiquitin-protein ligase gene. The mdp1 mutants were previously found to change the mitochondrial/cytosolic distribution of Mod5p-I, the tRNA modifying enzyme, and to affect fluid phase endocytosis. The data presented reveal that mdp1 mutants are also pH sensitive, and hypersensitive to hygromycin B and paromomycin. The ts phenotype, hygromycin B and paromomycin sensitivity are suppressed by pmal-t, but the pH sensitivity, the effect of mdp1 on Mod5p-I cytoplasmic/mitochondrial localization and endocytosis are not. Characterization of pmal-t revealed the substitution of amino acid G(653)V in the ATP-binding domain of the H+ -ATPase. Our results indicate that Rsp5 ubiquitin-protein ligase may also influence, in addition to protein distribution, the functioning of plasma membrane H+ -ATPase and the response of cells to stress.
Collapse
Affiliation(s)
- J Kamińska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|
47
|
Shen B, Hohmann S, Jensen RG, Bohnert AH. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. PLANT PHYSIOLOGY 1999; 121:45-52. [PMID: 10482659 PMCID: PMC59388 DOI: 10.1104/pp.121.1.45] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/1999] [Accepted: 05/14/1999] [Indexed: 05/18/2023]
Abstract
For many organisms there is a correlation between increases of metabolites and osmotic stress tolerance, but the mechanisms that cause this protection are not clear. To understand the role of polyols, genes for bacterial mannitol-1-P dehydrogenase and apple sorbitol-6-P dehydrogenase were introduced into a Saccharomyces cerevisiae mutant deficient in glycerol synthesis. Sorbitol and mannitol provided some protection, but less than that generated by a similar concentration of glycerol generated by glycerol-3-P dehydrogenase (GPD1). Reduced protection by polyols suggested that glycerol had specific functions for which mannitol and sorbitol could not substitute, and that the absolute amount of the accumulating osmoticum might not be crucial. The retention of glycerol and mannitol/sorbitol, respectively, was a major difference. During salt stress, cells retained more of the six-carbon polyols than glycerol. We suggest that the loss of >98% of the glycerol synthesized could provide a safety valve that dissipates reducing power, while a similar high intracellular concentration of retained polyols would be less protective. To understand the role of glycerol in salt tolerance, salt-tolerant suppressor mutants were isolated from the glycerol-deficient strain. One mutant, sr13, partially suppressed the salt-sensitive phenotype of the glycerol-deficient line, probably due to a doubling of [K(+)] accumulating during stress. We compare these results to the "osmotic adjustment" concept typically applied to accumulating metabolites in plants. The accumulation of polyols may have dual functions: facilitating osmotic adjustment and supporting redox control.
Collapse
Affiliation(s)
- B Shen
- Department of Plant Sciences, The University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
48
|
Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA. LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 1999; 145:659-72. [PMID: 10330397 PMCID: PMC2133178 DOI: 10.1083/jcb.145.4.659] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1999] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, vesicles that carry proteins from the ER to the Golgi compartment are encapsulated by COPII coat proteins. We identified mutations in ten genes, designated LST (lethal with sec-thirteen), that were lethal in combination with the COPII mutation sec13-1. LST1 showed synthetic-lethal interactions with the complete set of COPII genes, indicating that LST1 encodes a new COPII function. LST1 codes for a protein similar in sequence to the COPII subunit Sec24p. Like Sec24p, Lst1p is a peripheral ER membrane protein that binds to the COPII subunit Sec23p. Chromosomal deletion of LST1 is not lethal, but inhibits transport of the plasma membrane proton-ATPase (Pma1p) to the cell surface, causing poor growth on media of low pH. Localization by both immunofluorescence microscopy and cell fractionation shows that the export of Pma1p from the ER is impaired in lst1Delta mutants. Transport of other proteins from the ER was not affected by lst1Delta, nor was Pma1p transport found to be particularly sensitive to other COPII defects. Together, these findings suggest that a specialized form of the COPII coat subunit, with Lst1p in place of Sec24p, is used for the efficient packaging of Pma1p into vesicles derived from the ER.
Collapse
Affiliation(s)
- K J Roberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
49
|
Luo H, Morsomme P, Boutry M. The two major types of plant plasma membrane H+-ATPases show different enzymatic properties and confer differential pH sensitivity of yeast growth. PLANT PHYSIOLOGY 1999; 119:627-34. [PMID: 9952459 PMCID: PMC32140 DOI: 10.1104/pp.119.2.627] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/1998] [Accepted: 11/11/1998] [Indexed: 05/21/2023]
Abstract
The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thinès, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 23828-23837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.6-6.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 microgram/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.
Collapse
Affiliation(s)
- H Luo
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
50
|
Korona R. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics 1999; 151:77-85. [PMID: 9872949 PMCID: PMC1460445 DOI: 10.1093/genetics/151.1.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutator strains of yeast were used to accumulate random point mutations. Most of the observed changes in fitness were negative and relatively small, although major decreases and increases were also present. The average fitness of haploid strains was lowered by approximately 25% due to the accumulated genetic load. The impact of the load remained basically unchanged when a homozygous diploid was compared with the haploid from which it was derived. In other experiments a heterozygous diploid was compared with the two different loaded haploids from which it was obtained. The fitness of such a loaded diploid was much less reduced and did not correlate with the average fitness of the two haploids. There was a fitness correlation, however, when genetically related heterozygous diploids were compared, indicating that the fitness effects of the new alleles were not entirely lost in the heterozygotes. It is argued here that to explain the observed pattern of fitness transitions it is necessary to invoke nonadditive genetic interactions that go beyond the uniform masking effect of wild-type alleles. Thus, the results gathered with haploids and homozygotes should be extrapolated to heterozygotes with caution when multiple loci contribute to the genetic load.
Collapse
Affiliation(s)
- R Korona
- Institute of Environmental Biology, Jagiellonian University, 30-060 Krakow, Poland.
| |
Collapse
|