1
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
2
|
Lan X, Field MS, Stover PJ. Cell cycle regulation of folate-mediated one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1426. [PMID: 29889360 PMCID: PMC11875019 DOI: 10.1002/wsbm.1426] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
Folate-mediated one-carbon metabolism (FOCM) comprises a network of interconnected folate-dependent metabolic pathways responsible for serine and glycine interconversion, de novo purine synthesis, de novo thymidylate synthesis and homocysteine remethylation to methionine. These pathways are compartmentalized in the cytosol, nucleus and mitochondria. Individual enzymes within the FOCM network compete for folate cofactors because intracellular folate concentrations are limiting. Although there are feedback mechanisms that regulate the partitioning of folate cofactors among the folate-dependent pathways, less recognized is the impact of cell cycle regulation on FOCM. This review summarizes the evidence for temporal regulation of expression, activity and cellular localization of enzymes and pathways in the FOCM network in mammalian cells through the cell cycle. This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Xu Lan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
3
|
A defective dNTP pool hinders DNA replication in cell cycle-reactivated terminally differentiated muscle cells. Cell Death Differ 2017; 24:774-784. [PMID: 28186504 DOI: 10.1038/cdd.2017.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.
Collapse
|
4
|
Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion 2015; 22:96-118. [PMID: 25640959 DOI: 10.1016/j.mito.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing to our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well as other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without being intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40128 Bologna, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Abstract
Thymidine kinase 1 (TK 1-fetal) is a cell cycle-dependent marker that increases dramatically during the S-phase of the cell cycle. In this review, the authors discuss serum levels of thymidine kinase in a variety of neoplasias. Determination of thymidine kinase helps to monitor the follow-up of solid tumours and haematological malignancies as well as indicating the efficacy of adjuvant and palliative chemotherapy. Elevated levels of thymidine kinase must always be interpreted together with a detailed knowledge of the patient's condition because nonspecific elevations of serum levels (inflammatory and autoimmune diseases) must be excluded.
Collapse
Affiliation(s)
- Ondrej Topolcan
- Charles University Prague, Medical Faculty in Pilsen, Department of Nuclear Medicine, Faculty Hospital Pilsen, 13 Edwarda Benese, 305 99 Pilsen, Czech Republic +420 377402948 ; +420 377402454 ;
| | | |
Collapse
|
6
|
Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol 2011; 93:624-634. [PMID: 22158881 DOI: 10.1099/vir.0.039776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) capsids assemble in the nucleus but acquire their teguments from various cellular compartments. Unfortunately, little is known about their exact arrangement and when they coat the newly produced capsids. The complexity of the virions is further highlighted by our recent proteomics analysis that detected the presence of several novel or controversial components in extracellular HSV-1 virions. The present study probes the localization and linkage to the virus particles of some of these incorporated proteins. We confirm the recently reported tight association of infected cell polypeptide (ICP)0 with the capsid and show that this property extends to ICP4. We also confirm our proteomics data and show biochemically that UL7 and UL23 are indeed mature virion tegument components that, unlike ICP0 and ICP4, are salt-extractable. Interestingly, treatment with N-ethylmaleimide, which covalently modifies reduced cysteines, strongly prevented the release of UL7 and UL23 by salts, but did not perturb the interactions of ICP0 and ICP4 with the virus particles. This hitheir at distinct biochemical properties of the virion constituents and the selective implication of reduced cysteines in their organization and dynamics. Finally, the data revealed, by two independent means, the presence of ICP0 and ICP4 on intranuclear capsids, consistent with the possibility that they may at least partially be recruited to the virus particles early on. These findings add significantly to our understanding of HSV-1 virion assembly and to the debate about the incorporation of ICP0 and ICP4 in virus particles.
Collapse
Affiliation(s)
- Sandra Loret
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
7
|
Eguren M, Manchado E, Malumbres M. Non-mitotic functions of the Anaphase-Promoting Complex. Semin Cell Dev Biol 2011; 22:572-8. [PMID: 21439391 DOI: 10.1016/j.semcdb.2011.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/16/2011] [Indexed: 02/03/2023]
Abstract
The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase whose activation requires the binding of a cofactor, either Cdc20 or Cdh1. While APC/C-Cdc20 is a major player during mitotic exit, APC/C-Cdh1 plays a central role in maintaining quiescence and controlling the onset of DNA replication. In addition, APC/C-Cdh1 is essential for endoreduplication, a process in which several rounds of DNA synthesis occur without mitosis. Recent data suggest that the APC/C is also involved in differentiation and metabolism, and plays important roles in postmitotic cells such as neurons. Thus, the APC/C is not only critical for anaphase onset but also regulates many other cellular processes during G1/S or in quiescent cells.
Collapse
Affiliation(s)
- Manuel Eguren
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | |
Collapse
|
8
|
Dorado B, Area E, Akman HO, Hirano M. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation. Hum Mol Genet 2010; 20:155-64. [PMID: 20940150 PMCID: PMC3000681 DOI: 10.1093/hmg/ddq453] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.
Collapse
Affiliation(s)
- Beatriz Dorado
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
9
|
Origin of pyrimidine deoxyribonucleotide pools in perfused rat heart: implications for 3'-azido-3'-deoxythymidine-dependent cardiotoxicity. Biochem J 2009; 422:513-20. [PMID: 19558366 DOI: 10.1042/bj20082427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In adult non-replicating tissues such as heart, demand for dNTPs (deoxynucleoside triphosphates) is low but essential for mitochondrial DNA replication and nuclear DNA repair. dNTPs may be synthesized from salvage of deoxyribonucleosides or by reduction of ribonucleotides. We have hypothesized that the cardiac mitochondrial toxicity of the nucleoside analogue AZT (3'-azido-3'-deoxythymidine; known as zidovudine) is caused by inhibition of thymidine kinase 2 of the salvage pathway and subsequent TTP pool depletion. The extent to which this hypothesis has merit depends on how much the heart relies on thymidine phosphorylation for maintenance of the TTP pool. In the present study, we used isotopic tracing to demonstrate that both TTP and dCTP are solely synthesized by phosphorylation of thymidine and deoxycytidine respectively, with no evidence for synthesis from other precursors. We have also shown that UTP and CTP are synthesized by phosphorylation of uridine and cytidine respectively, with no detectable role for the de novo pyrimidine synthesis pathway. Lastly, we have demonstrated that AZT decreased the TTP pool by 50% in 30 min of perfusion, while having no effect on other dNTPs. In summary, the present study demonstrated that adult rat heart has a limited mechanism for dCTP and TTP synthesis and thus these pools may be more sensitive than replicating cells to drugs such as AZT that affect the salvage pathway.
Collapse
|
10
|
Chen YL, Lin DW, Chang ZF. Identification of a putative human mitochondrial thymidine monophosphate kinase associated with monocytic/macrophage terminal differentiation. Genes Cells 2008; 13:679-89. [PMID: 18498354 DOI: 10.1111/j.1365-2443.2008.01197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondrial DNA synthesis requires the supply of thymidine triphosphate (dTTP) independent of nuclear DNA replication. In resting and differentiating cells that withdraw from the cell cycle, mitochondrial thymidine kinase 2 (TK2) mediates thymidine monophosphate (dTMP) formation for the dTTP biosynthesis in mitochondria. However, a thymidine monophosphate kinase (TMPK) that phosphorylates dTMP to form thymidine diphosphate (dTDP) in mitochondria remains undefined. Here, we identified an expressed sequence tag cDNA, which encodes a TMPK with a mitochondrial import sequence at its N-terminus designated as TMPK2. HeLa cells expressing TMPK2 fused to green fluorescent protein (GFP) displayed green fluorescence in mitochondria. Over-expression of TMPK2 increased the steady-state level of cellular dTTP and promoted the conversion of radioactive labeled-thymidine and -dTMP to dTDP and dTTP in mitochondria. TMPK2 RNA was detected in several tissues and erythroblastoma cell lines. We also generated TMPK2 antibody and used it for immunofluorescence staining to demonstrate endogenous expression of TMPK2 in mitochondria of erythroblastoma cells. Finally, we showed that TMPK2 protein expression was upregulated in monocyte/macrophage differentiating cells, suggesting the coordinated regulation of TMPK2 expression with the terminal differentiation program.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | |
Collapse
|
11
|
Segura-Peña D, Lichter J, Trani M, Konrad M, Lavie A, Lutz S. Quaternary structure change as a mechanism for the regulation of thymidine kinase 1-like enzymes. Structure 2007; 15:1555-66. [PMID: 18073106 PMCID: PMC2180243 DOI: 10.1016/j.str.2007.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/21/2022]
Abstract
The human cytosolic thymidine kinase (TK) and structurally related TKs in prokaryotes play a crucial role in the synthesis and regulation of the cellular thymidine triphosphate pool. We report the crystal structures of the TK homotetramer from Thermotoga maritima in four different states: its apo-form, a binary complex with thymidine, as well as the ternary structures with the two substrates (thymidine/AppNHp) and the reaction products (TMP/ADP). In combination with fluorescence spectroscopy and mutagenesis experiments, our results demonstrate that ATP binding is linked to a substantial reorganization of the enzyme quaternary structure, leading to a transition from a closed, inactive conformation to an open, catalytic state. We hypothesize that these structural changes are relevant to enzyme function in situ as part of the catalytic cycle and serve an important role in regulating enzyme activity by amplifying the effects of feedback inhibitor binding.
Collapse
Affiliation(s)
- Dario Segura-Peña
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago IL 60607
| | - Joseph Lichter
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| | - Manuela Trani
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| | - Manfred Konrad
- Max-Planck-Institute for Biophysical Chemistry, D-37070, Göttingen, Germany
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago IL 60607
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322
| |
Collapse
|
12
|
Hu CM, Chang ZF. Mitotic control of dTTP pool: a necessity or coincidence? J Biomed Sci 2007; 14:491-7. [PMID: 17525869 DOI: 10.1007/s11373-007-9175-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022] Open
Abstract
The fidelity of DNA replication in eukaryotic cells requires a balanced dNTP supply in the S phase. During the cell cycle progression, the production of dTTP is highly regulated to coordinate with DNA replication. Intracellular thymidine is salvaged to dTTP by cytosolic thymidine kinase (TK1) and thymidylate kinase (TMPK), both of which expression increase in the G1/S transition and diminish in the mitotic phase via proteolytic destruction. Anaphase promoting complex/cyclosome (APC/C)-mediated ubiquitination targets TK1 and TMPK to undergo proteasomal degradation in mitosis, by which dTTP pool is minimized in the early G1 phase of the next cell cycle. In this review, we will focus on regulation of TK1 in the post-S phase and the importance of mitotic proteolysis in controlling dNTP balance, replication stress and genomic stability. Finally, we discuss how thymidine pool and oligomeric forms of TK1 can affect mitotic control of dTTP.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan
| | | |
Collapse
|
13
|
Nakamura Y, Ozaki T, Niizuma H, Ohira M, Kamijo T, Nakagawara A. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line. Biochem Biophys Res Commun 2007; 354:892-8. [PMID: 17276397 DOI: 10.1016/j.bbrc.2007.01.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 01/10/2023]
Abstract
p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53DeltaC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53DeltaC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain.
Collapse
Affiliation(s)
- Yohko Nakamura
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Ke PY, Hu CM, Chang YC, Chang ZF. Hiding human thymidine kinase 1 from APC/C-mediated destruction by thymidine binding. FASEB J 2007; 21:1276-84. [PMID: 17227951 DOI: 10.1096/fj.06-7272com] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thymidine kinase 1 (TK1) is a key cytosolic enzyme in the salvage pathway for dTTP synthesis. In mitotic exit, human TK1 (hTK1) is degraded via the anaphase-promoting complex/cyclosome (APC/C)-Cdh1 pathway to limit dTTP production. In this study, we show that thymidine binding stabilizes hTK1 during growth arrest. By in vitro degradation, ubiquitination, and Cdh1 binding analyses, we provide direct evidence that thymidine binding protects wild-type hTK1 protein from APC/C-Cdh1-mediated destruction. In contrast, mutant-type hTK1 protein defective in thymidine binding ability could still be polyubiquitinated by APC/C-Cdh1 in the presence of thymidine. These results suggest that the status of thymidine binding to hTK1 protein determines its susceptibility to degradation due to APC/C targeting. Our in vivo experimental data also demonstrated that thymidine treatment abolished Cdh1/proteasome-responsive suppression of hTK1 expression. Moreover, exposure of mitotic-arrested K562 cells to thymidine (100 microM) stabilized endogenous TK1, causing nucleotide imbalance in the early G1 phase and an increase of S phase accumulation. In conclusion, thymidine is not only a substrate of TK1 but also acts as its expression regulator by modulating its proteolytic control during mitotic exit, conferring a feed-forward regulation of dTTP formation.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
15
|
Dou QP. Lessons learned from Art Pardee in cell cycle, science, and life. J Cell Physiol 2006; 209:663-9. [PMID: 17001679 DOI: 10.1002/jcp.20800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This essay is written to honor Dr Art Pardee's 85th birthday (July 13, 2006). In this essay, I have summarized the lessons I learned from Art and the cell-cycle research I performed in Art's laboratory during my postdoctoral training period. I have also summarized some research from my own laboratory that has been inspired by the lessons I learned from Art, including the interactions between cell cycle and cell death regulators and discovery of novel polyphenol- and copper-based proteasome inhibitors. Finally, I have discussed the potential use of these proteasome inhibitors in cancer prevention and treatment.
Collapse
Affiliation(s)
- Q Ping Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, 4100 John R. Road, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
17
|
Batusic DS, Cimica V, Chen Y, Tron K, Hollemann T, Pieler T, Ramadori G. Identification of genes specific to “oval cells” in the rat 2-acetylaminofluorene/partial hepatectomy model. Histochem Cell Biol 2005; 124:245-60. [PMID: 16044259 DOI: 10.1007/s00418-005-0021-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2005] [Indexed: 01/01/2023]
Abstract
Under certain conditions liver regeneration can be accomplished by hepatic progenitor cells ("oval cells"). So far, only few factors have been identified to be uniquely regulated by the "oval cell" compartment. Using macroarray analysis in a rat model of oval cell proliferation (treatment with 2-acetylaminofluorene and partial hepatectomy, AAF + PH), we identified 12 differentially expressed genes compared to appropriate control models (AAF treatment and sham operation or AAF treatment alone). Further analysis in models of normal liver regeneration (ordinary PH) and acute phase response (turpentine oil-treated rats) revealed that three out of 12 genes (thymidine kinase 1, Jun-D and ADP-ribosylation factor 4) were not affected by the hepatic acute phase reaction but similarly overexpressed in both "oval cell"-dependant and normal liver regeneration. We characterized Jun-D and ADP-ribosylation factors as novel factors upregulated in oval cells and in non-parenchymal liver cells of normally regenerating livers. However, two out of 12 differentially expressed genes were specifically expressed in oval cells: ras-related protein Rab-3b and Ear-2. On protein level, Rab-3b was increased in total liver homogenates and demonstrated only in clusters of oval cells. We postulate that Ear-2 and Rab-3b may represent novel regulatory factors specifically activated in "oval cells".
Collapse
Affiliation(s)
- Danko S Batusic
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University, Göttingen, 37099, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
O'Day DH, Chatterjee-Chakraborty M, Wagler S, Myre MA. Isolation and characterization of Dictyostelium thymidine kinase 1 as a calmodulin-binding protein. Biochem Biophys Res Commun 2005; 331:1494-502. [PMID: 15883042 DOI: 10.1016/j.bbrc.2005.04.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 11/28/2022]
Abstract
Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada.
| | | | | | | |
Collapse
|
19
|
Li CL, Lu CY, Ke PY, Chang ZF. Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site. Biochem Biophys Res Commun 2004; 313:587-93. [PMID: 14697231 DOI: 10.1016/j.bbrc.2003.11.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human cytosolic thymidine kinase (TK1) is tightly regulated in the cell cycle by multiple mechanisms. Our laboratory has previously shown that in mitotic-arrested cells human TK1 is phosphorylated at serine-13, accompanied by a decrease in catalytic efficiency. In this study we investigated whether serine-13 phosphorylation regulated TK1 activity and found that substitution of serine-13 with aspartic acid (S13D), which mimics phosphorylation, not only diminished the ATP-activating effect on the enzyme, but also decreased its thymidine substrate affinity. Our experimental results further showed that the S13D mutation perturbed ATP-induced tetramerization of TK1. Given that the dimeric form of TK1 is less active than the tetrameric, we propose that mitotic phosphorylation of serine-13 is of physiological importance, in that it may counteract ATP-dependent activation of TK1 by affecting its quaternary structure, thus attenuating its enzymatic function at the G2/M phase.
Collapse
Affiliation(s)
- Chia-Lung Li
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No 1 Jen Ai Road First Section, Taipei, Taiwan ROC
| | | | | | | |
Collapse
|
20
|
Xu YH, Leonova T, Grabowski GA. Cell cycle dependent intracellular distribution of two spliced isoforms of TCP/ILF3 proteins. Mol Genet Metab 2003; 80:426-36. [PMID: 14654356 DOI: 10.1016/j.ymgme.2003.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TCP80 is an approximately 80kDa mammalian cytoplasmic protein that binds to a set of mRNAs and inhibits their translation in vitro and ex vivo. This protein has high sequence similarity to interleukin-2 enhancer-binding factors (NF90/ILF3) and the M-phase phosphoprotein (MPP4)/DRBP76. A 110kDa immunologic isoform of TCP80/NF90/MPP4/DRBP76, termed TCP110, also is present in cytoplasm and nuclei of many types of cells. A cDNA sequence coding for TCP110 was derived by 5(')RACE. The TCP110 sequence is identical to ILF3. The gene coding for TCP110/ILF3 mapped to human chromosome 19 and the gene organization was analyzed using TCP80 and TCP110/ILF3 cDNA sequences. The TCP/ILF3 gene spans >34.8kb and contains 21 exons. At least one alternatively spliced product involving exons 19-21 exists and predicts the formation of either TCP80 or TCP110/ILF3. However, the functional relationships of TCP80 and TCP110/ILF3 required elucidation. The metabolic turnover rates and subcellular distribution of TCP80 and TCP110/ILF3 during the cell cycle showed TCP80 to be relatively stable (t(1/2)=5 days) in the cytoplasmic compartment. In comparison, TCP110/ILF3 migrated between the cytoplasmic and nuclear compartments during the cell cycle. The TCP110 C-terminal segment contains an additional nuclear localizing signal that plays a role in its nuclear translocation. This study indicates that the multiple cellular functions, i.e., translation control, interleukin-2 enhancer binding, or cell division, of TCP/ILF3 are fulfilled by alternatively spliced isoforms.
Collapse
Affiliation(s)
- You Hai Xu
- The Children's Hospital Research Foundation, Division of Human Genetics, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
21
|
Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 2003; 261:165-82. [PMID: 12941627 DOI: 10.1016/s0012-1606(03)00274-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genetic programs underlying neural stem cell (NSC) proliferation and pluripotentiality have only been partially elucidated. We compared the gene expression profile of proliferating neural stem cell cultures (NS) with cultures differentiated for 24 h (DC) to identify functionally coordinated alterations in gene expression associated with neural progenitor proliferation. The majority of differentially expressed genes (65%) were upregulated in NS relative to DC. Microarray analysis of this in vitro system was followed by high throughput screening in situ hybridization to identify genes enriched in the germinal neuroepithelium, so as to distinguish those expressed in neural progenitors from those expressed in more differentiated cells in vivo. NS cultures were characterized by the coordinate upregulation of genes involved in cell cycle progression, DNA synthesis, and metabolism, not simply related to general features of cell proliferation, since many of the genes identified were highly enriched in the CNS ventricular zones and not widely expressed in other proliferating tissues. Components of specific metabolic and signal transduction pathways, and several transcription factors, including Sox3, FoxM1, and PTTG1, were also enriched in neural progenitor cultures. We propose a putative network of gene expression linking cell cycle control to cell fate pathways, providing a framework for further investigations of neural stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Stanislav L Karsten
- Department of Neurology, UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | |
Collapse
|
22
|
Prakash O, Tang ZY, Zhou P, Peng X, Kolls J, Shellito JE, Nelson S. Ethanol Decreases the Efficiency of Phosphorylation of Thymidine Kinase in a Human T-Lymphocytic Cell Line. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02538.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ethanol Decreases the Efficiency of Phosphorylation of Thymidine Kinase in a Human T-Lymphocytic Cell Line. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200203000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Chou WL, Chang ZF. Cap-independent translation conferred by the 5'-untranslated region of human thymidine kinase mRNA. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:209-15. [PMID: 11418187 DOI: 10.1016/s0167-4781(01)00241-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Translational control is one of the mechanisms that regulate thymidine kinase (TK) expression in the cell cycle. Evidence for the TK mRNA sequence that is involved in its own translation has been lacking. In this report, we show that TK-deficient mouse fibroblasts transfected with pFLAG-TK express a TK mRNA containing the 5'-untranslated region (5'UTR) and produce two polypeptides, FLAG-TK and TK, resulting from an alternative initiation of translation. Most interestingly, the 5'UTR of TK allowed the translation of FLAG-TK mRNA to become cap-independent in an in vitro translation system. Furthermore, this 5'UTR sequence decreased significantly the efficiency of translation from the AUG codon of FLAG when the concentration of FLAG-TK RNA was low. Here, we also show that in normal human IMR-90 fibroblasts the induction of TK polypeptide by serum stimulation is insensitive to rapamycin treatment, which is known to inhibit the translations of transcripts of some growth-controlled genes by affecting the cap-binding efficiency. Taken together, we propose that the 5'UTR in TK mRNA might actually confer a secondary structure to regulate ribosome binding during translation in a cap-independent manner.
Collapse
Affiliation(s)
- W L Chou
- Institute of Biochemistry, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, 100, Taipei, Taiwan
| | | |
Collapse
|
25
|
Chang ZF, Huang DY. Regulation of thymidine kinase expression during cellular senescence. J Biomed Sci 2001. [DOI: 10.1007/bf02256410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Wang L, Eriksson S. Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria. Biochem J 2000; 351 Pt 2:469-76. [PMID: 11023833 PMCID: PMC1221383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy.
Collapse
Affiliation(s)
- L Wang
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, P.O. Box 575, SE-751 23 Uppsala, Sweden.
| | | |
Collapse
|
27
|
Posch M, Hauser C, Seiser C. Substrate binding is a prerequisite for stabilisation of mouse thymidine kinase in proliferating fibroblasts. J Mol Biol 2000; 300:493-502. [PMID: 10884346 DOI: 10.1006/jmbi.2000.3876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymidine kinase (TK) expression in mammalian cells is strictly growth regulated, with high levels of the enzyme present in proliferating cells and low levels in resting cells. We have shown that mouse TK expressed from a constitutive promoter is still subject to this regulation. The drastic decline in TK enzyme levels in resting cells is largely due to a pronounced reduction in the half-life of the protein. Deletion of the 30 C-terminal amino acid residues from TK abrogates growth regulation, rendering the enzyme very stable. Moreover, the substrate thymidine was sufficient to stabilise the labile TK protein in quiescent cells. Here, we report that the ability of TK to bind substrates is essential for both growth-dependent regulation and stabilisation by the substrate. By mutation or elimination of the binding sites for either of the two substrates, ATP and thymidine, we expressed TK proteins lacking enzymatic activity which abolished growth-regulated expression in both cases. Mutant TK proteins impaired in substrate binding were subject to rapid degradation in exponentially growing cells and thymidine was no longer sufficient to inhibit this rapid decay. A C-terminal truncation known to stabilise the TK wild-type protein in resting cells did not affect the rapid turnover of enzymatically inactive TK proteins. Proteasome inhibitors also failed to stabilise these substrate-binding mutants. By cross-linking experiments, we show that TK proteins with mutated substrate-binding sites exist only as monomers, whereas active TK enzyme forms dimers and tetramers. Our data indicate that, In addition to the C terminus intact substrate-binding sites are required for growth-dependent regulation of TK protein stability.
Collapse
Affiliation(s)
- M Posch
- Institute of Molecular Biology, University of Vienna, Austria
| | | | | |
Collapse
|
28
|
Chang ZF, Huang DY, Hu SF. NF-Y-mediatedTrans-activation of the human thymidine kinase promoter is closely linked to activation of cyclin-dependent kinase. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991101)75:2<300::aid-jcb12>3.0.co;2-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Arita Y, Buffolino P, Coppock DL. Regulation of the cell cycle at the G2/M boundary in metastatic melanoma cells by 12-O-tetradecanoyl phorbol-13-acetate (TPA) by blocking p34cdc2 kinase activity. Exp Cell Res 1998; 242:381-90. [PMID: 9683525 DOI: 10.1006/excr.1997.3911] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
12-O-Tetradecanoyl phorbol-13-acetate (TPA) inhibits the growth of most malignant melanoma cells but stimulates the growth of normal human melanocytes. We previously showed that addition of TPA inhibits the growth of the human metastatic melanoma cell line, Demel, by blocking cells at both the G1/S and G2/M cell cycle transitions (D. L. Coppock et al., 1992, Cell Growth Differ. 3, 485-494). To examine the G2/M transition, we developed a method to synchronize the cells in early S phase using Lovastatin and mevalonate, followed by treatment with hydroxyurea (HU). TPA (30 nM) was effective in blocking cells from entering mitosis and reentering G1 when added up to the end of G2. These cells arrested in G2. Examination of the levels of cyclins A and B1 demonstrated that the levels of these cyclins were not limiting for entrance into M. However, the addition of TPA blocked the increase in p34(cdc2)/cyclin B1 kinase activity. In cells treated with TPA, most p34(cdc2) was found in the slowly migrating forms on Western blots, which contained increased levels of phosphotyrosine. In addition, the level of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1), but not of p27(Kip1), was increased. We examined the expression of protein kinase C (PKC) isoforms in Demel cells using Western blots to understand which types were involved in the G2 arrest. Demel cells expressed the PKC alpha, betaI, betaII, delta, epsilon, iota/lambda, zeta, and mu isozymes. PKC eta and PKC theta were not detected. Addition of TPA did not completely down regulate any PKC isozymes over a 12-h period in these synchronized cells. PKC alpha, betaI, betaII, delta, and epsilon isozymes were translocated to the membrane fraction from the cytosolic fraction when treated with TPA. PKC delta appeared as a doublet and the addition of TPA shifted a majority to the slower migrating form. The level of PKC mu was constant; however, a slow mobility form was observed in TPA-treated cells. This reduced mobility was at least partially due to phosphorylation. Thus, the arrest of growth in G2 appears to be due to the inhibition of the p34(cdc2) kinase activity which is associated with the increased expression of p21(Cip1/Waf1) and increased phosphorylation on tyrosine of p34(cdc2). This arrest, in turn, is associated with a shift of PKC isozymes PKC alpha, PKC betaI, PKC betaII, PKC delta, PKC epsilon, and PKC mu to the membrane fraction which is induced by addition of TPA.
Collapse
Affiliation(s)
- Y Arita
- Oncology Research Lab, Winthrop University Hospital, 222 Station Plaza North No. 300, Mineola, New York, 11501, USA
| | | | | |
Collapse
|
30
|
Autieri MV, Agrawal N. IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem 1998; 273:14731-7. [PMID: 9614071 DOI: 10.1074/jbc.273.24.14731] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon-gamma (IFN-gamma) inhibits proliferation of vascular smooth muscle cells (VSMCs) in culture and reduces arterial restenosis post-balloon angioplasty. The identification and characterization of IFN-gamma-specific transcripts in VSMCs are an important approach to discern the molecular mechanisms underlying vascular proliferative disease. In this report, we describe IRT-1, a novel mRNA transcript constitutively expressed in a number of human tissues, but expressed in human VSMCs only when they are stimulated with IFN-gamma. This mRNA expression is induced >200-fold 72 h after IFN-gamma treatment. IRT-1 mRNA is also acutely expressed in rat carotid arteries that are injured by balloon angioplasty. The IRT-1 cDNA transcript encodes a basic protein that contains a leucine zipper motif, a core nuclear localization sequence, and a single strongly hydrophobic region. Constitutive IRT-1 mRNA expression in human peripheral blood lymphocytes is reduced when these cells are stimulated to proliferate. Overexpression of IRT-1 protein in VSMCs alters their morphology and dramatically reduces their proliferative capacity. This study suggests that IRT-1 is an IFN-gamma-inducible factor that may regulate the progression of vascular proliferative diseases.
Collapse
Affiliation(s)
- M V Autieri
- Department of Molecular Biology, Deborah Heart and Lung Research Institute, Browns Mills, New Jersey 08015, USA
| | | |
Collapse
|
31
|
Chang ZF, Huang DY, Chi LM. Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem 1998; 273:12095-100. [PMID: 9575153 DOI: 10.1074/jbc.273.20.12095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that the polypeptide of thymidine kinase type 1 (TK1) from human and mouse cells can be modified by phosphorylation. Our laboratory has further shown that the level of human TK phosphorylation increases during mitotic arrest in different cell types (Chang, Z.-F., Huang, D.-Y., and Hsue, N.-C. (1994) J. Biol. Chem. 269:21249-21254). In the present study, we demonstrated that a mutation converting Ser13 to Ala abolished the mitotic phosphorylation of native TK1 expressed in Ltk- cells. Furthermore, we expressed recombinant proteins of wild-type and mutated human TK1 with fused FLAG epitope in HeLa cells, and confirmed the occurrence of mitotic phosphorylation on Ser13 of hTK1. By using an in vitro phosphorylation assay, it was shown that wild-type hTK1, but not mutant TK1(Ala13), could serve as a good substrate for Cdc2 or Cdk2 kinase. Coexpression of p21(waf1/cip1), which is a universal inhibitor of Cdk kinases, in Ltk- fibroblasts also suppressed mitotic phosphorylation of hTK1 expressed in this cell line. Thus, Cdc2 or related kinase(s) is probably involved in mitotic phosphorylation on Ser13 of the hTK1 polypeptide. We also found that mutation on Ser13 did not affect the functional activity of hTK1. As the sequences around Ser13 are highly conserved in vertebrate TK1s, we speculate that phosphorylation of Ser13 may play a role in the regulation of TK1 expression in the cell cycle.
Collapse
Affiliation(s)
- Z F Chang
- Institute of Biochemistry, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
32
|
Winkles JA. Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:41-78. [PMID: 9308363 DOI: 10.1016/s0079-6603(08)60033-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complex cellular processes such as proliferation, differentiation, and apoptosis are regulated in part by extracellular signaling molecules: for example, polypeptide growth factors, cytokines, and peptide hormones. Many polypeptide growth factors exert their mitogenic effects by binding to specific cell surface receptor protein tyrosine kinases. This interaction triggers numerous biochemical responses, including changes in phospholipid metabolism, the activation of a protein phosphorylation cascade, and the enhanced expression of specific immediate-early, delayed-early, or late response genes. In this review, I summarize the major findings obtained from studies investigating the effects of serum or individual polypeptide growth factors on gene expression in murine fibroblasts. Several experimental approaches, including differential hybridization screening of cDNA libraries and differential display, have been employed to identify mRNA species that are expressed at elevated levels in serum- or polypeptide growth factor-stimulated cells. These studies have demonstrated that serum- and growth factor-inducible genes encode a diverse family of proteins, including DNA-binding transcription factors, cytoskeletal and extracellular matrix proteins, metabolic enzymes, secreted chemokines, and serine-threonine kinases. Some of these gene products act as effectors of specific cell cycle functions (e.g., enzymes involved in nucleotide and DNA synthesis), others are required to successfully convert a metabolically inactive cell to a metabolically active cell that will eventually increase in size and then divide (e.g., glucose-metabolizing enzymes), and some actually function as positive or negative regulators of cell cycle progression. In conclusion, research conducted during the past 15 years on serum- and growth factor-regulated gene expression in murine fibroblasts has provided significant insight into mitogenic signal transduction and cell growth control.
Collapse
Affiliation(s)
- J A Winkles
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| |
Collapse
|
33
|
Sutterluety H, Seiser C. Thymidine inhibits the growth-arrest-specific degradation of thymidine kinase protein in transfected L fibroblasts. J Mol Biol 1997; 265:153-60. [PMID: 9020979 DOI: 10.1006/jmbi.1996.0721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of murine thymidine kinase (TK) is strictly dependent on the growth state of the cell. Expressing epitope-tagged TK in LTK cells, we have previously shown that low TK enzyme levels in G0 cells are in part due to a dramatic decrease in TK protein stability. Here we report that thymidine, one of the substrates of TK, is able to counteract the growth-arrest-specific decrease of TK expression. While TK mRNA levels and TK translation rate are almost unaffected by thymidine, the TK protein half-life rose more than sixfold after addition of the nucleoside to resting cells. The effect of thymidine is reversible and is independent of its presence during the protein synthesis of TK. Dideoxythymidine, a specific inhibitor of the TK enzyme activity, also has the capacity to increase TK protein levels in G0 cells, indicating that the substrate itself exerts the stabilising effect on the TK protein.
Collapse
Affiliation(s)
- H Sutterluety
- Institute of Molecular Biology, University of Vienna, Austria
| | | |
Collapse
|
34
|
Singh AK, Sidhu GS, Deepa T, Maheshwari RK. Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett 1996; 107:109-15. [PMID: 8913274 DOI: 10.1016/0304-3835(96)04357-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied the effect of curcumin (diferuloylmethane), a major component of the food flavor turmeric, on the proliferation and cell cycle progression of human umbilical vein endothelial cells (HUVEC). Curcumin inhibited the DNA synthesis of HUVEC as revealed by [3H]thymidine incorporation in a dose-dependent manner without significantly affecting the viability of the cells. The growth of HUVEC stimulated with fibroblast growth factor (FGF) and endothelial growth supplement (ECGS) was also inhibited by curcumin. Addition of curcumin to HUVEC resulted in an accumulation of > 46% of the cells in early S-phase, as determined by the FACS analysis. Pulse labeling studies with [3H]thymidine demonstrated that curcumin affected cells that were actively undergoing DNA synthesis. The de-novo synthesis of thymidine depends on thymidine kinase (TK) enzyme. Curcumin caused a significant loss of TK activity, which may be one of the possible mechanism(s) for the inhibition of DNA synthesis activity of HUVEC by curcumin. These studies have revealed a unique mode of action of curcumin whereby it effectively blocked the cell cycle progression during S-phase by inhibiting the activity of TK enzyme. The migration, proliferation and differentiation of HUVEC leads to angiogenesis, which facilitates the tumor initiation and promotion. Since curcumin inhibited the proliferation of HUVEC, it could turn out to be a very useful compound for the development of novel anti-cancer therapy.
Collapse
Affiliation(s)
- A K Singh
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
35
|
Mikulits W, Hengstschläger M, Sauer T, Wintersberger E, Müllner EW. Overexpression of thymidine kinase mRNA eliminates cell cycle regulation of thymidine kinase enzyme activity. J Biol Chem 1996; 271:853-60. [PMID: 8557696 DOI: 10.1074/jbc.271.2.853] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of thymidine kinase (TK) enzyme activity and mRNA is strictly S phase-specific in primary cells. In contrast, DNA tumor virus-transformed cells have enhanced and constitutive levels of TK mRNA during the whole cell cycle. Their TK protein abundance, however, still increases at the G1-S transition and stays high throughout G2 until mitosis. Therefore, post-transcriptional control must account for the decoupling of TK mRNA from protein synthesis in G1. To characterize the underlying mechanism, we studied the consequences of TK mRNA abundance on the cell cycle-dependent regulation of TK activity in nontransformed cells. Constitutive as well as conditional human and mouse TK cDNA vectors were stably transfected into mouse fibroblasts, which were subsequently synchronized by centrifugal elutriation. Low constitutive TK mRNA expression still resulted in a fluctuation of TK activity with a pronounced maximum in S phase. This pattern of cell cycle-dependent TK activity variation reflected the one in primary cell but is caused by post-transcriptional control. Increasing overexpression of TK transcripts after hormonal induction compromised this regulation. At the highest constant mRNA levels, regulation of enzyme activity was totally abolished in each phase of the cell cycle. These data indicate that post-transcriptional regulation of TK is tightly coupled to the amount of mRNA; high concentrations apparently titrate a factor(s) required for repressing TK production during G1 and presumably also G2.
Collapse
Affiliation(s)
- W Mikulits
- Institute of Molecular Biology, Vienna Biocenter, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
36
|
Chang ZF, Huang DY, Lai TC. Different regulation of the human thymidine kinase promoter in normal human diploid IMR-90 fibroblasts and HeLa cells. J Biol Chem 1995; 270:27374-9. [PMID: 7593001 DOI: 10.1074/jbc.270.45.27374] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcriptional activation of the human thymidine kinase (hTK) promoter plays an important role in the cell cycle control of thymidine kinase expression. Using the luciferase reporter cotransfection assay, we found that the activity of the hTK promoter in IMR-90 normal human diploid fibroblasts was increased by the constitutively over-expressed cyclin A or cyclin E but not by cyclin D, suggesting that the former two cyclins may act as positive regulators for the hTK promoter. The sequence responsible for the transcriptional activation by cyclin E was identified to be located between -133 and -92 of the hTK promoter. Regulation of the hTK promoter in HeLa cells appeared to be different from that in IMR-90 fibroblasts. Firstly, the hTK promoter in HeLa was already highly activated and could not be further activated by ectopically expressed cyclin A or E. Secondly, the -133 to -92 region of the hTK promoter was important for the promoter strength in HeLa cells but not in IMR-90 cells. The steady-state levels of cyclins A and E were readily detected in HeLa cells but not in normal IMR-90 fibroblasts. Based on these results, we propose that the cellular environment of the HeLa cell allows the hTK promoter to stay fully activated for transcription regardless of ectopically expressed cyclin A or E and that transcriptional activation of thymidine kinase gene is deregulated in these tumor cells.
Collapse
Affiliation(s)
- Z F Chang
- Department of Biochemistry, Chang Gung College of Medicine and Technology, Tao-Yuan, Taiwan, Republic of China
| | | | | |
Collapse
|
37
|
Mao X, Xia L, Liang G, Gai X, Huang DY, Prystowsky MB, Lipson KE. CCAAT-box contributions to human thymidine kinase mRNA expression. J Cell Biochem 1995; 57:701-10. [PMID: 7615653 DOI: 10.1002/jcb.240570415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to examine the role of two inverted CCAAT boxes near the start of transcription of the human thymidine kinase (TK) gene, a series of constructs were prepared in which one or both CCAAT boxes were deleted or mutated. These altered promoters (1.2 kb of 5'-flanking sequence) were used to express a TK minigene containing the first two exons and introns followed by the remainder of the cDNA. RNA blots were prepared from stable cell lines of ts13 cells containing these constructs under three conditions: 1) serum deprived cells, 2) serum stimulated cells, and 3) cells that had been stimulated with serum, but were arrested in the G1 phase of the cell cycle by the temperature sensitive mutation carried by these cells. TK mRNA expression from each construct was suppressed by the temperature sensitive block to cell cycle progression. Measurement of protein expression from the various altered TK promoters indicated that both CCAAT boxes contribute to promoter strength. These experiments also suggested that the two CCAAT boxes were not equivalent and that the distal CCAAT could substitute for the proximal CCAAT, but the converse was not true.
Collapse
Affiliation(s)
- X Mao
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lipson KE, Liang G, Xia L, Gai X, Prystowsky MB, Mao X. Protein that binds to the distal, but not to the proximal, CCAAT of the human thymidine kinase gene promoter. J Cell Biochem 1995; 57:711-23. [PMID: 7615654 DOI: 10.1002/jcb.240570416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mobility shift assays were used to examine protein binding to the human TK gene CCAAT boxes. Similar protein binding patterns were observed with probes containing either the proximal or distal CCAAT. However, probes containing both CCAAT boxes in which one of the CCAAT boxes was inactivated by mutation did not demonstrate identical binding patterns. One of the complexes formed with the longer probes was only observed when the distal CCAAT was intact. This species was not formed with probes that only contained an intact proximal CCAAT, and its formation could only be competed by oligonucleotides containing the distal CCAAT motif. This observation reveals the existence of a protein that can bind to the distal, but not to the proximal, CCAAT of the human TK promoter. This protein may account for the previous observation that the two CCAAT motifs are not functionally equivalent. The protein that binds to the distal, but not to the proximal, CCAAT (DTK-CBP) was also present in two human cell lines. Significantly more DTK-CBP was present in nuclear extracts of HepG2 and WI38 cells than in TK-ts13 cells. However, this protein was not observed in three different murine cell lines and one primary culture. Its abundance in some human cell lines suggests it might modulate the expression of human TK mRNA in cells that express this protein.
Collapse
Affiliation(s)
- K E Lipson
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kristensen T, Jensen HK, Munch-Petersen B. Quantitation of TK1 mRNA in patients with chronic lymphatic leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:23-6. [PMID: 7660896 DOI: 10.1007/978-1-4615-2584-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Kristensen
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| | | | | |
Collapse
|
40
|
Abstract
The mammalian deoxyribonucleoside kinases are deoxycytidine kinase, thymidine kinase 1 and 2 and deoxyguanosine kinase. These enzymes phosphorylate deoxyribonucleosides and thereby provide an alternative to de novo synthesis of DNA precursors. Their activities are essential for the activation of several chemotherapeutically important nucleoside analogues. In recent years, these enzymes have been thoroughly characterised with regard to structure, substrate specificity and patterns of expression. In this review, these results are reviewed and furthermore, the physiologic metabolic role of the anabolic enzymes is discussed in relation to catabolic pathways. The significance of this information for the development of therapeutic protocols and choice of animal model systems is discussed. Finally, alternative pathways for nucleoside analogue phosphorylation are surveyed, such as the phosphotransfer capacity of 5'-nucleotidase.
Collapse
Affiliation(s)
- E S Arnér
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | |
Collapse
|
41
|
|
42
|
Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1. Regulation in normal and malignant cells. ADVANCES IN ENZYME REGULATION 1995; 35:69-89. [PMID: 7572355 DOI: 10.1016/0065-2571(94)00014-t] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In mammalian cells, salvage pathway phosphorylation of thymidine is catalyzed by two thymidine kinases: the cell-cycle regulated cytoplasmic TK1 and the constitutively expressed mitochondrial TK2. Since TK1 is virtually absent in non-dividing cells, TK2 is probably the only thymidine kinase present in these cells. In cellular metabolism, TK1 and TK2 presumably serve to maintain sufficient dTTP for DNA replication and repair. TK1 purified from phytohemagglutinin-stimulated human lymphocytes is a dimer in the absence and a tetramer in the presence of ATP. In addition to the molecular weight transition, incubation with ATP at 4 degrees C or storage with ATP induces a reversible, enzyme concentration-dependent, kinetically slow transition from a low to a high affinity form of TK1, with Km values of 14 microM and 0.5 microM, respectively. This affinity difference implies that at cellular thymidine concentrations, the difference in catalytic activity between the two TK1 forms will be 3-5-fold. Calculations of cellular TK1 concentration suggested that the low affinity dimer form was dominant in G0/G1 cells and the high affinity tetramer form in S-phase cells. Hence, the transition may serve to fine-tune the cell-cycle regulation of thymidine kinase activity on the post-translational level. To study the ATP effect on the molecular level, an IPTG inducible T7 RNA polymerase-dependent expression system for the entire human TK1 polypeptide in E. coli was established. The recombinant TK1 has the same subunit mass and specific activity as the native enzyme. However, the recombinant TK1 solely displayed the kinetics of the high affinity form, with Km values of 0.3-0.4 microM regardless of pre-exposure to ATP, indicating that the ATP effect may be dependent on post-translational modifications absent in E. coli. Surprisingly, we did not observe any effect of ATP on TK1 purified from bone-marrow cells from a patient with acute monocytic leukemia (AMOL). Furthermore, the Km values of TK1 from these cells were 45 microM for the ATP-free enzyme and 65 microM for the ATP-incubated enzyme. With TK1 purified from HL-60 cells, we obtained the same pattern and kinetic values as for TK1 from lymphocytes. In the light of the results with the recombinant TK1, we presume that the lack of ATP effect and very high Km values observed for the AMOL TK1 may be due to changes in post-translational regulatory mechanisms in acute monocytic cells.
Collapse
Affiliation(s)
- B Munch-Petersen
- Institute of Life Sciences and Chemistry Roskilde University, Denmark
| | | | | | | |
Collapse
|
43
|
Kristensen T, Jensen HK, Munch-Petersen B. Overexpression of human thymidine kinase mRNA without corresponding enzymatic activity in patients with chronic lymphatic leukemia. Leuk Res 1994; 18:861-6. [PMID: 7967713 DOI: 10.1016/0145-2126(94)90168-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The level of cytosolic thymidine kinase (TK1) mRNA in lymphocytes from six healthy people and in lymphocytes from five patients with untreated chronic lymphatic leukemia (CLL) was determined with competitive polymerase chain reaction (competitive PCR). Using this procedure we have shown that in patients with CLL, there is an overexpression of TK1 mRNA without corresponding enzymatic activity. The TK1 mRNA level is approximately 100-fold higher in lymphocytes from CLL patients than in lymphocytes from healthy persons. A high level of TK1 mRNA without corresponding enzyme activity may indicate a defect in the processing of the enzyme. This may disturb the cells' normal feedback system and thereby influence the development of malignant conditions.
Collapse
Affiliation(s)
- T Kristensen
- Roskilde University, Department of Life Sciences and Chemistry, Denmark
| | | | | |
Collapse
|
44
|
Lee DK, Sun W, Rhee K, Cho H, Lee CC, Kim K. Analysis of thymidine kinase gene expression in preimplantation mouse embryos. Mol Reprod Dev 1994; 39:259-67. [PMID: 7888165 DOI: 10.1002/mrd.1080390303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thymidine kinase (TK) activity was examined during the development of preimplantation mouse embryos. TK activity was increased approximately 20-fold from day 2 embryos (2-cell) to day 5 embryos (late blastocyst). TK activity did not change along with the progression into S-phase of the first and the second cell cycles but increased sharply at S-phase of the third cell cycle. Analysis of TK mRNA with a reverse transcription-polymerase chain reaction (RT-PCR) method showed that the level of TK mRNA was low in ovulated eggs and 1-cell embryos and was hardly detectable in day 2 embryos (2-cell), but sharply increased in day 3 embryos (mixture of 5- to 8-cell and morula). The functional role of 5'-flanking sequence of TK gene was also investigated in preimplantation embryos after microinjection with the DNA construct of 5'-flanking sequence of TK (2.4 kb) linked to bacterial lacZ gene (TK2.5lacZ) into the pronucleus of 1-cell and subsequently by histochemical staining with X-gal. beta-Galactosidase activity was first detected in day 3 embryos (8-cell), and 30% of embryos were stained with X-gal in day 4 and day 5 embryos, respectively. These results show that an increase in TK activity occurred after 2-cell stage, and this increase was primarily due to the embryonic activation of TK gene expression. Also, it appears that the 5'-flanking sequence of TK may directly regulate the TK gene expression at the transcriptional level during preimplantation murine development.
Collapse
Affiliation(s)
- D K Lee
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Chang Z, Huang D, Hsue N. Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31956-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Hengstschläger M, Knöfler M, Müllner E, Ogris E, Wintersberger E, Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36723-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J Cell Biochem 1994; 54:393-404. [PMID: 8014188 DOI: 10.1002/jcb.240540406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
49
|
Bürger C, Wick M, Brüsselbach S, Müller R. Differential induction of ‘metabolic genes’ after mitogen stimulation and during normal cell cycle progression. J Cell Sci 1994; 107 ( Pt 1):241-52. [PMID: 7513713 DOI: 10.1242/jcs.107.1.241] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitogenic stimulation of quiescent cells not only triggers the cell division cycle but also induces an increase in cell volume, associated with an activation of cellular metabolism. It is therefore likely that genes encoding enzymes and other proteins involved in energy metabolism and biosynthetic pathways represent a major class of mitogen-induced genes. In the present study, we investigated in the non-established human fibroblast line WI-38 the induction by mitogens of 17 genes whose products play a role in different metabolic processes. We show that these genes fall into 4 different categories, i.e. non-induced genes, immediate early (IE) primary genes, delayed early (DE) secondary genes and late genes reaching peak levels in S-phase. In addition, we have analysed the regulation of these genes during normal cell cycle progression, using HL-60 cells separated by counterflow elutriation. A clear cell cycle regulation was seen with those genes that are induced in S-phase, i.e. thymidine kinase, thymidylate synthase and dihydrofolate reductase. In addition, two DE genes showed a cell cycle dependent expression. Ornithine decarboxylase mRNA increased around mid-G1, reaching maximum levels in S/G2, while hexokinase mRNA expression was highest in early G1. In contrast, the expression of other DE and IE genes did not fluctuate during the cell cycle, a result that was confirmed with elutriated WI-38 and serum-stimulated HL-60 cells. These observations suggest that G0-->S and G1-->S transition are distinct processes, exhibiting characteristic programmes of gene regulation, and merging around S-phase entry.
Collapse
Affiliation(s)
- C Bürger
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
50
|
Xu Y, Plunkett W. Regulation of thymidine kinase and thymidylate synthase in intact human lymphoblast CCRF-CEM cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41537-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|