1
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology 2017; 8:67-83. [PMID: 30123633 PMCID: PMC6059044 DOI: 10.1080/21501203.2017.1281849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Filamentous fungi have been important as model organisms since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycete filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Similarly, shared data has contributed to the success of model systems. The scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.
Collapse
Affiliation(s)
- Kevin McCluskey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Scott E. Baker
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
3
|
Arango Isaza RE, Diaz-Trujillo C, Dhillon B, Aerts A, Carlier J, Crane CF, V. de Jong T, de Vries I, Dietrich R, Farmer AD, Fortes Fereira C, Garcia S, Guzman M, Hamelin RC, Lindquist EA, Mehrabi R, Quiros O, Schmutz J, Shapiro H, Reynolds E, Scalliet G, Souza M, Stergiopoulos I, Van der Lee TAJ, De Wit PJGM, Zapater MF, Zwiers LH, Grigoriev IV, Goodwin SB, Kema GHJ. Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genet 2016; 12:e1005876. [PMID: 27512984 PMCID: PMC4981457 DOI: 10.1371/journal.pgen.1005876] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/27/2016] [Indexed: 12/03/2022] Open
Abstract
Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.
Collapse
Affiliation(s)
- Rafael E. Arango Isaza
- Escuela de Biociencias, Universidad Nacional de Colombia, Medellín, Colombia
- Plant Biotechnology Unit, Corporación Para Investigaciones Biológicas, Medellín, Colombia
| | | | - Braham Dhillon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrea Aerts
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | | | - Charles F. Crane
- USDA-Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Tristan V. de Jong
- Plant Research International, Wageningen University and Research, Wageningen, The Netherlands
| | - Ineke de Vries
- Plant Research International, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert Dietrich
- Syngenta Biotechnology Inc., Research Triangle Park, United States of America
| | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, United States of America
| | | | | | - Mauricio Guzman
- National Banana Corporation of Costa Rica (CORBANA), La Rita de Pococí, Limón, Costa Rica
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Erika A. Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Rahim Mehrabi
- Department of Genetics, Seed and Plant Improvement Institute, Karaj, Iran
| | - Olman Quiros
- National Banana Corporation of Costa Rica (CORBANA), La Rita de Pococí, Limón, Costa Rica
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Harris Shapiro
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Elizabeth Reynolds
- General Bioinformatics at Syngenta Crop protection Jeallots Hill International Research Centre, Bracknell Berkshire, United Kingdom
| | | | - Manoel Souza
- Embrapa-LABEX Europe, Wageningen, The Netherlands
| | | | - Theo A. J. Van der Lee
- Plant Research International, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Stephen B. Goodwin
- USDA-Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Gert H. J. Kema
- Plant Research International, Wageningen University and Research, Wageningen, The Netherlands
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| |
Collapse
|
4
|
Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen CF, Zhang B, Du Z. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 2014; 15:294. [PMID: 24746234 PMCID: PMC4023604 DOI: 10.1186/1471-2164-15-294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. RESULTS Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. CONCLUSIONS The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.
Collapse
Affiliation(s)
| | | | | | - Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Talbot NJ, Salch YP, Ma M, Hamer JE. Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, Magnaporthe grisea. Appl Environ Microbiol 2010; 59:585-93. [PMID: 16348876 PMCID: PMC202148 DOI: 10.1128/aem.59.2.585-593.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the karyotype of the rice blast fungus, Magnaporthe grisea, by using pulsed-filed gel electrophoresis. We tested whether the electrophoretic karyotype of an isolate was related to its pathotype, as determined by infection assays, or its genetic lineage, as determined by DNA fingerprinting. Highly reproducible electrophoretic karyotypes were obtained for a collection of U.S. and Chinese isolates representing a diverse collection of pathotypes and genetic lineages. Chromosomes ranged in size from 3 to 10 Mb. Although chromosome number was largely invariant, chromosome length polymorphisms were frequent. Minichromosomes were also found, although their presence was not ubiquitous. They ranged in number from 1 to 3 and in size from 470 kb to 2.2 Mb. Karyotypes were sufficiently variable as to obscure the obvious relatedness of isolates on the basis of pathogenicity assays or genetic lineage analysis by DNA fingerprinting. We documented that the electrophoretic karyotype of an isolate can change after prolonged serial transfer in culture and that this change did not alter the isolate's pathotype. The mechanisms bringing about karyotype variability involve deletions, translocations, and more complex rearrangements. We conclude that karyotypic variability in the rice blast fungus is a reflection of the lack of sexuality in wild populations which leads to the maintenance of neutral genomic rearrangements in clones of the fungus.
Collapse
Affiliation(s)
- N J Talbot
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
6
|
De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 2010; 6:e1000891. [PMID: 20386741 PMCID: PMC2851567 DOI: 10.1371/journal.pgen.1000891] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/02/2010] [Indexed: 01/09/2023] Open
Abstract
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.
Collapse
|
7
|
Mannhaupt G, Montrone C, Haase D, Mewes HW, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken F, Maier J, Schulte U. What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 2003; 31:1944-54. [PMID: 12655011 PMCID: PMC152809 DOI: 10.1093/nar/gkg293] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 02/07/2003] [Indexed: 11/14/2022] Open
Abstract
The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes.
Collapse
Affiliation(s)
- Gertrud Mannhaupt
- Technical University of Munich, Department of Genome Oriented Bioinformatics, Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales).
Collapse
Affiliation(s)
- J Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | | | | |
Collapse
|
9
|
Cambareri EB, Aisner R, Carbon J. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 1998; 18:5465-77. [PMID: 9710630 PMCID: PMC109131 DOI: 10.1128/mcb.18.9.5465] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 06/17/1998] [Indexed: 11/20/2022] Open
Abstract
DNA from the centromere region of linkage group (LG) VII of Neurospora crassa was cloned previously from a yeast artificial chromosome library and was found to be atypical of Neurospora DNA in both composition (AT rich) and complexity (repetitive). We have determined the DNA sequence of a small portion (approximately 16.1 kb) of this region and have identified a cluster of three new retrotransposon-like elements as well as degenerate fragments from the 3' end of Tad, a previously identified LINE-like retrotransposon. This region contains a novel full-length but nonmobile copia-like element, designated Tcen, that is only associated with centromere regions. Adjacent DNA contains portions of a gypsy-like element designated Tgl1. A third new element, Tgl2, shows similarity to the Ty3 transposon of Saccharomyces cerevisiae. All three of these elements appear to be degenerate, containing predominantly transition mutations suggestive of the repeat-induced point mutation (RIP) process. Three new simple DNA repeats have also been identified in the LG VII centromere region. While Tcen elements map exclusively to centromere regions by restriction fragment length polymorphism analysis, the defective Tad elements appear to occur most frequently within centromeres but are also found at other loci including telomeres. The characteristics and arrangement of these elements are similar to those seen in the Drosophila centromere, but the relative abundance of each class of repeats, as well as the sequence degeneracy of the transposon-like elements, is unique to Neurospora. These results suggest that the Neurospora centromere is heterochromatic and regional in character, more similar to centromeres of Drosophila than to those of most single-cell yeasts.
Collapse
Affiliation(s)
- E B Cambareri
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
| | | | | |
Collapse
|
10
|
Cano MI, Cisalpino PS, Galindo I, Ramírez JL, Mortara RA, da Silveira JF. Electrophoretic karyotypes and genome sizing of the pathogenic fungus Paracoccidioides brasiliensis. J Clin Microbiol 1998; 36:742-7. [PMID: 9508305 PMCID: PMC104618 DOI: 10.1128/jcm.36.3.742-747.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we present the karyotype analysis and genome sizing of Paracoccidioides brasiliensis, a pathogen refractory to conventional genetic analysis. We have established pulsed-field gel electrophoresis (PFGE) conditions to resolve the high-molecular-weight chromosomal bands of two clinical isolates of P. brasiliensis. Both isolates showed four megabase-sized bands, ranging from 2.0 to 10.0 Mbp. Significant differences in chromosome sizes and in the chromosomal location of genes for the gp43 antigen and chitin synthase were found. Different technical approaches were employed to estimate the DNA content and to define the ploidy of P. brasiliensis. An estimated genome size in the range of 45.7 to 60.9 Mbp was provided by the analysis of data generated by measuring the amplitude of fluorescence intensity of DAPI (4',6-diamidino-2-phenylindole)-stained nuclei (by confocal microscopy). The nuclear genome size estimated by confocal microscopy is twice that estimated by the average sum of the molecular weight of chromosome-sized DNA molecules by PFGE, suggesting that each separated P. brasiliensis chromosomal band is diploid.
Collapse
Affiliation(s)
- M I Cano
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Gurrieri S, Bustamante C. Purification and staining of intact yeast DNA chromosomes and real-time observation of their migration during gel electrophoresis. Biochem J 1997; 326 ( Pt 1):131-8. [PMID: 9337860 PMCID: PMC1218646 DOI: 10.1042/bj3260131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past few years, fluorescence microscopy has been used successfully to characterize the motion of intermediate-size DNA molecules (50-500 kbp) during steady- and pulsed-field gel electrophoresis. However, experimental difficulties had prevented the application of this technique to the direct observation of longer DNA chromosomes (1-2 Mbp). In the present study a particular procedure was followed for the purification and staining of chromosomal yeast DNA to protect it from shear forces. Also, a new highly fluorescent DNA-labelling dye, YOYO-1, was employed to improve brightness and contrast. Finally, the motion of such long DNA molecules (1-2 Mbp) was characterized under steady-field electrophoresis conditions. An accurate description of the molecular mechanisms of motion of such long molecules should provide the basis for a detailed analysis of the mechanisms responsible for DNA trapping.
Collapse
Affiliation(s)
- S Gurrieri
- Dipartimento di Scienze Chimiche, Università di Catania, Italy
| | | |
Collapse
|
12
|
Merrow MW, Garceau NY, Dunlap JC. Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci U S A 1997; 94:3877-82. [PMID: 9108072 PMCID: PMC20535 DOI: 10.1073/pnas.94.8.3877] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The circadian oscillator in Neurospora is a negative feedback loop involving as principal players the products of the frequency (frq) locus. frq encodes multiple forms of its protein product FRQ, which act to depress the amounts of frq transcript. In this scheme there are two discrete and separable steps to the circadian cycle, negative feedback itself (repression) in which FRQ acts to decrease the levels of its own transcript, and recovery from repression (derepression) in which frq transcript levels return to peak amounts. By introducing an exogenously regulatable frq transgene into a frq loss-of-function strain (frq9), we created an artificial system in which the two separate steps in the circadian cycle can be initiated and followed separately for purposes of observing their kinetics. Under these conditions the frq-FRQ cycle occupies the time scale of a full circadian cycle. During this time, the process of negative feedback of FRQ on frq transcript levels is rapid and efficient; it requires only 3 to 6 h and can be mediated by on the order of 10 molecules of FRQ per nucleus, a level even less than that seen in the normal oscillation. In contrast, recovery from negative feedback requires 14 to 18 h, most of the circadian cycle, during which time de novo FRQ synthesis has stopped, and existing FRQ is progressively posttranslationally modified. Altogether the time required to complete both of these steps is in good agreement with the 22-h observed period length of the normal circadian cycle.
Collapse
Affiliation(s)
- M W Merrow
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
13
|
Gurrieri S, Smith SB, Wells KS, Johnson ID, Bustamante C. Real-time imaging of the reorientation mechanisms of YOYO-labelled DNA molecules during 90 degrees and 120 degrees pulsed field gel electrophoresis. Nucleic Acids Res 1996; 24:4759-67. [PMID: 8972863 PMCID: PMC146294 DOI: 10.1093/nar/24.23.4759] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pulsed field gel electrophoresis (PFGE) techniques have been developed to overcome the limitations of conventional electrophoresis and to increase the separation to DNA chromosomes of few megabase pairs in size. Despite of the large success of these techniques, the various separation protocols employed for PFGE experiments have been determined empirically. However, a deep understanding of the molecular mechanisms of motion responsible for DNA separation becomes necessary for the rational optimization of these techniques. This paper shows the first clear observations of individual molecules of DNA during the reorientation process in 90 degrees PFGE and 120 degrees PFGE. Real-time visualization of the DNA dynamics during PFGE was possible with the use of an epi-illumination fluorescence microscope specifically equipped to run these experiments and by staining the DNA with YOYO-1 (1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-meth yl -2,3-dihydro-(benzo-1,3-oxazole)-2-methyl-idene]-quinolinium tetraiodide). This dye forms a very stable, highly fluorescent complex with double-stranded DNA and dramatically improves the quality of the DNA images. The results of computer simulations used to reproduce the molecular mechanisms of motion as well as the DNA separation features are also discussed.
Collapse
Affiliation(s)
- S Gurrieri
- Dipartimento di Scienze Chimiche, Universitá di Cantania, Italy.
| | | | | | | | | |
Collapse
|
14
|
Smith ML, Yang CJ, Metzenberg RL, Glass NL. Escape from het-6 incompatibility in Neurospora crassa partial diploids involves preferential deletion within the ectopic segment. Genetics 1996; 144:523-31. [PMID: 8889517 PMCID: PMC1207547 DOI: 10.1093/genetics/144.2.523] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Self-incompatible het-6OR/het-6PA partial diploids of Neurospora crassa were selected from a cross involving the translocation strain, T(IIL-->IIIR)AR18, and a normal sequence strain. About 25% of the partial diploids exhibited a marked increase in growth rate after 2 weeks, indicating that "escape" from het-6 incompatibility had occurred. Near isogenic tester strains with different alleles (het-6OR and het-6PA) were constructed and used to determine that 80 of 96 escape strains tested were het-6PA, retaining the het-6 allele found in the normal-sequence LGII position; 16 were het-6OR, retaining the allele in the translocated position. Restriction fragment length polymorphisms in 45 escape strains were examined with probes made from cosmids that spanned the translocated region. Along with electrophoretic analysis of chromosomes from three escape strains, RFLPs showed that escape is associated with deletion of part of one or the other of the duplicated DNA segments. Deletions ranged in size from approximately 70 kbp up to putatively the entire 270-kbp translocated region but always included a 35-kbp region wherein we hypothesize het-6 is located. The deletion spectrum at het-6 thus resembles other cases where mitotic deletions occur such as of tumor suppressor genes and of the hprt gene (coding for hypoxanthine-guanine phosphoribosyl-transferase) in humans.
Collapse
Affiliation(s)
- M L Smith
- Biology Department, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Smith ML, Glass NL. Mapping translocation breakpoints by orthogonal field agarose-gel electrophoresis. Curr Genet 1996; 29:301-5. [PMID: 8595678 DOI: 10.1007/bf02221562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Orthogonal field agarose-gel electrophoresis (OFAGE) of chromosomes from translocation-bearing and normal Neurospora crassa strains was utilized, first, to recover cosmids from a translocated region, and second, to map translocation breakpoints. Surprisingly, the right breakpoints in two independently derived, interstitial translocations, T(II-->III) AR18 and T(II-->VI)P2869, are within about 5.6 kbp of each other suggesting that this region of linkage group (LG) II may be fragile or otherwise subject to chromosome breakage. Mapping translocation breakpoints through OFAGE, or other similar methods, should allow for DNA sequencing across breakpoints that are not associated with mutant phenotypes or that are not within walking distance of cloned markers.
Collapse
Affiliation(s)
- M L Smith
- Department of Botany and Biotechnology Laboratory, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | | |
Collapse
|
16
|
Walz M, Kück U. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr Genet 1995; 29:88-95. [PMID: 8595663 DOI: 10.1007/bf00313198] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ascomycete Sordaria macrospora was transformed using different plasmid molecules containing the bacterial hygromycin B resistance gene (hph) under the control of different expression signals. The highest transformation frequency was obtained with vector pMW1. On this plasmid molecule, expression of the hph gene is directed by the upstream region of the isopenicillin N synthetase gene (pcbC) from the deuteromycete Acremonium chrysogenum. Southern analysis suggests that the vector copies are integrated as tandem repeats into the S. macrospora chromosomes and that duplicated sequences are most probably not inactivated by methylation during meiosis. Furthermore, the hygromycin B resistance (hygR) is not correlated with the number of integrated vector molecules. Electrophoretic karyotyping was used to further characterize S. macrospora transformants. Five chromosomal bands were separated by pulsed-field gel electrophoresis (PFGE) representing seven chromosomes with a total genome size of 39.5Mb. Hybridization analysis revealed ectopic integration of vector DNA into different chromosomes. In a few transformants, major rearrangements were detected. Transformants were sexually propagated to analyze the fate of the heterologous vector DNA. Although the hygR phenotype is stably maintained during mitosis, about a third of all lines tested showed loss of the resistance marker gene after meiosis. However, as was concluded from electrophoretic karyotyping, the resistant spores showed a Mendelian segregation of the integrated vector molecules in at least three consecutive generations. Our data indicate that heterologous marker genes can be used for transformation tagging, or the molecular mapping of chromosomal loci in S. macrospora.
Collapse
Affiliation(s)
- M Walz
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
17
|
Abstract
The examination of fungal chromosomes by pulsed-field gel electrophoresis has revealed that length polymorphism is widespread in both sexual and asexual species. This review summarizes characteristics of fungal chromosome-length polymorphism and possible mitotic and meiotic mechanisms of chromosome length change. Most fungal chromosome-length polymorphisms are currently uncharacterized with respect to content and origin. However, it is clear that long tandem repeats, such as tracts of rRNA genes, are frequently variable in length and that other chromosomal rearrangements are suppressed during normal mitotic growth. Dispensable chromosomes and dispensable chromosome regions, which have been well documented for some fungi, also contribute to the variability of the fungal karyotype. For sexual species, meiotic recombination increases the overall karyotypic variability in a population while suppressing genetic translocations. The range of karyotypes observed in fungi indicates that many karyotypic changes may be genetically neutral, at least under some conditions. In addition, new linkage combinations of genes may also be advantageous in allowing adaptation of fungi to new environments.
Collapse
Affiliation(s)
- M E Zolan
- Department of Biology, Indiana University, Bloomington 47405, USA
| |
Collapse
|
18
|
Sudor J, Novotny M. The mobility minima in pulsed-field capillary electrophoresis of large DNA. Nucleic Acids Res 1995; 23:2538-43. [PMID: 7630733 PMCID: PMC307063 DOI: 10.1093/nar/23.13.2538] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pulsed-field capillary electrophoresis represents a new tool for rapid and highly efficient separations of large biopolymers. The method has been utilized here to study dependencies of the electrophoretic mobility upon the frequency and pulse shape of applied voltage for large, double-stranded DNA molecules (5-100 kb) migrating in neutral polymer solutions. Two different shapes of alternating electric field (sine- and square-wave impulses) were examined with the frequency values ranging from 1 to 30 Hz. The linear dependence between duration of the forward pulse (at which the DNA molecule experiences a minimum mobility) and the product N.In(N) (where N is the number of base pairs) was experienced in field-inversion gel electrophoresis, while exponential dependence was found with the sinusoidal electric field. The mobility minima were lower in field-inversion electrophoresis than with the biased sinusoidal-field technique. The DNA (5 kb concatamers) was adequately separated using a ramp of frequency in the square-wave electric field, in approximately 1 h. The migration order of DNA fragments was referenced through adding a monodisperse DNA (48.5 kb) into the sample. The band inversion phenomena were not observed under any experimental conditions used in this work.
Collapse
Affiliation(s)
- J Sudor
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
19
|
Dewar K, Bernier L. Inheritance of chromosome-length polymorphisms in Ophiostoma ulmi (sensu lato). Curr Genet 1995; 27:541-9. [PMID: 7553939 DOI: 10.1007/bf00314445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the mitotic and meiotic transmission of chromosome-length polymorphisms in Ophiostoma ulmi s.l., the causal agent of Dutch elm disease. The North-American aggressive (NAN) strain CESS16K has an atypical electrophoretic karyotype, carrying two chromosome-sized DNAs (chDNAs) that have not been observed in other members of the NAN biotype. Independent CESS16K chDNA preparations, even after repeated inoculation and recovery from the elm host, and analysis of 16 progeny strains after a cross between the NAN strains FG245Br-O and CESS16K, demonstrated that these unique chDNAs are integral components of the CESS16K genome. Analysis of the progeny, by electrophoretic karyotyping and hybridizations with probes specific to individual chDNAs, presented evidence that genome rearrangements can occur as a consequence of meiosis. Even though novel electrophoretic karyotypes and a novel-sized chromosome were observed in the karyotypes of the progeny strains, the low level of reassortment between the chromosomes carrying length polymorphisms presented evidence that there are constraints to genome plasticity for this fungus.
Collapse
Affiliation(s)
- K Dewar
- Centre de recherche en biologie forestière, Faculté de foresterie et de géomatique, Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
20
|
Abstract
Pulsed field gel electrophoresis (PFGE) is capable of resolving a wide size range of DNA molecules which would all co-migrate in conventional agarose gels. We describe pulsed field gel conditions which permit DNA fragments of up to 250 kilobases (kb) to be separated in only 3.5 h. The separations, which employ commercially available gel boxes, are achieved using conditions which deviate significantly from traditional pulsed field conditions. PFGE separations have been thought to require reorientation angles greater than 90 degrees to be effective. However, reorientation angles of 90 degrees and even less will resolve DNA fragments a few hundred kb and smaller approximately 5 x faster than with standard pulsed field conditions. The mobility of DNA fragments separated with 90 degrees reorientation angles is switch time-dependent, as is seen for DNA run with the commonly used reorientation angle of 120 degrees. With DNA fragments of several hundred kb and smaller, higher field strengths may be used, resulting in still greater increases in separation speed. The conditions described allow DNA from large insert bacterial clones, such as those using cosmid, Fosmid, P1, bacterial artificial chromosome (BAC), or P1-derived artificial chromosome (PAC) vectors, to be prepared, digested and analyzed on gels within a single working day.
Collapse
Affiliation(s)
- B Birren
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
21
|
Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 1994; 22:4922-31. [PMID: 7800481 PMCID: PMC523757 DOI: 10.1093/nar/22.23.4922] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.
Collapse
Affiliation(s)
- S S Woo
- Soil and Crop Sciences Department, Texas A & M University, College Station 77843-2123
| | | | | | | | | |
Collapse
|
22
|
Abstract
Contour-clamped homogeneous electric field (CHEF) gel electrophoresis was used to separate chromosomal size DNA molecules of two Mucor circinelloides strains. Electrophoretic karyotypes revealed the presence of eight distinct bands for the M. circinelloides f. lusitanicus strain, and four, presumably multiple, bands for the M. circinelloides f. gryseo-cyanus strain. The approximate sizes of the resolved chromosomal DNA bands ranged from 2.3 to 8.1 Mb, giving estimated genome sizes of 38.7 and 32.6 Mb, respectively. Hybridisation techniques were used to assign the leuA gene to a chromosome.
Collapse
Affiliation(s)
- A Nagy
- Gedeon Richter Chemical Works, Budapest, Hungary
| | | | | | | |
Collapse
|
23
|
Bowden CG, Hintz WE, Jeng R, Hubbes M, Horgen PA. Isolation and characterization of the cerato-ulmin toxin gene of the Dutch elm disease pathogen, Ophiostoma ulmi. Curr Genet 1994; 25:323-9. [PMID: 8082175 DOI: 10.1007/bf00351485] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hydrophobic protein cerato-ulmin (CU), produced by Ophiostoma ulmi, has been implicated in the pathogenicity of this fungus on elm. Primers were designed based on the nucleotide sequence deduced from the published CU amino-acid sequence, and a DNA fragment of the cu gene was amplified using the polymerase chain reaction. The amplified cu fragment was used as a hybridization probe to identify and isolate the cu gene from a genomic DNA library of an aggressive isolate of O. ulmi ( = O. novo-ulmi). The cu coding region is interrupted by two introns and encodes a 100 amino-acid prepro-CU polypeptide that is processed to a 75 amino-acid mature protein upon secretion. CU shows significant sequence similarity to hydrophobins secreted by certain other fungi.
Collapse
Affiliation(s)
- C G Bowden
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Abstract
The centromere locus from linkage group VII of Neurospora crassa has been cloned, characterized, and physically mapped. The centromeric DNA is contained within a 450-kb region that is recombination deficient, A+T-rich, and contains repetitive sequences. Repetitive sequences from within this region hybridize to a family of repeats located at or near centromeres in all seven linkage groups of N. crassa. Genomic Southern blots and sequence analysis of these repeats revealed a unique centromere structure containing a divergent family of centromere-specific repeats. The predominantly transitional differences between copies of the centromere-specific sequence repeats and their high A+T content suggest that their divergence was mediated by repeat-induced point (RIP) mutations.
Collapse
|
25
|
Abstract
The centromere locus from linkage group VII of Neurospora crassa has been cloned, characterized, and physically mapped. The centromeric DNA is contained within a 450-kb region that is recombination deficient, A+T-rich, and contains repetitive sequences. Repetitive sequences from within this region hybridize to a family of repeats located at or near centromeres in all seven linkage groups of N. crassa. Genomic Southern blots and sequence analysis of these repeats revealed a unique centromere structure containing a divergent family of centromere-specific repeats. The predominantly transitional differences between copies of the centromere-specific sequence repeats and their high A+T content suggest that their divergence was mediated by repeat-induced point (RIP) mutations.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Blotting, Southern
- Centromere/chemistry
- Centromere/physiology
- Chromosome Walking
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal
- Cloning, Molecular/methods
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Deoxyribonucleases, Type II Site-Specific
- Escherichia coli
- Genetic Linkage
- Molecular Sequence Data
- Neurospora crassa/genetics
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M Centola
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
26
|
Locke J, McDermid HE. Analysis of Drosophila chromosome 4 using pulsed field gel electrophoresis. Chromosoma 1993; 102:718-23. [PMID: 8149812 DOI: 10.1007/bf00650898] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous estimates of the size of Drosophila melanogaster chromosome 4 have indicated that it is 1% to 4% of the genome or approximately 6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules of D. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from the cubitus interruptus and zfh-2 genes, which are located on chromosome 4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome 4. In DNA obtained from embryos of various D. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. The D. melanogaster chromosome 4 probes also identified a single, 2.4 Mb band in embryonic DNA from Drosophila simulans. We conclude that D. simulans chromosome 4 is substantially smaller than that of D. melanogaster, presumably owing to differences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome 4 DNA and will facilitate the molecular mapping of this chromosome.
Collapse
Affiliation(s)
- J Locke
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
27
|
Abstract
Chromosomes of the fungal respiratory pathogen, Coccidioides immitis, were separated by contour-clamped homogeneous electric field gel electrophoresis. Twelve isolates were examined, the majority of which showed four chromosomes with a range of molecular size from 11.5 to 3.2 Mb. Three isolates (C634, C735, and L) revealed three chromosomal bands under the conditions employed for electrophoretic separation. However, in two of these isolates (C634 and C735), four chromosomes were visible on membrane transfers of pulsed-field gels after Southern hybridization between the chromosomal DNA and selected DNA probes. The probes included a conserved ribosomal gene and three previously described cDNAs isolated from C. immitis expression libraries. The L isolate was determined to have the same genome size as a typical four-chromosome isolate on the basis of microspectrophotometric comparison of fluorescence intensity of the ethidium bromide-stained nuclear DNA. The genome size of C. immitis determined by microspectrophotometry was approximately 28.2 +/- 2.6 Mb. The calculated genome size based on addition of the average molecular weights of chromosomal bands separated by contour-clamped homogeneous electric field gel electrophoresis was approximately equal to the estimate derived from the spectrophotometric analyses. This is the first report of the electrophoretic karyotype of C. immitis.
Collapse
Affiliation(s)
- S Pan
- Department of Botany, University of Texas, Austin 78713-7640
| | | |
Collapse
|
28
|
Montenegro E, Fierro F, Fernandez FJ, Gutiérrez S, Martín JF. Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases). J Bacteriol 1992; 174:7063-7. [PMID: 1400258 PMCID: PMC207390 DOI: 10.1128/jb.174.21.7063-7067.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An improved electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 has been obtained by contour-clamped electric field gel electrophoresis, which separates seven chromosomal bands and allows resolution of chromosomes III and VI. The three genes of the penicillin biosynthetic pathway, pcbAB, pcbC, and penDE, encoding alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase, and isopenicillin N acyltransferase, respectively, are clustered together on a chromosome of 3.0 Mg, corresponding to linkage group VI, whereas the argB gene was located on a chromosome of 3.4 Mb, corresponding to linkage group III. Three other strains of A. nidulans contained a modified chromosome III of about 3.1 Mb that overlaps with chromosome VI, forming a doublet. Resolution of chromosomes III and VI in strain ATCC 28901 allowed unequivocal mapping of the penicillin gene cluster on chromosome VI of A. nidulans.
Collapse
Affiliation(s)
- E Montenegro
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | |
Collapse
|
29
|
Milgroom MG, Lipari SE, Powell WA. DNA fingerprinting and analysis of population structure in the chestnut blight fungus, Cryphonectria parasitica. Genetics 1992; 131:297-306. [PMID: 1353735 PMCID: PMC1205005 DOI: 10.1093/genetics/131.2.297] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed DNA fingerprints in the chestnut blight fungus, Cryphonectria parasitica, for stability, inheritance, linkage and variability in a natural population. DNA fingerprints resulting from hybridization with a dispersed moderately repetitive DNA sequence of C. parasitica in plasmid pMS5.1 hybridized to 6-17 restriction fragments per individual isolate. In a laboratory cross and from progeny from a single perithecium collected from a field population, the presence/absence of 11 fragments in the laboratory cross and 12 fragments in the field progeny set segregated in 1:1 ratios. Two fragments in each progeny set cosegregated; no other linkage was detected among the segregating fragments. Mutations, identified by missing bands, were detected for only one fragment in which 4 of 43 progeny lacked a band present in both parents; no novel fragments were detected in any progeny. All other fragments appeared to be stably inherited. Hybridization patterns did not change during vegetative growth or sporulation. However, fingerprint patterns of single conidial isolates of strains EP155 and EP67 were found to be heterogenous due to mutations that occurred during culturing in the laboratory since these strains were first isolated in 1976-1977. In a population sample of 39 C. parasitica isolates, we found 33 different fingerprint patterns with pMS5.1. Most isolates differed from all other isolates by the presence or absence of several fragments. Six fingerprint patterns each occurred twice. Isolates with identical fingerprints occurred in cankers on the same chestnut stems three times; isolates within the other three pairs were isolated from cankers more than 5 m apart. The null hypothesis of random mating in this population could not be rejected if the six putative clones were removed from the analysis. Thus, a rough estimate of the clonal fraction of this population is 6 in 39 isolates (15.4%).
Collapse
Affiliation(s)
- M G Milgroom
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-5908
| | | | | |
Collapse
|
30
|
Romao J, Hamer JE. Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc Natl Acad Sci U S A 1992; 89:5316-20. [PMID: 11607299 PMCID: PMC49282 DOI: 10.1073/pnas.89.12.5316] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fungal rice pathogen Magnaporthe grisea contains repetitive DNA sequences called MGR. We have used a DNA probe, MGR586, derived from these sequences and crosses between rice-pathogenic and non-rice-pathogenic laboratory strains of M. grisea to rapidly map genes in this organism. The rice-pathogenic strain contained 57 EcoRI restriction fragments that hybridize to the MGR586 probe; the other five non-rice-pathogenic parent strains contained a single MGR586 sequence. Genetic analysis of MGR segregation detected eight linkage groups and allowed the mapping of three pigmentation genes (Alb1, Rsy1, and Buf1), the mating type locus (Mat1), the nucleolar organizer (Rdn1), the Smol gene, and two restriction fragment length polymorphisms linked to Smol. Our results indicate that the MGR586 loci are randomly distributed about the M. grisea genome and permit the construction of a well-marked linkage map useful for future studies on genome organization and genetic analysis in M. grisea.
Collapse
Affiliation(s)
- J Romao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
31
|
Mäntylä AL, Rossi KH, Vanhanen SA, Penttilä ME, Suominen PL, Nevalainen KM. Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet 1992; 21:471-7. [PMID: 1617736 DOI: 10.1007/bf00351657] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An electrophoretic karyotype of Trichoderma longibrachiatum (reesei) was obtained using contour-clamped homogeneous electric field (CHEF) gel electrophoresis. Seven chromosomal DNA bands were separated in the wild-type T. longibrachiatum strain QM6a. The sizes of the chromosomal DNA bands ranged from 2.8 to 6.9 Mb, giving an estimated total genome size of about 33 Mb. The electrophoretic karyotype of the strain QM6a was compared to three hyper-celluloytic mutant strains, QM9414, RutC30 and VTT-D-79125. The chromosome pattern of the mutant QM9414 was quite similar to that of the wild-type QM6a except that the smallest chromosome differed somewhat in size. The VTT-D-79125 and RutC30 strains, which have undergone several mutagenesis steps, showed striking differences in their karyotype compared to the initial parent. The chromosomal DNA bands were identified using the previously characterized T. longibrachiatum genes (egl1, egl2, cbh1, cbh2, pgk1, rDNA) and random clones isolated from a genomic library. In all strains the cellulase genes cbh1, cbh2 and egl2 were located in the same linkage group (chromosome II in the wild-type), while the main endoglucanase, egl1, hybridized to another chromosomal DNA band (chromosome VI in the wild-type).
Collapse
Affiliation(s)
- A L Mäntylä
- Research Laboratories, Alko Ltd, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Murray FR, Latch GC, Scott DB. Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:1-9. [PMID: 1603053 DOI: 10.1007/bf00587554] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conditions have been developed for transforming protoplasts of the perennial ryegrass endophyte Acremonium strain 187BB. Unlike most other ryegrass endophytes, this strain does not produce the lolitrem B neurotoxin and is therefore suitable as a host for surrogate introduction of foreign genes into grasses. Transformation frequencies of 700-800 transformants/micrograms DNA were obtained for both linear and circular forms of pAN7-1, a hygromycin (hph) resistant plasmid. Up to 80% of the linear transformants were stable on further culturing but only 25% of the circular transformants retained hygromycin resistance. Integration of pAN7-1 into the genome was confirmed by Southern blotting and probing of genomic digests of transformant DNA. Both single and tandemly repeated copies of the plasmid were found in the genome and both the number and sites of integration varied among the transformants. At least 13 chromosomes were identified in 187BB using contour-clamped homogeneous electric field (CHEF) gel electrophoresis. Probing of Southern blots of these gels confirmed that pAN7-1 had integrated into different chromosomes. The beta-glucuronidase (GUS) gene, uidA, was also introduced into 187BB by co-transformation of pNOM-2 with pAN7-1. GUS activity was detected by growing the transformants on plates containing 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid and by enzyme assays of mycelial extracts. Several hph- and uidA-containing transformants were reintroduced into ryegrass seedlings and expression of GUS visualized in vivo, demonstrating that 187BB can be used as a surrogate host to introduce foreign genes into perennial ryegrass.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F R Murray
- Department of Microbiology and Genetics, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
33
|
Tzeng TH, Lyngholm LK, Ford CF, Bronson CR. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 1992; 130:81-96. [PMID: 1346261 PMCID: PMC1204808 DOI: 10.1093/genetics/130.1.81] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical length to map distance should make this RFLP map a useful tool for cloning genes.
Collapse
Affiliation(s)
- T H Tzeng
- Department of Plant Pathology, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|
34
|
Higashiyama T, Yamada T. Electrophoretic karyotyping and chromosomal gene mapping of Chlorella. Nucleic Acids Res 1991; 19:6191-5. [PMID: 1956777 PMCID: PMC329121 DOI: 10.1093/nar/19.22.6191] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular karyotypes for six strains of four Chlorella species were obtained by using an alternating-field gel electrophoresis system which employs contour-clamped homogenous electric fields (CHEF). The number and migration pattern of the chromosomal DNA molecules varied greatly from strain to strain: for example, nine separated chromosomes of C. ellipsoidea C87 ranged from 2.5 to 6.5 megabase pairs (mbp) in size, whereas 16 chromosomes of C. vulgaris C169 were from 980 kilobase pairs (kbp) to 4.0 mbp. Depending on the chromosome migration patterns, the six strains were classified into two major chromosome-length polymorphism groups. Using hybridization techniques, the genes for alpha-tublin, chlorophyll-a, b-binding proteins, ribosomal RNAs, and the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) were mapped on the separated chromosomes of C. vulgaris C169. Since Chlorella chromosomes are small enough to separate and isolate individually by CHEF gel electrophoresis under ordinary conditions, they should serve as excellent materials to study the fundamental molecular structure of plant-type chromosomes.
Collapse
|
35
|
The Neurospora crassa cyt-20 gene encodes cytosolic and mitochondrial valyl-tRNA synthetases and may have a second function in addition to protein synthesis. Mol Cell Biol 1991. [PMID: 1830127 DOI: 10.1128/mcb.11.8.4022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyt-20-1 mutant of Neurospora crassa is a temperature-sensitive, cytochrome b- and aa3-deficient strain that is severely deficient in both mitochondrial and cytosolic protein synthesis (R.A. Collins, H. Bertrand, R.J. LaPolla, and A.M. Lambowitz, Mol. Gen. Genet. 177:73-84, 1979). We cloned the cyt-20+ gene by complementation of the cyt-20-1 mutation and found that it contains a 1,093-amino-acid open reading frame (ORF) that encodes both the cytosolic and mitochondrial valyl-tRNA synthetases (vaIRSs). A second mutation, un-3, which is allelic with cyt-20-1, also results in temperature-sensitive growth, but not in gross deficiencies in cytochromes b and aa3 or protein synthesis. The un-3 mutant had also been reported to have pleiotropic defects in cellular transport process, resulting in resistance to amino acid analogs (M.S. Kappy and R.L. Metzenberg, J. Bacteriol. 94:1629-1637, 1967), but this resistance phenotype is separable from the temperature sensitivity in crosses and may result from a mutation in a different gene. The 1,093-amino-acid ORF encoding vaIRSs is the site of missense mutations resulting in temperature sensitivity in both cyt-20-1 and un-3 and is required for the transformation of both mutants. The opposite strand of the cyt-20 gene encodes an overlapping ORF of 532 amino acids, which may also be functional but is not required for transformation of either mutant. The cyt-20-1 mutation in the vaIRS ORF results in severe deficiencies of both mitochondrial and cytosolic vaIRS activities, whereas the un-3 mutation does not appear to result in a deficiency of these activities or of mitochondrial or cytosolic protein synthesis sufficient to account for its temperature-sensitive growth. The phenotype of the un-3 mutant raises the possibility that the vaIRS ORF has a second function in addition to protein synthesis.
Collapse
|
36
|
Abstract
In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by approximately 6500-fold. Their average mutation rates per base pair vary by approximately 16,000-fold, whereas their mutation rates per genome vary by only approximately 2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.
Collapse
Affiliation(s)
- J W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
37
|
Kubelik AR, Turcq B, Lambowitz AM. The Neurospora crassa cyt-20 gene encodes cytosolic and mitochondrial valyl-tRNA synthetases and may have a second function in addition to protein synthesis. Mol Cell Biol 1991; 11:4022-35. [PMID: 1830127 PMCID: PMC361206 DOI: 10.1128/mcb.11.8.4022-4035.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cyt-20-1 mutant of Neurospora crassa is a temperature-sensitive, cytochrome b- and aa3-deficient strain that is severely deficient in both mitochondrial and cytosolic protein synthesis (R.A. Collins, H. Bertrand, R.J. LaPolla, and A.M. Lambowitz, Mol. Gen. Genet. 177:73-84, 1979). We cloned the cyt-20+ gene by complementation of the cyt-20-1 mutation and found that it contains a 1,093-amino-acid open reading frame (ORF) that encodes both the cytosolic and mitochondrial valyl-tRNA synthetases (vaIRSs). A second mutation, un-3, which is allelic with cyt-20-1, also results in temperature-sensitive growth, but not in gross deficiencies in cytochromes b and aa3 or protein synthesis. The un-3 mutant had also been reported to have pleiotropic defects in cellular transport process, resulting in resistance to amino acid analogs (M.S. Kappy and R.L. Metzenberg, J. Bacteriol. 94:1629-1637, 1967), but this resistance phenotype is separable from the temperature sensitivity in crosses and may result from a mutation in a different gene. The 1,093-amino-acid ORF encoding vaIRSs is the site of missense mutations resulting in temperature sensitivity in both cyt-20-1 and un-3 and is required for the transformation of both mutants. The opposite strand of the cyt-20 gene encodes an overlapping ORF of 532 amino acids, which may also be functional but is not required for transformation of either mutant. The cyt-20-1 mutation in the vaIRS ORF results in severe deficiencies of both mitochondrial and cytosolic vaIRS activities, whereas the un-3 mutation does not appear to result in a deficiency of these activities or of mitochondrial or cytosolic protein synthesis sufficient to account for its temperature-sensitive growth. The phenotype of the un-3 mutant raises the possibility that the vaIRS ORF has a second function in addition to protein synthesis.
Collapse
Affiliation(s)
- A R Kubelik
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
38
|
Cooley RN, Caten CE. Variation in electrophoretic karyotype between strains of Septoria nodorum. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:17-23. [PMID: 1886607 DOI: 10.1007/bf00282442] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The electrophoretic karyotype of 11 strains of the phytopathogenic fungus Septoria nodorum has been established by pulsed field gel electrophoresis with the CHEF DRII system. Each strain had a similar overall karyotype with 14-19 chromosomes being resolved in the size interval between approximately 0.5 and 3.5 megabase pairs (Mb). However, there were clear differences in karyotype both between and within groups of strains adapted to wheat or to barley. Considerable karyotype variation was apparent even among 6 wheat-adapted strains isolated from the same population. Only 2 strains possessed identical karyotypes; these were isolated from the same leaf and were heterokaryon-compatible and are probably independent isolates of the same clone.
Collapse
Affiliation(s)
- R N Cooley
- School of Biological Sciences, University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
39
|
Abstract
Success in constructing a physical map of the human genome will depend on two capabilities: rapid resolution of very large DNA and identification of migration anomalies. To address these issues, a systematic exploration of pulsed-field electrophoresis conditions for separating multimegabase-sized DNA was undertaken. Conditions were found for first liberating and then separating DNA up to 6 megabases at higher field strengths and more rapidly than previously reported. In addition, some conditions for transversely pulsed fields produced mobility inversion, in which increased size was accompanied by faster rather than slower migration. Importantly, anomalous migration could be identified by the presence of lateral band spreading, in which the DNA band remained sharply defined but spread laterally while moving down the gel. These results have implications for both practical applications and theoretical models of pulsed-field electrophoresis.
Collapse
|
40
|
Abstract
Giardia lamblia telomeres have been isolated from a library enriched for repaired chromosome ends by (i) screening with a Plasmodium falciparum telomere and (ii) differential hybridization with Bal 31-digested and total G. lamblia DNA. Analysis of three clones isolated by this strategy has identified multiple tandem repeats of the 5-mer TAGGG. An oligonucleotide containing these repeats recognizes Bal 31-sensitive bands in Southern hybridizations and detects all G. lamblia chromosomes in pulsed-field gel electrophoresis separations. An abrupt transition from the G. lamblia rDNA sequence to telomeric repeats has been found in all three clones. In two of the clones the transition occurs at the same site, near the beginning of the large subunit rDNA sequence. In the third clone the transition occurs at a site in the intergenic spacer sequence between the rDNA genes. Hybridization of an rDNA probe to a pulsed-field separation of G. lamblia chromosomes indicates that rDNA genes are present on several chromosomes but vary in location from isolate to isolate. These results suggest that rRNA genes are clustered at telomeric locations in G. lamblia and that these clusters are mobile.
Collapse
|
41
|
Brody H, Griffith J, Cuticchia AJ, Arnold J, Timberlake WE. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res 1991; 19:3105-9. [PMID: 2057366 PMCID: PMC328277 DOI: 10.1093/nar/19.11.3105] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Development of physical genomic maps is facilitated by identification of overlapping recombinant DNA clones containing long chromosomal DNA inserts. To simplify the analysis required to determine which clones in a genomic library overlap one another, we partitioned Aspergillus nidulans cosmid libraries into chromosome-specific subcollections. The eight A. nidulans chromosomes were resolved by pulsed field gel electrophoresis and hybridized to filter replicas of cosmid libraries. The subcollections obtained appeared to be representative of the chromosomes based on the correspondence between subcollection size and chromosome length. A sufficient number of clones was obtained in each chromosome-specific subcollection to predict the overlap and assembly of individual clones into a limited number of contiguous regions. This approach should be applicable to many organisms whose genomes can be resolved by pulsed field gel electrophoresis.
Collapse
Affiliation(s)
- H Brody
- Department of Genetics, University of Georgia, Athens 30602
| | | | | | | | | |
Collapse
|
42
|
Abstract
Giardia lamblia telomeres have been isolated from a library enriched for repaired chromosome ends by (i) screening with a Plasmodium falciparum telomere and (ii) differential hybridization with Bal 31-digested and total G. lamblia DNA. Analysis of three clones isolated by this strategy has identified multiple tandem repeats of the 5-mer TAGGG. An oligonucleotide containing these repeats recognizes Bal 31-sensitive bands in Southern hybridizations and detects all G. lamblia chromosomes in pulsed-field gel electrophoresis separations. An abrupt transition from the G. lamblia rDNA sequence to telomeric repeats has been found in all three clones. In two of the clones the transition occurs at the same site, near the beginning of the large subunit rDNA sequence. In the third clone the transition occurs at a site in the intergenic spacer sequence between the rDNA genes. Hybridization of an rDNA probe to a pulsed-field separation of G. lamblia chromosomes indicates that rDNA genes are present on several chromosomes but vary in location from isolate to isolate. These results suggest that rRNA genes are clustered at telomeric locations in G. lamblia and that these clusters are mobile.
Collapse
Affiliation(s)
- R D Adam
- Department of Internal Medicine, University of Arizona, Tucson 85724
| | | | | |
Collapse
|
43
|
Abstract
Success in constructing a physical map of the human genome will depend on two capabilities: rapid resolution of very large DNA and identification of migration anomalies. To address these issues, a systematic exploration of pulsed-field electrophoresis conditions for separating multimegabase-sized DNA was undertaken. Conditions were found for first liberating and then separating DNA up to 6 megabases at higher field strengths and more rapidly than previously reported. In addition, some conditions for transversely pulsed fields produced mobility inversion, in which increased size was accompanied by faster rather than slower migration. Importantly, anomalous migration could be identified by the presence of lateral band spreading, in which the DNA band remained sharply defined but spread laterally while moving down the gel. These results have implications for both practical applications and theoretical models of pulsed-field electrophoresis.
Collapse
Affiliation(s)
- K Gunderson
- Department of Medicine, Stanford University Medical Center, California 94305-5306
| | | |
Collapse
|
44
|
Wickes BL, Golin JE, Kwon-Chung KJ. Chromosomal rearrangement in Candida stellatoidea results in a positive effect on phenotype. Infect Immun 1991; 59:1762-71. [PMID: 2019440 PMCID: PMC257913 DOI: 10.1128/iai.59.5.1762-1771.1991] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When type I Candida stellatoidea is plated onto sucrose agar at levels in excess of 10(8) cells, some isolates spontaneously form sucrose-positive colonies. These isolates do not display typical type I phenotypes but instead exhibit phenotypes intermediate between type I C. stellatoidea and C. albicans. Also, this phenotypic change only occurs in conjunction with a chromosomal rearrangement. These rearrangements have been studied in a strain naturally marked for methionine auxotrophy. Chromosome-size DNA bands separated by pulsed-field gel electrophoresis were probed with genes cloned from C. albicans. The hybridization pattern indicated that the genes on several chromosomes underwent extensive rearrangement.
Collapse
Affiliation(s)
- B L Wickes
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
45
|
Eschbach S, Hofmann CJ, Maier UG, Sitte P, Hansmann P. A eukaryotic genome of 660 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res 1991; 19:1779-81. [PMID: 2030961 PMCID: PMC328104 DOI: 10.1093/nar/19.8.1779] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptomonads are unicellular algae with chloroplasts surrounded by four membranes. Between the inner and the outer pairs of membranes is a narrow plasmatic compartment which contains a nucleus-like organelle called the nucleomorph. Using pulsed field gel electrophoresis it is shown that the nucleomorph of the cryptomonad Pyrenomonas salina contains three linear chromosomes of 195 kb, 225 kb and 240 kb all of which encode rRNAs. Thus, this vestigial nucleus has a haploid genome size of 660 kb, harboring the smallest eukaryotic genome known so far. From the cell nucleus of P. salina at least 20 chromosomes ranging from 230 kb to 3.000 kb were fractionated. Here, the rDNA was detected on a single chromosome of about 2.500 kb.
Collapse
Affiliation(s)
- S Eschbach
- Institut für Biologie II, Universität, Freiburg, FRG
| | | | | | | | | |
Collapse
|
46
|
Miao VP, Matthews DE, VanEtten HD. Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:214-23. [PMID: 2034215 DOI: 10.1007/bf00273606] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability to detoxify the phytoalexin, pisatin, an antimicrobial compound produced by pea (Pisum sativum L.), is one requirement for pathogenicity of the fungus Nectria haematococca on this plant. Detoxification is mediated by a cytochrome P-450, pisatin demethylase, encoded by any one of six Pda genes, which differ with respect to the inducibility and level of pisatin demethylase activity they confer, and which are associated with different levels of virulence on pea. A previously cloned Pda gene (PdaT9) was used in this study to characterize further the known genes and to identify additional members of the Pda family in this fungus by Southern analysis. DNA from all isolates which demethylate pisatin (Pda+ isolates) hybridized to PdaT9, while only one Pda- isolate possessed DNA homologous to the probe. Hybridization intensity and, in some cases, restriction fragment size, were correlated with enzyme inducibility. XhoI/BamHI restricted DNA from reference strains with a single active Pda allele had only one fragment with homology to PdaT9; no homology attributable to alleles associated with the Pda- phenotype was found. Homology to this probe was also limited to one or two restriction fragments in most of the 31 field isolates examined. Some unusual progeny from laboratory crosses that failed to inherit demethylase activity also lost the single restriction fragment homologous to PdaT9. At the chromosome level, N. haematococca is highly variable, each isolate having a unique electrophoretic karyotype. In most instances, PdaT9 hybridized to one or two chromosomes containing 1.6-2 million bases of DNA, while many Pda- isolates lacked chromosomes in this size class. The results from this study of the Pda family support the hypothesis that deletion of large amounts of genomic DNA is one mechanism that reduces the frequency of Pda genes in N. haematococca, while simultaneously increasing its karyotypic variation.
Collapse
Affiliation(s)
- V P Miao
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
47
|
Zhang TY, Smith CL, Cantor CR. Secondary pulsed field gel electrophoresis: a new method for faster separation of larger DNA molecules. Nucleic Acids Res 1991; 19:1291-6. [PMID: 2030945 PMCID: PMC333856 DOI: 10.1093/nar/19.6.1291] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel technique, which we call secondary pulsed field gel electrophoresis (SPFG) has been developed. In SPFG, short pulses are applied in the direction of net migration of the DNA in addition to the reorienting pulses used in conventional pulsed field electrophoresis (PFG). Experimental results show that SPFG extends and improves the electrophoretic resolution of DNA for molecules from 0.5 megabase pairs to over 10 megabase pairs in size. This improved resolution is obtained with dramatically shorter run times. Thus SPFG appears to circumvent a number of the key limitations in previous PFG protocols.
Collapse
Affiliation(s)
- T Y Zhang
- Human Genome Center, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
48
|
Abstract
A restriction fragment length polymorphism (RFLP) analysis was performed on six related Acremonium strains. With respect to the restriction fragment pattern, all strains of A. chrysogenum were indistinguishable from each other but showed distinctive differences from those of A. strictum, A. flavum and Cephalosporium polyvaleurum. Using pulsed-field gel electrophoresis, we obtained different chromosome patterns from most of the Acremonium strains. Remarkably, the pattern varies in three related A. chrysogenum strains which also differ in their rate of cephalosporin C biosynthesis. The electrophoretic karyotyping was confirmed by the location of rDNA genes on separate chromosomes. Our data indicate that chromosome translocations in industrial strains may be responsible for increased beta-lactam synthesis.
Collapse
Affiliation(s)
- M Walz
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Federal Republic of Germany
| | | |
Collapse
|
49
|
Raimondi E, Ferretti L, Young BD, Sgaramella V, De Carli L. The origin of a morphologically unidentifiable human supernumerary minichromosome traced through sorting, molecular cloning, and in situ hybridisation. J Med Genet 1991; 28:92-6. [PMID: 2002493 PMCID: PMC1016775 DOI: 10.1136/jmg.28.2.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A supernumerary minichromosome has been detected in a severely malformed patient. Attempts at identifying the marker by conventional approaches were unsuccessful. The physical isolation of the minichromosome by fluorescence activated sorting, molecular cloning of its DNA, and in situ hybridisation experiments performed with single copy DNA probes allowed us to show that it was derived from a rearrangement involving the centromere and the proximal region of the short arm of chromosome 9.
Collapse
Affiliation(s)
- E Raimondi
- Dipartimento di Genetica e Microbiologia A Buzzati Traverso, Pavia, Italy
| | | | | | | | | |
Collapse
|
50
|
Valent B, Farrall L, Chumley FG. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 1991; 127:87-101. [PMID: 2016048 PMCID: PMC1204315 DOI: 10.1093/genetics/127.1.87] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, "avirulence genes," that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr 1-CO39, Avr 1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences ("MGR sequences"), present in approximately 40-50 copies in the genome of the rice pathogen parent, and in very low copy number in the genome of the nonpathogen of rice, were used as physical markers to monitor restoration of the rice pathogen genetic background during introgression of fertility. The introgression of highest levels of fertility into the most successful rice pathogen progeny was incomplete by the sixth generation, perhaps a consequence of genetic linkage between genes for fertility and genes for rice pathogenicity. One chromosomal DNA segment with MGR sequence homology appeared to be linked to the gene Avr1-CO39. Finally, many of the crosses described in this paper exhibited a characteristic common to many crosses involving M. grisea rice pathogen field isolates.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Valent
- Central Research and Development Department, Du Pont Company, Wilmington, Delaware 19880-0402
| | | | | |
Collapse
|