1
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Sørensen KD, Quintanilla-Martinez L, Kunder S, Schmidt J, Pedersen FS. Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3-3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors enhancer evolution toward induction of other disease patterns. J Virol 2004; 78:13216-31. [PMID: 15542674 PMCID: PMC524987 DOI: 10.1128/jvi.78.23.13216-13231.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SL3-3 murine leukemia virus is a potent inducer of T-lymphomas in mice. Using inbred NMRI mice, it was previously reported that a mutant of SL3-3 with all enhancer Runx (AML1/core) sites disrupted by 3-bp mutations (SL3-3dm) induces predominantly non-T-cell tumors with severely extended latency (S. Ethelberg, J. Lovmand, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:7273-7280, 1997). By use of three-color flow cytometry and molecular and histopathological analyses, we have now performed a detailed phenotypic characterization of SL3-3- and SL3-3dm-induced tumors in this mouse strain. All wild-type induced tumors had clonal T-cell receptor beta rearrangements, and the vast majority were CD3(+) CD4(+) CD8(-) T-lymphomas. Such a consistent phenotypic pattern is unusual for murine leukemia virus-induced T-lymphomas. The mutant virus induced malignancies of four distinct hematopoietic lineages: myeloid, T lymphoid, B lymphoid, and erythroid. The most common disease was myeloid leukemia with maturation. Thus, mutation of all Runx motifs in the enhancer of SL3-3 severely impedes viral T-lymphomagenicity and thereby discloses a considerable and formerly unappreciated potential of this virus for myeloid leukemia induction. Proviral enhancers with complex structural alterations (deletions, insertions, and/or duplications) were found in most SL3-3dm-induced T-lymphoid tumors and immature myeloid leukemias but not in any cases of myeloid leukemia with maturation, mature B-lymphoma, or erythroleukemia. Altogether, our results indicate that the SL3-3dm enhancer in itself promotes induction of myeloid leukemia with maturation but that structural changes may arise in vivo and redirect viral disease specificity to induction of T-lymphoid or immature myeloid leukemias, which typically develop with moderately shorter latencies.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
3
|
Antonsson A, Hughes K, Edin S, Grundström T. Regulation of c-Rel nuclear localization by binding of Ca2+/calmodulin. Mol Cell Biol 2003; 23:1418-27. [PMID: 12556500 PMCID: PMC141150 DOI: 10.1128/mcb.23.4.1418-1427.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B/Rel family of transcription factors participates in the control of a wide array of genes, including genes involved in embryonic development and regulation of immune, inflammation, and stress responses. In most cells, inhibitory I kappa B proteins sequester NF-kappa B/Rel in the cytoplasm. Cellular stimulation results in the degradation of I kappa B and modification of NF-kappa B/Rel proteins, allowing NF-kappa B/Rel to translocate to the nucleus and act on its target genes. Calmodulin (CaM) is a highly conserved, ubiquitously expressed Ca(2+) binding protein that serves as a key mediator of intracellular Ca(2+) signals. Here we report that two members of the NF-kappa B/Rel family, c-Rel and RelA, interact directly with Ca(2+)-loaded CaM. The interaction with CaM is greatly enhanced by cell stimulation, and this enhancement is blocked by addition of I kappa B. c-Rel and RelA interact with CaM through a similar sequence near the nuclear localization signal. Compared to the wild-type protein, CaM binding-deficient mutants of c-Rel exhibit increases in both nuclear accumulation and transcriptional activity on the interleukin 2 and granulocyte macrophage colony-stimulating factor promoters in the presence of a Ca(2+) signal. Conversely, for RelA neither nuclear accumulation nor transcriptional activity on these promoters is increased by mutation of the sequence interacting with CaM. Our results suggest that CaM binds c-Rel and RelA after their release from I kappa B and can inhibit nuclear import of c-Rel while letting RelA translocate to the nucleus and act on its target genes. CaM can therefore differentially regulate the activation of NF-kappa B/Rel proteins following stimulation.
Collapse
Affiliation(s)
- Asa Antonsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
4
|
Wilson CA, Laeeq S, Ritzhaupt A, Colon-Moran W, Yoshimura FK. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J Virol 2003; 77:142-9. [PMID: 12477819 PMCID: PMC140639 DOI: 10.1128/jvi.77.1.142-149.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine cells express endogenous retroviruses, some of which are infectious for human cells. To better understand the replication of these porcine endogenous retroviruses (PERVs) in cells of different types and animal species, we have performed studies of the long terminal repeat (LTR) region of known gammaretroviral isolates of PERV. Nucleotide sequence determination of the LTRs of PERV-NIH, PERV-C, PERV-A, and PERV-B revealed that the PERV-A and PERV-B LTRs are identical, whereas the PERV-NIH and PERV-C LTRs have significant sequence differences in the U3 region between each other and with the LTRs of PERV-A and PERV-B. Sequence analysis revealed a similar organization of basal promoter elements compared with other gammaretroviruses, including the presence of enhancer-like repeat elements. The sequences of the PERV-NIH and PERV-C repeat element are similar to that of the PERV-A and PERV-B element with some differences in the organization of these repeats. The sequence of the PERV enhancer-like repeat elements differs significantly from those of other known gammaretroviral enhancers. The transcriptional activities of the PERV-A, PERV-B, and PERV-C LTRs relative to each other were similar in different cell types of different animal species as determined by transient expression assays. On the other hand, the PERV-NIH LTR was considerably weaker in these cell types. The transcriptional activity of all PERV LTRs was considerably lower in porcine ST-IOWA cells than in cell lines from other species. Deletion mutant analysis of the LTR of a PERV-NIH isolate identified regions that transactivate or repress transcription depending on the cell type.
Collapse
Affiliation(s)
- Carolyn A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Mertz JA, Mustafa F, Meyers S, Dudley JP. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J Virol 2001; 75:2174-84. [PMID: 11160721 PMCID: PMC114801 DOI: 10.1128/jvi.75.5.2174-2184.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell tumors in mice. TBLV is highly related to mouse mammary tumor virus (MMTV) except that TBLV long terminal repeats (LTRs) have a deletion of negative regulatory elements and a triplication of sequences flanking the deletion. To determine if the LTR triplication represents a viral enhancer element, we inserted the triplication upstream and downstream in either orientation relative to the thymidine kinase promoter linked to the luciferase gene. These experiments showed that upregulation of reporter gene activity by the TBLV triplication was relatively orientation independent, consistent with the activity of eukaryotic enhancer elements. TBLV enhancer activity was observed in T-cell lines but not in fibroblasts, B cells, or mammary cells, suggesting that enhancer function is cell type dependent. To analyze the transcription factor binding sites that are important for TBLV enhancer function, we prepared substitution mutations in a reconstituted C3H MMTV LTR that recapitulates the deletion observed in the TBLV LTR. Transient transfections showed that a single mutation (556M) decreased TBLV enhancer activity at least 20-fold in two different T-cell lines. This mutation greatly diminished AML-1 (recently renamed RUNX1) binding in gel shift assays with a mutant oligonucleotide, whereas AML-1 binding to a wild-type TBLV oligomer was specific, as judged by competition and supershift experiments. The 556 mutation also reduced TBLV enhancer binding of two other protein complexes, called NF-A and NF-B, that did not appear to be related to c-Myb or Ets. AML-1 overexpression in a mammary cell line enhanced expression from the TBLV LTR approximately 30-fold. These data suggest that binding of AML-1 to the TBLV enhancer, likely in combination with other factors, is necessary for optimal enhancer function.
Collapse
Affiliation(s)
- J A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
6
|
Warren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J 2000; 19:3004-15. [PMID: 10856244 PMCID: PMC203359 DOI: 10.1093/emboj/19.12.3004] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the genes encoding the interacting proteins AML1 and CBFbeta are the most common genetic abnormalities in acute leukaemia, and congenital mutations in the related AML3 gene are associated with disorders of osteogenesis. Furthermore, the interaction of AML1 with CBFbeta is essential for haematopoiesis. We report the 2.6 A resolution crystal structure of the complex between the AML1 Runt domain and CBFbeta, which represents a paradigm for the mode of interaction of this highly conserved family of transcription factors. The structure demonstrates that point mutations associated with cleidocranial dysplasia map to the conserved heterodimer interface, suggesting a role for CBFbeta in osteogenesis, and reveals a potential protein interaction platform composed of conserved negatively charged residues on the surface of CBFbeta.
Collapse
Affiliation(s)
- A J Warren
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
7
|
Martiney MJ, Rulli K, Beaty R, Levy LS, Lenz J. Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus. J Virol 1999; 73:7599-606. [PMID: 10438850 PMCID: PMC104287 DOI: 10.1128/jvi.73.9.7599-7606.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The retrovirus SL3 induces T-cell lymphomas in mice. The transcriptional enhancer in the long terminal repeat (LTR) of SL3 contains two 72-bp repeats. Each repeat contains a binding site for the transcription factor CBF (also called AML1). The CBF binding sites are called core elements. SAA is a mutant that is identical to SL3 except for the presence of a single-base-pair substitution in each of the two core elements. This mutation significantly attenuates viral lymphomagenicity. Most lymphomas that occur in SAA-infected mice contain proviruses with reversions or second-site suppressor mutations within the core element. We examined the selective pressures that might account for the predominance of the reversions and suppressor mutations in tumor proviruses by analyzing when proviruses with altered core sequences became abundant during the course of lymphomagenesis. Altered core sequences were easily detected in thymus DNAs by 4 to 6 weeks after SAA infection of mice, well before lymphomas were grossly evident. This result is consistent with the hypothesis that viruses with the core sequence alterations emerged because they replicated more effectively in mice than SAA. The number of 72-bp tandem, repeats in the viral LTR was found to vary, presumably as a consequence of reverse transcriptase slippage during polymerization. Proviruses with two repeats predominated in the thymuses of SAA- and SL3-infected mice before lymphomas developed, although LTRs with one or three repeats were also present. This suggested that two was the optimal number of 72-bp repeats for viral replication. However, in lymphomas, proviruses with three or four repeats usually predominated. This suggested that a late step in the process of lymphomagenesis led to the abundance of proviruses with additional repeats. We hypothesize that proviruses with additional 72-bp repeats endowed the cells containing them with a selective growth advantage.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
8
|
Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA. Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999; 73:5535-47. [PMID: 10364302 PMCID: PMC112611 DOI: 10.1128/jvi.73.7.5535-5547.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.
Collapse
Affiliation(s)
- A F Lewis
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
9
|
Yoshimura FK, Wang T, Cankovic M. Sequences between the enhancer and promoter in the long terminal repeat affect murine leukemia virus pathogenicity and replication in the thymus. J Virol 1999; 73:4890-8. [PMID: 10233950 PMCID: PMC112532 DOI: 10.1128/jvi.73.6.4890-4898.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously showed that the 93-bp region between the enhancer and promoter (named DEN for downstream of enhancer) of the long terminal repeat (LTR) of the MCF13 murine leukemia virus is an important determinant of the ability of this virus to induce thymic lymphoma. In this study we observed that DEN plays a role in the regulation of virus replication in the thymus during the preleukemic period. A NF-kappaB site in the DEN region partially contributes to the effect of DEN on both lymphomagenicity and virus replication. To further study the effects of DEN and the NF-kappaB site on viral pathogenicity during the preleukemic period, we examined replication of wild-type and mutant viruses with a deletion of the NF-kappaB site or the entire DEN region in the thymus. Thymic lymphocytes which were infected with wild-type and mutant viruses were predominantly the CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. The increase in infection by wild-type virus and both mutant viruses of these two subpopulations during the preleukemic period ranged from 9- to 84-fold, depending upon the time point and virus. The major difference between the wild-type and both mutant viruses was the lower rate and lower level of mutant virus replication in these thymic subpopulations. Significant differences in replication between wild-type and both mutant viruses were seen in the CD3(-) CD4(+) CD8(+) and CD3(-) CD4(-) CD8(-) subpopulations, suggesting that these thymic cell types are important targets for viral transformation.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
10
|
Martiney MJ, Levy LS, Lenz J. Suppressor mutations within the core binding factor (CBF/AML1) binding site of a T-cell lymphomagenic retrovirus. J Virol 1999; 73:2143-52. [PMID: 9971797 PMCID: PMC104459 DOI: 10.1128/jvi.73.3.2143-2152.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional enhancer of the lymphomagenic mouse retrovirus SL3 contains a binding site for the transcription factor core binding factor (CBF; also called AML1, PEBP2, and SEF1). The SL3 CBF binding site is called the core. It differs from the core of the weakly lymphomagenic mouse retrovirus Akv by one nucleotide (the sequences are TGTGGTTAA and TGTGGTCAA, respectively). A mutant virus called SAA that was identical to SL3 except that its core was mutated to the Akv sequence was only moderately attenuated for lymphomagenicity. In most SAA-infected mice, tumor proviruses contained either reversions of the original mutation or one of two novel core sequences. In 20% of the SAA-infected mice, tumor proviruses retained the original SAA/Akv core mutation but acquired one of two additional mutations (underlined), TGCGGTCAA or TGTGGTCTA, that generated core elements called So and T*, respectively. We tested whether the novel base changes in the So and T* cores were suppressor mutations. SL3 mutants that contained So or T* cores in place of the wild-type sequence were generated. These viruses induced T-cell lymphomas in mice more quickly than SAA. Therefore, the mutations in the So and T* cores are indeed second-site suppressor mutations. The suppressor mutations increased CBF binding in vitro and transcriptional activity of the viral long terminal repeats (LTRs) in T lymphocytes to levels comparable to those of SL3. Thus, CBF binding was increased by any of three different nucleotide changes within the sequence of the SAA core. Increased CBF binding resulted in increased LTR transcriptional activity in T cells and in increased viral lymphomagenicity.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
11
|
Zaiman AL, Nieves A, Lenz J. CBF, Myb, and Ets binding sites are important for activity of the core I element of the murine retrovirus SL3-3 in T lymphocytes. J Virol 1998; 72:3129-37. [PMID: 9525638 PMCID: PMC109765 DOI: 10.1128/jvi.72.4.3129-3137.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers within the long terminal repeats of murine leukemia viruses are major determinants of the pathogenic properties of these viruses. Mutations were introduced into the adjacent binding sites for three transcription factors within the enhancer of the T-cell-lymphomagenic virus SL3-3. The sites that were tested were, in 5'-to-3' order, a binding site for core binding factor (CBF) called core II, a binding site for c-Myb, a site that binds members of the Ets family of factors, and a second CBF binding site called core I. Mutation of each site individually reduced transcriptional activity in T lymphocytes. However, mutation of the Myb and core I binding sites had larger effects than mutation of the Ets or core II site. The relative effects on transcription in T cells paralleled the effects of the same mutations on viral lymphomagenicity, consistent with the idea that the role of these sequences in viral lymphomagenicity is indeed to regulate transcription in T cells. Mutations were also introduced simultaneously into multiple sites in the SL3-3 enhancer. The inhibitory effects of these mutations indicated that the transcription factor in T cells that recognizes the core I element of SL3-3, presumably CBF, needed to synergize with one or more factors bound at the upstream sites to function. This was tested further by generating a multimer construct that contained five tandem core I elements linked to a basal long terminal repeat promoter. This construct was inactive in T cells. However, transcriptional activity was detected with a multimer construct in which the transcription factor binding sites upstream of the core were also present. These results are consistent with the hypothesis that CBF requires heterologous transcription factors bound at nearby sites to function in T cells.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
12
|
Erman B, Cortes M, Nikolajczyk BS, Speck NA, Sen R. ETS-core binding factor: a common composite motif in antigen receptor gene enhancers. Mol Cell Biol 1998; 18:1322-30. [PMID: 9488447 PMCID: PMC108845 DOI: 10.1128/mcb.18.3.1322] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 12/09/1997] [Indexed: 02/06/2023] Open
Abstract
A tripartite domain of the murine immunoglobulin mu heavy-chain enhancer contains the muA and muB elements that bind ETS proteins and the muE3 element that binds leucine zipper-containing basic helix-loop-helix (bHLH-zip) factors. Analysis of the corresponding region of the human mu enhancer revealed high conservation of the muA and muB motifs but a striking absence of the muE3 element. Instead of bHLH-zip proteins, we found that the human enhancer bound core binding factor (CBF) between the muA and mu elements; CBF binding was shown to be a common feature of both murine and human enhancers. Furthermore, mutant enhancers that bound prototypic bHLH-zip proteins but not CBF did not activate transcription in B cells, and conversely, CBF transactivated the murine enhancer in nonlymphoid cells. Taking these data together with the earlier analysis of T-cell-specific enhancers, we propose that ETS-CBF is a common composite element in the regulation of antigen receptor genes. In addition, these studies identify the first B-cell target of CBF, a protein that has been implicated in the development of childhood pre-B-cell leukemias.
Collapse
Affiliation(s)
- B Erman
- Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
13
|
Ethelberg S, Lovmand J, Schmidt J, Luz A, Pedersen FS. Increased lymphomagenicity and restored disease specificity of AML1 site (core) mutant SL3-3 murine leukemia virus by a second-site enhancer variant evolved in vivo. J Virol 1997; 71:7273-80. [PMID: 9311802 PMCID: PMC192069 DOI: 10.1128/jvi.71.10.7273-7280.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus. The major genetic determinant of disease is the transcriptional enhancer, which consists of a repeated region with densely packed binding sites for several transcription factors, including AML1 (also known as core binding factor and polyoma enhancer-binding protein 2) and nuclear factor 1 (NF1). Previously, we examined the enhancer structure of proviruses from murine tumors induced by SL3-3 with mutated AML1 (core) sites and found a few cases of second-site alterations. These consisted of deletions involving the NF1 sites and alterations in overall number of repeat elements, and they conferred increased enhancer strength in transient transcription assays. We have now tested the pathogenicity of a virus harboring one such second-site variant enhancer in inbred NMRI mice. It induced lymphomas with a 100% incidence and a significantly shorter latency than the AML1 mutant it evolved from. The enhancer structure thus represents the selection for a more tumorigenic virus variant during the pathogenic process. Sequencing of provirus from the induced tumors showed the new enhancer variant to be genetically stable. Also, Southern blotting showed that the tumors induced by the variant were T-cell lymphomas, as were the wild-type-induced lymphomas. In contrast, tumors induced by the original core/AML1 site I-II mutant appeared to be of non-T-cell origin and several proviral genomes with altered enhancer regions could be found in the tumors. Moreover, reporter constructs with the new tumor-derived variant could not be transactivated by AML1 in cotransfection experiments as could the wild type. These results emphasize the importance of both core/AML1 site I and site II for the pathogenic potential of SL3-3 and at the same time show that second-site alterations can form a viral variant with a substantial pathogenic potential although both AML1 sites I and II are nonfunctional.
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
14
|
Amtoft HW, Sørensen AB, Bareil C, Schmidt J, Luz A, Pedersen FS. Stability of AML1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants. J Virol 1997; 71:5080-7. [PMID: 9188573 PMCID: PMC191741 DOI: 10.1128/jvi.71.7.5080-5087.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Murine retrovirus SL3-3 is highly T lymphomagenic. Its pathogenic properties are determined by the transcriptional enhancer of the U3 repeat region which shows preferential activity in T cells. Within the U3 repeats, the major determinant of T-cell specificity has been mapped to binding sites for the AML1 transcription factor family (also known as the core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF-1]). SL3-3 viruses with AML1 site mutations have lost a major determinant of T-cell-specific enhancer function but have been found to retain a lymphomagenic potential, although disease induction is slower than for the SL3-3 wild type. To compare the specificities and mechanisms of disease induction of wild-type and mutant viruses, we have examined lymphomas induced by mutant viruses harboring transversions of three consecutive base pairs critical to AML1 site function (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström. J. Virol. 65:4177-4181, 1991). Our results show that the mutated AML1 sites are genetically stable during lymphomagenesis and that ecotropic provirus numbers in DNA of tumors induced by wild-type and mutant viruses fall within the same range. Moreover, proviruses were found to be integrated at the c-myc locus in similar proportions of wild-type and mutant SL3-3-induced tumors, and the mutated AML1 sites of proviruses at c-myc are unaltered. In some cases, however, including one c-myc-integrated provirus, a single-base pair change was detected in a second, weaker AML1 binding site. By DNA rearrangement analysis of the T-cell receptor beta-locus, tumors induced by the AML1 site mutants are found to be of the T-cell type. Thus, although the AML1 site mutants have weakened T-cell-specific enhancers they are T-lymphomagenic, and wild-type- and mutant-virus-induced tumor DNAs are similar with respect to the number of overall ecotropic and c-myc-integrated clonal proviruses. The SL3-3 wild-type and AML1 site mutant viruses may therefore induce disease by similar mechanisms.
Collapse
Affiliation(s)
- H W Amtoft
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
All murine leukemia viruses (MuLVs) and related type C retroviruses contain a highly conserved binding site for the Ets family of transcription factors within the enhancer sequences in the viral long terminal repeats (LTRs). The T-cell lymphomagenic MuLV SL3-3 (SL3-3) also contains a c-Myb binding site adjacent to the Ets site. The presence of this Myb site distinguishes SL3 from most other MuLVs. We tested the importance of these two sites for the lymphomagenicity of SL3-3. Mutation of the Ets site had little effect on viral pathogenicity, as it only slightly extended the latency period to disease onset. In contrast, mutation of the Myb site strongly inhibited pathogenicity, as only a minority of the inoculated mice developed tumors in the two mouse strains that were tested. All tumors that were induced by either mutant appeared to be lymphomas, and no evidence for reversion of either mutation was detected. The effects of the Ets and Myb site mutations on transcriptional activity of the SL3 LTR were tested by inserting the viral enhancer sequences into a plasmid containing the promoter region of the c-myc gene linked to a reporter gene. Mutation the Myb site almost eliminated enhancer activity in T lymphocytes, while mutation of the Ets site had smaller effects. Thus, the effects of the enhancer mutations on transcriptional activity in T cells paralleled their effects on viral lymphomagenicity. The absence of the c-Myb site in the LTR enhancer of the weakly lymphomagenic MuLV, Akv, likely contributes to the low pathogenicity of this virus relative to SL3-3. However, Moloney MuLV also lacks the Myb site in its LTR, although it induces T-cell lymphomas with a potency similar to that of SL3-3. Thus, it appears that SL3-3 and Moloney MuLV evolved genetic determinants of T-cell lymphomagenicity that are, at least in part, distinct.
Collapse
Affiliation(s)
- A Nieves
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Akamatsu Y, Tsukumo S, Kagoshima H, Tsurushita N, Shigesada K. A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2alpha subunit, a founding member of the Runt domain protein family. Gene X 1997; 185:111-7. [PMID: 9034321 DOI: 10.1016/s0378-1119(96)00644-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mouse transcription factor PEBP2 (polyomavirus enhancer-binding protein (2) is composed of two distinct subunits alpha and beta. The alpha subunit has an ability to bind the specific DNA sequences, which is enhanced by formation of a heterodimer with the beta subunit. The DNA binding and heterodimerization activities of the alpha subunit are both localized within a 128-amino-acid (aa) region termed as the Runt domain for its homology to the Drosophila segmentation gene runt. To characterize the molecular determinants for these activities, the Runt domain was randomly mutagenized and produced in E. coli as a secreted form. Using E. coli culture supernatant, the DNA binding and heterodimerization of mutant Runt domains were analyzed by gel retardation assay. Nine randomly picked single-aa substitution mutants showed various functional alterations in DNA binding and heterodimerization either separately or simultaneously. This observation suggests that the structure of Runt domain is highly ordered and is quite sensitive to modulations in its primary structure. The method presented here provides a simple and quick method to characterize a large number of mutant DNA binding proteins.
Collapse
Affiliation(s)
- Y Akamatsu
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Syogoin, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
17
|
Banerjee C, Hiebert SW, Stein JL, Lian JB, Stein GS. An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci U S A 1996; 93:4968-73. [PMID: 8643513 PMCID: PMC39389 DOI: 10.1073/pnas.93.10.4968] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tissue and cell-type specific expression of the rat osteocalcin (rOC) gene involves the interplay of multiple transcriptional regulatory factors. In this report we demonstrate that AML-1 (acute myeloid leukemia-1), a DNA-binding protein whose genes are disrupted by chromosomal translocations in several human leukemias, interacts with a sequence essential for enhancing tissue-restricted expression of the rOC gene. Deletion analysis of rOC promoter-chloramphenicol acetyltransferase constructs demonstrates that an AML-1-binding sequence within the proximal promoter (-138 to -130 nt) contributes to 75% of the level of osteocalcin gene expression. The activation potential of the AML-1-binding sequence has been established by overexpressing AML-1 in osteoblastic as well as in nonosseous cell lines. Overexpression not only enhances rOC promoter activity in osteoblasts but also mediates OC promoter activity in a nonosseous human fibroblastic cell line. A probe containing this site forms a sequence specific protein-DNA complex with nuclear extracts from osteoblastic cells but not from nonosseous cells. Antisera supershift experiments indicate the presence of AML-1 and its partner protein core-binding factor beta in this osteoblast-restricted complex. Mutations of the critical AML-1-binding nucleotides abrogate formation of the complex and strongly diminish promoter activity. These results indicate that an AML-1 related protein is functional in cells of the osteoblastic lineage and that the AML-1-binding site is a regulatory element important for osteoblast-specific transcriptional activation of the rOC gene.
Collapse
Affiliation(s)
- C Banerjee
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, 01655, USA
| | | | | | | | | |
Collapse
|
18
|
Sun W, Graves BJ, Speck NA. Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol 1995; 69:4941-9. [PMID: 7609063 PMCID: PMC189309 DOI: 10.1128/jvi.69.8.4941-4949.1995] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Moloney murine leukemia virus (Mo-MLV) enhancer contains binding sites (LVb and LVc) for the ets gene family of proteins and a core site that binds the polyomavirus enhancer-binding protein 2/core-binding factor (cbf) family of proteins. The LVb and core sites in the Mo-MLV enhancer contribute to its constitutive activity in T cells. All three binding sites (LVb, LVc, and core) are required for phorbol ester inducibility of the Mo-MLV enhancer. Adjacent binding sites for the ets and cbf proteins likewise constitute a phorbol ester response element within the human T-cell receptor beta-chain (TCR beta) enhancer and contribute to constitutive transcriptional activity of the TCR beta enhancer in T cells. Here we show that the CBF alpha subunit encoded by the mouse Cbfa2 gene (the murine homolog of human AML1) and three ets proteins, Ets-1, Ets-2, and GA-binding protein (GABP), transactivate both the Mo-MLV and mouse TCR beta enhancer in transient-expression assays. Moreover, we show that transactivation by Cbf alpha 2 requires both intact ets and cbf binding sites. Transactivation by Ets-1, Ets-2, and GABP likewise requires intact binding sites for ets proteins and CBF. Supportive biochemical analyses demonstrate that both proteins can bind simultaneously to a composite enhancer element. These findings suggest that ets and cbf proteins cooperate in vivo to regulate transcription from the Mo-MLV and TCR beta enhancers.
Collapse
Affiliation(s)
- W Sun
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
19
|
Satake M, Nomura S, Yamaguchi-Iwai Y, Takahama Y, Hashimoto Y, Niki M, Kitamura Y, Ito Y. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol 1995; 15:1662-70. [PMID: 7862157 PMCID: PMC230390 DOI: 10.1128/mcb.15.3.1662] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The PEBP2 alpha A and PEBP2 alpha B genes encode the DNA-binding subunit of a murine transcription factor, PEBP2, which is implicated as a T-cell-specific transcriptional regulator. These two related genes share the evolutionarily conserved region encoding the Runt domain. PEBP2 alpha B is the murine counterpart of human AML1, which is located at the breakpoints of the 8;21 and 3;21 chromosome translocations associated with acute myeloid leukemia. Northern (RNA) blots of various adult mouse tissues revealed that the levels of expression of both genes were most prominent in the thymus. Furthermore, transcripts of PEBP2 alpha A and mouse AML1/PEBP2 alpha B were detected in T lymphocytes in the thymuses from day 16 embryos and newborns, as well as 4-week-old adult mice, by in situ hybridization. The expression of the genes persisted in peripheral lymph nodes of adult mice. The transcripts were detected in all the CD4- CD8-, CD4+ CD8+, CD4+ CD8-, and CD4- CD8+ cell populations. The results indicated that both genes are expressed in T cells throughout their development, supporting the notion that PEBP2 is a T-cell-specific transcription factor. Transcripts of mouse AML1/PEBP2 alpha B were also detected in day 12 fetal hematopoietic liver and in the bone marrow cells of newborn mice. The implication of mouse AML1/PEBP2 alpha B expression in hematopoietic cells other than those of T-cell lineage is discussed in relation to myeloid leukemogenesis.
Collapse
MESH Headings
- Acute Disease
- Aging/metabolism
- Animals
- Animals, Newborn
- Antisense Elements (Genetics)
- Base Sequence
- Biological Evolution
- Blotting, Northern
- Bone Marrow/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 8
- Conserved Sequence
- Core Binding Factor Alpha 2 Subunit
- Core Binding Factor alpha Subunits
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Embryo, Mammalian
- Humans
- Leukemia, Myeloid/genetics
- Liver/metabolism
- Lymph Nodes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Nude
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Organ Specificity
- Proto-Oncogene Proteins
- T-Lymphocytes/metabolism
- T-Lymphocytes/physiology
- Thymus Gland/growth & development
- Thymus Gland/metabolism
- Transcription Factor AP-2
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- M Satake
- Department of Viral Oncology, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamauchi M, Freitag B, Khan C, Berwin B, Barklis E. Stem cell factor binding to retrovirus primer binding site silencers. J Virol 1995; 69:1142-9. [PMID: 7529329 PMCID: PMC188687 DOI: 10.1128/jvi.69.2.1142-1149.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using modified nuclear lysis and binding conditions, we have examined the binding of an embryonal carcinoma (EC) cell factor, binding factor A, to a stem cell-specific silencer which acts at the DNA level and overlaps the Moloney murine leukemia virus (M-MuLV) proline primer binding site (PBS). Following our protocol, we found that in vitro binding of factor A correlated with the in vivo activity of the M-MuLV silencer. Factor A bound specifically to the wild-type silencer element at room temperature and 30 degrees C, but not at 4 degrees C, and bound 10-fold better to the full-length silencer than to a minimal silencer core element. The factor was enriched in nuclear compared with cytosolic extracts and in undifferentiated EC cells compared with differentiated cells in which the silencer is nonfunctional. Salt and ion requirements for factor A binding were investigated, and partial purification steps indicated the factor to be a heparin-Sepharose-binding moiety of greater than 100 kDa. To examine possible relationships between silencer and PBS activities, sequences representing phenylalanine, isoleucine, lysine-1,2, lysine-3, methionine, and tryptophan PBS DNA fragments were tested in vivo for stem cell-specific repression of M-MuLV expression and in vitro in DNA binding assays. Of these PBS elements, only the lysine-1,2 PBS DNA fragment showed consistently high levels of repression. Interestingly, the lysine-1,2 PBS DNA fragment also formed a complex with an EC cell factor with characteristics similar to those of factor A. However, the two factors did not cross-compete in binding studies, suggesting that they may be different but related factors. Our results suggest that expression of Mason-Pfizer monkey virus, visna virus, and spumavirus, which use the lysine-1,2 PBS, may be inhibited in undifferentiated stem cells.
Collapse
Affiliation(s)
- M Yamauchi
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201
| | | | | | | | | |
Collapse
|
21
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
22
|
Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 1994. [PMID: 7969146 DOI: 10.1128/mcb.14.12.8085] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor for the macrophage colony-stimulating factor (or colony-stimulating factor 1 [CSF-1]) is expressed from different promoters in monocytic cells and placental trophoblasts. We have demonstrated that the monocyte-specific expression of the CSF-1 receptor is regulated at the level of transcription by a tissue-specific promoter whose activity is stimulated by the monocyte/B-cell-specific transcription factor PU.1 (D.-E. Zhang, C.J. Hetherington, H.-M. Chen, and D.G. Tenen, Mol. Cell. Biol. 14:373-381, 1994). Here we report that the tissue specificity of this promoter is also mediated by sequences in a region II (bp -88 to -59), which lies 10 bp upstream from the PU.1-binding site. When analyzed by DNase footprinting, region II was protected preferentially in monocytic cells. Electrophoretic mobility shift assays confirmed that region II interacts specifically with nuclear proteins from monocytic cells. Two gel shift complexes (Mono A and Mono B) were formed with separate sequence elements within this region. Competition and supershift experiments indicate that Mono B contains a member of the polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) family, which includes the AML1 gene product, while Mono A is a distinct complex preferentially expressed in monocytic cells. Promoter constructs with mutations in these sequence elements were no longer expressed specifically in monocytes. Furthermore, multimerized region II sequence elements enhanced the activity of a heterologous thymidine kinase promoter in monocytic cells but not other cell types tested. These results indicate that the monocyte/B-cell-specific transcription factor PU.1 and the Mono A and Mono B protein complexes act in concert to regulate monocyte-specific transcription of the CSF-1 receptor.
Collapse
|
23
|
Zhang DE, Fujioka K, Hetherington CJ, Shapiro LH, Chen HM, Look AT, Tenen DG. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 1994; 14:8085-95. [PMID: 7969146 PMCID: PMC359347 DOI: 10.1128/mcb.14.12.8085-8095.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The receptor for the macrophage colony-stimulating factor (or colony-stimulating factor 1 [CSF-1]) is expressed from different promoters in monocytic cells and placental trophoblasts. We have demonstrated that the monocyte-specific expression of the CSF-1 receptor is regulated at the level of transcription by a tissue-specific promoter whose activity is stimulated by the monocyte/B-cell-specific transcription factor PU.1 (D.-E. Zhang, C.J. Hetherington, H.-M. Chen, and D.G. Tenen, Mol. Cell. Biol. 14:373-381, 1994). Here we report that the tissue specificity of this promoter is also mediated by sequences in a region II (bp -88 to -59), which lies 10 bp upstream from the PU.1-binding site. When analyzed by DNase footprinting, region II was protected preferentially in monocytic cells. Electrophoretic mobility shift assays confirmed that region II interacts specifically with nuclear proteins from monocytic cells. Two gel shift complexes (Mono A and Mono B) were formed with separate sequence elements within this region. Competition and supershift experiments indicate that Mono B contains a member of the polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) family, which includes the AML1 gene product, while Mono A is a distinct complex preferentially expressed in monocytic cells. Promoter constructs with mutations in these sequence elements were no longer expressed specifically in monocytes. Furthermore, multimerized region II sequence elements enhanced the activity of a heterologous thymidine kinase promoter in monocytic cells but not other cell types tested. These results indicate that the monocyte/B-cell-specific transcription factor PU.1 and the Mono A and Mono B protein complexes act in concert to regulate monocyte-specific transcription of the CSF-1 receptor.
Collapse
Affiliation(s)
- D E Zhang
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
24
|
PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 1994. [PMID: 8035830 DOI: 10.1128/mcb.14.8.5558] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. The levels of the MyNF1s increase during early 32D cl3 cell granulocytic differentiation. Both MyNF1 alpha and -beta supershift with an antiserum raised by using a peptide derived from the N terminus of polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) alpha subunit. The specific peptide inhibits these supershifts. In vitro-translated PEBP2/CBF DNA-binding domain binds the murine MPO PEBP2/CBF site. An alternate PEBP2/CBF consensus site, 5'-GACCGCA-3', but not a simian virus 40 enhancer core sequence, 5'-TTCCACA-3', binds the MyNF1s in vitro and activates a minimal murine MPO-thymidine kinase promoter in vivo. The murine neutrophil elastase gene 100-bp 5'-flanking sequences contain several functional elements, including potential binding sites for PU.1, C/EBP, c-Myb, and PEBP2/CBF. The functional element 5'-GGCCACA-3' located at positions -66 to 72 differs from the PEBP2/CBF consensus (5'-PuACCPuCA-3') only by an A-to-G transition at position 2. This DNA element binds MyNF1 alpha and -beta weakly. The N terminis of two PEBP2/CBF alpha subunit family members, PEBP2 alpha A and PEBP2 alpha B (murine AML1), are nearly identical, and 32D c13 cl3 cells contain both corresponding mRNAs. Since t(8;21), t(3;21), and inv(16), associated with myeloid leukemias, disrupt subunits of PEBP2/CBF, we speculate that the resulting oncoproteins, AML1-ETO, AML1-EAP, AML1-Evi1, and CBF beta-MYH11, inhibit early myeloid differentiation.
Collapse
|
25
|
Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 1994; 14:5558-68. [PMID: 8035830 PMCID: PMC359075 DOI: 10.1128/mcb.14.8.5558-5568.1994] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The myeloperoxidase (MPO) and neutrophil elastase genes are expressed specifically in immature myeloid cells. The integrity of a polyomavirus enhancer core sequence, 5'-AACCACA-3', is critical to the activity of the murine MPO proximal enhancer. This element binds two species, myeloid nuclear factors 1 alpha and 1 beta (MyNF1 alpha and -beta), present in 32D cl3 myeloid cell nuclear extracts. The levels of the MyNF1s increase during early 32D cl3 cell granulocytic differentiation. Both MyNF1 alpha and -beta supershift with an antiserum raised by using a peptide derived from the N terminus of polyomavirus enhancer-binding protein 2/core-binding factor (PEBP2/CBF) alpha subunit. The specific peptide inhibits these supershifts. In vitro-translated PEBP2/CBF DNA-binding domain binds the murine MPO PEBP2/CBF site. An alternate PEBP2/CBF consensus site, 5'-GACCGCA-3', but not a simian virus 40 enhancer core sequence, 5'-TTCCACA-3', binds the MyNF1s in vitro and activates a minimal murine MPO-thymidine kinase promoter in vivo. The murine neutrophil elastase gene 100-bp 5'-flanking sequences contain several functional elements, including potential binding sites for PU.1, C/EBP, c-Myb, and PEBP2/CBF. The functional element 5'-GGCCACA-3' located at positions -66 to 72 differs from the PEBP2/CBF consensus (5'-PuACCPuCA-3') only by an A-to-G transition at position 2. This DNA element binds MyNF1 alpha and -beta weakly. The N terminis of two PEBP2/CBF alpha subunit family members, PEBP2 alpha A and PEBP2 alpha B (murine AML1), are nearly identical, and 32D c13 cl3 cells contain both corresponding mRNAs. Since t(8;21), t(3;21), and inv(16), associated with myeloid leukemias, disrupt subunits of PEBP2/CBF, we speculate that the resulting oncoproteins, AML1-ETO, AML1-EAP, AML1-Evi1, and CBF beta-MYH11, inhibit early myeloid differentiation.
Collapse
Affiliation(s)
- I Nuchprayoon
- Division of Pediatric Oncology, Johns Hopkins Oncology Center, Johns Hopkins University, Baltimore, Maryland 21287
| | | | | | | | | | | |
Collapse
|
26
|
PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol 1994. [PMID: 8164679 DOI: 10.1128/mcb.14.5.3242] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A murine transcription factor, PEBP2, is composed of two subunits, alpha and beta. There are two genes in the mouse genome, PEBP2 alpha A and PEBP2 alpha B, which encode the alpha subunit. Two types of the alpha B cDNA clones, alpha B1 and alpha B2, were isolated from mouse fibroblasts and characterized. They were found to represent 3.8- and 7.9-kb transcripts, respectively. The 3.8-kb RNA encodes the previously described alpha B protein referred to as alpha B1, while the 7.9-kb RNA encodes a 387-amino-acid protein, termed alpha B2, which is identical to alpha B1 except that it has an internal deletion of 64 amino acid residues. Both alpha B1 and alpha B2 associate with PEBP2 beta and form a heterodimer. The alpha B2/beta complex binds to the PEBP2 binding site two- to threefold more strongly than the alpha B1/beta complex does. alpha B1 stimulates transcription through the PEBP2 site about 40-fold, while alpha B2 is only about 25 to 45% as active as alpha B1. Transactivation domain is located downstream of the 128-amino-acid runt homology region, referred to as the Runt domain. Mouse chromosome mapping studies revealed that alpha A, alpha B, and beta genes are mapped to chromosomes 17, 16, and 8, respectively. The last two genes are syntenic with the human AML1 on chromosome 21q22 and PEBP2 beta/CBF beta on 16q22 detected at the breakpoints of characteristic chromosome translocations of the two different subtypes of acute myeloid leukemia. These results suggest that previously described chimeric gene products, AML1/MTG8(ETO) and AML1-EAP generated by t(8;21) and t(3;21), respectively, lack the transactivation domain of AML1.
Collapse
|
27
|
Bae SC, Ogawa E, Maruyama M, Oka H, Satake M, Shigesada K, Jenkins NA, Gilbert DJ, Copeland NG, Ito Y. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol 1994; 14:3242-52. [PMID: 8164679 PMCID: PMC358691 DOI: 10.1128/mcb.14.5.3242-3252.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A murine transcription factor, PEBP2, is composed of two subunits, alpha and beta. There are two genes in the mouse genome, PEBP2 alpha A and PEBP2 alpha B, which encode the alpha subunit. Two types of the alpha B cDNA clones, alpha B1 and alpha B2, were isolated from mouse fibroblasts and characterized. They were found to represent 3.8- and 7.9-kb transcripts, respectively. The 3.8-kb RNA encodes the previously described alpha B protein referred to as alpha B1, while the 7.9-kb RNA encodes a 387-amino-acid protein, termed alpha B2, which is identical to alpha B1 except that it has an internal deletion of 64 amino acid residues. Both alpha B1 and alpha B2 associate with PEBP2 beta and form a heterodimer. The alpha B2/beta complex binds to the PEBP2 binding site two- to threefold more strongly than the alpha B1/beta complex does. alpha B1 stimulates transcription through the PEBP2 site about 40-fold, while alpha B2 is only about 25 to 45% as active as alpha B1. Transactivation domain is located downstream of the 128-amino-acid runt homology region, referred to as the Runt domain. Mouse chromosome mapping studies revealed that alpha A, alpha B, and beta genes are mapped to chromosomes 17, 16, and 8, respectively. The last two genes are syntenic with the human AML1 on chromosome 21q22 and PEBP2 beta/CBF beta on 16q22 detected at the breakpoints of characteristic chromosome translocations of the two different subtypes of acute myeloid leukemia. These results suggest that previously described chimeric gene products, AML1/MTG8(ETO) and AML1-EAP generated by t(8;21) and t(3;21), respectively, lack the transactivation domain of AML1.
Collapse
Affiliation(s)
- S C Bae
- Department of Viral Oncology, Kyoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 1993. [PMID: 8413232 DOI: 10.1128/mcb.13.10.6336] [Citation(s) in RCA: 303] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.
Collapse
|
29
|
Meyers S, Downing JR, Hiebert SW. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 1993; 13:6336-45. [PMID: 8413232 PMCID: PMC364692 DOI: 10.1128/mcb.13.10.6336-6345.1993] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.
Collapse
Affiliation(s)
- S Meyers
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
30
|
Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 1993. [PMID: 8497254 DOI: 10.1128/mcb.13.6.3324] [Citation(s) in RCA: 274] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major determinant of the thymic disease specificity of Moloney virus genetically maps to the conserved viral core motif in the Moloney virus enhancer. Point mutations introduced into the core site significantly shifted the disease specificity of the Moloney virus from thymic leukemia to erythroid leukemia (N.A. Speck, B. Renjifo, E. Golemis, T.N. Fredrickson, J.W. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We previously reported the purification of core-binding factors (CBF) from calf thymus nuclei (S. Wang and N.A. Speck, Mol. Cell. Biol. 12:89-102, 1992). CBF binds to core sites in murine leukemia virus and T-cell receptor enhancers. Affinity-purified CBF contains multiple polypeptides. In this study, we sequenced five tryptic peptides from two of the bovine CBF proteins and isolated three cDNA clones from a mouse thymus cDNA library encoding three of the tryptic peptides from the bovine proteins. The cDNA clones, which we call CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6, encode three highly related but distinct proteins with deduced molecular sizes of 22.0, 21.5, and 17.6 kDa that appear to be translated from multiply spliced mRNAs transcribed from the same gene. CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6 do not by themselves bind the core site. However, CBF beta p22.0 and CBF beta p21.5 form a complex with DNA-binding CBF alpha subunits and as a result decrease the rate of dissociation of the CBF protein-DNA complex. Association of the CBF beta subunits does not extend the phosphate contacts in the binding site. We propose that CBF beta is a non-DNA-binding subunit of CBF and does not contact DNA directly.
Collapse
|
31
|
Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 1993; 13:3324-39. [PMID: 8497254 PMCID: PMC359789 DOI: 10.1128/mcb.13.6.3324-3339.1993] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major determinant of the thymic disease specificity of Moloney virus genetically maps to the conserved viral core motif in the Moloney virus enhancer. Point mutations introduced into the core site significantly shifted the disease specificity of the Moloney virus from thymic leukemia to erythroid leukemia (N.A. Speck, B. Renjifo, E. Golemis, T.N. Fredrickson, J.W. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We previously reported the purification of core-binding factors (CBF) from calf thymus nuclei (S. Wang and N.A. Speck, Mol. Cell. Biol. 12:89-102, 1992). CBF binds to core sites in murine leukemia virus and T-cell receptor enhancers. Affinity-purified CBF contains multiple polypeptides. In this study, we sequenced five tryptic peptides from two of the bovine CBF proteins and isolated three cDNA clones from a mouse thymus cDNA library encoding three of the tryptic peptides from the bovine proteins. The cDNA clones, which we call CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6, encode three highly related but distinct proteins with deduced molecular sizes of 22.0, 21.5, and 17.6 kDa that appear to be translated from multiply spliced mRNAs transcribed from the same gene. CBF beta p22.0, CBF beta p21.5, and CBF beta p17.6 do not by themselves bind the core site. However, CBF beta p22.0 and CBF beta p21.5 form a complex with DNA-binding CBF alpha subunits and as a result decrease the rate of dissociation of the CBF protein-DNA complex. Association of the CBF beta subunits does not extend the phosphate contacts in the binding site. We propose that CBF beta is a non-DNA-binding subunit of CBF and does not contact DNA directly.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Cell Nucleus/physiology
- Chromatography, High Pressure Liquid
- Cloning, Molecular/methods
- Core Binding Factors
- DNA/genetics
- DNA/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Macromolecular Substances
- Mice
- Molecular Sequence Data
- Moloney murine leukemia virus/genetics
- Neoplasm Proteins
- Oligodeoxyribonucleotides
- Peptide Fragments/isolation & purification
- Polymerase Chain Reaction
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- S Wang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | | | | | | | | | | |
Collapse
|
32
|
Yoshimura FK, Diem K, Chen H, Tupper J. A protein-binding site with dyad symmetry in the long terminal repeat of the MCF13 murine leukemia virus that contributes to transcriptional activity in T lymphocytes. J Virol 1993; 67:2298-304. [PMID: 8383242 PMCID: PMC240375 DOI: 10.1128/jvi.67.4.2298-2304.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously identified regions in the long terminal repeat (LTR) of the MCF13 murine leukemia virus (MLV) that contribute to transcriptional activity in different cell types. We have observed that enhancer sequences and a region that resides 3' of the enhancer make significant contributions to transcriptional activity in T lymphocytes (T. Hollon and F. K. Yoshimura, J. Virol. 63:3353-3361, 1989). In this report, we have focused on the region of the MCF13 LTR that is 3' of the enhancer to identify binding sites for proteins that may play a role in the regulation of transcription in T cells. By gel shift and DNA footprint analyses, we have identified a single protein-binding site (MLPal) that includes a nucleotide sequence with dyad symmetry. A synthetic double-stranded oligonucleotide corresponding to this protein-binding site formed a specific protein-DNA complex. Deletion of this protein-binding site from the wild-type LTR decreased transcriptional activity in T lymphocytes but not in fibroblasts as determined by a transient expression assay. The MLPal sequence by itself cannot augment transcription in T cells but is able to do so in conjunction with enhancer sequences.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
33
|
Abstract
The core-binding factor (CBF) binds the conserved core motif in mammalian type C retrovirus enhancers. We analyzed the phosphate contacts made by CBF on the Moloney murine leukemia virus enhancer by ethylation interference assay. The phosphate contacts span 9 bp centered around the consensus core site. To examine the sequence preferences for CBF binding, we employed the technique of selected and amplified binding sequence footprinting (T. K. Blackwell and H. Weintraub, Science 250:1104-1110, 1990). The consensus binding site for CBF defined by selected and amplified binding sequence footprinting is PyGPyG GTPy.
Collapse
Affiliation(s)
- I N Melnikova
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | | | | | | |
Collapse
|
34
|
Hallberg B, Thornell A, Holm M, Grundström T. SEF1 binding is important for T cell specific enhancers of genes for T cell receptor-CD3 subunits. Nucleic Acids Res 1992; 20:6495-9. [PMID: 1480471 PMCID: PMC334563 DOI: 10.1093/nar/20.24.6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A family of proteins, denoted SL3-3 enhancer factor 1 (SEF1), interacts with DNA sequences in the T cell specific enhancer of SL3-3 murine leukemia virus and in the enhancers of several other viruses. A putative SEF1 binding site was also identified in the T cell specific enhancer of the gene encoding the human T cell antigen receptor (TcR) associated CD3-epsilon polypeptide. In this study we show that the identified sequence is a strong SEF1 binding site, and that purified SEF1 proteins bind specifically to the sequence. We report also that the SEF1 binding site is important for T cell specific activation of transcription by the CD3-epsilon enhancer. We show that SEF1 binding sites are present also in the T cell specific enhancers of other subunits of the TcR-CD3 complex, and that SEF1 proteins appear to play a central role in the T cell specific expression of this set of enhancers.
Collapse
Affiliation(s)
- B Hallberg
- Department of Applied Cell and Molecular Biology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
35
|
Tupper JC, Chen H, Hays EF, Bristol GC, Yoshimura FK. Contributions to transcriptional activity and to viral leukemogenicity made by sequences within and downstream of the MCF13 murine leukemia virus enhancer. J Virol 1992; 66:7080-8. [PMID: 1331510 PMCID: PMC240380 DOI: 10.1128/jvi.66.12.7080-7088.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified nucleotide sequences that regulate transcription in both a cell-type-specific and general manner in the long terminal repeat of the MCF13 murine leukemia virus. Besides the enhancer element, we have observed that the region between the enhancer and promoter (DEN) has a profound effect on transcription in different cell types. This effect, however, was dependent on the copy number of enhancer repeats and was detectable in the presence of a single repeat. When two enhancer repeats were present, the effect of DEN on transcription was abrogated except in T cells. DEN also makes a significant contribution to the leukemogenic property of the MCF13 retrovirus. Its deletion from the MCF13 virus dramatically reduced the incidence of thymic lymphoma and increased the latency of disease in comparison with the wild-type virus. This effect was most marked when one rather than two enhancer repeats was present in the mutant viruses. We also observed that the removal of one repeat alone remarkably reduced leukemogenicity by the MCF13 virus. A newly identified protein-binding site (MLPal) located within DEN affects transcription only in T cells, and its deletion attenuates the ability of an MCF13 virus with a single enhancer repeat to induce thymic lymphoma. This observation suggests that the MLPal protein-binding site contributes to the effect of the DEN region on T-cell-specific transcription and viral leukemogenicity. This study identifies the importance of nonenhancer sequences in the long terminal repeat for the oncogenesis of the MCF13 retrovirus.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Animals, Newborn
- Base Sequence
- Binding Sites
- Cell Line
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA, Viral/genetics
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/microbiology
- Lymphoma/microbiology
- Mice
- Mice, Inbred AKR
- Molecular Sequence Data
- Muridae
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Recombinant Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Deletion
- Thymus Neoplasms/microbiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- J C Tupper
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
36
|
Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor delta and murine leukemia virus enhancers. Mol Cell Biol 1992. [PMID: 1328863 DOI: 10.1128/mcb.12.11.4817] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the delta E3 site is an essential element for transcriptional activation by the human T-cell receptor (TCR) delta enhancer and identified two factors, NF-delta E3A and NF-delta E3C, that bound to overlapping core (TGTGGTTT) and E-box motifs within delta E3. In this study, we show that protein binding to the core motif is necessary but not sufficient for transcriptional activation by the delta E3 element. In contrast, protein binding to the E-box motif does not contribute significantly to enhancer activity. A similar core motif present within the enhancers of T-cell-tropic murine retroviruses has been shown to contribute to transcriptional activity of the viral long terminal repeat in T lymphocytes and to viral T-cell tropism. We therefore determined the relationship between the nuclear factors that bind to the TCR delta and Moloney murine leukemia virus core motifs. On the basis of electrophoretic mobility shift binding and competition studies, biochemical analysis of affinity-labeled DNA-binding proteins, and the binding of a purified core binding factor, the proteins that bound to the TCR delta core site were indistinguishable from those that bound to the murine leukemia virus core site. These data argue that DNA-binding proteins that interact with the core site of murine leukemia virus long terminal repeats and contribute to viral T-cell tropism also play an essential role in the T-cell-specific expression of cellular genes.
Collapse
|
37
|
Redondo JM, Pfohl JL, Hernandez-Munain C, Wang S, Speck NA, Krangel MS. Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor delta and murine leukemia virus enhancers. Mol Cell Biol 1992; 12:4817-23. [PMID: 1328863 PMCID: PMC360414 DOI: 10.1128/mcb.12.11.4817-4823.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously shown that the delta E3 site is an essential element for transcriptional activation by the human T-cell receptor (TCR) delta enhancer and identified two factors, NF-delta E3A and NF-delta E3C, that bound to overlapping core (TGTGGTTT) and E-box motifs within delta E3. In this study, we show that protein binding to the core motif is necessary but not sufficient for transcriptional activation by the delta E3 element. In contrast, protein binding to the E-box motif does not contribute significantly to enhancer activity. A similar core motif present within the enhancers of T-cell-tropic murine retroviruses has been shown to contribute to transcriptional activity of the viral long terminal repeat in T lymphocytes and to viral T-cell tropism. We therefore determined the relationship between the nuclear factors that bind to the TCR delta and Moloney murine leukemia virus core motifs. On the basis of electrophoretic mobility shift binding and competition studies, biochemical analysis of affinity-labeled DNA-binding proteins, and the binding of a purified core binding factor, the proteins that bound to the TCR delta core site were indistinguishable from those that bound to the murine leukemia virus core site. These data argue that DNA-binding proteins that interact with the core site of murine leukemia virus long terminal repeats and contribute to viral T-cell tropism also play an essential role in the T-cell-specific expression of cellular genes.
Collapse
Affiliation(s)
- J M Redondo
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
38
|
Satake M, Inuzuka M, Shigesada K, Oikawa T, Ito Y. Differential expression of subspecies of polyomavirus and murine leukemia virus enhancer core binding protein, PEBP2, in various hematopoietic cells. Jpn J Cancer Res 1992; 83:714-22. [PMID: 1325429 PMCID: PMC5918933 DOI: 10.1111/j.1349-7006.1992.tb01971.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The core sequence of the enhancer of murine leukemia virus (MuLV) long terminal repeat is highly conserved in a large number of MuLV strains and appears to play an essential role when SL3-3 or Moloney strains induce T cell lymphoma in mice. We found by using the electrophoretic mobility shift assay that a polyomavirus enhancer core-binding protein, PEBP2, bound to this core motif of MuLV. We also noted that PEBP2 in several hematopoietic cell lines derived from B lymphocyte, macrophage and myelocyte lineages migrated significantly faster than the authentic PEBP2 detected in NIH3T3 fibroblasts. Interestingly, PEBP2 detected in the cell lines of T lymphocyte lineage appeared to contain both types, which were indistinguishable in electrophoretic mobility from those of NIH3T3 and of B lymphocyte, macrophage and myelocyte lineages. The treatment of the nuclear extract containing PEBP2 with phosphatase generated PEBP3, which is a subcomponent of PEBP2 and retained the same DNA-binding specificity as PEBP2. The altered mobility of hematopoietic cell-derived or T lymphocyte-derived PEBP2 was found to be due to the alteration of the mobility of PEBP3. Based on the distinct mobility of PEBP2/3 of T lymphocytes from those of other hematopoietic cells, we discuss the implication of PEBP2 in MuLV-induced T cell leukemia and T cell-specific gene expression.
Collapse
Affiliation(s)
- M Satake
- Department of Viral Oncology, Kyoto University
| | | | | | | | | |
Collapse
|
39
|
Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 1992. [PMID: 1309596 DOI: 10.1128/mcb.12.1.89] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes.
Collapse
|
40
|
Affiliation(s)
- S Faisst
- Oncologie Moléculaire, Institut Pasteur de Lille, France
| | | |
Collapse
|
41
|
Wang SW, Speck NA. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 1992; 12:89-102. [PMID: 1309596 PMCID: PMC364072 DOI: 10.1128/mcb.12.1.89-102.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes.
Collapse
Affiliation(s)
- S W Wang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | |
Collapse
|
42
|
Abstract
Retrovirus expression in embryonal carcinoma (EC) cells is blocked at a postintegration stage of the viral life cycle, in part because of the inadequate function of the viral long terminal repeat promoter in this cell type. However, selection for retrovirus expression in EC cells has identified mutations in Moloney murine leukemia virus (M-MuLV) located in the tRNA primer-binding site (PBS) region which relieve the EC cell-specific repression. We have found that exchanging the M-MuLV proline PBS for a glutamine one in a recombinant virus permits expression in EC cells. By using the recombinant virus as a backbone, the EC cell-specific repressor-binding site (RBS) element has been mapped to M-MuLV nucleotides 147 to 174. The RBS does not require precise positioning downstream of the M-MuLV promoter and can function in either orientation and in an intron, indicating that the regulatory effect is probably at the DNA, rather than RNA, level. We also show that the RBS element can repress heterologous promoters from an upstream position. Our results indicate that the RBS acts as a silencer that its inhibitory effect is mediated by a trans-acting factor, and that the mechanism of action is probably at the level of transcription. Through in vitro binding assays we have identified a binding factor which specifically recognizes the wild-type RBS sequence (binding factor A). The binding characteristics of factor A suggest that it is a stem cell repressor which acts at the M-MuLV RBS. Our DNA-binding assays also have identified a unique binding factor (binding factor Hp) which specifically recognizes a hemimethylated form of the wild-type RBS. This factor may play a role in methylation mediated control of retrovirus expression in EC cells.
Collapse
|
43
|
Abstract
Retrovirus expression in embryonal carcinoma (EC) cells is blocked at a postintegration stage of the viral life cycle, in part because of the inadequate function of the viral long terminal repeat promoter in this cell type. However, selection for retrovirus expression in EC cells has identified mutations in Moloney murine leukemia virus (M-MuLV) located in the tRNA primer-binding site (PBS) region which relieve the EC cell-specific repression. We have found that exchanging the M-MuLV proline PBS for a glutamine one in a recombinant virus permits expression in EC cells. By using the recombinant virus as a backbone, the EC cell-specific repressor-binding site (RBS) element has been mapped to M-MuLV nucleotides 147 to 174. The RBS does not require precise positioning downstream of the M-MuLV promoter and can function in either orientation and in an intron, indicating that the regulatory effect is probably at the DNA, rather than RNA, level. We also show that the RBS element can repress heterologous promoters from an upstream position. Our results indicate that the RBS acts as a silencer that its inhibitory effect is mediated by a trans-acting factor, and that the mechanism of action is probably at the level of transcription. Through in vitro binding assays we have identified a binding factor which specifically recognizes the wild-type RBS sequence (binding factor A). The binding characteristics of factor A suggest that it is a stem cell repressor which acts at the M-MuLV RBS. Our DNA-binding assays also have identified a unique binding factor (binding factor Hp) which specifically recognizes a hemimethylated form of the wild-type RBS. This factor may play a role in methylation mediated control of retrovirus expression in EC cells.
Collapse
|
44
|
Morrison HL, Dai HY, Pedersen FS, Lenz J. Analysis of the significance of two single-base-pair differences in the SL3-3 and Akv virus long terminal repeats. J Virol 1991; 65:1019-22. [PMID: 1846181 PMCID: PMC239851 DOI: 10.1128/jvi.65.2.1019-1022.1991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two single-base-pair differences between the long terminal repeats (LTRs) of the T-lymphomagenic murine retrovirus SL3-3 and nonleukemogenic Akv virus were tested for effects on activity of the LTRs. Evidence was obtained from electrophoretic mobility shift assays for the presence of at least one factor in both T and non-T cells that bound to the region of the viral enhancers that contained the differences. However, no significant differences in activity in expression assays were detected when the two base-pair differences were exchanged between the two LTRs. Therefore, they do not contribute to the higher activity of the SL3-3 LTR in T-lymphoma cell lines.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
45
|
Fischer KD, Nowock J. The T----C substitution at -198 of the A gamma-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins. Nucleic Acids Res 1990; 18:5685-93. [PMID: 1699206 PMCID: PMC332301 DOI: 10.1093/nar/18.19.5685] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defects in the developmental changes of human hemoglobin production characterized by the continued expression of fetal globin during adult life are classified as hereditary persistence of fetal hemoglobin (HPFH). Among the various molecular lesions associated with this phenotype, the non-deletion forms with point mutations in the promoter region are thought to provide mechanistic clues for gamma-globin gene regulation. The natural occurrence of four different base substitutions mapping within six nucleotides of a homopurine.homopyrimidine motif in the upstream promoter region demarcate a potential control element. To assess its importance for transcriptional activity, we compared the -202 (C----G), -198 (T----C) and -196 (C----T) HPFH mutations with the normal sequence in binding studies with nuclear proteins from erythroid and non-erythroid cells. Wildtype DNA and HPFH mutations at -202 or -196 showed only a weak protein interaction of unclear functional significance. In contrast, -198 (T----C) generated overlapping, high-affinity binding sites for two ubiquitous nuclear proteins. One cognate protein was identified as the transcription factor Sp1. The second one was termed NF-G.C as it interacted strongly with the homopolymer poly(dG).poly(dC). The generation of additional recognition sites for trans-acting factors by the -198 HPFH mutation correlated with a modest increase in promoter activity in vitro specifically with nuclear extracts from erythroid cells. The activation appears to be mediated by binding of Sp1, but it requires interaction with an erythroid-specific factor, most likely GF-1. Templates containing the -196 HPFH mutation showed a transcriptional activity identical to wildtype. This suggests that despite the topological proximity of the mutations, the HPFH phenotype may be established by different mechanisms.
Collapse
Affiliation(s)
- K D Fischer
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg
| | | |
Collapse
|
46
|
Lovmand S, Kjeldgaard NO, Jørgensen P, Pedersen FS. Enhancer functions in U3 of Akv virus: a role for cooperativity of a tandem repeat unit and its flanking DNA sequences. J Virol 1990; 64:3185-91. [PMID: 2161937 PMCID: PMC249523 DOI: 10.1128/jvi.64.7.3185-3191.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
cis-Acting transcriptional control elements in the U3 region of the murine retrovirus Akv were analyzed in mouse NIH 3T3 fibroblast cells by using a transient expression vector system based upon a complete long terminal repeat with linked flanking sequences. Deletion analysis pointed to the essential role of sequences within the 99-base-pair direct repeats, and a fragment encompassing the two repeats was found to possess orientation-independent enhancer activity when positioned either upstream or downstream of the transcriptional unit. Removal of one copy of the 99-base-pair repeat led to a reduction in activity of about 2.5-fold when located in an intact U3 environment but to reductions of up to 2 orders of magnitude when placed in other sequence contexts. Our studies of enhancer functions in the presence of one versus two copies of the tandem repeat point to duplicate functions of repeat sequences and sequences flanking the repeat region and emphasize the complex overall organization of this U3 region.
Collapse
Affiliation(s)
- S Lovmand
- Department of Molecular Biology and Plant Physiology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
47
|
LoSardo JE, Boral AL, Lenz J. Relative importance of elements within the SL3-3 virus enhancer for T-cell specificity. J Virol 1990; 64:1756-63. [PMID: 2157056 PMCID: PMC249313 DOI: 10.1128/jvi.64.4.1756-1763.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elements within the enhancer of T-lymphomagenic SL3-3 virus were examined for their contributions to transcriptional activity in T lymphocytes and non-T cells. A region containing two sequences homologous to the enhancer core consensus sequence and a sequence homologous to the binding site for factor LVb was found to have the largest effect on activity. Evidence was obtained that suggests that the activity of this region was greater in T lymphocytes than in non-T cells and that multiple elements within it were necessary for activity. A second region, containing sequences homologous to the binding site of factor NF-I and the glucocorticoid response element, had about a twofold effect on transcription in both T lymphocytes and non-T cell lines. The twofold effect was seen whether the region containing the cores and LVb site was present or not. These results indicate that the most important region for the specificity of SL3-3 enhancer activity and, presumably, for viral leukemogenicity comprises the core elements and the LVb site. DNA-protein-binding studies demonstrated that one cellular factor, S/A-CBF, bound to both core elements, while a second cellular factor, S-CBF, bound to only one of them. In combination with earlier studies, this indicates that cells contain multiple factors that bind to the critical region.
Collapse
Affiliation(s)
- J E LoSardo
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
48
|
Fulton R, Plumb M, Shield L, Neil JC. Structural diversity and nuclear protein binding sites in the long terminal repeats of feline leukemia virus. J Virol 1990; 64:1675-82. [PMID: 2157050 PMCID: PMC249304 DOI: 10.1128/jvi.64.4.1675-1682.1990] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The long terminal repeat U3 sequences were determined for multiple feline leukemia virus proviruses isolated from naturally occurring T-cell tumors. Heterogeneity was evident, even among proviruses cloned from individual tumors. Proviruses with one, two, or three repeats of the long terminal repeat enhancer sequences coexisted in one tumor, while two proviruses with distinct direct repeats were found in another. The enhancer repeats are characteristic of retrovirus variants with accelerated leukemogenic potential and occur between -155 and -244 base pairs relative to the RNA cap site. The termini of the repeats occur at or near sequence features which have been recognized at other retrovirus recombinational junctions. In vitro footprint analysis of the feline leukemia virus enhancer revealed three major nuclear protein binding sites, located at consensus sequences for the simian virus 40 core enhancer, the nuclear factor 1 binding site, and an indirect repeat which is homologous to the PEA2 binding site in the polyomavirus enhancer. Only the simian virus 40 core enhancer sequence is present in all of the enhancer repeats. Cell type differences in binding activities to the three motifs may underlie the selective process which leads to outgrowth of viruses with specific sequence duplications.
Collapse
Affiliation(s)
- R Fulton
- Beatson Institute for Cancer Research, Bearsden, Glasgow, Scotland
| | | | | | | |
Collapse
|
49
|
Golemis EA, Speck NA, Hopkins N. Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design. J Virol 1990; 64:534-42. [PMID: 2153223 PMCID: PMC249141 DOI: 10.1128/jvi.64.2.534-542.1990] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We aligned published sequences for the U3 region of 35 type C mammalian retroviruses. The alignment reveals that certain sequence motifs within the U3 region are strikingly conserved. A number of these motifs correspond to previously identified sites. In particular, we found that the enhancer region of most of the viruses examined contains a binding site for leukemia virus factor b, a viral corelike element, the consensus motif for nuclear factor 1, and the glucocorticoid response element. Most viruses containing more than one copy of enhancer sequences include these binding sites in both copies of the repeat. We consider this set of binding sites to constitute a framework for the enhancers of this set of viruses. Other highly conserved motifs in the U3 region include the retrovirus inverted repeat sequence, a negative regulatory element, and the CCAAT and TATA boxes. In addition, we identified two novel motifs in the promoter region that were exceptionally highly conserved but have not been previously described.
Collapse
Affiliation(s)
- E A Golemis
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
50
|
Speck NA, Renjifo B, Hopkins N. Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element. J Virol 1990; 64:543-50. [PMID: 2104942 PMCID: PMC249142 DOI: 10.1128/jvi.64.2.543-550.1990] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcriptional enhancer of the Moloney murine leukemia virus (MoMLV) is organized as a 75-base-pair repeat, and in each copy of the repeat there are multiple binding sites for nuclear factors. We have introduced point mutations into each of the known nuclear factor-binding sites in the MoMLV enhancer, in both copies of the direct repeat, and have analyzed the transcriptional activity conferred by the mutated enhancers by transient-expression assays in both hematopoietic and nonhematopoietic cell lines. Mutation of individual binding sites in the MoMLV enhancer has moderate effects (less than 2-fold to 20-fold) on transcription in six independent cell lines. Several mutations decreased transcription from the MoMLV enhancer ubiquitously (the leukemia virus factor b site and the glucocorticoid response element), whereas others affected transcription specifically in lymphoid cell lines (core motif) or, more significantly, in fibroblasts (nuclear factor 1 site). The transcriptional activity of the MoMLV enhancer can be induced 8- to 10-fold by 1,3-phorbol myristate acetate in Jurkat T cells. Mutations in any of three adjacent binding sites (leukemia virus factor b and c sites and the core motif) within a 28-base-pair region in the center of the direct repeat sequence of the MoMLV enhancer completely attenuate the response to 1,3-phorbol myristate acetate.
Collapse
Affiliation(s)
- N A Speck
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|