1
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
2
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
3
|
The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics. Sci Rep 2016; 6:28644. [PMID: 27353647 PMCID: PMC4926088 DOI: 10.1038/srep28644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community.
Collapse
|
4
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
5
|
Tsang CM, Tsao SW. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 2015; 30:107-21. [PMID: 25910483 DOI: 10.1007/s12250-015-3592-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. EBV episomes are detected in almost all NPC cells. The role of EBV in NPC pathogenesis has long been postulated but remains enigmatic. In contrast to infection of B lymphocytes, EBV infection does not directly transform nasopharyngeal epithelial cells into proliferative clones with malignant potential. EBV infection of normal pharyngeal epithelial cells is predominantly lytic in nature. Genetic alterations in premalignant nasopharyngeal epithelium, in combination with inflammatory stimulation in the nasopharyngeal mucosa, presumably play essential roles in the establishment of a latent EBV infection in infected nasopharyngeal epithelial cells during the early development of NPC. Establishment of latent EBV infection in premalignant nasopharyngeal epithelial cells and expression of latent viral genes, including the BART transcripts and BART-encoded microRNAs, are crucial features of NPC. Expression of EBV genes may drive further malignant transformation of premalignant nasopharyngeal epithelial cells into cancer cells. The difficulties involved in the establishment of NPC cell lines and the progressive loss of EBV epsiomes in NPC cells propagated in culture strongly implicate the contribution of host stromal components to the growth of NPC cells in vivo and maintenance of EBV in infected NPC cells. Defining the growth advantages of EBV-infected NPC cells in vivo will lead to a better understanding of the contribution of EBV infection in NPC pathogenesis, and may lead to the identification of novel therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
6
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
7
|
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1) plays multiple important roles in EBV latent infection and has also been shown to impact EBV lytic infection. EBNA1 is required for the stable persistence of the EBV genomes in latent infection and activates the expression of other EBV latency genes through interactions with specific DNA sequences in the viral episomes. EBNA1 also interacts with several cellular proteins to modulate the activities of multiple cellular pathways important for viral persistence and cell survival. These cellular effects are also implicated in oncogenesis, suggesting a direct role of EBNA1 in the development of EBV-associated tumors.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 2012; 287:23977-94. [PMID: 22589552 DOI: 10.1074/jbc.m112.368456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed.
Collapse
Affiliation(s)
- Kenji Moriyama
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
10
|
Lubelsky Y, MacAlpine HK, MacAlpine DM. Genome-wide localization of replication factors. Methods 2012; 57:187-95. [PMID: 22465279 DOI: 10.1016/j.ymeth.2012.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/12/2012] [Accepted: 03/18/2012] [Indexed: 01/21/2023] Open
Abstract
Chromatin Immunoprecipitation (ChIP) is a powerful tool for the identification and characterization of protein-DNA interactions in vivo. ChIP has been utilized to study diverse nuclear processes such as transcription regulation, chromatin modification, DNA recombination and DNA replication at specific loci and, more recently, across the entire genome. Advances in genomic approaches, and whole genome sequencing in particular, have made it possible and affordable to comprehensively identify specific protein binding sites throughout the genomes of higher eukaryotes. The dynamic nature of the DNA replication program and the transient occupancy of many replication factors throughout the cell cycle present additional challenges that may not pertain to the mapping of site specific transcription factors. Here we discuss the specific considerations that need to be addressed in the application of ChIP to the genome-wide location analysis of protein factors involved in DNA replication.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
11
|
Flynn RP, Zacharias J, Zhou X, Cannon ML, Philpott NJ. Non-integrating lentiviral vectors for specific killing of Epstein-Barr virus nuclear antigen 1-positive B cell lymphoma cells. J Gene Med 2012; 13:487-96. [PMID: 21850667 DOI: 10.1002/jgm.1601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) causes a range of life-threatening B-lymphocyte malignancies but, despite the use of various strategies, treatment remains problematic. METHODS In the present study, we developed a non-integrating lentiviral vector (NILV) that mediates specific killing of EBV nuclear antigen 1 (EBNA1)-expressing cells with minimal toxicity to EBNA1-negative cells. The EBV family of repeats (FR) was cloned intok the NILV genome upstream of various transgenes. RESULTS The presence of the FR in the NILV genome induced transcriptional up-regulation and prolonged the expression of a transgene specifically in EBNA1-positive B cells. Transgene expression from an FR-containing NILV was also prolonged in EBV-transformed cells compared to an FR-negative NILV. We found that the delivery of an FR-containing NILV encoding herpes simplex virus 1 thymidine kinase (TK) lead to the killing of more than 99% of EBNA1-positive B cells with minimal toxicity to EBNA1-negative cells in the presence of gancyclovir. EBNA1-positive cells were not killed by an FR-negative vector containing the TK gene. An FR-TK-containing NILV also specifically killed EBNA1-containing cells in a mixed population of EBNA1-positive and EBNA1-negative cells, thus confirming that NILV-FR-TK-mediated killing is specific for EBNA1-expressing cells. CONCLUSIONS Transgene expression from our NILVs is both EBNA1-specific and dependent upon the presence of the FR. The results obtained in the present study indicate that NILVs have potential use in the treatment of EBV-associated B cell malignancies.
Collapse
Affiliation(s)
- Ryan P Flynn
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, Institute of Human Genetics, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
12
|
Frappier L. The Epstein-Barr Virus EBNA1 Protein. SCIENTIFICA 2012; 2012:438204. [PMID: 24278697 PMCID: PMC3820569 DOI: 10.6064/2012/438204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/28/2012] [Indexed: 05/06/2023]
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
- *Lori Frappier:
| |
Collapse
|
13
|
Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol 2011; 22:154-61. [PMID: 22206863 DOI: 10.1016/j.semcancer.2011.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022]
Abstract
EBNA1 is expressed in all NPC tumours and is the only Epstein-Barr virus protein needed for the stable persistence of EBV episomes. EBNA1 binds to specific sequences in the EBV genome to facilitate the initiation of DNA synthesis, ensure the even distribution of the viral episomes to daughter cells during mitosis and to activate the transcription of other viral latency genes important for cell immortalization. In addition, EBNA1 has been found to alter cellular pathways in multiple ways that likely contribute to cell immortalization and malignant transformation. This chapter discusses the known functions and cellular effects of EBNA1, especially as pertains to NPC.
Collapse
|
14
|
Abstract
The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.
Collapse
|
15
|
Cervelli T, Backovic A, Galli A. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae. PLoS One 2011; 6:e23474. [PMID: 21853137 PMCID: PMC3154452 DOI: 10.1371/journal.pone.0023474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/19/2011] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| | - Ana Backovic
- Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Pisa, Italy
| | - Alvaro Galli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
- * E-mail:
| |
Collapse
|
16
|
Kelly BL, Singh G, Aiyar A. Molecular and cellular characterization of an AT-hook protein from Leishmania. PLoS One 2011; 6:e21412. [PMID: 21731738 PMCID: PMC3121789 DOI: 10.1371/journal.pone.0021412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 11/26/2022] Open
Abstract
AT-rich DNA, and the proteins that bind it (AT-hook proteins), modulate chromosome structure and function in most eukaryotes. Unlike other trypanosomatids, the genome of Leishmania species is unusually GC-rich, and the regulation of Leishmania chromosome structure, replication, partitioning is not fully understood. Because AT-hook proteins modulate these functions in other eukaryotes, we examined whether AT-hook proteins are encoded in the Leishmania genome, to test their potential functions. Several Leishmania ORFs predicted to be AT-hook proteins were identified using in silico approaches based on sequences shared between eukaryotic AT-hook proteins. We have used biochemical, molecular and cellular techniques to characterize the L. amazonensis ortholog of the L. major protein LmjF06.0720, a potential AT-hook protein that is highly conserved in Leishmania species. Using a novel fusion between the AT-hook domain encoded by LmjF06.0720 and a herpesviral protein, we have demonstrated that LmjF06.0720 functions as an AT-hook protein in mammalian cells. Further, as observed for mammalian and viral AT-hook proteins, the AT-hook domains of LmjF06.0720 bind specific regions of condensed mammalian metaphase chromosomes, and support the licensed replication of DNA in mammalian cells. LmjF06.0720 is nuclear in Leishmania, and this localization is disrupted upon exposure to drugs that displace AT-hook proteins from AT-rich DNA. Coincidentally, these drugs dramatically alter the cellular physiology of Leishmania promastigotes. Finally, we have devised a novel peptido-mimetic agent derived from the sequence of LmjF06.0720 that blocks the proliferation of Leishmania promastigotes, and lowers amastigote parasitic burden in infected macrophages. Our results indicate that AT-hook proteins are critical for the normal biology of Leishmania. In addition, we have described a simple technique to examine the function of Leishmania chromatin-binding proteins in a eukaryotic context amenable to studying chromosome structure and function. Lastly, we demonstrate the therapeutic potential of compounds directed against AT-hook proteins in Leishmania.
Collapse
Affiliation(s)
- Ben L. Kelly
- Department of Microbiology, Immunology and Parasitology, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Gyanendra Singh
- Stanley S. Scott Cancer Center, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
17
|
Chandok GS, Kapoor KK, Brick RM, Sidorova JM, Krasilnikova MM. A distinct first replication cycle of DNA introduced in mammalian cells. Nucleic Acids Res 2011; 39:2103-15. [PMID: 21062817 PMCID: PMC3064806 DOI: 10.1093/nar/gkq903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/30/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022] Open
Abstract
Many mutation events in microsatellite DNA sequences were traced to the first embryonic divisions. It was not known what makes the first replication cycles of embryonic DNA different from subsequent replication cycles. Here we demonstrate that an unusual replication mode is involved in the first cycle of replication of DNA introduced in mammalian cells. This alternative replication starts at random positions, and occurs before the chromatin is fully assembled. It is detected in various cell lines and primary cells. The presence of single-stranded regions increases the efficiency of this alternative replication mode. The alternative replication cannot progress through the A/T-rich FRA16B fragile site, while the regular replication mode is not affected by it. A/T-rich microsatellites are associated with the majority of chromosomal breakpoints in cancer. We suggest that the alternative replication mode may be initiated at the regions with immature chromatin structure in embryonic and cancer cells resulting in increased genomic instability. This work demonstrates, for the first time, differences in the replication progression during the first and subsequent replication cycles in mammalian cells.
Collapse
Affiliation(s)
- Gurangad S. Chandok
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Kalvin K. Kapoor
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Rachel M. Brick
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Julia M. Sidorova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| |
Collapse
|
18
|
Abstract
Epstein-Barr virus (EBV) encodes a wealth of oncogenic instructions, including the abilities to drive a resting normal B cell to proliferate and to override apoptotic stimuli. EBV is found in almost all types of lymphomas at varying frequencies. However, the particular viral genes expressed differ considerably among tumors. We have examined the role of EBV in several lymphomas by conditionally evicting the extrachromosomal viral genome from tumor cells in vitro and have found a graded dependence on the virus. Tumor cells that express all the known latent viral genes have been found to depend on the virus to drive proliferation and to block apoptosis at least in part by repressing the proapoptotic protein Bim. Other tumor cells, which express fewer viral genes, also depend on the virus to block apoptosis, but rely on the virus to promote but not to drive proliferation. Lastly, tumor cells with the fewest viral genes expressed have been found to require EBV to prevent the inefficient induction of a Bim-independent apoptosis. We present a model for the evolution of EBV-induced lymphomas in which tumors are initially "addicted" to the virus for almost all oncogenic functions. These tumors are targets for the immune system because they express multiple immunogenic viral proteins. Therefore, EBV-induced tumors are under selective pressure to acquire cellular mutations that can replace viral functions. We posit that the heterogeneity in viral gene expression among different EBV-associated lymphomas reflects a dynamic process by which tumors evolve to be less dependent on the virus.
Collapse
|
19
|
Ott E, Norio P, Ritzi M, Schildkraut C, Schepers A. The dyad symmetry element of Epstein-Barr virus is a dominant but dispensable replication origin. PLoS One 2011; 6:e18609. [PMID: 21603652 PMCID: PMC3095595 DOI: 10.1371/journal.pone.0018609] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/07/2011] [Indexed: 01/13/2023] Open
Abstract
OriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome. Mini-EBV plasmids contain 41% of the EBV genome including all information required for the proliferation of human B cells. Both FR and DS function independently of their genomic context. We show that DS is the most active origin of replication present in the mini-EBV genome regardless of its location, and it is characterized by the binding of the origin recognition complex (ORC) allowing subsequent replication initiation. Surprisingly, the integrity of oriP is not required for the formation of the pre-replicative complex (pre-RC) at or near DS. In addition we show that initiation events occurring at sites other than the DS are also limited to once per cell cycle and that they are ORC-dependent. The deletion of DS increases initiation from alternative origins, which are normally used very infrequently in the mini-EBV genome. The sequence-independent distribution of ORC-binding, pre-RC-assembly, and initiation patterns indicates that a large number of silent origins are present in the mini-EBV genome. We conclude that, in mini-EBV genomes lacking the DS element, the absence of a strong ORC binding site results in an increase of ORC binding at dispersed sites.
Collapse
Affiliation(s)
- Elisabeth Ott
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Paolo Norio
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
| | - Marion Ritzi
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
| | - Carl Schildkraut
- Department of Cell Biology (CH 416), Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AS); (CS)
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, München, Germany
- * E-mail: (AS); (CS)
| |
Collapse
|
20
|
Abstract
Extrachromosomal, or episomal, vectors offer a number of advantages for therapeutic and scientific applications compared to integrating vectors. Extrachromosomal vectors persist in the nucleus without the requirement to integrate into the host genome, hence avoiding the recent concerns surrounding the genotoxic effects of vector integration. By avoiding integration, episomal vectors avoid vector rearrangement, which can occur at integration, and also avoid any effect of surrounding DNA activity on transgene expression ("position effect"). Extrachromosomal vectors offer a very high transgene capacity, allowing either the incorporation of large promoter and regulatory elements into an expression cassette, or the use of complete genomic loci of up to 100 kb or larger as transgenes. Whole genomic loci transgenes offer an elegant means to express genes under physiological and developmental-stage regulation, to express multiple transcript variants from a single locus, and to express multiple genes from a single tract of genomic DNA. The combined advantages of episomal vectors of prolonged transgene persistence in the absence of vector integration, avoiding silencing by flanking heterochromatin, and high capacity, facilitating delivery and expression of genomic DNA transgenes, will be reviewed here and potential therapeutic and scientific uses outlined.
Collapse
Affiliation(s)
- Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Abstract
Studies in our laboratory over the last three decades have shown that the Chinese hamster dihydrofolate reductase (DHFR) origin of replication corresponds to a broad zone of inefficient initiation sites distributed throughout the spacer between the convergently transcribed DHFR and 2BE2121 genes. It is clear from mutational analysis that none of these sites is genetically required for controlling origin activity. However, the integrity of the promoter of the DHFR gene is needed to activate the downstream origin, while the 3' processing signals prevent invasion and inactivation of the downstream origin by transcription forks. Several other origins in metazoans have been shown to correspond to zones of inefficient sites, while a different subset appears to be similar to the fixed replicators that characterize origins in S. cerevisiae and lower organisms. These observations have led us to suggest a model in which the mammalian genome is dotted with a hierarchy of degenerate, redundant, and inefficient replicators at intervals of a kilobase or less, some of which may have evolved to be highly circumscribed and efficient. The activities of initiation sites are proposed to be largely regulated by local transcription and chromatin architecture. Recently, we and others have devised strategies for identifying active origins on a genome-wide scale in order to define their distributions between fixed and dispersive origin types and to detect relationships among origins, genes, and epigenetic markers. The global pictures emerging are suggestive but far from complete and appear to be plagued by some of the same uncertainties that have led to conflicting views of individual origins in the past (particularly DHFR). In this paper, we will trace the history of origin discovery in mammalian genomes, primarily using the well-studied DHFR origin as a model, because it has been analyzed by nearly every available origin mapping technique in several different laboratories, while many origins have been identified by only one. We will address the strengths and shortcomings of the various methods utilized to identify and characterize origins in complex genomes and will point out how we and others were sometimes led astray by false assumptions and biases, as well as insufficient information. The goal is to help guide future experiments that will provide a truly comprehensive and accurate portrait of origins and their regulation. After all, in the words of George Santayana, "Those who do not learn from history are doomed to repeat it."
Collapse
|
22
|
Schepers A, Papior P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res 2010; 18:63-77. [PMID: 19904620 DOI: 10.1007/s10577-009-9087-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication initiates from origins of replication following a strict sequential activation programme and a conserved temporal order of activation. The number of replication initiation sites varies between species, according to the complexity of the genomes, with an average spacing of 100,000 bp. In contrast to yeast genomes, the location and definition of origins in mammalian genomes has been elusive. Historically, mammalian replication initiation sites have been mapped in situ by systematically searching specific genomic loci for sites that preferentially initiated DNA replication, potential origins by start-site mapping and autonomously replicating sequence experiments, and potential ORC and pre-replicative complex (pre-RC) sites by chromatin immunoprecipitation (ChIP) using antibodies for pre-RC proteins. In the past decade, ChIP has become an important method for analyzing protein/DNA interactions. Classically, ChIP is combined with Southern blotting or PCR. Recently, whole genome-ChIP methods have been very successful in unicellular eukaryotes to understand molecular mechanisms coordinating replication initiation and its flexibility in response to environmental changes. However, in mammalian systems, ChIP with pre-RC antibodies has often been challenging and genome-wide studies are scarce. In this review, we will appraise the progress that has been made in understanding replication origin organization using immunoprecipitation of the ORC and Mcm2-7 complexes. A special focus will be on the advantages and disadvantages of genome-wide ChIP-technologies and their potential impact on understanding metazoan replicators.
Collapse
Affiliation(s)
- Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München-German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.
| | | |
Collapse
|
23
|
|
24
|
Vereide D, Sugden B. Proof for EBV's sustaining role in Burkitt's lymphomas. Semin Cancer Biol 2009; 19:389-93. [PMID: 19628040 PMCID: PMC2789873 DOI: 10.1016/j.semcancer.2009.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 07/10/2009] [Indexed: 12/14/2022]
Abstract
We have found that not all Epstein-Barr viral (EBV) plasmids are duplicated each cell cycle. This inefficiency is intrinsic to EBV's mechanism of DNA synthesis in latently infected cells and necessarily leads to a loss of EBV plasmids from proliferating cells. If EBV provides its host cells advantages that allow those cells that retain EBV to outgrow those that lose it, then such proliferating populations will be EBV-positive. EBV-associated human tumors are EBV-positive. Thus, the presence of EBV plasmids in most cells of a tumor demonstrates that EBV sustains these tumors in vivo. The virus can provide multiple selective advantages to tumor cells, including promoting cell proliferation and inhibiting cell death. In the case of Burkitt's lymphomas (BL), most current evidence indicates that the tumor requires the virus minimally to block apoptosis.
Collapse
Affiliation(s)
- David Vereide
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave., Madison, WI 53706, USA
| | | |
Collapse
|
25
|
Nayyar VK, Shire K, Frappier L. Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J Cell Sci 2009; 122:4341-50. [PMID: 19887584 DOI: 10.1242/jcs.060913] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr nuclear antigen 1 (EBNA1) protein enables the stable persistence of Epstein-Barr virus episomal genomes during latent infection, in part by tethering the episomes to the cellular chromosomes in mitosis. A host nucleolar protein, EBNA1-binding protein 2 (EBP2), has been shown to be important for interactions between EBNA1 and chromosomes in metaphase and to associate with metaphase chromosomes. Here, we examine the timing of the chromosome associations of EBNA1 and EBP2 through mitosis and the regions of EBNA1 that mediate the chromosome interactions at each stage of mitosis. We show that EBP2 is localized to the nucleolus until late prophase, after which it relocalizes to the chromosome periphery, where it remains throughout telophase. EBNA1 is associated with chromosomes early in prophase through to telophase and partially colocalizes with chromosomal EBP2 in metaphase through to telophase. Using EBNA1 deletion mutants, the chromosome association of EBNA1 at each stage of mitosis was found to be mediated mainly by a central glycine-arginine region, and to a lesser degree by N-terminal sequences. These sequence requirements for chromosome interaction mirrored those for EBP2 binding. Our results suggest that interactions between EBNA1 and chromosomes involve at least two stages, and that the contribution of EBP2 to these interactions occurs in the second half of mitosis.
Collapse
Affiliation(s)
- Vipra Kapur Nayyar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
26
|
EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathog 2009; 5:e1000624. [PMID: 19834552 PMCID: PMC2757719 DOI: 10.1371/journal.ppat.1000624] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/17/2009] [Indexed: 12/24/2022] Open
Abstract
The EBNA1 protein of Epstein-Barr virus (EBV) plays essential roles in enabling the replication and persistence of EBV genomes in latently infected cells and activating EBV latent gene expression, in all cases by binding to specific recognition sites in the latent origin of replication, oriP. Here we show that EBNA1 binding to its recognition sites in vitro is greatly stimulated by binding to the cellular deubiquitylating enzyme, USP7, and that USP7 can form a ternary complex with DNA-bound EBNA1. Consistent with the in vitro effects, the assembly of EBNA1 on oriP elements in human cells was decreased by USP7 silencing, whereas assembly of an EBNA1 mutant defective in USP7 binding was unaffected. USP7 affinity column profiling identified a complex between USP7 and human GMP synthetase (GMPS), which was shown to stimulate the ability of USP7 to cleave monoubiquitin from histone H2B in vitro. Accordingly, silencing of USP7 in human cells resulted in a consistent increase in the level of monoubquitylated H2B. The USP7-GMPS complex formed a quaternary complex with DNA-bound EBNA1 in vitro and, in EBV infected cells, was preferentially detected at the oriP functional element, FR, along with EBNA1. Down-regulation of USP7 reduced the level of GMPS at the FR, increased the level of monoubiquitylated H2B in this region of the origin and decreased the ability of EBNA1, but not an EBNA1 USP7-binding mutant, to activate transcription from the FR. The results indicate that USP7 can stimulate EBNA1-DNA interactions and that EBNA1 can alter histone modification at oriP through recruitment of USP7. Epstein-Barr virus (EBV) infections persist for the lifetime of the host largely due to the actions of the EBNA1 viral protein. EBNA1 enables the replication and stable persistence of EBV genomes and activates the expression of other EBV genes by binding to specific DNA sequences in the EBV genome. We have shown that the cellular protein USP7 stimulates EBNA1 binding to its DNA sequences and that EBNA1 recruits USP7 to the EBV genome, which in turn recruits another cellular protein GMP synthetase. The complex of USP7 and GMP synthetase then functions to alter the chromatin structure at a region of the EBV genome that controls EBV persistence. These changes to the EBV genome are likely important for enabling the persistence of EBV genomes in infected cells.
Collapse
|
27
|
Abstract
The identification and isolation of origins of replication from mammalian genomes has been a demanding task owing to the great complexity of these genomes. However, two methods have been refined in recent years each of which allows significant enrichment of recently activated origins of replication from asynchronous cell cultures. In one of these, nascent strands are melted from the long template DNA, and the small, origin-centered strands are isolated on sucrose gradients. The second method involves the selective entrapment of bubble-containing fragments in gelling agarose and their subsequent recovery and isolation by molecular cloning. Libraries prepared by this method from Chinese hamster and human cells have been shown to be extremely pure, and provide a renewable resource of origins that can be used as probes on microarrays or sequenced by high-throughput techniques to localize them within the genomic source. The bubble-trapping method is described here for asynchronous mammalian cells that grow with reasonable doubling times and from which nuclear matrices can be reliably prepared. The method for nuclear matrix preparation and enrichment of replication intermediates is described in an accompanying chapter entitled, "Purification of Restriction Fragments Containing Replication Intermediates from Mammalian Cells for 2-D Gel Analysis").
Collapse
Affiliation(s)
- Larry D. Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Box 800733 Health Science Center, Charlottesville, VA 22908-0733
| | - Joyce L. Hamlin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Box 800733 Health Science Center, Charlottesville, VA 22908-0733
| |
Collapse
|
28
|
Hamlin JL, Mesner LD, Lar O, Torres R, Chodaparambil SV, Wang L. A revisionist replicon model for higher eukaryotic genomes. J Cell Biochem 2008; 105:321-9. [PMID: 18680119 PMCID: PMC2574905 DOI: 10.1002/jcb.21828] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The replicon model devised to explain replication control in bacteria has served as the guiding paradigm in the search for origins of replication in the more complex genomes of eukaryotes. In Saccharomyces cerevisiae, this model has proved to be extremely useful, leading to the identification of specific genetic elements (replicators) and the interacting initiator proteins that activate them. However, replication control in organisms ranging from Schizosaccharomyces pombe to mammals is far more fluid: only a small number of origins seem to represent classic replicators, while the majority correspond to zones of inefficient, closely spaced start sites none of which are indispensable for origin activity. In addition, it is apparent that the epigenetic state of a given sequence largely determines its ability to be used as a replication initiation site. These conclusions were arrived at over a period of three decades, and required the development of several novel replicon mapping techniques, as well as new ways of examining the chromatin architecture of any sequence of interest. Recently, methods have been elaborated for isolating all of the active origins in the genomes of higher eukaryotes en masse. Microarray analyses and more recent high-throughput sequencing technology will allow all the origins to be mapped onto the chromosomes of any organism whose genome has been sequenced. With the advent of whole-genome studies on gene expression and chromatin composition, the field is now positioned to define both the genetic and epigenetic rules that govern origin activity.
Collapse
Affiliation(s)
- J L Hamlin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Lufino MMP, Edser PAH, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008; 16:1525-38. [PMID: 18628754 DOI: 10.1038/mt.2008.156] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent developments in extrachromosomal vector technology have offered new ways of designing safer, physiologically regulated vectors for gene therapy. Extrachromosomal, or episomal, persistence in the nucleus of transduced cells offers a safer alternative to integrating vectors which have become the subject of safety concerns following serious adverse events in recent clinical trials. Extrachromosomal vectors do not cause physical disruption in the host genome, making these vectors safe and suitable tools for several gene therapy targets, including stem cells. Moreover, the high insert capacity of extrachromosomal vectors allows expression of a therapeutic transgene from the context of its genomic DNA sequence, providing an elegant way to express normal splice variants and achieve physiologically regulated levels of expression. Here, we describe past and recent advances in the development of several different extrachromosomal systems, discuss their retention mechanisms, and evaluate their use as expression vectors to deliver and express genomic DNA loci. We also discuss a variety of delivery systems, viral and nonviral, which have been used to deliver episomal vectors to target cells in vitro and in vivo. Finally, we explore the potential for the delivery and expression of extrachromosomal transgenes in stem cells. The long-term persistence of extrachromosomal vectors combined with the potential for stem cell proliferation and differentiation into a wide range of cell types offers an exciting prospect for therapeutic interventions.
Collapse
Affiliation(s)
- Michele M P Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
30
|
Pleiotrophic functions of Epstein-Barr virus nuclear antigen-1 (EBNA-1) and oriP differentially contribute to the efficiency of transfection/expression of exogenous gene in mammalian cells. J Biotechnol 2008; 133:201-7. [DOI: 10.1016/j.jbiotec.2007.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/04/2007] [Accepted: 08/22/2007] [Indexed: 11/20/2022]
|
31
|
Legouras I, Xouri G, Dimopoulos S, Lygeros J, Lygerou Z. DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast 2007; 23:951-62. [PMID: 17072888 DOI: 10.1002/yea.1416] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA replication, the process of duplication of a cell's genetic content, must be carried out with great precision every time the cell divides, so that genetic information is preserved. Control mechanisms must ensure that every base of the genome is replicated within the allocated time (S-phase) and only once per cell cycle, thereby safeguarding genomic integrity. In eukaryotes, replication starts from many points along the chromosome, termed origins of replication, and then proceeds continuously bidirectionally until an opposing moving fork is encountered. In contrast to bacteria, where a specific site on the genome serves as an origin in every cell division, in most eukaryotes origin selection appears highly stochastic: many potential origins exist, of which only a subset is selected to fire in any given cell, giving rise to an apparently random distribution of initiation events across the genome. Origin states change throughout the cell cycle, through the ordered formation and modification of origin-associated multisubunit protein complexes. State transitions are governed by fluctuations of cyclin-dependent kinase (CDK) activity and guards in these transitions ensure system memory. We present here DNA replication dynamics, emphasizing recent data from the fission yeast Schizosaccharomyces pombe, and discuss how robustness may be ensured in spite of (or even assisted by) system randomness.
Collapse
Affiliation(s)
- Ioannis Legouras
- School of Medicine, Laboratory of General Biology, University of Patras, Rio, Patras, Greece
| | | | | | | | | |
Collapse
|
32
|
Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14:613-26. [PMID: 16784894 DOI: 10.1016/j.ymthe.2006.03.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 01/20/2023] Open
Abstract
Although the genetic therapy of human diseases has been conceptually possible for many years we still lack a vector system that allows safe and reproducible genetic modification of eukaryotic cells and ensures faithful long-term expression of transgenes. There is increasing agreement that vectors that are based exclusively on chromosomal elements, which replicate autonomously in human cells, could fulfill these criteria. The rational construction of such vectors is still hindered by our limited knowledge of the factors that regulate chromatin function in eukaryotic cells. This review sets out to summarize how our current knowledge of nuclear organization can be applied to the design of extrachromosomal gene expression vectors that can be used for human gene therapy. Within the past years a number of episomal nonviral constructs have been designed and their replication strategies, expression of transgenes, mitotic stability, and delivery strategies and the mechanisms required for their stable establishment will be discussed. To date, these nonviral vectors have not been used in clinical trials. Even so, many compelling arguments can be developed to support the view that nonviral vector systems will play a major role in future gene therapy protocols.
Collapse
Affiliation(s)
- Dean A Jackson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|
33
|
Mesner LD, Crawford EL, Hamlin JL. Isolating apparently pure libraries of replication origins from complex genomes. Mol Cell 2006; 21:719-26. [PMID: 16507369 DOI: 10.1016/j.molcel.2006.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/16/2005] [Accepted: 01/12/2006] [Indexed: 01/23/2023]
Abstract
Because of the complexity of higher eukaryotic genomes and the lack of a reliable autonomously replicating sequence (ARS) assay for isolating potential replicators, the identification of origins has proven to be extremely challenging and time consuming. We have developed a new origin-trapping method based on the partially circular nature of restriction fragments containing replication bubbles and have prepared a library of approximately 1,000 clones from early S phase CHO cells. When 15 randomly selected clones were analyzed by a stringent two-dimensional (2D) gel replicon mapping method, all were shown to correspond to active, early firing origins. Furthermore, most of these appear to derive from broad zones of potential sites, and the five that were analyzed in a time-course study are all inefficient. This bubble-trapping scheme will allow the construction of comprehensive origin libraries from any complex genome so that their natures and distributions vis-a-vis other chromosomal markers can be established.
Collapse
Affiliation(s)
- Larry D Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, 22908, USA
| | | | | |
Collapse
|
34
|
Papapetrou EP, Zoumbos NC, Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2006; 12 Suppl 1:S118-30. [PMID: 16231044 DOI: 10.1038/sj.gt.3302626] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.
Collapse
Affiliation(s)
- E P Papapetrou
- Department of Biology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
35
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
36
|
Abstract
The Epstein-Barr virus (EBV) can choose between two alternative lifestyles; latent or lytic replication. In the latent state, the EBV genomic DNA, which exists as a closed circular plasmid, appears to behave just like host chromosomal DNA and it has been demonstrated recently that replication of OriP-containing plasmids is indeed dependent on the chromosomal initiation factors, ORC2 and Cdt1. On the other hand, in the viral productive cycle, the EBV genome is amplified 100- to 1000-fold by the viral replication machinery. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments and the lytic programme arrests cell cycle progression and changes the cellular environment greatly. It has been revealed recently that the EBV lytic programme promotes an S-phase like cellular condition, which most favours viral lytic replication. This review describes recent advances regarding the molecular basis of EBV DNA replication during latent and lytic infections and then refers to cellular circumstances after induction of the lytic replication of EBV. Based on the molecular mechanism for the EBV lifestyle, purposeful induction of the lytic form of EBV infection is now advocated as one of the strategies for specific destruction of Epstein-Barr virus (EBV)-associated malignancies where the virus is latently infected.
Collapse
Affiliation(s)
- Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | |
Collapse
|
37
|
Miao CH. A novel gene expression system: non-viral gene transfer for hemophilia as model systems. ADVANCES IN GENETICS 2005; 54:143-77. [PMID: 16096011 DOI: 10.1016/s0065-2660(05)54007-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is highly desirable to generate tissue-specific and persistently high-level transgene expression per genomic copy from gene therapy vectors. Such vectors can reduce the cost and preparation of the vectors and reduce possible host immune responses to the vector and potential toxicity. Many gene therapy vectors have failed to produce therapeutic levels of transgene because of inefficient promoters, loss of vector or gene expression from episomal vectors, or a silencing effect of integration sites on integrating vectors. Using in vivo screening of vectors incorporating many different combinations of gene regulatory sequences, liver-specific, high-expressing vectors to accommodate factor IX, factor VIII, and other genes for effective gene transfer have been established. Persistent and high levels of factor IX and factor VIII gene expression for treating hemophilia B and A, respectively, were achieved in mouse livers using hydrodynamics-based gene transfer of naked plasmid DNA incorporating these novel gene expression systems. Some other systems to prolong or stabilize the gene expression following gene transfer are also discussed.
Collapse
Affiliation(s)
- Carol H Miao
- Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98195, USA
| |
Collapse
|
38
|
Daikoku T, Kudoh A, Fujita M, Sugaya Y, Isomura H, Tsurumi T. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus. J Biol Chem 2004; 279:54817-25. [PMID: 15498777 DOI: 10.1074/jbc.m405911200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.
Collapse
Affiliation(s)
- Tohru Daikoku
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Hebner C, Lasanen J, Battle S, Aiyar A. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance. Virology 2003; 311:263-74. [PMID: 12842617 PMCID: PMC2922029 DOI: 10.1016/s0042-6822(03)00122-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.
Collapse
Affiliation(s)
| | | | | | - Ashok Aiyar
- Corresponding author. Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611. Fax: +1-312-503-1339.
| |
Collapse
|
40
|
Wade-Martins R, Saeki Y, Chiocca EA. Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 2003; 7:604-12. [PMID: 12718903 DOI: 10.1016/s1525-0016(03)00060-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to deliver efficiently a complete genomic DNA locus to human and rodent cells will likely find widespread application in functional genomic studies and novel gene therapy protocols. In contrast to a cDNA expression cassette, the use of a complete genomic DNA locus delivers a transgene intact with its native promoter, the exons, all the intervening introns, and the regulatory regions. The presence of flanking, noncoding genomic DNA sequences could prove critical for prolonged and appropriate gene expression. We have recently developed a technology for the rapid conversion of bacterial artificial chromosome (BAC) clones into high-capacity herpes simplex virus-based amplicon vectors. Here, we express the human low-density lipoprotein receptor (LDLR), mutated in familial hypercholesterolemia (FH), from a 135-kb BAC insert. The infectious LDLR genomic locus vectors were shown to express at physiologically appropriate levels in three contexts. First, the LDLR locus was expressed appropriately in the ldl(-/-)a7 Chinese hamster ovary (CHO) cell line immediately following infectious delivery; second, the locus was maintained within a replicating episomal vector and expressed at broadly physiological levels in CHO cells for 3 months following infectious delivery; and third, the locus was efficiently expressed in human fibroblasts derived from FH patients. Finally, we show that the infectious LDLR locus retains classical expression regulation by sterol levels in human cells. This long-term expression and physiological regulation of LDLR prepares the way for in vivo functional studies of infectious delivery of BAC inserts.
Collapse
Affiliation(s)
- Richard Wade-Martins
- Molecular Neuro-Oncology Laboratories, Neurosurgery Service, Massachusetts General Hospital-East and Harvard Medical School, Building 149, 13th Street, Charlestown 02129, USA
| | | | | |
Collapse
|
41
|
Abstract
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In this review we will first discuss the chromosomal elements, such as enhancers, locus control regions, boundary elements, insulators and scaffold- or matrix-attachment regions, involved in the hierarchic regulation of mammalian gene expression and replication. These elements have been used to design vectors that behave as artificial domains when integrating into the genome. We then discuss recent progress in the use of mammalian artificial chromosomes and small circular non-viral vectors for their use as expression systems in mammalian cells.
Collapse
Affiliation(s)
- H J Lipps
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448, Witten, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Rajcáni J, Kúdelová M. Gamma herpesviruses: pathogenesis of infection and cell signaling. Folia Microbiol (Praha) 2003; 48:291-318. [PMID: 12879740 DOI: 10.1007/bf02931360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Microbiology and Immunology, Jessenius Medical Faculty, Martin, Slovakia.
| | | |
Collapse
|
43
|
Black J, Vos JM. Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic beta-globin in cultured murine fibroblasts. Gene Ther 2002; 9:1447-54. [PMID: 12378407 DOI: 10.1038/sj.gt.3301808] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 05/13/2002] [Indexed: 11/08/2022]
Abstract
A novel oriP/EBNA1-based episomal vector has been constructed that persists episomally in cultured murine fibroblasts. The vector, pBH148, is equipped with the entire 185-kb human beta-globin gene locus. After amplification in bacteria, column-purified episomal pBH148 was transfected into both cultured EBNA1-expressing human D98/Raji positive control fusion cells (DRpBH148) and cultured EBNA1-negative murine fibroblast cells (A9pBH148). Cell cultures were maintained concurrently with and without hygromycin selection for a period of 3 months. We show long-term stable episome maintenance of the full-size 200-kb circular double-stranded pBH148 in both the DRpBH148 cultures and the A9pBH148 cultures, regardless of selective pressure by agarose gel electrophoresis and Southern blot. EBNA1 transgene was detected by PCR in all transfected cultures. In addition, we were able to detect correctly spliced human beta-globin mRNA by RT-PCR in all transfected late-passage DRpBH148 and A9pBH148 cell cultures. These findings illustrate that this oriP/EBNA1-based episomal vector is stable in a previously nonpermissive murine cell line and is a potential vector for human gene therapy.
Collapse
Affiliation(s)
- J Black
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
44
|
Cooke H. Mammalian artificial chromosomes as vectors: progress and prospects. CLONING AND STEM CELLS 2002; 3:243-9. [PMID: 11945234 DOI: 10.1089/15362300152725963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Artificial chromosomes have long been touted as the ideal vector for gene therapy and biotechnology purposes based on the idea that such a chromosome would mimic the natural state of DNA in the cell. This, it is argued, would mean that essentially unlimited amounts of DNA could be incorporated into such a vector enabling either large genes or whole metabolic pathways to be provided to the recipient cell or organism. Additionally, such a vector would not integrate into the genome of the host cell and so would not cause mutagenesis by insertion and could perhaps be withdrawn from the cell or organism when no longer required. A number of preconditions are implicit in these claims. First, the chromosome should have a segregation efficiency approaching 100% in order to be useful in a cell population undergoing multiple rounds of cell divisions. Second, the chromosome should have a defined structure for regulatory and practical reasons. A defined structure is needed to maximize the control of expression of the genes that it contains. Third, the chromosome should not be so large that delivery becomes a problem. Finally, chromosomal effects such as centromeric or telomeric silencing should not dominate the expression of genes contained in an artificial chromosome. In this article, we discuss our own and others' efforts to achieve these aims using a variety of nonviral approaches to the problem.
Collapse
Affiliation(s)
- H Cooke
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom.
| |
Collapse
|
45
|
Collins CM, Medveczky PG. Genetic requirements for the episomal maintenance of oncogenic herpesvirus genomes. Adv Cancer Res 2002; 84:155-74. [PMID: 11883526 DOI: 10.1016/s0065-230x(02)84005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herpesviruses are large double-stranded DNA viruses that are characterized by lifelong latency. Epstein-Barr virus (EBV), the recently discovered Kaposi's sarcoma associated herpesvirus (KSHV), also referred to as human herpesvirus-8 (HHV-8), and the simian Herpesvirus saimiri (HVS) are associated with malignant lymphoproliferative diseases. These viruses establish latent infection in lymphoid cells. During latency only a few viral genes are expressed and the viral genome persists as a multicopy circular episome. The episome contains repetitive sequences that serve as multiple cooperative binding sites for the viral DNA binding proteins Epstein-Barr virus nuclear antigen 1 (EBNA-1) of EBV and latency-associated nuclear antigen (LANA1) of KSHV and HVS, which are expressed during latency. The oligomerized proteins associate with the viral genome and tether it to host chromosomes, assuring continual lifelong persistence of the virus.
Collapse
Affiliation(s)
- Christopher M Collins
- Department of Medical Microbiology and Immunology and the H. Lee Moffitt Cancer Center, University of South Florida, Tampa 33612-4799, USA
| | | |
Collapse
|
46
|
Garber AC, Hu J, Renne R. Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J Biol Chem 2002; 277:27401-11. [PMID: 12015325 DOI: 10.1074/jbc.m203489200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus is a multifunctional protein with important roles in both transcriptional regulation and episomal maintenance. LANA is also a DNA-binding protein and has been shown to specifically bind to a region within the terminal repeat. Here, we have performed a detailed analysis of the DNA-binding activity of LANA and show that it binds two sites separated by 22 bp. We used electrophoretic mobility shift assay to quantitatively analyze the binding sites and determined that the K(d) of the high affinity site is 1.51 +/- 0.16 nm. Examination of the contribution of nucleotides near the ends of the site showed that the core binding site consists of 16 bp, 13 of which are conserved between both sites. Analysis of the affinity of each site alone and in tandem revealed that the binding to the second site is primarily due to cooperativity with the first site. Using deletion and point mutations, we show that both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. In addition, we show that the ability of LANA to carry out these functions is directly proportional to its affinity for the sites in this region. The affinities, spacing, and cooperative binding between the two sites is similar to that of the Epstein-Barr virus dyad symmetry element oriP, suggesting a requirement for such an element in latent replication of these related DNA tumor viruses.
Collapse
Affiliation(s)
- Alexander C Garber
- Division of Hematology/Oncology, Department of Molecular Biology and Microbiology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
47
|
White RE, Wade-Martins R, James MR. Infectious delivery of 120-kilobase genomic DNA by an epstein-barr virus amplicon vector. Mol Ther 2002; 5:427-35. [PMID: 11945070 DOI: 10.1006/mthe.2002.0557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown in a wide variety of contexts that persistent gene expression can best be obtained by using the genomic locus of a transgene. However, the size of most genomic loci precludes their use in current viral gene therapy vectors. Large transgene capacity and extrachromosomal persistence make Epstein-Barr virus (EBV) a promising vector to deliver genomic transgenes for gene therapy. We constructed an EBV amplicon vector that contains the EBV lytic origin of replication, the terminal repeats for viral packaging, and the EBV latent origin of replication for episomal persistence. This vector was able to deliver inserts of 60-123 kb to B-cell lines in culture in three steps. First, clonal packaging cells lines were generated that produce infectious amplicons at a titer of approximately 3-4x10(6) transducing units/ml after concentration. Second, we show infectious vector delivery to the Loukes B-cell line and three different EBV-immortalized lymphoblastoid cell lines. This infectious delivery system was 2000 times more efficient than transfection in B cells. Third, clonal cell lines from infection of Loukes contained persistent episomes of recircularized infectious vector. This first demonstration of infectious delivery of 120 kb of genomic DNA shows the potential of this high-capacity vector system.
Collapse
Affiliation(s)
- Robert E White
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | |
Collapse
|
48
|
Abstract
The latent EBV genome may persist in the integrated form as well as the circular episomal form. However, most of the latent viral DNA molecules are known to exist in the circular episomal form, which binds to host chromosomes during mitosis. The DS element of oriP in the circular episomal DNA functions as a replication origin. As it replicates once in a single S phase, it is possible that oriP is regulated by the cellular replication licensing mechanism including the MCM family of replication licensing factors. Transient replication analysis using the oriP plasmid and HeLa/EB1 cells revealed that the DS element requires early G1 phase for the next round of replication, the same cell-cycle window in which the replication licensing of cellular chromatin occurs. After this phase, the sedimentation velocity of the oriP minichromosome increases. MCM2 associates with the oriP minichromosome at late G1 but not at G2/M, and this association requires the DS element in the plasmid. The interaction of EBNA1 and the MCM proteins on the DS element was also suggested. These results suggested that the cellular licensing mechanism controls the replication from oriP. This also suggested a similarity in the replication machinery of the cellular chromatin and the latent EBV genome. In addition to DS-dependent replication, the EBV genome replicates in a manner independent of the DS element in several cultured cell lines. The DS-dependent replication is likely to be suppressed in these cell lines by the expression of other viral proteins. In contrast, EBV-positive Burkitt's lymphoma and circulating EBV-infected B cells express only EBNA1 or both EBNA1 and LMP2. DS-dependent replication may play a major role in these EBNA1-only cells, and the licensing regulation of oriP is important for maintenance of the EBV genome during this latent period of the viral life cycle. EBNA1 is required for efficient nuclear retention and partitioning of oriP-carrying plasmid by its binding to the FR element, thus providing stable persistence of the latent EBV genome during cell division. The copy number of latent EBV DNA molecules in B-cell lines remains fairly constant during multiple passage in culture. However, very little is known about the mechanism by which the viral DNA molecules are equally segregated into daughter cells. To understand the mechanisms responsible for stable nuclear retention and partitioning of the latent viral genome, it is essential to analyze the episomal and integrated viral DNAs at a single-cell level by FISH and other techniques.
Collapse
Affiliation(s)
- K Hirai
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo, Tokyo 113-8510, Japan
| | | |
Collapse
|
49
|
Affiliation(s)
- B Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
50
|
Chow CM, Athanassiadou A, Raguz S, Psiouri L, Harland L, Malik M, Aitken MA, Grosveld F, Antoniou M. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Ther 2002; 9:327-36. [PMID: 11938452 DOI: 10.1038/sj.gt.3301654] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Accepted: 12/18/2001] [Indexed: 11/08/2022]
Abstract
Locus control regions (LCRs) are transcriptional regulatory elements, which possess a dominant chromatin remodelling and transcriptional activating capability conferring full physiological levels of expression on a gene linked in cis, when integrated into the host cell genome. Using the human beta-globin LCR (betaLCR) as a model, we show that this class of control element can drive high levels of tissue-specific gene expression in stably transfected cultured cells from within an Epstein-Barr virus-based plasmid REV. Furthermore, a 38-kb betaLCR minilocus-REV cosmid vector was efficiently retained and maintained therapeutic levels of beta-globin transgene expression in the absence of drug selective pressure over a 2-month period of continuous culture equivalent to at least 60 generations. This demonstrates for the first time the feasibility of using REVs for gene therapy of the haemoglobinopathies. Importantly, our results demonstrate that as in the case of integrated transgenes, expression from within REVs is prone to silencing but that the inclusion of the betaLCR prevented this repression of gene function. Therefore, appropriate control elements to provide and maintain tissue-specific gene expression, as well as the episomal status of REVs is a crucial feature in vector design. Our data suggest that LCRs can contribute to this vital function.
Collapse
Affiliation(s)
- C-M Chow
- Nuclear Biology Group, Division of Medical and Molecular Genetics, GKT School of Medicine, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|