1
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
2
|
Beadling C, Smith KA. DNA array analysis of interleukin-2-regulated immediate/early genes. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2002; 1:2. [PMID: 12459040 PMCID: PMC149405 DOI: 10.1186/1476-9433-1-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 11/18/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND: Lymphocyte activation culminates in blastogenesis, cell cycle progression, DNA replication and mitosis. These complex cellular changes are programmed almost simultaneously by multiple ligands and receptors that trigger specific signal transduction pathways and transcription factors. Until now, the discovery of the genes regulated by each ligand/receptor pair has been hampered by the technologies available. RESULTS: To identify interleukin-2 (IL-2)-responsive genes, human peripheral blood mononuclear cells (PBMC) were pre-activated with anti-CD3, rested, and restimulated with IL-2 for 4 hr. Gene expression was analyzed using Affymetrix U95Av2 oligonucleotide arrays. To determine the most stringent parameters to score a gene as a bona fide IL-2 target, the expression of 19 known IL-2-regulated genes was examined first. All were induced at least 2-fold, with a difference in fluorescent intensity of >/= 100 at p < 0.05. An additional 53 unique genes met these criteria. To determine which of these were immediate/early IL-2 targets in T cells, purified T cells were stimulated with IL-2 for 4 hr in the presence of cycloheximide to prevent secondary gene expression. Of the 72 genes identified in PBMCs, 20 were detected as immediate/early IL-2-regulated genes in purified T cells. In addition, 27 unique genes were IL-2-regulated in T cells but not in PBMCs. CONCLUSIONS: For a successful reductionist approach to the analysis of gene expression in lymphocyte activation, it is necessary to examine purified cell populations and immediate/early gene expression regulated by each ligand/receptor pair involved. This approach should allow the discovery of genes regulated by all of the ligand/receptor pairs involved in lymphocyte activation.
Collapse
Affiliation(s)
- Carol Beadling
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kendall A Smith
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| |
Collapse
|
3
|
Miyamoto S, Qin J, Safer B. Detection of early gene expression changes during activation of human primary lymphocytes by in vitro synthesis of proteins from polysome-associated mRNAs. Protein Sci 2001; 10:423-33. [PMID: 11266628 PMCID: PMC2373944 DOI: 10.1110/ps.21301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The rapid increase in protein synthesis during the mitogenic stimulation of human peripheral blood lymphocyte is the result of global and specific translational control mechanisms. To study some of these mechanisms, we examined the in vitro translatability of mRNAs associated with the polyribosome fraction. Polyribosome fractions were isolated from lymphocytes after activation with ionomycin and the phorbol ester PMA. The associated PAmRNAs were translated in the presence of mRNA-depleted rabbit reticulocyte lysate and [(35)S]Met, and the protein products were analyzed by SDS--PAGE and autoradiography. There was little synthesis of protein from the PAmRNAs isolated from unactivated T cells, but the PAmRNAs isolated from activated T cells showed a rapid increase in translatability. Translation of the PAmRNAs was sensitive to edeine and m7GTP, suggesting their cap-dependent translation. With activation, the majority of proteins showed increasing in vitro translation, but two proteins, p72 and p33, were found to have increased synthesis within 30 min, which decreased in 1 h. Transcription inhibitors were used to ascertain if regulation of their expression was transcriptional or translational. To identify these proteins, we used biotinylated lysine during the in vitro translation reaction, and we extracted the biotinylated protein by using streptavidin magnetic beads. The protein product was analyzed by mass spectrometry. p33 was identified as a prohibitin-like protein (BAP37), but the identification of p72 was not found in the databases. The distinct up-regulation and down-regulation of their protein expression suggest their tightly controlled regulation during early T cell activation.
Collapse
Affiliation(s)
- S Miyamoto
- Molecular Hematology Branch, Section on Protein and RNA Biosynthesis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
4
|
Teague TK, Hildeman D, Kedl RM, Mitchell T, Rees W, Schaefer BC, Bender J, Kappler J, Marrack P. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci U S A 1999; 96:12691-6. [PMID: 10535984 PMCID: PMC23052 DOI: 10.1073/pnas.96.22.12691] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/1999] [Indexed: 01/19/2023] Open
Abstract
During activation T cells are thought to change their patterns of gene expression dramatically. To find out whether this is true for T cells activated in animals, the patterns of genes expressed in resting T cells and T cells 8 and 48 hr after activation were examined by using Affymetrix gene arrays. Gene arrays gave accurate comparisons of gene expression in the different cell types because the expression of genes known to vary during activation changed as expected. Of the approximately 6,300 genes assessed by the arrays, about one-third were expressed to appreciable extents in any of the T cells tested. Thus, resting T cells express a surprisingly large diversity of genes. The patterns of gene expression changed considerably within 8 hr of T cell activation but returned to a disposition more like that of resting T cells within 48 hr of exposure to antigen. Not unexpectedly, the activated T cells expressed genes associated with cell division at higher levels than resting T cells. The resting T cells expressed a number of cytokine receptor genes and some genes thought to suppress cell division, suggesting that the state of resting T cells is not a passive failure to respond to extant external stimuli.
Collapse
Affiliation(s)
- T K Teague
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Labelle Y, Bussières J, Courjal F, Goldring MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999; 18:3303-8. [PMID: 10359536 DOI: 10.1038/sj.onc.1202675] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The EWS/TEC gene fusion generated by the t(9;22) chromosomal translocation found in extraskeletal myxoid chondrosarcomas encodes a fusion protein containing the amino-terminal domain of the EWS protein fused to the whole coding sequence of the orphan nuclear receptor TEC. We have compared the DNA-binding and transcriptional activation properties of various TEC isoforms and the corresponding EWS/TEC fusion proteins. Band-shift experiments show that the full-length TEC receptor can efficiently bind the NGFI-B Response Element (NBRE), whereas an isoform lacking the entire carboxyl-terminal domain of the receptor binds much less efficiently the NBRE. Addition of the amino-terminal domain of EWS to either isoforms does not alter significantly their DNA-binding properties to the NBRE. Co-transfection experiments of COS cells and human chondrocytes indicate that whereas TEC moderately activates transcription from a NBRE-containing promoter, the corresponding EWS/TEC fusion protein is a highly potent transcriptional activator of the same promoter, being approximately 270-fold more active than the native receptor. EWS/TEC may thus exert its oncogenic potential in chrondrosarcomas by activating the transcription of target genes involved in cell proliferation.
Collapse
MESH Headings
- Animals
- Artificial Gene Fusion
- COS Cells
- Chondrosarcoma/genetics
- Chondrosarcoma/metabolism
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- DNA-Binding Proteins/metabolism
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Isoforms
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid
- Response Elements/genetics
- Sarcoma, Ewing/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Y Labelle
- Unité de recherche en génétique humaine et moléculaire, CHUQ, Québec, Canada
| | | | | | | |
Collapse
|
6
|
Dinkel A, Warnatz K, Ledermann B, Rolink A, Zipfel PF, Bürki K, Eibel H. The transcription factor early growth response 1 (Egr-1) advances differentiation of pre-B and immature B cells. J Exp Med 1998; 188:2215-24. [PMID: 9858508 PMCID: PMC2212439 DOI: 10.1084/jem.188.12.2215] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In mature B lymphocytes, the zinc finger transcription factor early growth response 1 (Egr-1) is one of the many immediate-early genes induced upon B cell antigen receptor engagement. However, its role during earlier stages of lymphopoiesis has remained unclear. By examining bone marrow B cell subsets, we found Egr-1 transcripts in pro/pre-B and immature B lymphocytes, and Egr-1 protein in pro/pre-B-I cells cultivated on stroma cells in the presence of interleukin (IL)-7. In recombinase-activating gene (RAG)-2-deficient mice overexpressing an Egr-1 transgene in the B lymphocyte lineage, pro/pre-B-I cells could differentiate past a developmental block at the B220(low) BP-1(-) stage to the stage of B220(low) BP-1(+) pre-B-I cells, but not further to the B220(low) BP-1(+) CD25(+) stage of pre-B-II cells. Therefore, during early B lymphopoiesis progression from the B220(low) BP-1(-) IL-2R- pro/pre-B-I stage to the B220(low) BP-1(+) IL-2R+ pre-B-II stage seems to occur in at least two distinct steps, and the first step to the stage of B220(low) BP-1(+) pre-B-I cells can be promoted by the overexpression of Egr-1 alone. Wild-type mice expressing an Egr-1 transgene had increased proportions of mature immunoglobulin (Ig)M+ B220(high) and decreased proportions of immature IgM+ B220(low) bone marrow B cells. Since transgenic and control precursor B cells show comparable proliferation patterns, overexpression of Egr-1 seems also to promote entry into the mature B cell stage. Analysis of changes in the expression pattern of potential Egr-1 target genes revealed that Egr-1 enhances the expression of the aminopeptidase BP-1/6C3 in pre-B and immature B cells and upregulates expression of the orphan nuclear receptor nur77 in IgM+ B cells.
Collapse
Affiliation(s)
- A Dinkel
- Clinical Research Unit for Rheumatology, Division of Rheumatology and Clinical Immunology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Graf D, Fisher AG, Merkenschlager M. Rational primer design greatly improves differential display-PCR (DD-PCR). Nucleic Acids Res 1997; 25:2239-40. [PMID: 9153330 PMCID: PMC146700 DOI: 10.1093/nar/25.11.2239] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since its conception in 1992, differential display PCR (DD-PCR) has attracted widespread interest. Theoretically an attractive cloning approach, it combines the comparative analysis of several samples with the sensitivity of PCR. Although a large number of studies embracing this technology have been initiated, few novel genes of interest have been identified, suggesting that the method has not realised its potential. The present report shows that by modifying primer design, sampling of differentially expressed genes can be greatly enhanced and relevant genes can be isolated. Using our modified conditions DD-PCR efficiently screens a wide range of gene expression levels, in which differences are represented on a linear scale.
Collapse
Affiliation(s)
- D Graf
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
8
|
Shao H, Kono DH, Chen LY, Rubin EM, Kaye J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 1997; 185:731-44. [PMID: 9034151 PMCID: PMC2196139 DOI: 10.1084/jem.185.4.731] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
There is little known about the regulation of gene expression during TCR-mediated differentiation of immature CD4+8+ (double positive) thymocytes into mature T cells. Using the DPK CD4+8+ thymocyte precursor cell line, we demonstrate that the early growth response-1 gene (Erg-1), encoding a zinc finger transcription factor, is rapidly upregulated after TCR stimulation. We also report that Egr-1 is expressed by a subset of normal double positive thymocytes in the thymic cortex, as well by a majority of medullary single positive thymocytes. Expression of Egr-1 is dramatically reduced in the thymus of major histocompatibility complex knockout mice, but can be induced by anti-CD3 antibody stimulation of isolated thymocytes from these animals. These and other data suggest that high level expression of Egr-1 in the thymus is a consequence of selection. A similar pattern of expression is found for family members Egr-2 and Egr-3. Using the DPK cell line, we also demonstrate that expression of Egr-1, 2, and 3 is dependent upon ras activation, as is the initiation of differentiation to a single positive cell. In contrast, the calcineurin inhibitor cyclosporin A, which inhibits DPK cell differentiation as well as positive selection, inhibits expression of Egr-2 and Egr-3, but not Egr-1. The identification of the Egr family in this context represents the first report of a link between the two known signaling pathways involved in positive selection and downstream transcriptional regulators.
Collapse
Affiliation(s)
- H Shao
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
9
|
Fickenscher H, Biesinger B, Knappe A, Wittmann S, Fleckenstein B. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J Virol 1996; 70:6012-9. [PMID: 8709223 PMCID: PMC190621 DOI: 10.1128/jvi.70.9.6012-6019.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpesvirus saimiri strain C488, a T-cell tumor virus of New World primates, transforms human T lymphocytes to stable interleukin-2-dependent growth without need for further stimulation by antigen or mitogen. The transformed cell lines show the phenotype of activated mature T cells and retain many essential features of the primary parental cells, e.g., antigen specificity. In contrast to transformed New World monkey T cells, the human lines do not support lytic growth of the virus, even after chemical stimulation. Here we show that many viral genes remain silent during episomal persistence. However, the viral oncogene stpC is predominantly transcribed and translated to a stable cytoplasmic protein of 20 kDa that is heterogeneously expressed in individual cells. This 1.7-kb mRNA is bicistronic, encoding also Tip, a viral protein interacting with the T-cell-specific tyrosine kinase Lck. stpC/tip transcripts are heavily induced upon stimulation by mitogen or phorbol ester. Block of protein synthesis does not abolish transcription: treatment with cycloheximide greatly induces stpC/tip mRNA levels. Thus, this gene complex is regulated similarly to early T-cell activation genes. Constitutive and induced expression engage different transcription start sites. The T-cell regulation of the viral genes stpC and tip may contribute to the T-cell tropism of growth transformation by herpesvirus saimiri.
Collapse
Affiliation(s)
- H Fickenscher
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Wrighton CJ, Hofer-Warbinek R, Moll T, Eytner R, Bach FH, de Martin R. Inhibition of endothelial cell activation by adenovirus-mediated expression of I kappa B alpha, an inhibitor of the transcription factor NF-kappa B. J Exp Med 1996; 183:1013-22. [PMID: 8642242 PMCID: PMC2192308 DOI: 10.1084/jem.183.3.1013] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During the inflammatory response, endothelial cells (EC) transiently upregulate a set of genes encoding, among others, cell adhesion molecules and chemotactic cytokines that together mediate the interaction of the endothelium with cells of the immune system. Gene upregulation is mediated predominantly at the transcriptional level and in many cases involves the transcription factor nuclear factor (NF) kappa B. We have tested the concept of inhibiting the inflammatory response by overexpression of a specific inhibitor of NF-kappaB, I kappa B alpha. A recombinant adenovirus expressing I kappa B alpha was constructed (rAd.I kappa B alpha) and used to infect EC of human and porcine origin. Ectopic expression of IkappaBalpha resulted in marked, and in some cases complete, reduction of the expression of several markers of EC activation, including vascular cell adhesion molecule 1, interleukins 1, 6, 8, and tissue factor. Overexpressed I kappa B alpha inhibited NF-kappa B specifically since (a) in electrophoretic mobility shift assay, NF-kappa B but not AP-1 binding activity was inhibited, and (b) von Willebrand factor and prostacyclin secretion that occur independently of NF-kappa B, remained unaffected. Functional studies of leukocyte adhesion demonstrated strong inhibition of HL-60 adhesion to I kappa B alpha-expressing EC. These findings suggest that NF-kappa B could be an attractive target for therapeutic intervention in a variety of inflammatory diseases, including xenograft rejection.
Collapse
Affiliation(s)
- C J Wrighton
- Sandoz Center for Immunobiology, New England Deaconess Hospital, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
11
|
Prashar Y, Weissman SM. Analysis of differential gene expression by display of 3' end restriction fragments of cDNAs. Proc Natl Acad Sci U S A 1996; 93:659-63. [PMID: 8570611 PMCID: PMC40108 DOI: 10.1073/pnas.93.2.659] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.
Collapse
Affiliation(s)
- Y Prashar
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
12
|
Greenbaum LE, Cressman DE, Haber BA, Taub R. Coexistence of C/EBP alpha, beta, growth-induced proteins and DNA synthesis in hepatocytes during liver regeneration. Implications for maintenance of the differentiated state during liver growth. J Clin Invest 1995; 96:1351-65. [PMID: 7657810 PMCID: PMC185757 DOI: 10.1172/jci118170] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the period of rapid cell growth which follows a two-thirds partial hepatectomy, the liver is able to compensate for the acute loss of two-thirds of its mass to maintain serum glucose levels and many of its differentiation-specific functions. However certain hepatic transcription factors, C/EBP alpha and beta, which are important for establishment and maintenance of the differentiated state, have been shown to be antagonistic to cellular proliferation. To study the interplay between differentiation and cell growth in the liver regeneration model of hepatocyte proliferation, we characterized the expression of C/EBP alpha and beta transcription factors throughout the temporal course of liver regeneration. As determined by immunoblot, the level of C/EBP alpha decreases more than twofold during the mid to late G1 and S phase (8-24 h after hepatectomy) coordinately with a threefold increase in expression of C/EBP beta. Renormalization of the levels of these proteins occurs after the major proliferative phase. This inverse regulation of C/EBP alpha and beta results in up to a sevenfold increase in the beta / alpha DNA binding ratio between 3 and 24 h after hepatectomy that may have an important impact on target gene regulation. However, total C/EBP binding activity in nuclear extracts remains relatively constant during the 7-d period after hepatectomy. By immunohistochemistry, both C/EBP alpha and beta are expressed in virtually all hepatocyte nuclei throughout the liver during the temporal course of liver regeneration, and there is no exclusion of expression from hepatocytes that are expressing immediate-early gene products or undergoing DNA synthesis. The persistent expression of C/EBP alpha and beta isoforms predicts that C/EBP proteins contribute to the function of hepatocytes during physiologic growth and that significant amounts of these proteins do not inhibit progression of hepatocytes into S phase of the cell cycle.
Collapse
Affiliation(s)
- L E Greenbaum
- Department of Genetics, Children's Hospital of Philadelphia, Pennsylvania 19104-6145, USA
| | | | | | | |
Collapse
|
13
|
Ehrenfried JA, Townsend CM, Thompson JC, Evers BM. Increases in nup475 and c-jun are early molecular events that precede the adaptive hyperplastic response after small bowel resection. Ann Surg 1995; 222:51-6. [PMID: 7618969 PMCID: PMC1234755 DOI: 10.1097/00000658-199507000-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The authors determined whether increases of nup475 and c-jun gene expression occur after small bowel resection and whether these changes are specific to the gut. SUMMARY BACKGROUND DATA Massive small bowel resection (SBR) is characterized by adaptive proliferation of the remaining gut mucosa; the molecular signals responsible for this adaptive hyperplasia are unknown. Increases in the "immediate-early genes" nup475 and c-jun are noted in some proliferating tissues; however, alterations in the expression of these genes have not been described in the gut after SBR. METHODS Rats underwent either a 70% proximal SBR or intestinal transection with reanastomosis (SHAM) and were then killed over a time course (0.5, 2, and 24 hours). The ileum, duodenum, colon, and kidneys were removed and RNA was extracted for Northern hybridization. RESULTS The authors found that steady-state mRNA levels of both nup475 and c-jun were increased 81% and 62%, respectively, in the ileal remnant at 2 hours in rats after SBR compared with the SHAM group. In addition, nup475 was increased 101% in the duodenum at 24 hours and 31% in the colon at 0.5 hours in rats after SBR. In contrast, neither gene was increased in the kidney. CONCLUSIONS Increases in steady-state levels of nup475 and c-jun are limited to the gut after SBR, and the timing and magnitude of these changes differ, depending on the gut segment. Finally, the rapid and nutrient-independent increases of nup475 and c-jun suggest an important role for these genes as early molecular signals that participate in the adaptive hyperplasia occurring in the gut remnant after SBR.
Collapse
Affiliation(s)
- J A Ehrenfried
- Department of Surgery, University of Texas Medical Branch, Galveston, USA
| | | | | | | |
Collapse
|
14
|
Ritter LM, Bryans M, Abdo O, Sharma V, Wilkie NM. MIP1 alpha nuclear protein (MNP), a novel transcription factor expressed in hematopoietic cells that is crucial for transcription of the human MIP-1 alpha gene. Mol Cell Biol 1995; 15:3110-8. [PMID: 7760807 PMCID: PMC230542 DOI: 10.1128/mcb.15.6.3110] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine macrophage inflammatory protein 1 alpha (MIP-1 alpha) and its human equivalent (GOS19, LD78, or AT464) are members of the -C-C family of low-molecular-weight chemokines. Secreted from activated T cells and macrophages, bone marrow-derived MIP-1 alpha/GOS19 inhibits primitive hematopoietic stem cells and appears to be involved in the homeostatic control of stem cell proliferation. It also induces chemotaxis and inflammatory responses in mature cell types. Therefore, it is important to understand the mechanisms which control the expression of MIP-1 alpha/GOS19. Previous work has shown that in Jurkat T cells, a set of widely expressed transcription factors (the ICK-1 family) affect the GOS19 promoter. One member, ICK-1A, behaves as a strong negative regulator. In this communication, we provide evidence that the pathway of induction in the macrophage cell line U937 is different from that in Jurkat cells. Furthermore, we show that the ICK-1 binding site does not confer negative regulation in U937 cells. We provide evidence for an additional binding site, the MIP-1 alpha nuclear protein (MNP) site, which overlaps the ICK-1 site. Interaction of nuclear extracts from various cell lines and tissue with the MNP site leads to the formation of fast-migrating protein-DNA complexes with similar but distinct electrophoretic mobilities. A mutation of the MNP site which does not abrogate ICK-1 binding inactivates the GOS19.1 promoter in U937 cells and reduces its activity by fourfold in Jurkat cells. We propose that the MNP protein(s) binding at the MNP site constitutes a novel transcription factor(s) expressed in hematopoietic cells.
Collapse
Affiliation(s)
- L M Ritter
- Department of Molecular Genetics, Ohio State University, Columbus, USA
| | | | | | | | | |
Collapse
|
15
|
Yazdanbakhsh K, Choi JW, Li Y, Lau LF, Choi Y. Cyclosporin A blocks apoptosis by inhibiting the DNA binding activity of the transcription factor Nur77. Proc Natl Acad Sci U S A 1995; 92:437-41. [PMID: 7831306 PMCID: PMC42755 DOI: 10.1073/pnas.92.2.437] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Engagement of T-cell receptors (TCRs) on immature thymocytes by self-antigen-major histocompatibility complexes causes the death of self-reactive thymocytes via apoptosis, a phenomenon that establishes T-cell tolerance. Similarly, treatment of thymocytes with anti-TCR antibodies leads to TCR-mediated apoptosis, which can also be induced in T-cell hybridomas. TCR-mediated apoptosis in immature thymocytes and T-cell hybridomas requires the expression of a new set of genes. In particular, it has recently been shown that the expression of Nur77, a transcription factor which is a member of the steroid/thyroid receptor superfamily, is required for TCR-mediated apoptosis in T-cell hybridomas and perhaps in thymocytes. Cyclosporin A (CsA), an immunosuppressive drug, has been shown to interfere with clonal deletion of self-reactive T cells in vivo, partly by blocking TCR-mediated apoptosis. We report here that CsA inhibits the TCR-mediated activation of Nur77 protein in T-cell hybridomas by blocking the DNA binding activity of Nur77 protein rather than its de novo synthesis. We also show that CsA mediates its negative effects on the Nur77 DNA binding activity through the N-terminal region of the protein. This complete inhibition of Nur77 protein DNA binding activity may explain how CsA interferes with TCR-mediated apoptosis.
Collapse
Affiliation(s)
- K Yazdanbakhsh
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
16
|
Pestov DG, Lau LF. Genetic selection of growth-inhibitory sequences in mammalian cells. Proc Natl Acad Sci U S A 1994; 91:12549-53. [PMID: 7809075 PMCID: PMC45476 DOI: 10.1073/pnas.91.26.12549] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To assess the role of mitogenically activated genes in the control of cell proliferation, we have taken a genetic approach based on the premise that blocking the function of an essential gene should lead to growth inhibition. Using a newly developed selection procedure, we isolated growth-inhibitory sequences from a pool of random cDNA fragments of 19 growth-related genes associated with the G0/G1 transition. These sequences encode potential dominant negative variants of c-Fos, JunB, and p44MAPK that may interfere with their growth-related functions. We anticipate that this procedure, which allows for the selection of sequences that cause a growth-inhibition phenotype, may have broad applications in the identification and analysis of genes that regulate cell growth.
Collapse
Affiliation(s)
- D G Pestov
- Department of Genetics, University of Illinois College of Medicine, Chicago 60612
| | | |
Collapse
|
17
|
Abstract
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.
Collapse
|
18
|
Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 1994; 14:3752-62. [PMID: 8196618 PMCID: PMC358742 DOI: 10.1128/mcb.14.6.3752-3762.1994] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PRL-1 is a particularly interesting immediate-early gene because it is induced in mitogen-stimulated cells and regenerating liver but is constitutively expressed in insulin-treated rat H35 hepatoma cells, which otherwise show normal regulation of immediate-early genes. PRL-1 is expressed throughout the course of hepatic regeneration, and its expression is elevated in a number of tumor cell lines. Sequence analysis reveals that PRL-1 encodes a 20-kDa protein with an eight-amino-acid consensus protein tyrosine phosphatase (PTPase) active site. PRL-1 is able to dephosphorylate phosphotyrosine substrates, and mutation of the active-site cysteine residue abolishes this activity. As PRL-1 has no homology to other PTPases outside the active site, it is a new type of PTPase. PRL-1 is located primarily in the cell nucleus. Stably transfected cells which overexpress PRL-1 demonstrate altered cellular growth and morphology and a transformed phenotype. It appears that PRL-1 is important in normal cellular growth control and could contribute to the tumorigenicity of some cancer cells.
Collapse
Affiliation(s)
- R H Diamond
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145
| | | | | | | | | |
Collapse
|
19
|
Aasheim HC, Loukianova T, Deggerdal A, Smeland EB. Tissue specific expression and cDNA structure of a human transcript encoding a nucleic acid binding [oligo(dC)] protein related to the pre-mRNA binding protein K. Nucleic Acids Res 1994; 22:959-64. [PMID: 8152927 PMCID: PMC307915 DOI: 10.1093/nar/22.6.959] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In human cells at least 20 different proteins or groups of proteins have been identified that are associated with hnRNAs. These proteins (designated A1-U) are highly abundant in the nucleus. In this study, we present the sequence of a novel cDNA clone, sub2.3, isolated from a human lymphocyte cDNA library. The predicted amino acid sequence shows homology to repeated domains in the human hnRNA binding protein K (hnRNP K), which are believed to be of functional importance. hnRNP K is among the major oligo(rC/dC) binding proteins in vertebrate cells and we show here that the protein product of sub2.3 also binds to oligo(dC). This is shown by a novel approach where we demonstrated specific binding of in vitro translated sub2.3 protein to biotinylated oligo(dC) which was immobilized on magnetic streptavidin-coated Dynabeads. Moreover we found that the sub2.3 transcript is expressed in a tissue dependent manner with the highest expression observed in several lymphoid tissues and skeletal muscle. The gene was also abundantly expressed in several lymphoid cell lines and the hepatoma cell line HepG2 while a low expression was observed in the HL60 myeloid cell line and in the HeLa cervical carcinoma cell line. In conclusion, this study presents the cDNA sequence of a novel transcript which shows tissue specific expression and encodes a protein with oligo(dC) binding specificity in vitro.
Collapse
Affiliation(s)
- H C Aasheim
- Department of Immunology, Norweigian Radium Hospital, Oslo
| | | | | | | |
Collapse
|
20
|
Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 1994. [PMID: 8289818 DOI: 10.1128/mcb.14.2.1431] [Citation(s) in RCA: 631] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel gene coding for the pre-B-cell colony-enhancing factor (PBEF) has been isolated from a human peripheral blood lymphocyte cDNA library. The expression of this gene is induced by pokeweed mitogen and superinduced by cycloheximide. It is also induced in the T-lymphoblastoid cell line HUT 78 after phorbol ester (phorbol myristate acetate) treatment. The predominant mRNA for PBEF is approximately 2.4 kb long and codes for a 52-kDa secreted protein. The 3' untranslated region of the mRNA has multiple TATT motifs, usually found in cytokine and oncogene messages. The PBEF gene is mainly transcribed in human bone marrow, liver tissue, and muscle. We have expressed PBEF in COS 7 and PA317 cells and have tested the biological activities of the conditioned medium as well as the antibody-purified protein in different in vitro assays. PBEF itself had no activity but synergized the pre-B-cell colony formation activity of stem cell factor and interleukin 7. In the presence of PBEF, the number of pre-B-cell colonies was increased by at least 70% above the amount stimulated by stem cell factor plus interleukin 7. No effect of PBEF was found with cells of myeloid or erythroid lineages. These data define PBEF as a novel cytokine which acts on early B-lineage precursor cells.
Collapse
|
21
|
Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 1994; 14:1431-7. [PMID: 8289818 PMCID: PMC358498 DOI: 10.1128/mcb.14.2.1431-1437.1994] [Citation(s) in RCA: 314] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A novel gene coding for the pre-B-cell colony-enhancing factor (PBEF) has been isolated from a human peripheral blood lymphocyte cDNA library. The expression of this gene is induced by pokeweed mitogen and superinduced by cycloheximide. It is also induced in the T-lymphoblastoid cell line HUT 78 after phorbol ester (phorbol myristate acetate) treatment. The predominant mRNA for PBEF is approximately 2.4 kb long and codes for a 52-kDa secreted protein. The 3' untranslated region of the mRNA has multiple TATT motifs, usually found in cytokine and oncogene messages. The PBEF gene is mainly transcribed in human bone marrow, liver tissue, and muscle. We have expressed PBEF in COS 7 and PA317 cells and have tested the biological activities of the conditioned medium as well as the antibody-purified protein in different in vitro assays. PBEF itself had no activity but synergized the pre-B-cell colony formation activity of stem cell factor and interleukin 7. In the presence of PBEF, the number of pre-B-cell colonies was increased by at least 70% above the amount stimulated by stem cell factor plus interleukin 7. No effect of PBEF was found with cells of myeloid or erythroid lineages. These data define PBEF as a novel cytokine which acts on early B-lineage precursor cells.
Collapse
Affiliation(s)
- B Samal
- Department of Developmental Biology, Amgen Inc., Amgen Center, Thousand Oaks, California 91320
| | | | | | | | | | | |
Collapse
|
22
|
Haber BA, Mohn KL, Diamond RH, Taub R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J Clin Invest 1993; 91:1319-26. [PMID: 8473485 PMCID: PMC288102 DOI: 10.1172/jci116332] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Liver regeneration is an important process that allows for recovery from hepatic injuries caused by viruses, toxins, ischemia, surgery, and transplantation. Previously, we identified > 70 immediate-early genes induced in regenerating liver after hepatectomy, 41 of which were novel. While it is expected that the proteins encoded by these genes may have important roles in regulating progression through the G1 phase of the cell cycle during regeneration, we were surprised to note that many of these "early" genes are expressed for extended periods during the hepatic growth response. Here we define several patterns of expression of immediate-early, delayed-early, and liver-specific genes during the 9-d period after hepatectomy. One pattern of induction parallels the major growth period of the liver that ends at 60-72 h after hepatectomy. A second pattern has two peaks coincident with the first and second G1 phases of the two hepatic cell cycles. A third group, which includes liver-specific genes such as C/EBP alpha, shows maximal expression after the growth period. Although the peak in DNA synthesis in nonparenchymal cells occur 24 h later than in hepatocytes, most of the genes studied demonstrate similar induction in both cell types. This finding suggests that the G0/G1 transition occurs simultaneously in all cells in the liver, but that the G1 phase of nonparenchymal cells may be relatively prolonged. Finally, we examined the expression of > 70 genes in clinical settings that could induce liver regeneration, including after perfusion in a donor liver, hepatic ischemia, and fulminant hepatic failure. We found that a small number of early and liver-specific genes were selectively activated in human livers under these conditions, and we thereby provide a potential means of measuring the caliber of the regenerative response in clinical situations.
Collapse
Affiliation(s)
- B A Haber
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia 19104-6145
| | | | | | | |
Collapse
|
23
|
Beadling C, Johnson KW, Smith KA. Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci U S A 1993; 90:2719-23. [PMID: 7681987 PMCID: PMC46167 DOI: 10.1073/pnas.90.7.2719] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clonal expansion of antigen-reactive T lymphocytes is driven by the lymphokine interleukin 2 (IL-2). To further elucidate the mechanisms of IL-2 action, we have utilized a differential hybridization procedure to clone IL-2-induced immediate-early genes from an IL-2-stimulated human T-cell cDNA library. To increase the frequency of IL-2-induced transcripts represented in the library, the protein synthesis inhibitor cycloheximide was included during the 2-hr IL-2 stimulation to superinduce gene expression, and the uridine analogue 4-thiouridine was utilized to enable selective purification of newly synthesized transcripts. From the enriched library, we have isolated eight IL-2-induced genes, six of which represent previously unrecognized human sequences. Northern blot analysis revealed that the induction of seven of the genes is specific to the IL-2-mediated G1 "progression" phase of the cell cycle, in that only one gene is also induced during the T-cell receptor-triggered G0-G1 "competence" phase. These results indicate that the effects of IL-2 are mediated by the specific induction of a number of immediate-early genes and provide a means with which to further delineate the mechanisms whereby IL-2 stimulates T-lymphocyte proliferation and differentiation. The methods described in this report should also be of general utility in the dissection of the signaling pathways activated by diverse cytokine receptors.
Collapse
Affiliation(s)
- C Beadling
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3833
| | | | | |
Collapse
|
24
|
Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 1992. [PMID: 1406655 DOI: 10.1128/mcb.12.10.4654] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In regenerating liver, a physiologically normal model of cell growth, LRF-1, JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 family members are induced posthepatectomy. In liver cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-1/c-Jun, and LRF-1/JunB complexes are present for several hours after the G0/G1 transition, and the relative level of LRF-1/JunB complexes increases during G1. We provide evidence for dramatic differences in promoter-specific activation by LRF-1- and c-Fos-containing complexes. LRF-1 in combination with either Jun protein strongly activates a cyclic AMP response element-containing promoter which c-Fos/Jun does not activate. LRF-1/c-Jun, c-Fos/c-Jun, and c-Fos/JunB activate specific AP-1 and ATF site-containing promoters, and in contrast, LRF-1/JunB potently represses c-Fos- and c-Jun-mediated activation of these promoters. Repression is dependent on a region in LRF-1 that includes amino acids 40 to 84 (domain R) and the basic/leucine zipper domain. As the relative level of LRF-1/JunB complexes increases posthepatectomy, c-Fos/Jun-mediated ATF and AP-1 site activation is likely to decrease with simultaneous transcriptional activation of the many liver-specific genes whose promoters contain cyclic AMP response element sites. Thus, through complex interactions among LRF-1, JunB, c-Jun, and c-Fos, control of delayed gene expression may be established for extended times during the G1 phase of hepatic growth.
Collapse
|
25
|
Hsu JC, Bravo R, Taub R. Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 1992; 12:4654-65. [PMID: 1406655 PMCID: PMC360392 DOI: 10.1128/mcb.12.10.4654-4665.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In regenerating liver, a physiologically normal model of cell growth, LRF-1, JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 family members are induced posthepatectomy. In liver cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-1/c-Jun, and LRF-1/JunB complexes are present for several hours after the G0/G1 transition, and the relative level of LRF-1/JunB complexes increases during G1. We provide evidence for dramatic differences in promoter-specific activation by LRF-1- and c-Fos-containing complexes. LRF-1 in combination with either Jun protein strongly activates a cyclic AMP response element-containing promoter which c-Fos/Jun does not activate. LRF-1/c-Jun, c-Fos/c-Jun, and c-Fos/JunB activate specific AP-1 and ATF site-containing promoters, and in contrast, LRF-1/JunB potently represses c-Fos- and c-Jun-mediated activation of these promoters. Repression is dependent on a region in LRF-1 that includes amino acids 40 to 84 (domain R) and the basic/leucine zipper domain. As the relative level of LRF-1/JunB complexes increases posthepatectomy, c-Fos/Jun-mediated ATF and AP-1 site activation is likely to decrease with simultaneous transcriptional activation of the many liver-specific genes whose promoters contain cyclic AMP response element sites. Thus, through complex interactions among LRF-1, JunB, c-Jun, and c-Fos, control of delayed gene expression may be established for extended times during the G1 phase of hepatic growth.
Collapse
Affiliation(s)
- J C Hsu
- Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145
| | | | | |
Collapse
|
26
|
Orr SL, Gese E, Hood L. A new approach to understanding T cell development: the isolation and characterization of immature CD4-, CD8-, CD3- T cell cDNAs by subtraction cloning. Mol Biol Cell 1992; 3:761-73. [PMID: 1387565 PMCID: PMC275633 DOI: 10.1091/mbc.3.7.761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During T cell development in the mammalian thymus, immature T cells are observed that lack the cell surface markers CD4, CD8, and CD3. A subtracted cDNA library was constructed to isolate cDNAs that are specific for these immature T cells. Tissue-specific expression of 97 individual cDNAs were examined using different cell types by Northern blot analysis, and six cDNAs were analyzed by reverse transcriptase (RT) polymerase chain reaction (PCR) detection of RNA. Approximately 50% of the clones could not be detected on Northern blots, and 40% of the clones were expressed by at least one other cell-type including monocytes, mature T cells, and B cells. Eight cDNA clones appear to be specific for the CD4-, CD8-, CD3- T cell line, used to construct the library, as determined by Northern blot analysis. In addition, 330 cDNA clones were subjected to partial automated DNA sequence determination. Database searches, with both nucleotide and protein translations, revealed cDNAs that exhibit interesting similarities to human cell-cycle gene 1, platelet-derived growth factor receptor, c-fms oncogene (CSF-1) receptor, and members of the immunoglobulin gene superfamily. This approach of employing subtraction coupled with large scale partial cDNA sequence determination can be useful to identify genes that may be involved in early T cell growth, cellular recognition or differentiation.
Collapse
Affiliation(s)
- S L Orr
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
27
|
Rapid induction in regenerating liver of RL/IF-1 (an I kappa B that inhibits NF-kappa B, RelB-p50, and c-Rel-p50) and PHF, a novel kappa B site-binding complex. Mol Cell Biol 1992. [PMID: 1588976 DOI: 10.1128/mcb.12.6.2898] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The liver is one of the few adult tissues that has the capacity to regenerate following hepatectomy or toxic damage. In examining the early growth response during hepatic regeneration, we found that a highly induced immediate-early gene in regenerating liver encodes RL/IF-1 (regenerating liver inhibitory factor) and is the rat homolog of human MAD-3 and probably of chicken pp40. RL/IF-1 has I kappa B activity of broad specificity in that it inhibits the binding of p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50, but not p50 homodimeric NF-kappa B, to kappa B sites. Like RL/IF-1, several members of the NF-kappa B and rel family of transcription factors are immediate-early genes in regenerating liver and mitogen-treated cells. We examined changes in kappa B site binding activity during liver regeneration and discovered a rapidly induced novel kappa B site-binding complex designated PHF [posthepatectomy factor(s)]. PHF is induced over 1,000-fold within minutes posthepatectomy in a protein synthesis-independent manner, with peak activity at 30 min, and is not induced by sham operation. PHF is distinct from p50-p65 NF-kappa B, which is present only in the inactive form in liver posthepatectomy. Although early PHF complexes do not interact strongly with anti-p50 antibodies, PHF complexes present later (3 to 5 h) posthepatectomy react strongly, suggesting that they contain a p50 NF-kappa B subunit. Unlike p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50 complexes, PHF binding to kappa B sites is not inhibited by RL/IF-1. One role of RL/IF-1 in liver regeneration may be to inhibit p50-p65 NF-kappa B activity present in hepatic cells, allowing for the preferential binding of PHF to kappa B sites. Because PHF is induced immediately posthepatectomy in the absence of de novo protein synthesis, PHF could have a role in the regulation of liver-specific immediate-early genes in regenerating liver.
Collapse
|
28
|
Tewari M, Dobrzanski P, Mohn KL, Cressman DE, Hsu JC, Bravo R, Taub R. Rapid induction in regenerating liver of RL/IF-1 (an I kappa B that inhibits NF-kappa B, RelB-p50, and c-Rel-p50) and PHF, a novel kappa B site-binding complex. Mol Cell Biol 1992; 12:2898-908. [PMID: 1588976 PMCID: PMC364484 DOI: 10.1128/mcb.12.6.2898-2908.1992] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The liver is one of the few adult tissues that has the capacity to regenerate following hepatectomy or toxic damage. In examining the early growth response during hepatic regeneration, we found that a highly induced immediate-early gene in regenerating liver encodes RL/IF-1 (regenerating liver inhibitory factor) and is the rat homolog of human MAD-3 and probably of chicken pp40. RL/IF-1 has I kappa B activity of broad specificity in that it inhibits the binding of p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50, but not p50 homodimeric NF-kappa B, to kappa B sites. Like RL/IF-1, several members of the NF-kappa B and rel family of transcription factors are immediate-early genes in regenerating liver and mitogen-treated cells. We examined changes in kappa B site binding activity during liver regeneration and discovered a rapidly induced novel kappa B site-binding complex designated PHF [posthepatectomy factor(s)]. PHF is induced over 1,000-fold within minutes posthepatectomy in a protein synthesis-independent manner, with peak activity at 30 min, and is not induced by sham operation. PHF is distinct from p50-p65 NF-kappa B, which is present only in the inactive form in liver posthepatectomy. Although early PHF complexes do not interact strongly with anti-p50 antibodies, PHF complexes present later (3 to 5 h) posthepatectomy react strongly, suggesting that they contain a p50 NF-kappa B subunit. Unlike p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50 complexes, PHF binding to kappa B sites is not inhibited by RL/IF-1. One role of RL/IF-1 in liver regeneration may be to inhibit p50-p65 NF-kappa B activity present in hepatic cells, allowing for the preferential binding of PHF to kappa B sites. Because PHF is induced immediately posthepatectomy in the absence of de novo protein synthesis, PHF could have a role in the regulation of liver-specific immediate-early genes in regenerating liver.
Collapse
Affiliation(s)
- M Tewari
- Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145
| | | | | | | | | | | | | |
Collapse
|
29
|
A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a kappa B site. Mol Cell Biol 1992. [PMID: 1531086 DOI: 10.1128/mcb.12.2.685] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Rel-related, mitogen-inducible, kappa B-binding protein has been cloned as an immediate-early activation gene of human peripheral blood T cells. The cDNA has an open reading frame of 900 amino acids capable of encoding a 97-kDa protein. This protein is most similar to the 105-kDa precursor polypeptide of p50-NF-kappa B. Like the 105-kDa precursor, it contains an amino-terminal Rel-related domain of about 300 amino acids and a carboxy-terminal domain containing six full cell cycle or ankyrin repeats. In vitro-translated proteins, truncated downstream of the Rel domain and excluding the repeats, bind kappa B sites. We refer to the kappa B-binding, truncated protein as p50B by analogy with p50-NF-kappa B and to the full-length protein as p97. p50B is able to form heteromeric kappa B-binding complexes with RelB, as well as with p65 and p50, the two subunits of NF-kappa B. Transient-transfection experiments in embryonal carcinoma cells demonstrate a functional cooperation between p50B and RelB or p65 in transactivation of a reporter plasmid dependent on a kappa B site. The data imply the existence of a complex family of NF-kappa B-like transcription factors.
Collapse
|
30
|
Bours V, Burd PR, Brown K, Villalobos J, Park S, Ryseck RP, Bravo R, Kelly K, Siebenlist U. A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a kappa B site. Mol Cell Biol 1992; 12:685-95. [PMID: 1531086 PMCID: PMC364259 DOI: 10.1128/mcb.12.2.685-695.1992] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A Rel-related, mitogen-inducible, kappa B-binding protein has been cloned as an immediate-early activation gene of human peripheral blood T cells. The cDNA has an open reading frame of 900 amino acids capable of encoding a 97-kDa protein. This protein is most similar to the 105-kDa precursor polypeptide of p50-NF-kappa B. Like the 105-kDa precursor, it contains an amino-terminal Rel-related domain of about 300 amino acids and a carboxy-terminal domain containing six full cell cycle or ankyrin repeats. In vitro-translated proteins, truncated downstream of the Rel domain and excluding the repeats, bind kappa B sites. We refer to the kappa B-binding, truncated protein as p50B by analogy with p50-NF-kappa B and to the full-length protein as p97. p50B is able to form heteromeric kappa B-binding complexes with RelB, as well as with p65 and p50, the two subunits of NF-kappa B. Transient-transfection experiments in embryonal carcinoma cells demonstrate a functional cooperation between p50B and RelB or p65 in transactivation of a reporter plasmid dependent on a kappa B site. The data imply the existence of a complex family of NF-kappa B-like transcription factors.
Collapse
Affiliation(s)
- V Bours
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Müller HJ, Skerka C, Bialonski A, Zipfel PF. Clone pAT 133 identifies a gene that encodes another human member of a class of growth factor-induced genes with almost identical zinc-finger domains. Proc Natl Acad Sci U S A 1991; 88:10079-83. [PMID: 1658795 PMCID: PMC52871 DOI: 10.1073/pnas.88.22.10079] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report the structure and regulation of a gene represented by clone pAT 133, which is induced upon transition from a resting state (G0) through the early phase of the cell cycle (G1). The pAT 133 gene is immediately induced, with FOS-like kinetics, in human T cells and in fibroblasts. Primary structure analysis showed that the encoded protein contains three tandem zinc-finger sequences of the type Cys2-Xaa12-His2. This zinc-finger region, which is thought to bind DNA in a sequence-specific manner, is similar (greater than 80% on the amino acid level) to two previously described transcription factors pAT 225/EGR1 and pAT 591/EGR2. Except for the conserved zinc-finger domains, the amino acid sequences of the three proteins are distinct. This structural similarity suggests that the pAT 133 gene encodes a transcription factor with a specific biological function. Comparing the regulation of these related zinc-finger-encoding genes showed coordinate induction upon mitogenic stimulation of resting T lymphocytes and of resting fibroblasts. However, upon transition from a proliferating (G1) to a resting state of the cell cycle the three genes were differently regulated. In human histiocytic U937 cells mRNA of clone pAT 133 was constitutively expressed, whereas mRNA of pAT 225/EGR1 was induced upon induction of terminal differentiation. In contrast mRNA representing pAT 591/EGR2 was not expressed in these cells. This difference in gene regulation suggests distinct biological roles in the control of cell proliferation for the respective proteins.
Collapse
Affiliation(s)
- H J Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
32
|
Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 1991. [PMID: 1922027 DOI: 10.1128/mcb.11.10.4943] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA-binding factor with properties of NF-kappa B and another similar activity are rapidly induced when growth-arrested BALB/c 3T3 cells are stimulated with serum growth factors. Induction of these DNA-binding activities is not inhibited by pretreatment of quiescent cells with the protein synthesis inhibitor cycloheximide. Interestingly, the major NF-kappa B-like activity is not detected in nuclear extracts of proliferating cells, and thus its expression appears to be limited to the G0-to-G1 transition in 3T3 cells. These DNA-binding activities bind many of the expected NF-kappa B target sequences, including elements in the class I major histocompatibility complex and human immunodeficiency virus enhancers, as well as a recently identified NF-kappa B binding site upstream of the c-myc gene. Furthermore, both the class I major histocompatibility complex and c-myc NF-kappa B binding sites confer inducibility on a minimal promoter in 3T3 cells stimulated with serum growth factors. The results demonstrate that NF-kappa B-like activities are immediate-early response proteins in 3T3 cells and suggest a role for these factors in the G0-to-G1 transition.
Collapse
|
33
|
Baldwin AS, Azizkhan JC, Jensen DE, Beg AA, Coodly LR. Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 1991; 11:4943-51. [PMID: 1922027 PMCID: PMC361472 DOI: 10.1128/mcb.11.10.4943-4951.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A DNA-binding factor with properties of NF-kappa B and another similar activity are rapidly induced when growth-arrested BALB/c 3T3 cells are stimulated with serum growth factors. Induction of these DNA-binding activities is not inhibited by pretreatment of quiescent cells with the protein synthesis inhibitor cycloheximide. Interestingly, the major NF-kappa B-like activity is not detected in nuclear extracts of proliferating cells, and thus its expression appears to be limited to the G0-to-G1 transition in 3T3 cells. These DNA-binding activities bind many of the expected NF-kappa B target sequences, including elements in the class I major histocompatibility complex and human immunodeficiency virus enhancers, as well as a recently identified NF-kappa B binding site upstream of the c-myc gene. Furthermore, both the class I major histocompatibility complex and c-myc NF-kappa B binding sites confer inducibility on a minimal promoter in 3T3 cells stimulated with serum growth factors. The results demonstrate that NF-kappa B-like activities are immediate-early response proteins in 3T3 cells and suggest a role for these factors in the G0-to-G1 transition.
Collapse
Affiliation(s)
- A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | | | |
Collapse
|
34
|
Hsu JC, Laz T, Mohn KL, Taub R. Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A 1991; 88:3511-5. [PMID: 1902565 PMCID: PMC51481 DOI: 10.1073/pnas.88.9.3511] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Liver regeneration provides one of the few systems for analysis of mitogenesis in the fully developed, intact animal. Several proteins have been identified as part of the primary growth response in regenerating liver and in mitogen-stimulated cells. Some of these proteins, such as the Jun and Fos families of transcription factors, are thought to have a role in activating transcription of genes expressed subsequently in the growth response. Through differential screening of a regenerating-liver cDNA library, we have identified a rapidly and highly induced gene encoding a 21-kDa leucine-zipper-containing protein that we have designated liver regeneration factor 1 (LRF-1). LRF-1 has no homology with other leucine-zipper proteins outside the basic and leucine-zipper domains. LRF-1 alone can bind DNA, but it preferentially forms heteromeric complexes with c-Jun and Jun-B and does not interact with c-Fos. In solution, it binds with highest affinity to cAMP response elements but also has affinity for related sites. In cotransfection studies, LRF-1 in combination with c-Jun strongly activates a c-Jun-responsive promoter. The induction of the LRF-1 gene in regenerating liver greatly increases the potential variety of heterodimeric combinations of leucine-zipper transcription factors. While LRF-1 mRNA is rapidly induced in the absence of protein synthesis, its peak induction is later than c-fos mRNA, suggesting that LRF-1 may regulate responsive genes at a later point in the cell cycle. As such, LRF-1 may have a unique and critical role in growth regulation of regenerating liver and mitogen-stimulated cells.
Collapse
Affiliation(s)
- J C Hsu
- Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145
| | | | | | | |
Collapse
|
35
|
The gene encoding rat insulinlike growth factor-binding protein 1 is rapidly and highly induced in regenerating liver. Mol Cell Biol 1991. [PMID: 1705004 DOI: 10.1128/mcb.11.3.1393] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The liver is an epithelioid organ that can regenerate following partial hepatectomy. Although it is composed mainly of hepatocytes, it has a complex, multicellular architecture, implying that intercellular communications must exist during regeneration. As in other mitogen-stimulated cells, immediate-early growth response genes induced in the absence of prior protein synthesis are likely to play an important regulatory role in the regenerative process. Through differential screening of regenerating liver cDNA libraries, we found that one of the most highly expressed immediate-early genes in liver regeneration encodes the rat homolog of the low-molecular-weight insulinlike growth factor (IGF)-binding protein (IGFBP-1). This protein has been implicated in enhancing the mitogenic effect of IGF on tissues. IGFBP-1 gene induction is transcriptionally mediated and specific to regenerating liver, as the gene is not expressed in mitogen-stimulated fibroblasts. IGFBP-1 expression has been shown to increase under low-insulin conditions such as diabetes, and the complex regulation of expression is indicated by our finding that insulin treatment of H35 rat hepatoma cells, which induces proliferation, also causes a rapid decrease in transcription and expression of the IGFBP-1 gene. Of note, IGFBP-1 mRNA is abundant in fetal rat liver, implying that it participates in normal liver growth and development. Although regenerating liver cells continue to produce IGF-I, we did not detect IGF-I receptor mRNA during the first 24 h after hepatectomy. However, some IGFBPs may act to enhance the activity of IGF-I independently of IGF-I receptors. Thus, IGF-1 and IGFBPs may interact with hepatocytes or nonparenchymal liver cells, through either IGF-I or novel receptors. In this way, IGFBP-I and IGF-I could act in a paracrine and/or autocrine fashion in maintaining normal liver architecture during regeneration.
Collapse
|
36
|
Mohn KL, Melby AE, Tewari DS, Laz TM, Taub R. The gene encoding rat insulinlike growth factor-binding protein 1 is rapidly and highly induced in regenerating liver. Mol Cell Biol 1991; 11:1393-401. [PMID: 1705004 PMCID: PMC369411 DOI: 10.1128/mcb.11.3.1393-1401.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The liver is an epithelioid organ that can regenerate following partial hepatectomy. Although it is composed mainly of hepatocytes, it has a complex, multicellular architecture, implying that intercellular communications must exist during regeneration. As in other mitogen-stimulated cells, immediate-early growth response genes induced in the absence of prior protein synthesis are likely to play an important regulatory role in the regenerative process. Through differential screening of regenerating liver cDNA libraries, we found that one of the most highly expressed immediate-early genes in liver regeneration encodes the rat homolog of the low-molecular-weight insulinlike growth factor (IGF)-binding protein (IGFBP-1). This protein has been implicated in enhancing the mitogenic effect of IGF on tissues. IGFBP-1 gene induction is transcriptionally mediated and specific to regenerating liver, as the gene is not expressed in mitogen-stimulated fibroblasts. IGFBP-1 expression has been shown to increase under low-insulin conditions such as diabetes, and the complex regulation of expression is indicated by our finding that insulin treatment of H35 rat hepatoma cells, which induces proliferation, also causes a rapid decrease in transcription and expression of the IGFBP-1 gene. Of note, IGFBP-1 mRNA is abundant in fetal rat liver, implying that it participates in normal liver growth and development. Although regenerating liver cells continue to produce IGF-I, we did not detect IGF-I receptor mRNA during the first 24 h after hepatectomy. However, some IGFBPs may act to enhance the activity of IGF-I independently of IGF-I receptors. Thus, IGF-1 and IGFBPs may interact with hepatocytes or nonparenchymal liver cells, through either IGF-I or novel receptors. In this way, IGFBP-I and IGF-I could act in a paracrine and/or autocrine fashion in maintaining normal liver architecture during regeneration.
Collapse
Affiliation(s)
- K L Mohn
- Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145
| | | | | | | | | |
Collapse
|
37
|
The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 1991. [PMID: 1986233 DOI: 10.1128/mcb.11.1.381] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver regeneration provides a unique system for analysis of mitogenesis in intact, fully developed animals. Cellular immediate-early genes likely play an important role in cell cycle regulation and have been extensively studied in mitogen-stimulated fibroblasts lymphocytes but not in liver. We have begun to characterize the immediate-early growth response genes of mitogen-stimulated liver cells, specifically, regenerating liver and insulin-stimulated Reuber H-35 hepatoma cells, and to address differences in growth response between different cell types. Through subtraction and differential screening of cDNA libraries from regenerating liver and insulin-treated H-35 cells, we have extensively characterized 341 differentially expressed clones and identified 52 immediate-early genes. These genes have been partially sequenced and subjected to Northern (RNA) blot analysis, and 41 appear to be novel. Surprisingly, two-thirds of these genes are also expressed in BALB/c 3T3 cells, but only 10 were identified in previous studies of 3T3 cells, and of these, 6 include well-known genes like jun and fos, and only 4 are novel. Approximately one-third of the immediate-early genes identified in mitogen-stimulated liver cells or serum-stimulated NIH 3T3 cells are expressed in a tissue-specific fashion, indicating that cell type-specific regulation of the proliferative response occurs during the immediate-early period. Our findings indicate that the immediate-early response is unusually complex for the first step in a regulatory cascade, suggesting that multiple pathways must be activated. The abundance of immediate-early genes and the highly varied pattern of their expression in different cell types suggest that the tissue specificity of the proliferative response arises from the particular set of these genes expressed in a given tissue.
Collapse
|
38
|
Kalebic T, Kinter A, Poli G, Anderson ME, Meister A, Fauci AS. Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetylcysteine. Proc Natl Acad Sci U S A 1991; 88:986-90. [PMID: 1704137 PMCID: PMC50939 DOI: 10.1073/pnas.88.3.986] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of glutathione (GSH), glutathione ester (GSE), and N-acetyl-L-cysteine (NAC) on the induction of human immunodeficiency virus (HIV) expression were investigated in the chronically infected monocytic U1 cell line, a previously described cellular model for HIV latency. U1 cells constitutively express low levels of virus, which can be increased by phorbol 12-myristate 13-acetate (PMA), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and other inducers. GSH, GSE, and NAC suppressed in a dose-dependent fashion the induction of HIV expression mediated by PMA, TNF-alpha, and IL-6, in the absence of cytotoxic or cytostatic effects. Reverse transcriptase activity, inducible by PMA, TNF-alpha, or IL-6, was decreased by 80-90% after pretreatment with GSH, GSE, or NAC. The induction of total HIV protein synthesis was also decreased appreciably after pretreatment with GSH, GSE, or NAC. The accumulation of HIV mRNA was substantially suppressed after pretreatment with NAC but to a lesser extent after pretreatment with GSH or GSE. Although PMA induces the expression of TNF-alpha in U1 cells, the suppressive effect of GSH, GSE, and NAC on PMA-induced HIV expression in U1 cells was not associated with the inhibition of TNF-alpha expression. The present findings, which elucidate relationships between cellular GSH and HIV expression, suggest that therapy with thiols may be of value in the treatment of HIV infection.
Collapse
Affiliation(s)
- T Kalebic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
39
|
Brabletz T, Pietrowski I, Serfling E. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer. Nucleic Acids Res 1991; 19:61-7. [PMID: 1707162 PMCID: PMC333534 DOI: 10.1093/nar/19.1.61] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism.
Collapse
Affiliation(s)
- T Brabletz
- Institut für Virologie und Immunbiologie, Universität Würzburg, FRG
| | | | | |
Collapse
|
40
|
The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 1991; 11:381-90. [PMID: 1986233 PMCID: PMC359636 DOI: 10.1128/mcb.11.1.381-390.1991] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Liver regeneration provides a unique system for analysis of mitogenesis in intact, fully developed animals. Cellular immediate-early genes likely play an important role in cell cycle regulation and have been extensively studied in mitogen-stimulated fibroblasts lymphocytes but not in liver. We have begun to characterize the immediate-early growth response genes of mitogen-stimulated liver cells, specifically, regenerating liver and insulin-stimulated Reuber H-35 hepatoma cells, and to address differences in growth response between different cell types. Through subtraction and differential screening of cDNA libraries from regenerating liver and insulin-treated H-35 cells, we have extensively characterized 341 differentially expressed clones and identified 52 immediate-early genes. These genes have been partially sequenced and subjected to Northern (RNA) blot analysis, and 41 appear to be novel. Surprisingly, two-thirds of these genes are also expressed in BALB/c 3T3 cells, but only 10 were identified in previous studies of 3T3 cells, and of these, 6 include well-known genes like jun and fos, and only 4 are novel. Approximately one-third of the immediate-early genes identified in mitogen-stimulated liver cells or serum-stimulated NIH 3T3 cells are expressed in a tissue-specific fashion, indicating that cell type-specific regulation of the proliferative response occurs during the immediate-early period. Our findings indicate that the immediate-early response is unusually complex for the first step in a regulatory cascade, suggesting that multiple pathways must be activated. The abundance of immediate-early genes and the highly varied pattern of their expression in different cell types suggest that the tissue specificity of the proliferative response arises from the particular set of these genes expressed in a given tissue.
Collapse
|
41
|
The promoter of the human interleukin-2 gene contains two octamer-binding sites and is partially activated by the expression of Oct-2. Mol Cell Biol 1990. [PMID: 2204815 DOI: 10.1128/mcb.10.10.5464] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding interleukin-2 (IL-2) contains a sequence 52 to 326 nucleotides upstream of its transcriptional initiation site that promotes transcription in T cells that have been activated by costimulation with tetradecanoyl phorbol myristyl acetate (TPA) and phytohemagglutinin (PHA). We found that the ubiquitous transcription factor, Oct-1, bound to two previously identified motifs within the human IL-2 enhancer, centered at nucleotides -74 and -251. Each site in the IL-2 enhancer that bound Oct-1 in vitro was also required to achieve a maximal transcriptional response to TPA plus PHA in vivo. Point mutations within either the proximal or distal octamer sequences reduced the response of the enhancer to activation by 54 and 34%, respectively. Because the murine T-cell line EL4 constitutively expresses Oct-2 and requires only TPA to induce transcription of the IL-2 gene, the effect of Oct-2 expression on activation of the IL-2 promoter in Jurkat T cells was determined. Expression of Oct-2 potentiated transcription 13-fold in response to TPA plus PHA and permitted the enhancer to respond to the single stimulus of TPA. Therefore, both the signal requirements and the magnitude of the transcription response of the IL-2 promoter can be modulated by Oct-2.
Collapse
|
42
|
Molecular cloning and characterization of a cDNA for a novel phorbol-12-myristate-13-acetate-responsive gene that is highly expressed in an adult T-cell leukemia cell line. J Virol 1990; 64:4632-9. [PMID: 2398525 PMCID: PMC247947 DOI: 10.1128/jvi.64.10.4632-4639.1990] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To identify gene products that might be involved in leukemogenesis of adult T-cell leukemia (ATL), we constructed a cDNA library from an ATL tumor cell line named IKD. By differential plaque hybridization using [32P]cDNAs of poly(A)+ RNA from IKD cells and a human T-lymphotropic virus type I-infected T-cell line (C91/PL) as probes and RNA blot analysis, we obtained a single cDNA clone of a gene that is highly expressed in IKD cells. Expression of this gene was also detected in fresh peripheral blood mononuclear cells of several ATL patients but not in those of healthy donors. Sequence analysis showed that the cDNA was that of a previously undescribed gene. On structural analysis of the cDNA (1,897 base pairs), a short open reading frame encoding a polypeptide of 54 amino acid residues was found. Exposure of human peripheral blood mononuclear cells, a T-cell lymphoma cell line (Jurkat), and quiescent human embryonic lung cells to phorbol-12-myristate-13-acetate resulted in rapid, transient expression of 2.0-kilobase mRNA of this gene. This induction of the gene was not inhibited by an inhibitor of protein synthesis, cycloheximide. From these findings, we suggest that this gene, named APR, is a member of the cellular immediate-early-response genes.
Collapse
|
43
|
Kamps MP, Corcoran L, LeBowitz JH, Baltimore D. The promoter of the human interleukin-2 gene contains two octamer-binding sites and is partially activated by the expression of Oct-2. Mol Cell Biol 1990; 10:5464-72. [PMID: 2204815 PMCID: PMC361254 DOI: 10.1128/mcb.10.10.5464-5472.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene encoding interleukin-2 (IL-2) contains a sequence 52 to 326 nucleotides upstream of its transcriptional initiation site that promotes transcription in T cells that have been activated by costimulation with tetradecanoyl phorbol myristyl acetate (TPA) and phytohemagglutinin (PHA). We found that the ubiquitous transcription factor, Oct-1, bound to two previously identified motifs within the human IL-2 enhancer, centered at nucleotides -74 and -251. Each site in the IL-2 enhancer that bound Oct-1 in vitro was also required to achieve a maximal transcriptional response to TPA plus PHA in vivo. Point mutations within either the proximal or distal octamer sequences reduced the response of the enhancer to activation by 54 and 34%, respectively. Because the murine T-cell line EL4 constitutively expresses Oct-2 and requires only TPA to induce transcription of the IL-2 gene, the effect of Oct-2 expression on activation of the IL-2 promoter in Jurkat T cells was determined. Expression of Oct-2 potentiated transcription 13-fold in response to TPA plus PHA and permitted the enhancer to respond to the single stimulus of TPA. Therefore, both the signal requirements and the magnitude of the transcription response of the IL-2 promoter can be modulated by Oct-2.
Collapse
Affiliation(s)
- M P Kamps
- Whitehead Institute for Biomedical Research, Cambridge Center, Massachusetts 02142
| | | | | | | |
Collapse
|
44
|
Abstract
LD78 is a member of a newly identified superfamily of small inducible proteins involved in inflammatory responses, wound healing, and tumorigenesis. Southern blot analysis of the EcoRI-digested human genomic DNAs, using previously isolated LD78 cDNA as a probe, showed that in each individual there are 4.2- and 4.8-kilobase-pair (kb) fragments and that some have an additional 6.5-kb fragment. The 4.2-kb fragment contained genomic DNA sequences corresponding to the LD78 cDNA and was named the LD78 alpha gene. The 4.8-kb fragment contained similar sequences, showing 94% homology to the LD78 alpha gene, and was named the LD78 beta gene. The LD78 alpha gene was present in a single or a few copies per haploid genome, whereas the copy number of the LD78 beta gene and of the 6.5-kb fragment hybridizable to LD78 cDNA varied among the samples tested. Treatment of human myeloid cell lines HL-60 and U937 with phorbol 12-myristate 13-acetate (PMA) increased within 2 h cellular levels of the RNA hybridizable to LD78 cDNA. The human glioma cell line U105MG and primary culture of human fibroblasts also expressed the hybridizable RNA in response to PMA. Addition of cycloheximide had no apparent effect on this response in U937 cells and inhibited the response in fibroblasts, whereas it stimulated the response in HL-60 and U105MG cells. mRNA phenotyping experiments revealed that the LD78 alpha and LD78 beta genes were both transcribed in PMA-stimulated U937 cells.
Collapse
|
45
|
Nakao M, Nomiyama H, Shimada K. Structures of human genes coding for cytokine LD78 and their expression. Mol Cell Biol 1990; 10:3646-58. [PMID: 1694014 PMCID: PMC360801 DOI: 10.1128/mcb.10.7.3646-3658.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
LD78 is a member of a newly identified superfamily of small inducible proteins involved in inflammatory responses, wound healing, and tumorigenesis. Southern blot analysis of the EcoRI-digested human genomic DNAs, using previously isolated LD78 cDNA as a probe, showed that in each individual there are 4.2- and 4.8-kilobase-pair (kb) fragments and that some have an additional 6.5-kb fragment. The 4.2-kb fragment contained genomic DNA sequences corresponding to the LD78 cDNA and was named the LD78 alpha gene. The 4.8-kb fragment contained similar sequences, showing 94% homology to the LD78 alpha gene, and was named the LD78 beta gene. The LD78 alpha gene was present in a single or a few copies per haploid genome, whereas the copy number of the LD78 beta gene and of the 6.5-kb fragment hybridizable to LD78 cDNA varied among the samples tested. Treatment of human myeloid cell lines HL-60 and U937 with phorbol 12-myristate 13-acetate (PMA) increased within 2 h cellular levels of the RNA hybridizable to LD78 cDNA. The human glioma cell line U105MG and primary culture of human fibroblasts also expressed the hybridizable RNA in response to PMA. Addition of cycloheximide had no apparent effect on this response in U937 cells and inhibited the response in fibroblasts, whereas it stimulated the response in HL-60 and U105MG cells. mRNA phenotyping experiments revealed that the LD78 alpha and LD78 beta genes were both transcribed in PMA-stimulated U937 cells.
Collapse
Affiliation(s)
- M Nakao
- Department of Biochemistry, Kumamoto University Medical School, Japan
| | | | | |
Collapse
|
46
|
Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol 1990. [PMID: 2342469 DOI: 10.1128/mcb.10.6.3087] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pituitary peptide hormone prolactin (Prl) is a potent inducer of Nb2 T lymphoma cell proliferation. To analyze the early genetic response to the mitogenic signals of Prl, a cDNA library was constructed from Nb2 T cells stimulated for 4 h with Prl and the protein synthesis inhibitor cycloheximide. Of 26 distinct clones isolated by differential screening, one clone, designated c25, exhibited extremely rapid but transient kinetics of induction by Prl and superinduction by Prl plus cycloheximide. Run-on transcription analysis indicated that c25 gene transcription was induced greater than 20-fold within 30 to 60 min of Prl stimulation. Surprisingly, DNA sequence analysis of c25 cDNA revealed that this Prl-inducible early-response gene is the rat homolog of the mouse transcription factor interferon-regulatory factor 1 (IRF-1), sharing 91% coding sequence similarity with mouse IRF-1. At the protein level, rat IRF-1 shares 97% and 92% homology with mouse IRF-1 and human IRF-1, respectively, suggesting that this molecule has been functionally conserved throughout evolution. Our studies show that the gene for IRF-1 is an immediate-early gene in Prl-stimulated T cells, which suggests that IRF-1 is a multifunctional molecule. In addition to its role in regulating growth-inhibitory interferon genes, IRF-1 may, therefore, also play a stimulatory role in cell proliferation. The gene for IRF-1 is one of the earliest genes known to be transcriptionally regulated by Prl.
Collapse
|
47
|
Yu-Lee LY, Hrachovy JA, Stevens AM, Schwarz LA. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol 1990; 10:3087-94. [PMID: 2342469 PMCID: PMC360673 DOI: 10.1128/mcb.10.6.3087-3094.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pituitary peptide hormone prolactin (Prl) is a potent inducer of Nb2 T lymphoma cell proliferation. To analyze the early genetic response to the mitogenic signals of Prl, a cDNA library was constructed from Nb2 T cells stimulated for 4 h with Prl and the protein synthesis inhibitor cycloheximide. Of 26 distinct clones isolated by differential screening, one clone, designated c25, exhibited extremely rapid but transient kinetics of induction by Prl and superinduction by Prl plus cycloheximide. Run-on transcription analysis indicated that c25 gene transcription was induced greater than 20-fold within 30 to 60 min of Prl stimulation. Surprisingly, DNA sequence analysis of c25 cDNA revealed that this Prl-inducible early-response gene is the rat homolog of the mouse transcription factor interferon-regulatory factor 1 (IRF-1), sharing 91% coding sequence similarity with mouse IRF-1. At the protein level, rat IRF-1 shares 97% and 92% homology with mouse IRF-1 and human IRF-1, respectively, suggesting that this molecule has been functionally conserved throughout evolution. Our studies show that the gene for IRF-1 is an immediate-early gene in Prl-stimulated T cells, which suggests that IRF-1 is a multifunctional molecule. In addition to its role in regulating growth-inhibitory interferon genes, IRF-1 may, therefore, also play a stimulatory role in cell proliferation. The gene for IRF-1 is one of the earliest genes known to be transcriptionally regulated by Prl.
Collapse
Affiliation(s)
- L Y Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
48
|
Bhat NK, Thompson CB, Lindsten T, June CH, Fujiwara S, Koizumi S, Fisher RJ, Papas TS. Reciprocal expression of human ETS1 and ETS2 genes during T-cell activation: regulatory role for the protooncogene ETS1. Proc Natl Acad Sci U S A 1990; 87:3723-7. [PMID: 2187191 PMCID: PMC53975 DOI: 10.1073/pnas.87.10.3723] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The expression of the protooncogenes ETS1 and ETS2 has been studied in purified human T cells activated either by cross-linking of the T-cell receptor-CD3 complex on their cell surface or by direct stimulation with phorbol esters and ionomycin. Our results show that resting T cells express high levels of ETS1 mRNA and protein, while expression of ETS2 is undetectable. Upon T-cell activation, ETS2 mRNA and proteins are induced, while ETS1 gene expression decreases to very low levels. Late after stimulation, ETS1 mRNA is reinduced and maintained at a high level, while ETS2 gene expression decreases to undetectable levels. Therefore, it appears that in human T cells, ETS2 gene products are associated with cellular activation and proliferation, while ETS1 gene products are preferentially expressed in a quiescent state.
Collapse
Affiliation(s)
- N K Bhat
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, MD 21701-1013
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Niller HH, Hennighausen L. Phytohemagglutinin-induced activity of cyclic AMP (cAMP) response elements from cytomegalovirus is reduced by cyclosporine and synergistically enhanced by cAMP. J Virol 1990; 64:2388-91. [PMID: 2157893 PMCID: PMC249401 DOI: 10.1128/jvi.64.5.2388-2391.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 19-base-pair enhancer repeat of the human cytomegalovirus immediate-early 1 gene mediates cyclic AMP- and phytohemagglutinin-induced expression in Jurkat T cells. Synergistic activity was observed in the presence of both drugs, suggesting a convergence of the protein kinase A and C pathways on this transcription element. In addition, the immunosuppressive drug cyclosporine strongly reduced the ability of the 19-base-pair repeat to activate gene expression in phytohemagglutinin-stimulated T cells.
Collapse
Affiliation(s)
- H H Niller
- Laboratory of Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
50
|
Abstract
Murine T cells were stimulated in vivo by administering allogeneic cells or mitogens into the foot pads and then examining the draining popliteal lymph nodes. Allogeneic spleen cells induced the expression of IL2 and IFN-gamma mRNAs in a time- and dose-dependent manner. Induction of these transcripts also was detected after administration of Con A and anti-CD3 mAb. An increase in DNA-synthesizing cells was observed by 48 h, and these were shown to be T cells because of their sensitivity to anti-Thy-1 but not anti-B220 mAb and complement, and because of their localization to the T-dependent areas of the lymph node. The in vivo administration of cyclosporin A (CSA) reduced several of these T cell responses. The level of DNA synthesis and the frequency of cells synthesizing DNA were decreased by approximately 75%, while the induction of IL-2 responsiveness was not substantially diminished. IL-2 and IFN-gamma transcripts were inhibited at least 70-90%, as determined by Northern blot and in situ hybridization. Although the inhibition by CSA was not as complete in animals as observed previously in tissue culture, our findings indicate that in both systems, a major site of action of CSA is to inhibit T cell growth by inhibiting lymphokine production.
Collapse
Affiliation(s)
- A Granelli-Piperno
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| |
Collapse
|