1
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Minarovits J, Niller HH. Truncated oncoproteins of retroviruses and hepatitis B virus: A lesson in contrasts. INFECTION GENETICS AND EVOLUTION 2019; 73:342-357. [DOI: 10.1016/j.meegid.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
3
|
Muench DE, Ferchen K, Velu CS, Pradhan K, Chetal K, Chen X, Weirauch MT, Colmenares C, Verma A, Salomonis N, Grimes HL. SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24-e34. [PMID: 30249787 PMCID: PMC6251005 DOI: 10.1182/blood-2018-06-860890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway controls hematopoietic stem cell (HSC) behavior in the marrow niche; however, TGF-β signaling becomes chronic in early-stage myelodysplastic syndrome (MDS). Although TGF-β signaling normally induces negative feedback, in early-stage MDS, high levels of microRNA-21 (miR-21) contribute to chronic TGF-β signaling. We found that a TGF-β signal-correlated gene signature is sufficient to identify an MDS patient population with abnormal RNA splicing (eg, CSF3R) independent of splicing factor mutations and coincident with low HNRNPK activity. Levels of SKI messenger RNA (mRNA) encoding a TGF-β antagonist are sufficient to identify these patients. However, MDS patients with high SKI mRNA and chronic TGF-β signaling lack SKI protein because of miR-21 activity. To determine the impact of SKI loss, we examined murine Ski -/- HSC function. First, competitive HSC transplants revealed a profound defect in stem cell fitness (competitive disadvantage) but not specification, homing, or multilineage production. Aged recipients of Ski -/- HSCs exhibited mild phenotypes similar to phenotypes in those with macrocytic anemia. Second, blastocyst complementation revealed a dramatic block in Ski -/- hematopoiesis in the absence of transplantation. Similar to SKI-high MDS patient samples, Ski -/- HSCs strikingly upregulated TGF-β signaling and deregulated expression of spliceosome genes (including Hnrnpk). Moreover, novel single-cell splicing analyses demonstrated that Ski -/- HSCs and high levels of SKI expression in MDS patient samples share abnormal alternative splicing of common genes (including those that encode splicing factors). We conclude that miR-21-mediated loss of SKI activates TGF-β signaling and alternative splicing to impair the competitive advantage of normal HSCs (fitness), which could contribute to selection of early-stage MDS-genic clones.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chinavenmeni S Velu
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Matthew T Weirauch
- Division of Biomedical Informatics
- Center for Autoimmune Genomics and Etiology, and
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; and
| | | | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
4
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
5
|
Kim H, Yamanouchi K, Matsuwaki T, Nishihara M. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression. J Reprod Dev 2012; 58:254-9. [PMID: 22277932 DOI: 10.1262/jrd.11-118o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
6
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
7
|
Boone B, Haspeslagh M, Brochez L. Clinical significance of the expression of c-Ski and SnoN, possible mediators in TGF-beta resistance, in primary cutaneous melanoma. J Dermatol Sci 2008; 53:26-33. [PMID: 18782659 DOI: 10.1016/j.jdermsci.2008.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/10/2023]
Abstract
BACKGROUND Loss of TGF-beta growth control is considered as a hallmark of several human neoplasms including melanoma. Resistance of cancer cells to TGF-beta has been linked to mutations in proteins involved in the TGF-beta pathway. In melanoma such mutations have not been observed. C-Ski and SnoN, two structurally and functionally highly homologous proteins, are known as negative regulators in the TGF-beta signaling pathway. C-Ski and SnoN expression levels and subcellular localization have been associated with clinicopathological parameters and tumour progression in several human malignancies. In melanoma cell lines, high c-Ski and SnoN expression levels have been described. OBJECTIVE The objective of this study was to evaluate the clinical value of c-Ski and SnoN expression in primary cutaneous melanoma. METHODS We evaluated c-Ski and SnoN expression by immunohistochemical staining in 120 primary melanomas. Possible associations between c-Ski and SnoN staining patterns and clinicopathological parameters were analyzed. RESULTS Nuclear c-Ski expression was significantly associated with thicker and ulcerated tumours. The percentage of SnoN positivity was higher in ulcerated tumours and in the sentinel node positive group. CONCLUSION These results suggest that c-Ski and SnoN, mediators in TGF-beta resistance, might be implicated in melanoma growth and progression.
Collapse
Affiliation(s)
- Barbara Boone
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.
| | | | | |
Collapse
|
8
|
Lu W, Volcik K, Zhu H, Wen S, Shaw GM, Lammer EJ, Finnell RH. Genetic variation in the proto-oncogene SKI and risk for orofacial clefting. Mol Genet Metab 2005; 86:412-6. [PMID: 16054854 DOI: 10.1016/j.ymgme.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND SKI is a proto-oncogene that is required for development of the central nervous system and skeletal muscle, and is involved in specifying selected cranial neural-crest-derived craniofacial structures. To identify genetic variants within the SKI gene and investigate the potential association between SKI polymorphisms and risk for orofacial defects, we initially re-sequenced the gene. METHODS DNA re-sequencing of all seven exons of the SKI gene was performed on 100 control samples. Subsequently, we genotyped 394 samples (148 CLP cases, 99 CP cases, and 147 control infants) for a novel SNP identified in the DNA re-sequencing effort using restriction fragment length polymorphism (RFLP) analysis. RESULTS We identified one polymorphism in exon 1 of the SKI gene (257C>G) from controls. This SNP resulted in an amino acid change from alanine to glycine (A62G, GenBank Accession No. NM_003036). Among all samples genotyped by the RFLP method, variants (CG, GG) were found in 10.5% of the cases, compared to a prevalence of 17.7% in the controls. The odds ratio was calculated to be 0.6, with a 95% confidence interval (CI) of 0.3-1.0. CONCLUSION In a population of California infants with craniofacial defects, a novel polymorphism of the SKI gene was found to be associated with a decreased risk for orofacial defects. The function of this polymorphism and how it might confer protection to the embryo against craniofacial malformations is currently under investigation in our laboratory.
Collapse
Affiliation(s)
- Wei Lu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Seufert DW, Hegde RS, Nekkalapudi S, Kelly LE, El-Hodiri HM. Expression of a novel Ski-like gene in Xenopus development. Gene Expr Patterns 2005; 6:22-8. [PMID: 16169285 DOI: 10.1016/j.modgep.2005.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/18/2005] [Accepted: 05/27/2005] [Indexed: 11/20/2022]
Abstract
Members of the Ski/Sno family of gene products contain a characteristic peptide domain involved in protein-protein or protein-DNA interaction. Here, we characterize the developmental expression of xDawg, in Xenopus laevis, of a new gene, related to the Ski/Sno family of transcription regulators. The Ski/Sno domain of xDawg is predicted to present an electropositive surface, consistent with a role in DNA binding. This gene is expressed in the marginal zone of early gastrulae, and in the brain, sensory vesicles, and cranial neural crest of neurula and tailbud embryos.
Collapse
Affiliation(s)
- Daniel W Seufert
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, 700 Children's Dr., Columbus, OH 43026, USA
| | | | | | | | | |
Collapse
|
10
|
Marcelain K, Hayman MJ. The Ski oncoprotein is upregulated and localized at the centrosomes and mitotic spindle during mitosis. Oncogene 2005; 24:4321-9. [PMID: 15806149 DOI: 10.1038/sj.onc.1208631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ski is an oncoprotein that represses transforming growth factor-beta and nuclear receptor signaling. Despite evidence that relates increased Ski protein levels directly with tumor progression in human cells, the signaling pathways that regulate Ski expression are mostly unidentified. Here we show that the Ski protein levels vary throughout the cell cycle, being lowest at G0/G1. This reduction in Ski protein levels results from proteosomal degradation as suggested by in vivo ubiquitination of Ski and the effects of proteosomal inhibitors. In contrast, an upregulation of the Ski protein was observed in cells going through mitosis. At this stage, we also found that Ski is phosphorylated. In vitro and in vivo data suggest that the phosphorylation of Ski in mitosis is carried out by the main kinase controlling the progression of mitosis, namely cdc2/cyclinB. Interestingly, immunofluorescence experiments, supported by biochemical data, show not only an increase in the Ski protein levels, but also a dramatic redistribution of Ski to the centrosomes and mitotic spindle throughout mitosis. Studies to date on Ski have focused on its role as a transcriptional regulator. However, Ski's increased level and specific relocalization during mitosis suggest that Ski might play a distinct role during this particular phase of the cell cycle.
Collapse
Affiliation(s)
- Katherine Marcelain
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
11
|
Takeda M, Mizuide M, Oka M, Watabe T, Inoue H, Suzuki H, Fujita T, Imamura T, Miyazono K, Miyazawa K. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Mol Biol Cell 2003; 15:963-72. [PMID: 14699069 PMCID: PMC363053 DOI: 10.1091/mbc.e03-07-0478] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
c-Ski is a transcriptional corepressor that interacts strongly with Smad2, Smad3, and Smad4 but only weakly with Smad1 and Smad5. Through binding to Smad proteins, c-Ski suppresses signaling of transforming growth factor-beta (TGF-beta) as well as bone morphogenetic proteins (BMPs). In the present study, we found that a mutant of c-Ski, termed c-Ski (ARPG) inhibited TGF-beta/activin signaling but not BMP signaling. Selectivity was confirmed in luciferase reporter assays and by determination of cellular responses in mammalian cells (BMP-induced osteoblastic differentiation of C2C12 cells and TGF-beta-induced epithelial-to-mesenchymal transdifferentiation of NMuMG cells) and Xenopus embryos. The ARPG mutant recruited histone deacetylases 1 (HDAC1) to the Smad3-Smad4 complex but not to the Smad1/5-Smad4 complex. c-Ski (ARPG) was unable to interact with Smad4, and the selective loss of suppression of BMP signaling by c-Ski (ARPG) was attributed to the lack of Smad4 binding. We also found that c-Ski interacted with Smad3 or Smad4 without disrupting Smad3-Smad4 heteromer formation. c-Ski (ARPG) would be useful for selectively suppressing TGF-beta/activin signaling.
Collapse
Affiliation(s)
- Masafumi Takeda
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 2003; 278:30540-7. [PMID: 12764135 DOI: 10.1074/jbc.m304016200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.
Collapse
Affiliation(s)
- Jun He
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720-3206, USA
| | | | | | | | | |
Collapse
|
13
|
Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem 2003; 278:26249-57. [PMID: 12732634 DOI: 10.1074/jbc.m304459200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.
Collapse
Affiliation(s)
- Celine Prunier
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
14
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Colmenares C, Heilstedt HA, Shaffer LG, Schwartz S, Berk M, Murray JC, Stavnezer E. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice. Nat Genet 2002; 30:106-9. [PMID: 11731796 DOI: 10.1038/ng770] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.
Collapse
Affiliation(s)
- Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001; 20:8100-8. [PMID: 11781823 DOI: 10.1038/sj.onc.1204987] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 09/12/2001] [Accepted: 09/18/2001] [Indexed: 01/07/2023]
Abstract
The c-ski proto-oncogene product (c-Ski) acts as a co-repressor and binds to other co-repressors N-CoR/SMRT and mSin3A which form a complex with histone deacetylase (HDAC). c-Ski mediates the transcriptional repression by a number of repressors, including nuclear hormone receptors and Mad. c-Ski also directly binds to, and recruits the HDAC complex to Smads, leading to inhibition of tumor growth factor-beta (TGF-beta) signaling. This is consistent with the function of ski as an oncogene. Here we show that loss of one copy of c-ski increases susceptibility to tumorigenesis in mice. When challenged with a chemical carcinogen, c-ski heterozygous mice showed an increased level of tumor formation relative to wild-type mice. In addition, c-ski-deficient mouse embryonic fibroblasts (MEFs) had increased proliferative capacity, whereas overexpression of c-Ski suppressed the proliferation. Furthermore, the introduction of activated Ki-ras into c-ski-deficient MEFs resulted in neoplastic transformation. These findings demonstrate that c-ski acts as a tumor suppressor in some types of cells. The level of cdc25A mRNA, which is down regulated by two tumor suppressor gene products, Rb and Mad, was upregulated in c-ski-deficient MEFs, whereas it decreased by overexpressing c-Ski in MEFs. This is consistent with the fact that c-Ski acts as a co-repressor of Mad and Rb. These results support the view that the decreased activities of Mad and Rb in ski-deficient cells at least partly contribute to enhanced proliferation and susceptibility to tumorigenesis. Human c-ski gene was mapped to a region close to the p73 tumor suppressor gene at the 1p36.3 locus, which is already known to contain multiple uncharacterized tumor suppressor genes.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, and CREST (Core Research for Evolutionary Science and Technology) Research Project of JST (Japan Science & Technology Corporation), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Wotton D, Massagué J. Smad Transcriptional Corepressors in TGFβ Family Signaling. Curr Top Microbiol Immunol 2001. [DOI: 10.1007/978-3-662-10595-5_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J 2000; 19:2280-91. [PMID: 10811619 PMCID: PMC384369 DOI: 10.1093/emboj/19.10.2280] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Ski and Sno oncoproteins are components of a macromolecular complex containing the co-repressor N-CoR/SMRT, mSin3 and histone deacetylase. This complex has been implicated in the transcriptional repression exerted by a number of repressors including nuclear hormone receptors and Mad. Further more, Ski and Sno negatively regulate transforming growth factor-beta (TGF-beta) signaling by recruiting this complex to Smads. Here we show that loss of one copy of sno increases susceptibility to tumorigenesis in mice. Mice lacking sno died at an early stage of embryogenesis, and sno was required for blastocyst formation. Heterozygous (sno(+/-)) mice developed spontaneous lymphomas at a low frequency and showed an increased level of tumor formation relative to wild-type mice when challenged with a chemical carcinogen. sno(+/-) embryonic fibroblasts had an increased proliferative capacity and the introduction of activated Ki-ras into these cells resulted in neoplastic transformation. The B cells, T cells and embryonic fibroblasts of sno(+/-) mice had a decreased sensitivity to apoptosis or cell cycle arrest. These findings demonstrate that sno acts as a tumor suppressor at least in some types of cells.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Life Sciences Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japa
| | | | | | | | | |
Collapse
|
19
|
Sutrave P, Leferovich JM, Kelly AM, Hughes SH. The induction of skeletal muscle hypertrophy by a ski transgene is promoter-dependent. Gene 2000; 241:107-16. [PMID: 10607904 DOI: 10.1016/s0378-1119(99)00461-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chicken c-ski gene expresses at least three alternatively spliced messages. Transgenic mice expressing proteins from cDNA corresponding to two of these messages (FB27 and FB29) under the control of a murine sarcoma virus (MSV) long terminal repeat (LTR) express the transgene in skeletal muscle and develop a muscular phenotype. Both a biologically active form of c-ski and the MSV LTR are required for the development of the muscular phenotype. The normal c-ski gene linked to two other tissue-specific promoters failed to induce muscle growth in transgenic mice, as did an inactive mutant of c-ski expressed under the control of the MSV LTR.
Collapse
Affiliation(s)
- P Sutrave
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
20
|
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999; 274:35269-77. [PMID: 10575014 DOI: 10.1074/jbc.274.49.35269] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Smads are intracellular signaling mediators of the transforming growth factor-beta (TGF-beta) superfamily that regulates a wide variety of biological processes. Among them, Smads 2 and 3 are activated specifically by TGF-beta. We identified c-Ski as a Smad2 interacting protein. c-Ski is the cellular homologue of the v-ski oncogene product and has been shown to repress transcription by recruiting histone deacetylase (HDAC). Smad2/3 interacts with c-Ski through its C-terminal MH2 domain in a TGF-beta-dependent manner. c-Ski contains two distinct Smad-binding sites with different binding properties. c-Ski strongly inhibits transactivation of various reporter genes by TGF-beta. c-Ski is incorporated in the Smad DNA binding complex, interferes with the interaction of Smad3 with a transcriptional co-activator, p300, and in turn recruits HDAC. c-Ski is thus a transcriptional co-repressor that links Smads to HDAC in TGF-beta signaling.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research, Research for the Future Program, Japan Society for Promotion of Science, 1-37-1, Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Tokitou F, Nomura T, Khan MM, Kaul SC, Wadhwa R, Yasukawa T, Kohno I, Ishii S. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem 1999; 274:4485-8. [PMID: 9988677 DOI: 10.1074/jbc.274.8.4485] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which the viral oncogene ski (v-ski) transforms chicken embryo fibroblasts is currently unknown. Recently, the c-ski gene product (c-Ski) was found to bind to N-CoR (nuclear hormone receptor co-repressor), an element implicated in transcriptional repression mediated by multiple transcriptional repressors including the nuclear hormone receptors and Mad. c-Ski is required for transcriptional repression mediated by Mad involved in negative regulation of cellular proliferation. v-Ski abrogates Mad-induced transcriptional repression in a dominant negative fashion. Here we report that v-Ski also inhibits transcriptional repression mediated by Rb, another tumor suppressor gene product. Rb forms a complex with c-Ski, Sin3A, and histone deacetylase (HDAC) via direct binding to c-Ski and HDAC. c-Ski is required for the transcriptional repression mediated by Rb. These results suggest that inhibition of Rb activity contributes, at least partly, to transformation by v-Ski.
Collapse
Affiliation(s)
- F Tokitou
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nicol R, Stavnezer E. Transcriptional repression by v-Ski and c-Ski mediated by a specific DNA binding site. J Biol Chem 1998; 273:3588-97. [PMID: 9452486 DOI: 10.1074/jbc.273.6.3588] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ski oncoprotein has been shown to bind DNA and activate transcription in conjunction with other cellular factors. Because tumor cells or myogenic cells were used for those studies, it is not clear that those activities of Ski are related to its transforming ability. In this study, we use a nuclear extract of c-ski-transformed cells to identify a specific DNA binding site for Ski with the consensus sequence GTCTAGAC. We demonstrate that both c-Ski and v-Ski in nuclear extracts are components of complexes that bind specifically to this site. By evaluating the features of the sequence that are critical for binding, we show that binding is cooperative. Although Ski cannot bind to this sequence on its own, we use cross-linking with ultraviolet light to show that Ski binds to this site along with several unidentified cellular proteins. Furthermore, we find that Ski represses transcription either through upstream copies of this element or when brought to the promoter by a heterologous DNA binding domain. This is the first demonstration that Ski acts as a repressor rather than an activator and could provide new insights into regulation of gene expression by Ski.
Collapse
Affiliation(s)
- R Nicol
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
23
|
Zheng G, Blumenthal KM, Ji Y, Shardy DL, Cohen SB, Stavnezer E. High affinity dimerization by Ski involves parallel pairing of a novel bipartite alpha-helical domain. J Biol Chem 1997; 272:31855-64. [PMID: 9395532 DOI: 10.1074/jbc.272.50.31855] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Ski protein possesses a C-terminal dimerization domain that was deleted during the generation of v-ski, and has been implicated in the increased potency of c-ski in cellular transformation compared with the viral gene. The domain is predicted to consist of an extended alpha-helical segment made up of two motifs: a tandem repeat (TR) consisting of five imperfect repeats of 25 residues each and a leucine zipper (LZ) consisting of six heptad repeats. We have examined the structure and dimerization of TR or LZ individually or the entire TR-LZ domain. Using a quenched chemical cross-linking method, we show that the TR dimerizes with moderate efficiency (Kd = 4 x 10(-6) M), whereas LZ dimerizes poorly (Kd > 2 x 10(-5) M). However, the entire TR-LZ domain dimerizes efficiently (Kd = 2 x 10(-8) M), showing a cooperative effect of the two motifs. CD analyses indicate that all three proteins contain predominantly alpha-helices. Limited proteolysis of the TR-LZ dimer indicates that the two helical motifs are linked by a small loop. Interchain disulfide bond formation indicates that both the LZ and TR helices are oriented in parallel. We propose a model for the dimer interface in the TR region consisting of discontinuous clusters of hydrophobic residues forming "leucine buttons."
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kelder B, Richmond C, Stavnezer E, List EO, Kopchick JJ. Production, characterization and functional activities of v-Ski in cultured cells. Gene 1997; 202:15-21. [PMID: 9427540 DOI: 10.1016/s0378-1119(97)00439-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The v-ski oncogene was introduced into mammalian cells in order to study its biochemical and biological properties. v-Ski, produced at relatively high levels by mouse L cells stably transfected with this DNA, was localized to the cell nucleus, was of correct apparent molecular mass, and was capable of complexing with DNA. Transient transfection of reporter plasmids into control or Ski producing mouse L cells revealed that Ski acts as a transcriptional activator of various transcriptional regulatory elements, including CMVie, RSV LTR and SV40. These results indicate that mouse L cells contain the nuclear cofactor(s) required for the ability of v-Ski to bind to DNA and also suggest that the v-Ski present within the cells is functional.
Collapse
Affiliation(s)
- B Kelder
- Edison Biotechnology Institute, Ohio University, Athens 45701, USA.
| | | | | | | | | |
Collapse
|
25
|
Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J, Kruse U, Sippel AE, Colmenares C, Stavnezer E. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res 1997; 25:3895-903. [PMID: 9380514 PMCID: PMC146989 DOI: 10.1093/nar/25.19.3895] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ski oncoprotein has been found to bind non-specifically to DNA in association with unindentified nuclear factors. In addition, Ski has been shown to activate transcription of muscle-specific and viral promoters/enhancers. The present study was undertaken to identify Ski's DNA binding and transcriptional activation partners by identifying specific DNA binding sites. We used nuclear extracts from a v-Ski-transduced mouse L-cell line and selected Ski-bound sequences from a pool of degenerate oligonucleotides with anti-Ski monoclonal antibodies. Two sequences were identified by this technique. The first (TGGC/ANNNNNT/GCCAA) is the previously identified binding site of the nuclear factor I (NFI) family of transcription factors. The second (TCCCNNGGGA) is the binding site of Olf-1/EBF. By electophoretic mobility shift assays we find that Ski is a component of one or more NFI complexes but we fail to detect Ski in Olf-1/EBF complexes. We show that Ski binds NFI proteins and activates transcription of NFI reporters, but only in the presence of NFI. We also find that homodimerization of Ski is essential for co-activation with NFI. However, the C-terminal dimerization domain of c-Ski, which is missing in v-Ski, can be substituted by the leucine zipper domain of GCN4.
Collapse
Affiliation(s)
- P Tarapore
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mimura N, Ichikawa K, Asano A, Nagase T, Ishii S. A transient increase of snoN transcript by growth arrest upon serum deprivation and cell-to-cell contact. FEBS Lett 1996; 397:253-9. [PMID: 8955358 DOI: 10.1016/s0014-5793(96)01165-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To analyze the possible involvement of c-ski and c-sno during the course of in vitro myogenesis, expression of their transcripts during differentiation of a murine muscle cell line (C2C12) was monitored by competitive reverse transcription-polymerase chain reaction (RT-PCR). The transcripts of c-snoN were temporarily increased 25-fold above basal level at 12 h prior to the onset of transcription of muscle-specific gene, e.g. myogenin and muscle creatine kinase, whereas c-ski was expressed invariably. The transient increase of c-snoN was blocked when myogenesis was interrupted by the presence of fetal calf serum in culture medium, probably due to growth factors being included; basic fibroblast growth factor (b-FGF) blocked the transient increase whereas epidermal growth factor (EGF) did not, consistent with the inhibitory effect of b-FGF and no effect of EGF on myotube formation of C2C12. In fibroblastic C3H10T1/2 cells, snoN exhibited a similar transient increase of transcript when growth arrested under the same conditions as for in vitro myogenesis, indicating that the expression of snoN is not sufficient to induce the onset of muscle differentiation and an unknown factor involved in myogenic cells is necessary. The transient increase of snoN transcript may represent a common entrance step of cells into the G0 phase where muscle differentiation is substantiated, considering that it was observed upon growth arrest of fibroblastic C3H10T1/2 cells and prior to the elevation of MCK in C2C12 but undetected when entry into G0 was blocked by b-FGF.
Collapse
Affiliation(s)
- N Mimura
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|
27
|
Czernik PJ, Peterson CA, Hurlburt BK. Preferential binding of MyoD-E12 versus myogenin-E12 to the murine sarcoma virus enhancer in vitro. J Biol Chem 1996; 271:9141-9. [PMID: 8621566 DOI: 10.1074/jbc.271.15.9141] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The MyoD family of transcription factors regulates muscle-specific gene expression in vertebrates. In the adult rat, MyoD mRNA accumulates predominately in fast-twitch muscle, in particular type IIb and/or IIx fibers, whereas Myogenin mRNA is restricted to slow-twitch type I muscle fibers. Transgenic mice expressing the avian v-ski oncogene from the murine sarcoma virus (MSV) promoter-enhancer display preferential hypertrophy of type IIb fast-twitch muscle apparently because of the restricted expression of the transgene. We tested the hypothesis that preferential interactions of MyoD, as a heterodimer with E12, with the MSV enhancer, which has six E-box targets for MyoD family proteins, could contribute to v-ski gene expression in IIb muscle fibers. A series of quantitative binding studies was performed using an electrophoretic mobility shift assay to test MyoD-E12 versus Myogenin-E12 binding to the MSV enhancer. Our results indicate that MyoD-E12 binds the MSV enhancer with higher affinity and higher cooperativity than Myogenin-E12. Interestingly, MyoD-E12 bound all of the individual E-boxes tested with positive cooperativity indicating DNA-mediated dimerization of the protein subunits.
Collapse
Affiliation(s)
- P J Czernik
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | |
Collapse
|
28
|
Abstract
The expression of a ski transgene in the bind leg muscles of mice follows a spatial and temporal pattern reminiscent of the pattern of myogenic development. Anterior muscles, which are formed earliest during development, are also the first muscles to express ski mRNA. Muscles derived from the posterior muscle group, formed later during development, exhibit delayed expression of ski mRNA. In addition, there is regional variation in ski mRNA levels within a particular muscle. Superficial regions of fast muscles, which contain a large percentage of type IIb fibers and have a high ATPase activity, express a higher level of ski mRNA than the deep portions of the same muscles. The deep regions contain a lower percentage of type IIb fibers and lower ATPase activity. The soleus, a slow muscle composed predominantly of type I fibers, expresses low ATPase activity and contains much lower levels of ski mRNA. mRNA from the ski transgene is also expressed at high levels in the osteocytes of the leg bones of 15-day and older transgenic mice. High levels of Ski protein is present in the osteocytes of the leg bones. ski expression appears to cause remodeling of the tibia and fibula. The cross-sectional area of the tibia and fibula of ski transgenic mice is significantly decreased compared to controls. X-rays of the skeletons of ski transgenic mice suggest that the bones of the entire skeleton are thinner than the bones in normal mice. Pathological stress fractures were found in several bones in the ski transgenic mice.
Collapse
Affiliation(s)
- D P Lana
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
29
|
Namciu S, Lyons GE, Micales BK, Heyman HC, Colmenares C, Stavnezer E. Enhanced expression of mouse c-ski accompanies terminal skeletal muscle differentiation in vivo and in vitro. Dev Dyn 1995; 204:291-300. [PMID: 8573720 DOI: 10.1002/aja.1002040307] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Overexpression of either v-ski, or the proto-oncogene, c-ski, in quail embryo fibroblasts induces the expression of myoD and myogenin, converting the cells to myoblasts capable of differentiating into skeletal myotubes. In transgenic mice, overexpression of ski also influences muscle development, but in this case it effects fully formed muscle, causing hypertrophy of fast skeletal muscle fibers. In attempts to determine whether endogenous mouse c-ski plays a role in either early muscle cell determination or late muscle cell differentiation, we analyzed mRNA expression during muscle development in mouse embryos and during in vitro terminal differentiation of skeletal myoblasts. To generate probes for these studies we cloned coding and 3' non-coding regions of mouse c-ski. In situ hybridization revealed low c-ski expression in somites, and only detected elevated levels of mRNA in skeletal muscle beginning at about 12.5 days of gestation. Northern analysis revealed a two-fold increase in c-ski mRNA during terminal differentiation of skeletal muscle cell lines in vitro. Our results suggest that c-ski plays a role in terminal differentiation of skeletal muscle cells not in the determination of cells to the myogenic lineage.
Collapse
Affiliation(s)
- S Namciu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ambrose MR, Bottazzi ME, Goodenow MM. Expression of the c-ski proto-oncogene during cell cycle arrest and myogenic differentiation. DNA Cell Biol 1995; 14:701-7. [PMID: 7646817 DOI: 10.1089/dna.1995.14.701] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the ski oncogene plays a role in cell proliferation, morphological transformation, and myogenic differentiation, the myogenic activities of the proto-oncogene c-ski have yet to be elucidated. c-ski is expressed within myoblasts during embryogenesis. Transcripts from the proto-oncogene can be detected in somites early in myogenic commitment, as well as in terminally differentiated skeletal muscle. However, c-ski mRNAs expressed in cells of the myogenic lineage are indistinguishable from c-ski transcripts in other cell types, raising the possibility that muscle-specific c-ski transcripts are expressed transiently. Avian cell lines QM7 and QM5 were used as a model to analyze changes in expression and alternative exon usage of c-ski during synchronous muscle differentiation. Upon serum deprivation, QM7 cells undergo myogenic differentiation. In contrast, QM5 cells cease proliferation but do not differentiate. Results show that levels of expression and alternative splicing of c-ski transcripts remain unchanged during cell cycle arrest or myogenic differentiation.
Collapse
Affiliation(s)
- M R Ambrose
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
31
|
Abstract
We have cloned and analyzed the chicken c-sno (cellular ski novel) gene. The promoter region and all of the intron/exon boundaries have been sequenced. The gene is approx. 12-kb long and contains six exons, the first of which is noncoding. The amino-acid sequences encoded in this first coding exon of c-sno and c-ski are highly related; however, the remainder of these two genes appears to be unrelated. Although there is evidence that the transcripts of mammalian c-sno are alternatively spliced, there is no evidence that chicken c-sno is alternatively spliced. The promoter region has a high G + C content and contains neither a TATAA nor a CAAT box. Potential binding sites for the transcription factors SP1, AP1 and AP2, are present upstream from the transcription start point.
Collapse
Affiliation(s)
- I Givol
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, MD 21702-1201, USA
| | | | | |
Collapse
|
32
|
Ludolph DC, Neff AW, Parker MA, Mescher AL, Smith RC, Malacinski GM. Cloning and expression of the axolotl proto-oncogene ski. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:102-4. [PMID: 7999783 DOI: 10.1016/0167-4781(94)00194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro and in vivo overexpression studies have demonstrated that the c-ski proto-oncogene can influence proliferation, morphological transformation and myogenic differentiation. We report the isolation and expression of an axolotl (Ambystoma mexicanum) c-ski (aski) gene. Sequence analysis revealed a high degree of nucleotide and predicted amino acid (AA) homology with mammalian and anuran c-ski, showing the highest conservation to Xenopus laevis c-ski (74% nucleotide and 87% AA). Northern analysis showed that axolotl c-ski is expressed in unfertilized eggs and at increasing levels in embryos from blastula to tadpole stage. c-ski expression was also detected in larval limb muscle and in several stages of regenerating limb blastemas. These data indicate that axolotl c-ski is highly conserved among amphibians and mammals and suggests that it plays a role in urodele embryogenesis and limb regeneration.
Collapse
Affiliation(s)
- D C Ludolph
- Department of Biology, Indiana University, Bloomington 47405
| | | | | | | | | | | |
Collapse
|
33
|
Lyons GE, Micales BK, Herr MJ, Horrigan SK, Namciu S, Shardy D, Stavnezer E. Protooncogene c-ski is expressed in both proliferating and postmitotic neuronal populations. Dev Dyn 1994; 201:354-65. [PMID: 7894074 DOI: 10.1002/aja.1002010407] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cellular protooncogene, c-ski, is expressed in all cells of the developing mouse at low but detectable levels. In situ hybridization and Northern blot analyses reveal that some cells and tissues express this gene at higher levels at certain stages of embryonic and postnatal development. RT-PCR results indicate that alternative splicing of exon 2, known to occur in chickens (Sutrave and Hughes [1989] Mol. Cell. Biol. 9:4046-4051; Grimes et al. [1993] Oncogene 8:2863-2868) does not occur in adult mouse tissues. In the embryo, neural crest cells express the c-ski gene during migration at 8.5 to 9.5 days post coitum (p.c.). Neural crest derivatives such as dorsal root ganglia and melanocytes stain positively with an antibody to the ski protein. At 9 days p.c., the entire neural tube has high levels of c-ski gene expression. By 12-13.5 days only the ependymal layer expresses c-ski above background levels. At 14-16 days p.c., c-ski mRNAs are detected at high levels in the cortical layers of the brain and in the olfactory bulb. In 2 week and 6 week postnatal brains, c-ski gene transcripts are also detected in the hippocampus and in the granule cell layer of the cerebellum. The allantois and placenta exhibit high levels of c-ski mRNAs. Neonatal lung tissue increases c-ski gene expression approximately two-fold compared to prenatal levels. These results suggest that ski plays a role in both the proliferation and differentiation of specific cell populations of the central and peripheral nervous systems and of other tissues.
Collapse
Affiliation(s)
- G E Lyons
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | | | | | | | | | | | |
Collapse
|
34
|
Heyman HC, Stavnezer E. A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47117-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
35
|
|
36
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1989; 17:9511-24. [PMID: 2587282 PMCID: PMC335188 DOI: 10.1093/nar/17.22.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
37
|
Abstract
Quail embryo cells (QECs) are primary cultures of fibroblastoid cells that become myogenic after infection with avian retroviruses expressing the ski oncogene (SKVs). ski also stimulates proliferation of QECs and induces morphological transformation and anchorage-independent growth. Paradoxically, ski-transformed clones picked from soft agar are capable of muscle differentiation. ski-induced differentiation is essentially indistinguishable from that of uninfected myoblasts in culture with regard to muscle-specific gene expression, commitment, and inhibition by growth factors or other oncogenes. However, ski-induced myoblasts have less stringent requirements for growth and differentiation. Uninfected QECs cannot differentiate and do not express an early marker for the myogenic lineage. Clonal analysis indicates that at least 40% of QECs are converted by ski to differentiating myoblasts. The data suggest that ski induces either the capacity for differentiation in an "incompetent" muscle precursor or the determination of nonmyogenic cells to the myogenic lineage.
Collapse
Affiliation(s)
- C Colmenares
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, Ohio 45267-0524
| | | |
Collapse
|