1
|
SHIMOKAWA H, SAKAKIBARA H, AMI Y, HIRANO R, KURIHARA S. The effect of culturing temperature on the growth of the most dominant bacterial species of human gut microbiota and harmful bacterial species. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2025; 44:182-195. [PMID: 40171389 PMCID: PMC11957755 DOI: 10.12938/bmfh.2024-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
In recent years, the gut microbiota has attracted attention due to reported associations with various diseases and health conditions. Gut bacteria have been constantly cultured at 37°C, potentially limiting the understanding of the interaction between them and the host. However, the most dominant human gut microbial species have not been extensively cultured at temperatures other than 37°C. In this study, we analyzed the effects of various culturing temperatures on the growth of the 51 most dominant commensal species as well as 3 harmful bacteria, including Clostridium perfringens, a food poisoning bacterium, in the human intestine. The results showed that the growth of predominant gut microbes varied minimally at body temperatures conducive to human survival but that the growth of several bacteria involved in butyrate production in the intestinal lumen was repressed at temperatures other than 37°C. When cultured at 50°C, the growth of C. perfringens was less inhibited than that of other bacterial species. In addition, the growth of some gut bacteria was unaffected by a body temperature range that was not suitable for human survival.
Collapse
Affiliation(s)
- Hiromi SHIMOKAWA
- Faculty of Biology-Oriented Science and Technology, Kindai
University, Kinokawa, Wakayama 649-6493, Japan
| | - Hikaru SAKAKIBARA
- Faculty of Biology-Oriented Science and Technology, Kindai
University, Kinokawa, Wakayama 649-6493, Japan
| | - Yuta AMI
- Faculty of Biology-Oriented Science and Technology, Kindai
University, Kinokawa, Wakayama 649-6493, Japan
| | - Rika HIRANO
- Faculty of Biology-Oriented Science and Technology, Kindai
University, Kinokawa, Wakayama 649-6493, Japan
- Present address: Division of Animal Genetics, Laboratory
Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1
Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shin KURIHARA
- Faculty of Biology-Oriented Science and Technology, Kindai
University, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
2
|
Fourie JCJ, Van Wyk D, Bezuidenhout CC, Mienie C, Adeleke R. The effects of irrigation on the survival of Clostridium sporogenes in the phyllosphere and soil environments of lettuce. 3 Biotech 2024; 14:239. [PMID: 39310030 PMCID: PMC11415320 DOI: 10.1007/s13205-024-04069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to address the gap in knowledge regarding the fate of foodborne pathogens within agro-ecosystems. It specifically focused on the surrogate microorganism Clostridium sporogenes, which was introduced into lettuce-producing environments via surface and spray irrigation methods, respectively. The concentration of C. sporogenes in the rhizosphere, phyllosphere, and non-rhizosphere soil was quantified by quantitative polymerase chain reaction (qPCR) over a 42-day trial. The surface irrigation method exhibited a more noticeable contamination effect on the soil environments, compared to the phyllosphere. The results indicated a noticeable increase in C. sporogenes concentrations during the initial 22 days, with a 10.4-fold rise (0.39-4.05 log copy numbers/g soil) in the rhizosphere and 1.9-fold increase (2.97-5.59 log copy numbers/g soil) in the non-rhizosphere. However, concentrations in both soil environments subsequently decreased, falling below the initial inoculum concentration by the end of the trial. In contrast, the spray irrigation method resulted in most of the contamination being localised on the lettuce phyllosphere, with a high C. sporogenes concentration of 9.09 log copy numbers/g leaves on day 0. This concentration exponentially decreased to a minimal 0.019 log copy numbers/g leaves by day 32. Although concentrations in both soil environments decreased over time, trace concentrations of C. sporogenes were detectable at the end of the trial, posing a potential hazard to the microbiological safety of postharvest produce. These findings shed light on the dynamics of C. sporogenes in agro-ecosystems and underscore the importance of irrigation practices that ensure the safety of those who consume fresh produce. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04069-5.
Collapse
Affiliation(s)
| | - Deidre Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Charlotte Mienie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
5
|
Yan Z, Fu B, Zhu Y, Zhang Y, Wu Y, Xiong P, Zhou H, Wang Y, Wang S, Chen G, Zhang R, Sun C. High intestinal carriage of Clostridium perfringens in healthy individuals and ICU patients in Hangzhou, China. Microbiol Spectr 2024; 12:e0338523. [PMID: 38771047 PMCID: PMC11218483 DOI: 10.1128/spectrum.03385-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Clostridium perfringens has emerged as a growing public health concern due to its ability to cause various infections and its increasing resistance to antibiotics. To assess its current epidemiology in clinical settings, we conducted a survey involving 426 healthy individuals and 273 ICU inpatients at a provincial hospital in China. Our findings revealed a high prevalence of C. perfringens in healthy individuals (45.77%, 95% CI: 41.0%-50.6%) and ICU patients (12.82%, 95% CI: 9.1%-17.4%). The identified 220 C. perfringens isolates displayed substantial resistance to erythromycin (57.9%), clindamycin (50.7%), and tetracycline (32.0%), primarily attributed to the presence of erm(Q) (54.4%), lnu(P) (13.8%), tetB(P) (83.6%), and tetA(P) (66.7%). Notably, C. perfringens isolates from this particular hospital demonstrated a high degree of sequence type diversity and phylogenic variation, suggesting that the potential risk of infection primarily arises from the bacteria's gut colonization rather than clonal transmissions within the clinical environment. This study provides an updated analysis of the current epidemiology of C. perfringens in healthy individuals and ICU patients in China and emphasizes the need to optimize intervention strategies against its public health threat. IMPORTANCE Clostridium perfringens is a bacterium of growing public health concern due to its ability to cause infections and its increasing resistance to antibiotics. Understanding its epidemiology in clinical settings is essential for intervention strategies. This study surveyed healthy individuals and ICU inpatients in a provincial hospital in China. It found a high prevalence of C. perfringens, indicating infection risk. The isolates also showed significant antibiotic resistance. Importantly, the study revealed diverse sequence types and phylogenetic variation, suggesting infection risk from intestinal colonization rather than clonal transmission in hospitals. This analysis emphasizes the need to optimize intervention strategies against this public health threat.
Collapse
Affiliation(s)
- Zelin Yan
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanyan Zhu
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Pinto CA, Mousakhani Ganjeh A, Barba FJ, Saraiva JA. Impact of pH and High-Pressure Pasteurization on the Germination and Development of Clostridium perfringens Spores under Hyperbaric Storage versus Refrigeration. Foods 2024; 13:1832. [PMID: 38928774 PMCID: PMC11202566 DOI: 10.3390/foods13121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to evaluate hyperbaric storage at room temperature (75-200 MPa, 30 days, 18-23 °C, HS/RT) on Clostridium perfringens spores in brain-heart infusion broth (BHI-broth) at pH 4.50, 6.00, and 7.50 and coconut water (pH 5.40). Both matrices were also pasteurized by high pressure processing (600 MPa, 3 min, 17 °C, HPP) to simulate commercial pasteurization followed by HS, in comparison with refrigeration (5 °C, RF). The results showed that, at AP/RT, spores' development occurred, except at pH 4.50 in BHI-broth, while for RF, no changes occurred along storage. Under HS, at pH 4.50, neither spore development nor inactivation occurred, while at pH 6.00/7.50, inactivation occurred (≈2.0 and 1.0 logs at 200 MPa, respectively). Coconut water at AP/RT faced an increase of 1.6 logs of C. perfringens spores after 15 days, while for RF, no spore development occurred, while the inactivation of spores under HS happened (≈3 logs at 200 MPa). HPP prior to HS seems to promote a subsequent inactivation of C. perfringens spores in BHI-broth at pH 4.50, which is less evident for other pHs. For HPP coconut water, the inactivation levels under HS were lower (≈2.0 logs at 200 MPa). The Weibull model well described the inactivation pattern observed. These results suggest that HS/RT can be simultaneously used as a tool to avoid C. perfringens spores' development, as well as for its inactivation, without the application of high temperatures that are required to inactivate these spores.
Collapse
Affiliation(s)
- Carlos A. Pinto
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| | - Alireza Mousakhani Ganjeh
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain;
| | - Jorge A. Saraiva
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (A.M.G.)
| |
Collapse
|
7
|
Cersosimo LM, Worley JN, Bry L. Approaching toxigenic Clostridia from a One Health perspective. Anaerobe 2024; 87:102839. [PMID: 38552896 PMCID: PMC11180571 DOI: 10.1016/j.anaerobe.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. Their prevalence in diverse ecosystems requires a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs and as commensals or infecting pathogens in human and animal populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.
Collapse
Affiliation(s)
- Laura M Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; National Center for Biotechnology Information, NIH, Bethesda, MD, USA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Mehdizadeh Gohari I, Gonzales JL, Uzal FA, McClane BA. Overexpressing the cpr1953 Orphan Histidine Kinase Gene in the Absence of cpr1954 Orphan Histidine Kinase Gene Expression, or Vice Versa, Is Sufficient to Obtain Significant Sporulation and Strong Production of Clostridium perfringens Enterotoxin or Spo0A by Clostridium perfringens Type F Strain SM101. Toxins (Basel) 2024; 16:195. [PMID: 38668620 PMCID: PMC11053440 DOI: 10.3390/toxins16040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Jessica L. Gonzales
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA; (J.L.G.); (F.A.U.)
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA; (J.L.G.); (F.A.U.)
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| |
Collapse
|
9
|
Mehdizadeh Gohari I, Edwards AN, McBride SM, McClane BA. The impact of orphan histidine kinases and phosphotransfer proteins on the regulation of clostridial sporulation initiation. mBio 2024; 15:e0224823. [PMID: 38477571 PMCID: PMC11210211 DOI: 10.1128/mbio.02248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Wang C, Defoirdt T, Rajkovic A. The impact of indole and mucin on sporulation, biofilm formation, and enterotoxin production in foodborne Clostridium perfringens. J Appl Microbiol 2024; 135:lxae083. [PMID: 38544331 DOI: 10.1093/jambio/lxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
AIMS Indole and mucin are compounds found in the host environment as they are produced by the host or by the host-associated microbiota. This study investigated whether indole and mucin impact Clostridium perfringens growth and sporulation, as well as enterotoxin production and biofilm formation. METHODS AND RESULTS There was no impact on growth of Cl. perfringens for up to 400 µM indole and 240 mg/l mucin, and neither indole nor mucin affected sporulation. Reverse-transcriptase qPCR showed that mucin strongly upregulated the expression of Cl. perfringens enterotoxin (up to 121-fold increase), whereas indole had a much more modest effect (2-fold). This was also reflected in increased Cl. perfringens enterotoxin levels in mucin-treated Cl. perfringens (as assessed by a reversed passive latex agglutination assay). Finally, mucin and indole significantly increased biofilm formation of Cl. perfringens, although the effect size was relatively small (less than 1.5 fold). CONCLUSION These results indicate that Cl. perfringens can sense its presence in a host environment by responding to mucin, and thereby markedly increased enterotoxin production.
Collapse
Affiliation(s)
- Chao Wang
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Talukdar PK, Alnoman M, Sarker MR. Identification of Germinants and Expression of Germination Genes in Clostridium perfringens Strains Isolated from Diarrheic Animals. Pathogens 2024; 13:194. [PMID: 38535537 PMCID: PMC10975619 DOI: 10.3390/pathogens13030194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/11/2025] Open
Abstract
In this study, we investigated the spore germination phenotype of Clostridium perfringens strains isolated from diarrheic animals (animal strains). The transcripts of germination-specific genes and their protein products were also measured. Our study found the following results: (i) animal strains spores germinated at a slower rate with AK (mixture of L-asparagine and KCl), L-cysteine, or L-lysine, but the extent of germination varied based on strains and germinants used; (ii) none of the amino acids (excluding L-cysteine and L-lysine) were identified as a universal germinant for spores of animal strains; (iii) animal strain spores germinated better at a pH range of 6.0-7.0; (iv) all tested germination-specific genes were expressed in animal strains; the levels of expression of major germinant receptor gene (gerKC) were higher and the cortex hydrolysis machinery genes (cspB and sleC) were lower in animal strains, compared to the food poisoning strain SM101; and (v) the levels of CspB and SleC were significantly lower in spores of animal strains compared to strain SM101, suggesting that these animal strains lack an efficient spore cortex hydrolysis machinery. In summary, our findings suggest that the poor or slow spore germination in C. perfringens animal strains might be due to incomplete spore cortex hydrolysis.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Maryam Alnoman
- Department of Biology, College of Science Yanbu, Taibah University, Al-Madinah 41491, Saudi Arabia;
| | - Mahfuzur R. Sarker
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Cersosimo LM, Worley JN, Bry L. Approaching pathogenic Clostridia from a One Health perspective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574718. [PMID: 38260382 PMCID: PMC10802438 DOI: 10.1101/2024.01.08.574718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. These behaviors require a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs, and as commensals or infecting pathogens in human and veterinary populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.
Collapse
Affiliation(s)
- Laura M. Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Jay N. Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
- National Center for Biotechnology Information, NIH, Bethesda, MD
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
- Clinical Microbiology Laboratory, Dept. Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
13
|
Mertaoja A, Mascher G, Nowakowska MB, Korkeala H, Henriques AO, Lindstrom M. Cellular and population strategies underpinning neurotoxin production and sporulation in Clostridium botulinum type E cultures. mBio 2023; 14:e0186623. [PMID: 37971252 PMCID: PMC10746260 DOI: 10.1128/mbio.01866-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Toxin production and sporulation are key determinants of pathogenesis in Clostridia. Toxins cause the clinical manifestation of clostridial diseases, including diarrhea and colitis, tissue damage, and systemic effects on the nervous system. Spores ensure long-term survival and persistence in the environment, act as infectious agents, and initiate the host tissue colonization leading to infection. Understanding the interplay between toxin production and sporulation and their coordination in bacterial cells and cultures provides novel intervention points for controlling the public health and food safety risks caused by clostridial diseases. We demonstrate environmentally driven cellular heterogeneity in botulinum neurotoxin and spore production in Clostridium botulinum type E populations and discuss the biological rationale of toxin and spore production in the pathogenicity and ecology of C. botulinum. The results invite to reassess the epidemiology of botulism and may have important implications in the risk assessment and risk management strategies in food processing and human and animal health.
Collapse
Affiliation(s)
- Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Miia Lindstrom
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Garvey M. Foodborne Clostridioides Species: Pathogenicity, Virulence and Biocontrol Options. Microorganisms 2023; 11:2483. [PMID: 37894141 PMCID: PMC10609181 DOI: 10.3390/microorganisms11102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides species possess many virulence factors and alarming levels of muti-drug resistance which make them a significant risk to public health safety and a causative agent of livestock disease. Clostridioides result in serious systemic and gastrointestinal diseases such as myonecrosis, colitis, food poisoning and gastroenteritis. As foodborne pathogens, Clostridioides species are associated with significant incidences of morbidity and mortality where the application of broad-spectrum antibiotics predisposes patients to virulent Clostridioides colonisation. As part of the One Health approach, there is an urgent need to eliminate the use of antibiotics in food production to safeguard animals, humans and the environment. Alternative options are warranted to control foodborne pathogens at all stages of food production. Antimicrobial peptides and bacteriophages have demonstrated efficacy against Clostridioides species and may offer antimicrobial biocontrol options. The bacteriocin nisin, for example, has been implemented as a biopreservative for the control of Listeria, Staphylococcus and Clostridia species in food. Bacteriophage preparations have also gained recognition for the antibacterial action against highly virulent bacterial species including foodborne pathogens. Studies are warranted to mitigate the formulation and administration limitations associated with the application of such antimicrobials as biocontrol strategies. This review outlines foodborne Clostridioides species, their virulence factors, and potential biocontrol options for application in food production.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Ash Lane, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
15
|
Xu B, Shaoyong W, Wang L, Yang C, Chen T, Jiang X, Yan R, Jiang Z, Zhang P, Jin M, Wang Y. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections. SCIENCE ADVANCES 2023; 9:eadf8782. [PMID: 37774026 PMCID: PMC10541502 DOI: 10.1126/sciadv.adf8782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Specifically targeted antimicrobial peptides (STAMPs) are novel alternatives to antibiotics, whereas the development of STAMPs for colonic infections is hindered by limited de novo design efficiency and colonic bioavailability. In this study, we report an efficient de novo STAMP design strategy that combines a traversal design, machine learning model, and phage display technology to identify STAMPs against Clostridium perfringens. STAMPs could physically damage C. perfringens, eliminate biofilms, and self-assemble into nanoparticles to entrap pathogens. Further, a gut-targeted engineering particle vaccine (EPV) was used for STAMPs delivery. In vivo studies showed that both STAMP and EPV@STAMP effectively limited C. perfringens infections and then reduced inflammatory response. Notably, EPV@STAMP exhibited stronger protection against colonic infections than STAMPs alone. Moreover, 16S ribosomal RNA sequencing showed that both STAMPs and EPV@STAMP facilitated the recovery of disturbed gut microflora. Collectively, our work may accelerate the development of the discovery and delivery of precise antimicrobials.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Weike Shaoyong
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Tingjun Chen
- College of Animal Science, Zhejiang University; Hangzhou 310058, China
| | - Xiao Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Rong Yan
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Zipeng Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Pan Zhang
- College of Animal Science, Zhejiang University; Hangzhou 310058, China
| | - Mingliang Jin
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Kiu R, Shaw AG, Sim K, Acuna-Gonzalez A, Price CA, Bedwell H, Dreger SA, Fowler WJ, Cornwell E, Pickard D, Belteki G, Malsom J, Phillips S, Young GR, Schofield Z, Alcon-Giner C, Berrington JE, Stewart CJ, Dougan G, Clarke P, Douce G, Robinson SD, Kroll JS, Hall LJ. Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains. Nat Microbiol 2023; 8:1160-1175. [PMID: 37231089 PMCID: PMC10234813 DOI: 10.1038/s41564-023-01385-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Kathleen Sim
- Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Harley Bedwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sally A Dreger
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Wesley J Fowler
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Emma Cornwell
- Faculty of Medicine, Imperial College London, London, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gusztav Belteki
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge, UK
| | - Jennifer Malsom
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sarah Phillips
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Zoe Schofield
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul Clarke
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Gillian Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J Simon Kroll
- Faculty of Medicine, Imperial College London, London, UK
| | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
17
|
Liang D, Cui X, Li M, Zhu Y, Zhao L, Liu S, Zhao G, Wang N, Ma Y, Xu L. Effects of sporulation conditions on the growth, germination, and resistance of Clostridium perfringens spores. Int J Food Microbiol 2023; 396:110200. [PMID: 37119648 DOI: 10.1016/j.ijfoodmicro.2023.110200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
Clostridium perfringens can form metabolically dormant spores that can survive in meat preservation processes and cause food spoilage and human disease upon germination and outgrowth. The characteristics of spores in food products are closely related to the sporulation environment. To control or inactivate C. perfringens spores in food industry, the effects of sporulation conditions on the spores characteristics should be examined. This study aimed to investigate the effects of temperature (T), pH, and water activity (aw) on the growth, germination, and wet-heat resistance of C. perfringens C1 spores isolated from food product. The results showed that C. perfringens C1 spores produced at T = 37 °C, pH = 8, and aw = 0.997 had the highest sporulation rate and germination efficiency and lowest wet-heat resistance. A further increase in pH and sporulation temperature reduced the spore counts and germination efficiency, but enhanced spores' wet-heat resistance. By using air-drying method and Raman spectroscopy analysis, the water content, composition, and levels of calcium dipicolinic acid, proteins, and nucleic acids in spores produced under different sporulation conditions were determined. The results obtained revealed that sporulation conditions should be carefully considered during food production and processing, thus providing a novel insight into prevention and control of spores in food industry.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Xiaoshuang Cui
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China.
| | - Yaodi Zhu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Shijie Liu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Na Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lina Xu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, No. 63 Wenhua Rd, Zhengzhou 450002, PR China
| |
Collapse
|
18
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
19
|
Characterization of NanR Regulation of Sialidase Production, Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strains Carrying a Chromosomal Enterotoxin Gene. Toxins (Basel) 2022; 14:toxins14120872. [PMID: 36548769 PMCID: PMC9788507 DOI: 10.3390/toxins14120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens type F food poisoning (FP) strains produce C. perfringens enterotoxin (CPE) to cause a common bacterial food-borne illness in the United States. During FP, CPE is synthesized in the intestines when C. perfringens sporulates. Besides CPE, FP strains also produce sialidases. Most FP strains carry their cpe gene on the chromosome and all surveyed chromosomal cpe (c-cpe) FP strains produce NanH sialidase or both NanJ and NanH sialidases. NanR has been shown previously to regulate sialidase activity in non-FP strains. The current study investigated whether NanR also regulates sialidase activity or influences sporulation and CPE production for c-cpe FP strains SM101 and 01E809. In sporulation medium, the SM101 nanR null mutant showed lower sialidase activity, sporulation, and CPE production than its wild-type parent, while the 01E809 nanR null mutant showed roughly similar sialidase activity, sporulation, and CPE production as its parent. In vegetative medium, the nanR null mutants of both strains produced more spores than their parents while NanR repressed sialidase activity in SM101 but positively regulated sialidase activity in 01E809. These results demonstrate that NanR regulates important virulence functions of c-cpe strains, with this control varying depending on strain and culture conditions.
Collapse
|
20
|
Banawas SS. Systematic Review and Meta-Analysis on the Frequency of Antibiotic-Resistant Clostridium Species in Saudi Arabia. Antibiotics (Basel) 2022; 11:antibiotics11091165. [PMID: 36139945 PMCID: PMC9495114 DOI: 10.3390/antibiotics11091165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium is a genus comprising Gram-positive, rod-shaped, spore-forming, anaerobic bacteria that cause a variety of diseases. However, there is a shortage of information regarding antibiotic resistance in the genus in Saudi Arabia. This comprehensive analysis of research results published up until December 2021 intends to highlight the incidence of antibiotic resistance in Clostridium species in Saudi Arabia. PubMed, Google Scholar, Web of Science, SDL, and ScienceDirect databases were searched using specific keywords, and ten publications on antibiotic resistance in Clostridium species in Saudi Arabia were identified. We found that the rates of resistance of Clostridium difficile to antibiotics were as follows: 42% for ciprofloxacin, 83% for gentamicin, 28% for clindamycin, 25% for penicillin, 100% for levofloxacin, 24% for tetracycline, 77% for nalidixic acid, 50% for erythromycin, 72% for ampicillin, and 28% for moxifloxacin; whereas those of C. perfringens were: 21% for metronidazole, 83% for ceftiofur, 39% for clindamycin, 59% for penicillin, 62% for erythromycin, 47% for oxytetracycline, and 47% for lincomycin. The current findings suggest that ceftiofur, erythromycin, lincomycin, and oxytetracycline should not be used in C. perfringens infection treatments in humans or animals in Saudi Arabia.
Collapse
Affiliation(s)
- Saeed S. Banawas
- Department of Medical Laboratories, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia; ; Tel.: +966-164041510
- Health and Basic Sciences Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
22
|
Talukdar PK, Sarker MR. Characterization of Putative Sporulation and Germination Genes in Clostridium perfringens Food-Poisoning Strain SM101. Microorganisms 2022; 10:microorganisms10081481. [PMID: 35893539 PMCID: PMC9332280 DOI: 10.3390/microorganisms10081481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial sporulation and spore germination are two intriguing processes that involve the expression of many genes coherently. Phylogenetic analyses revealed gene conservation among spore-forming Firmicutes, especially in Bacilli and Clostridia. In this study, by homology search, we found Bacillus subtilis sporulation gene homologs of bkdR, ylmC, ylxY, ylzA, ytaF, ytxC, yyaC1, and yyaC2 in Clostridium perfringenes food-poisoning Type F strain SM101. The β-glucuronidase reporter assay revealed that promoters of six out of eight tested genes (i.e., bkdR, ylmC, ytaF, ytxC, yyaC1, and yyaC2) were expressed only during sporulation, but not vegetative growth, suggesting that these genes are sporulation-specific. Gene knock-out studies demonstrated that C. perfringens ΔbkdR, ΔylmC, ΔytxC, and ΔyyaC1 mutant strains produced a significantly lower number of spores compared to the wild-type strain. When the spores of these six mutant strains were examined for their germination abilities in presence of known germinants, an almost wild-type level germination was observed with spores of ΔytaF or ΔyyaC1 mutants; and a slightly lower level with spores of ΔbkdR or ΔylmC mutants. In contrast, almost no germination was observed with spores of ΔytxC or ΔyyaC2 mutants. Consistent with germination defects, ΔytxC or ΔyyaC2 spores were also defective in spore outgrowth and colony formation. The germination, outgrowth, and colony formation defects of ΔytxC or ΔyyaC2 spores were restored when ΔytxC or ΔyyaC2 mutant was complemented with wild-type ytxC or yyaC2, respectively. Collectively, our current study identified new sporulation and germination genes in C. perfringens.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (P.K.T.); (M.R.S.); Tel.: +1-509-335-4029 (P.K.T.); +1-541-737-6918 (M.R.S.)
| | - Mahfuzur R. Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (P.K.T.); (M.R.S.); Tel.: +1-509-335-4029 (P.K.T.); +1-541-737-6918 (M.R.S.)
| |
Collapse
|
23
|
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere 2022; 7:e0013222. [PMID: 35638354 PMCID: PMC9241537 DOI: 10.1128/msphere.00132-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a “division of labor” between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCEClostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a “division of labor” between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.
Collapse
|
24
|
Marmion M, Macori G, Ferone M, Whyte P, Scannell A. Survive and thrive: Control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int J Food Microbiol 2022; 368:109612. [DOI: 10.1016/j.ijfoodmicro.2022.109612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
25
|
Phytic Acid against Clostridium perfringens Type A: A Food Matrix Study. Foods 2022; 11:foods11030406. [PMID: 35159556 PMCID: PMC8834072 DOI: 10.3390/foods11030406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
This study evaluated the inhibitory effect of phytic acid (PA) on the spore germination and vegetative cells growth of Clostridium perfringens type A, as well as its effect in combination with maltodextrin (MD) in cooked sausages. The addition of 1% PA showed a satisfactory inhibition of spores’ germination and vegetative cells growth of C. perfringens in BHI media. The inhibitory effect of 1% PA on vegetative cells was similar to the additive sodium sorbate (SS) at 10%. Subsequently, a mixture of PA-MD (1:1; w/w) was evaluated for the inhibition of C. perfringens spores in cooked sausages. The PA-MD 1.5% and 2.5% had a similar performance to SS 10% and a similar or higher performance than 0.015% NO2 (p < 0.05). In an unprecedented way, the present study demonstrated that PA inhibited spore germination and vegetative cells growth of C. perfringens, highlighting its potential use as an alternative and natural preservative for the meat industry.
Collapse
|
26
|
Navarro MA, Li J, Beingesser J, McClane BA, Uzal FA. NanI Sialidase Enhances the Action of Clostridium perfringens Enterotoxin in the Presence of Mucus. mSphere 2021; 6:e0084821. [PMID: 34908460 PMCID: PMC8673254 DOI: 10.1128/msphere.00848-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is the main virulence factor for C. perfringens type F strains to cause human gastrointestinal diseases, which can involve lethal enterotoxemia. During type F disease, CPE encounters an adherent mucus layer overlying the intestines, so the current study evaluated if NanI potentiates CPE activity in the presence of adherent mucus. CPE alone caused more cytotoxicity transepithelial electrical resistance (TEER) and permeability to fluorescent dextran (FD) for minimal mucus-producing HT29 cells versus that in their derivative HT29-MTX-E12 cells, which produce abundant adherent mucus. However, for HT29-MTX-E12 cells, the presence of NanI significantly increased CPE binding and pore formation, which enhanced their sensitivity to CPE effects on cytotoxicity, TEER, and FD permeability. When the ability of NanI to potentiate CPE-induced enterotoxemia was then tested in a mouse small intestinal loop enterotoxemia model, a pathophysiologically relevant 50 μg/mL dose of CPE did not kill mice. However, the copresence of purified NanI resulted in significant CPE-induced lethality. More CPE was detected in the sera of mice challenged with 50 μg/mL of CPE when NanI was copresent during challenge. The copresence of NanI and CPE during challenge also significantly increased intestinal histologic damage compared to that after challenge with CPE alone, suggesting that NanI enhancement of CPE-induced intestinal damage may increase CPE absorption into blood. Overall, these results indicate that (i) mucus inhibits CPE action and (ii) NanI can potentiate CPE action in the presence of mucus, which may help explain why type F strains that produce relatively low levels of CPE are still pathogenic. IMPORTANCE NanI is a sialidase produced by some Clostridium perfringens type F strains. Here, we found that NanI can significantly increase the action of C. perfringens enterotoxin (CPE), which is the main toxin responsible for severe human enteric disease caused by type F strains. This effect likely helps to explain why even some type F strains that produce small amounts of CPE are pathogenic.
Collapse
Affiliation(s)
- Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California, Davis, San Bernardino, California, USA
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Juliann Beingesser
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California, Davis, San Bernardino, California, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California, Davis, San Bernardino, California, USA
| |
Collapse
|
27
|
An Interdisciplinary Approach to Reducing NEC While Optimizing Growth: A 20-Year Journey. Adv Neonatal Care 2021; 21:433-442. [PMID: 34510070 DOI: 10.1097/anc.0000000000000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) and postnatal growth restriction are significant clinical dilemmas that contribute to short- and long-term morbidities for the most premature infants. PURPOSE After a rise in NEC rates in a regional neonatal intensive care unit (NICU), improvement practices were implemented by an interdisciplinary quality improvement (QI) work group whose focus was initially on nutrition and growth. QI work was refocused to address both NEC and growth concurrently. METHODS Through various QI initiatives and with evolving understanding of NEC and nutrition, the work group identified and implemented multiple practices changes over 2-decade time span. A standardized tool was used to review each case of NEC and outcomes were continually tracked to guide QI initiatives. LOCAL FINDINGS Focused QI work contributed to a significant reduction in NEC rates from 16.2% in 2007 to 0% in 2018 for inborn infants. Exclusive human milk diet was a critical part of the success. Postnatal growth outcomes initially declined after initial NEC improvement work. Improvement work that focused jointly on NEC and nutrition resulted in improved growth outcomes without impacting NEC. IMPLICATIONS FOR PRACTICE Use of historical perspective along with evolving scientific understanding can guide local improvement initiatives. Work must continue to optimize lactation during NICU hospitalization. More research is needed to determine impact of care practices on gastrointestinal inflammation including medication osmolality, probiotics, and noninvasive respiratory support.
Collapse
|
28
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Jenkins MC, Parker C, O'Brien C, Camp MJ, Vinyard BT, Heeder C, Proszkowiec-Weglarz M. Metagenomic Analysis of 16S Clostridium perfringens Amplicons Corroborates C. perfringens Counts on Select Agar and C. perfringens PCR Analyses of Bacteria in Broiler Farm Litter. Avian Dis 2021; 65:554-558. [DOI: 10.1637/aviandiseases-d-21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Mark C. Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Carolyn Parker
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Celia O'Brien
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Mary J. Camp
- Statistics Group, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Bryan T. Vinyard
- Statistics Group, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | | | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
30
|
Abdel-Glil MY, Thomas P, Linde J, Jolley KA, Harmsen D, Wieler LH, Neubauer H, Seyboldt C. Establishment of a Publicly Available Core Genome Multilocus Sequence Typing Scheme for Clostridium perfringens. Microbiol Spectr 2021; 9:e0053321. [PMID: 34704797 PMCID: PMC8549748 DOI: 10.1128/spectrum.00533-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens is a spore-forming anaerobic pathogen responsible for a variety of histotoxic and intestinal infections in humans and animals. High-resolution genotyping aiming to identify bacteria at strain level has become increasingly important in modern microbiology to understand pathogen transmission pathways and to tackle infection sources. This study aimed at establishing a publicly available genome-wide multilocus sequence-typing (MLST) scheme for C. perfringens. A total of 1,431 highly conserved core genes (1.34 megabases; 50% of the reference genome genes) were indexed for a core genome-based MLST (cgMLST) scheme for C. perfringens. The scheme was applied to 282 ecologically and geographically diverse genomes, showing that the genotyping results of cgMLST were highly congruent with the core genome-based single-nucleotide-polymorphism typing in terms of resolution and tree topology. In addition, the cgMLST provided a greater discrimination than classical MLST methods for C. perfringens. The usability of the scheme for outbreak analysis was confirmed by reinvestigating published outbreaks of C. perfringens-associated infections in the United States and the United Kingdom. In summary, a publicly available scheme and an allele nomenclature database for genomic typing of C. perfringens have been established and can be used for broad-based and standardized epidemiological studies. IMPORTANCE Global epidemiological surveillance of bacterial pathogens is enhanced by the availability of standard tools and sharing of typing data. The use of whole-genome sequencing has opened the possibility for high-resolution characterization of bacterial strains down to the clonal and subclonal levels. Core genome multilocus sequence typing is a robust system that uses highly conserved core genes for deep genotyping. The method has been successfully and widely used to describe the epidemiology of various bacterial species. Nevertheless, a cgMLST typing scheme for Clostridium perfringens is currently not publicly available. In this study, we (i) developed a cgMLST typing scheme for C. perfringens, (ii) evaluated the performance of the scheme on different sets of C. perfringens genomes from different hosts and geographic regions as well as from different outbreak situations, and, finally, (iii) made this scheme publicly available supported by an allele nomenclature database for global and standard genomic typing.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, Muenster, Germany
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
31
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
32
|
Li J, Navarro MA, Uzal FA, McClane BA. NanI Sialidase Contributes to the Growth and Adherence of Clostridium perfringens Type F Strain F4969 in the Presence of Adherent Mucus. Infect Immun 2021; 89:e0025621. [PMID: 34424746 PMCID: PMC8519267 DOI: 10.1128/iai.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens type F strains causing nonfoodborne human gastrointestinal diseases (NFD) typically produce NanI sialidase as their major secreted sialidase. Type F NFDs can persist for several weeks, indicating their pathogenesis involves intestinal colonization, including vegetative cell growth and adherence, with subsequent sporulation that fosters enterotoxin production and release. We previously reported that NanI contributes to type F NFD strain adherence and growth using Caco-2 cells. However, Caco-2 cells make minimal amounts of mucus, which is significant because the intestines are coated with adherent mucus. Therefore, it was important to assess if NanI contributes to the growth and adherence of type F NFD strains in the presence of adherent mucus. Consequently, the current study first demonstrated greater growth of nanI-carrying versus non-nanI-carrying type F strains in the presence of HT29-MTX-E12 cells, which produce an adherent mucus layer, versus their parental HT29 cells, which make minimal mucus. Demonstrating the specific importance of NanI for this effect, type F NFD strain F4969 or a complementing strain grew and adhered better than an isogenic nanI null mutant in the presence of HT29-MTX-E12 cells versus HT29 cells. Those effects involved mucus production by HT29-MTX-E12 cells since mucus reduction using N-acetyl cysteine reduced F4969 growth and adherence. Consistent with those in vitro results, NanI contributed to growth of F4969 in the mouse small intestine. By demonstrating a growth and adherence role for NanI in the presence of adherent mucus, these results further support NanI as a potential virulence factor during type F NFDs.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Specific Secondary Bile Acids Control Chicken Necrotic Enteritis. Pathogens 2021; 10:pathogens10081041. [PMID: 34451506 PMCID: PMC8427939 DOI: 10.3390/pathogens10081041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Necrotic enteritis (NE), mainly induced by the pathogens of Clostridium perfringens and coccidia, causes huge economic losses with limited intervention options in the poultry industry. This study investigated the role of specific bile acids on NE development. Day-old broiler chicks were assigned to six groups: noninfected, NE, and NE with four bile diets of 0.32% chicken bile, 0.15% commercial ox bile, 0.15% lithocholic acid (LCA), or 0.15% deoxycholic acid (DCA). The birds were infected with Eimeria maxima at day 18 and C. perfringens at day 23 and 24. The infected birds developed clinical NE signs. The NE birds suffered severe ileitis with villus blunting, crypt hyperplasia, epithelial line disintegration, and massive immune cell infiltration, while DCA and LCA prevented the ileitis histopathology. NE induced severe body weight gain (BWG) loss, while only DCA prevented NE-induced BWG loss. Notably, DCA reduced the NE-induced inflammatory response and the colonization and invasion of C. perfringens compared to NE birds. Consistently, NE reduced the total bile acids in the ileal digesta, while dietary DCA and commercial bile restored it. Together, this study showed that DCA and LCA reduced NE histopathology, suggesting that secondary bile acids, but not total bile acid levels, play an essential role in controlling the enteritis.
Collapse
|
34
|
Epigallocatechin gallate and Lactobacillus plantarum culture supernatants exert bactericidal activity and reduce biofilm formation in Clostridium perfringens. Folia Microbiol (Praha) 2021; 66:843-853. [PMID: 34170482 DOI: 10.1007/s12223-021-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Clostridium perfringens forms biofilms and spores that are a source of food contamination. In this study, the antibacterial activities of Lactobacillus plantarum culture supernatants (LP-S), LP-S fractions, and the plant-derived compound epigallocatechin gallate (EG) were evaluated. Specifically, their effects on the viability and biofilm-forming ability of C. perfringens were assessed. Moreover, the expression of quorum sensing-regulated genes associated with the pathogenesis of this microorganism and that of genes involved in biofilm formation was also investigated. The results showed that both EG and the LP-S exerted bactericidal activity against all C. perfringens strains tested. The minimal bactericidal concentration (MBC) of EG was 75 µg/mL for all strains but ranged from 61 to 121 µg of total protein per mL for LP-S. EG exerted only minor effects on biofilm formation, whereas LP-S, particularly its 10 and 30 K fractions, significantly reduced the biofilm-forming ability of all the strains. The antibiofilm activity of LP-S was lost following preincubation with proteases, suggesting that it was mediated by a proteinaceous molecule. The treatment of C. perfringens with either EG or LP-S did not change the transcript levels of two CpAL (C. perfringens quorum-sensing Agr-like system)-related genes, agrB and agrD, which are known to be involved in the regulation of biofilms, suggesting that LP-S exerted its biofilm inhibitory activity downstream of CpAL signaling. In summary, we demonstrated the bactericidal activity of EG and LP-S against C. perfringens and antibiofilm activity of LP-S at a subinhibitory dose. Our results suggested that these compounds can be further explored for food safety applications to control agents such as C. perfringens.
Collapse
|
35
|
NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. mSphere 2021; 6:6/2/e00176-21. [PMID: 33910991 PMCID: PMC8092135 DOI: 10.1128/msphere.00176-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. Clostridium perfringens type F food poisoning (FP) strains cause one of the most common foodborne illnesses. This FP develops when type F FP strains sporulate in the intestines and produce C. perfringens enterotoxin (CPE), which is responsible for the diarrhea and abdominal cramps of this disease. While C. perfringens can produce up to three different sialidases, the current study surveyed FP strains, which confirmed the results of a previous study that they consistently carry the nanH sialidase gene, often as their only sialidase gene. NanH production was found to be associated with sporulating cultures of the surveyed type F FP strains, including SM101 (a transformable derivative of a FP strain). The sporulation-associated regulation of NanH production by strain SM101 growing in modified Duncan-Strong medium (MDS) was shown to involve Spo0A, but it did not require the completion of sporulation. NanH production was not necessary for either the growth or sporulation of SM101 when cultured in MDS. In those MDS cultures, NanH accumulated in the sporulating mother cell until it was released coincidently with CPE. Since CPE becomes extracellular when mother cells lyse to release their mature spores, this indicates that mother cell lysis is also important for NanH release. The copresence of NanH and CPE in supernatants from lysed sporulating cultures was shown to enhance CPE cytotoxicity for Caco-2 cells. This enhancement was attributable to NanH increasing CPE binding and could be replicated with purified recombinant NanH. These in vitro findings suggest that NanH may be an accessory virulence factor during type F FP. IMPORTANCEClostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. While many type F FP strains do not produce NanI, they do consistently make NanH sialidase. This study shows that, like CPE, NanH is produced by sporulating type F FP strains and then released extracellularly when their sporulating cells lyse to release their mature spore. NanH was shown to enhance CPE cytotoxicity in vitro by increasing CPE binding to cultured Caco-2 cells. This enhancement could be important because many type F FP strains produce less CPE than necessary (in a purified form) to cause intestinal pathology in animal models. Therefore, NanH represents a potential accessory virulence factor for type F FP.
Collapse
|
36
|
Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies. Toxins (Basel) 2021; 13:toxins13040266. [PMID: 33917845 PMCID: PMC8068247 DOI: 10.3390/toxins13040266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.
Collapse
|
37
|
Hu WS, Woo DU, Kang YJ, Koo OK. Biofilm and Spore Formation of Clostridium perfringens and Its Resistance to Disinfectant and Oxidative Stress. Antibiotics (Basel) 2021; 10:antibiotics10040396. [PMID: 33917564 PMCID: PMC8067515 DOI: 10.3390/antibiotics10040396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Clostridium perfringens is a major human pathogen that causes gastroenteritis via enterotoxin production and has the ability to form spores and biofilms for environmental persistence and disease transmission. This study aimed to compare the disinfectant and environmental resistance properties of C. perfringens vegetative cells and spores in planktonic and sessile conditions, and to examine the nucleotide polymorphisms and transcription under sessile conditions in C. perfringens strains isolated from meat. The sporulation rate of sessile C. perfringens TYJAM-D-66 (cpe+) was approximately 19% at day 5, while those of CMM-C-80 (cpe−) and SDE-B-202 (cpe+) were only 0.26% and 0.67%, respectively, at day 7. When exposed to aerobic conditions for 36 h, TYJAM-D-66, CMM-C-80, and SDE-B-202 vegetative cells showed 1.70 log, 5.36 log, and 5.67 log reductions, respectively. After treatment with sodium hypochlorite, the survival rates of TYJAM-D-66 vegetative cells (53.6%) and spores (82.3%) in biofilms were higher than those of planktonic cells (9.23%). Biofilm- and spore-related genes showed different expression within TYJAM-D-66 (–4.66~113.5), CMM-C-80 (–3.02~2.49), and SDE-B-202 (–5.07~2.73). Our results indicate the resistance of sessile cells and spores of C. perfringens upon exposure to stress conditions after biofilm formation.
Collapse
Affiliation(s)
- Wen Si Hu
- Department of Food Science and Engineering, Liaocheng University, Liaocheng 252059, China;
| | - Dong U Woo
- Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea; (D.U.W.); (Y.J.K.)
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea
| | - Yang Jae Kang
- Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea; (D.U.W.); (Y.J.K.)
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea
| | - Ok Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1441
| |
Collapse
|
38
|
Smith CJ, Olszewska MA, Diez-Gonzalez F. Selection and application of natural antimicrobials to control Clostridium perfringens in sous-vide chicken breasts inhibition of C. perfringens in sous-vide chicken. Int J Food Microbiol 2021; 347:109193. [PMID: 33836443 DOI: 10.1016/j.ijfoodmicro.2021.109193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Current consumer preferences for both clean label food ingredients and convenience-based foods has provided a unique opportunity to explore the application of novel natural food preservatives in sous vide products. The anaerobic environment and relatively low thermal processing of the sous vide process creates a favorable environment for the survival, germination, and outgrowth of spore-forming bacterium Clostridium perfringens. The aim of this study was to identify effective novel natural ingredient formulations against C. perfringens and apply them within a vacuum-sealed sous vide chicken model exposed to abusive storage and chilling conditions. Among six commercial vinegar-based formulations, liquid vinegar with citrus extract (CE; 1.0%) and with lemon juice concentrate (LJC; 1.5%) were identified as the most effective at inhibiting three individual C. perfringens strains. Both reduced viable cell counts by 5 log CFU/mL (P < 0.05), whereas reductions in spore counts ranged from 2 to 4 log CFU/mL depending on formulation and concentration used. Once incorporated to chicken meat 1.0% CE and 1.5% LJC before sous-vide cooking, completely inhibited the growth of mixed C. perfringens strains (P < 0.05) during storage for 16 days at 12 and 16 °C. Exponential cooling from 54 to 4 °C was performed for 18 h to imitate abusive storage conditions. CE and LJC at 3.0% inhibited growth and reduced counts by 3.4 and 2.9 log CFU/g compared to respective controls. Treatments CE and LJC could be implemented within the formulation of a sous vide chicken product to provide an effective protection against C. perfringens meeting clean label expectations.
Collapse
Affiliation(s)
- Clayton J Smith
- Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Magdalena A Olszewska
- Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| | - Francisco Diez-Gonzalez
- Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| |
Collapse
|
39
|
Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens. J Bacteriol 2021; 203:JB.00580-20. [PMID: 33526612 DOI: 10.1128/jb.00580-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Large clostridial toxins (LCTs) are secreted virulence factors found in several species, including Clostridioides difficile, Clostridium perfringens, Paeniclostridium sordellii, and Clostridium novyi LCTs are large toxins that lack a secretion signal sequence, and studies by others have shown that the LCTs of C. difficile, TcdA and TcdB, require a holin-like protein, TcdE, for secretion. The TcdE gene is located on the pathogenicity locus (PaLoc) of C. difficile, and holin-encoding genes are also present in the LCT-encoded PaLocs from P. sordellii and C. perfringens However, the holin (TpeE) associated with the C. perfringens LCT TpeL has no homology and a different membrane topology than TcdE. In addition, TpeE has a membrane topology identical to that of the TatA protein, which is the core of the twin-arginine translocation (Tat) secretion system. To determine if TpeE was necessary and sufficient to secrete TpeL, the genes from a type C strain of C. perfringens were expressed in a type A strain of C. perfringens, HN13, and secretion was measured using Western blot methods. We found that TpeE was required for TpeL secretion and that secretion was not due to cell lysis. Mutant forms of TpeE lacking an amphipathic helix and a charged C-terminal domain failed to secrete TpeL, and mutations that deleted conserved LCT domains in TpeL indicated that only the full-length protein could be secreted. In summary, we have identified a novel family of holin-like proteins that can function, in some cases, as a system of protein secretion for proteins that need to fold in the cytoplasm.IMPORTANCE Little is known about the mechanism by which LCTs are secreted. Since LCTs are major virulence factors in clostridial pathogens, we wanted to define the mechanism by which an LCT in C. perfringens, TpeL, is secreted by a protein (TpeE) lacking homology to previously described secretion-associated holins. We discovered that TpeE is a member of a widely dispersed class of holin proteins, and TpeE is necessary for the secretion of TpeL. TpeE bears a high degree of similarity in membrane topology to TatA proteins, which form the pore through which Tat secretion substrates pass through the cytoplasmic membrane. Thus, the TpeE-TpeL secretion system may be a model for understanding not only holin-dependent secretion but also how TatA proteins function in the secretion process.
Collapse
|
40
|
Abstract
Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR' (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.
Collapse
|
41
|
Shen J, Liu Z, Yu H, Ye J, Long Y, Zhou P, He B. Systematic stress adaptation of Bacillus subtilis to tetracycline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109910. [PMID: 31740237 DOI: 10.1016/j.ecoenv.2019.109910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
To alleviate the harmful effects of antibiotics on the environment and human health, the stress response and molecular network of Bacillus under tetracycline stress were investigated using a proteomics approach. During the exposure process, Bacillus subtilis exhibited a strong adaptation mechanism. Cell membrane and intracellular reactive oxygen species (ROS) level returned to normal after 5 h. A total of 312 upregulated and 65 downregulated proteins were identified, mainly involved in metabolism and the synthesis of ribosomes, DNA, and RNA. After tetracycline exposure, the core metabolism network was accelerated to supply precursors for the synthesis of DNA, RNA, proteins, peptidoglycans, and saturated fatty acids that were involved in ribosome protection, and strengthened the cell wall and cell membrane. The signal transduction pathways involved were analyzed in association with the stress response of B. subtilis at 15 min of exposure to tetracycline. The primary damage to the ribosome by tetracycline activated a series of response proteins. Antitoxin and heat-shock proteins were activated for the global regulation of transcription and metabolism. Trigger factor Tig was upregulated to ensure proper initiation of transcription and aerobic respiration. Temperature-sensor protein VicR from the two-component system was used by the cell to regulate the composition of the cell wall and cell membrane. The over-consumption of metabolites, such as phosphoribosyl diphosphate (PRPP), purine nucleoside triphosphate (GTP), and acetyl-CoA forced the cells to assimilate more sugar for glycolysis. To this end, methyl-accepting chemotaxis proteins (MCPs) and sugar transportation protein PtsG were upregulated, simultaneously. Ultimately, peroxidase was activated to eliminate the redundant ROS, to minimize cell damage. These findings presented a system-level understanding of adaption processes of bacteria to antibiotic stress.
Collapse
Affiliation(s)
- Jing Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ziyi Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Henan Yu
- Guangdong Ocean Engineering Technology School, Guangzhou, 510320, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Pulin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Baoyan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
42
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
43
|
Park J, Kim EB. Differences in microbiome and virome between cattle and horses in the same farm. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1042-1055. [PMID: 32054207 PMCID: PMC7206377 DOI: 10.5713/ajas.19.0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Objective The ecosystem of an animal farm is composed of various elements, such as animals, farmers, plants, feed, soil, and microorganisms. A domesticated animal’s health is largely connected with the reservoir of bacteria and viruses in animal farms. Although a few studies have focused on exploring the gut microbiome of animals, communities of microbiota and viruses in feedlots have not been thoroughly investigated. Methods Here, we collected feces and dust samples (4 groups: cattle feces, C_F; horse feces, H_F; cattle dust, C_D; and horse dust, H_D) from cattle and horse farms sharing the same housing and investigated their microbiome/virome communities by Illumina sequencing. Results Dust groups (C_D and H_D) showed higher microbial diversity than feces groups (C_F and H_F) regardless of animal species. From the microbial community analysis, all the samples from the four groups have major phyla such as Proteobacteria (min 37.1% to max 42.8%), Firmicutes (19.1% to 24.9%), Bacteroidetes (10.6% to 22.1%), and Actinobacteria (6.1% to 20.5%). The abundance of Streptococcus, which commonly recognized as equine pathogens, was significantly higher in the horse group (H_D and H_F). Over 99% among the classified virome reads were classified as Caudovirales, a group of tailed bacteriophages, in all four groups. Foot-and-mouth disease virus and equine adenovirus, which cause deadly diseases in cattle and horse, respectively, were not detected. Conclusion Our results will provide baseline information to understand different gut and environmental microbial ecology between two livestock species.
Collapse
Affiliation(s)
- Jongbin Park
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Bae Kim
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea.,Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
44
|
Mellou K, Kyritsi M, Chrysostomou A, Sideroglou T, Georgakopoulou T, Hadjichristodoulou C. Clostridium perfringens Foodborne Outbreak during an Athletic Event in Northern Greece, June 2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203967. [PMID: 31627449 PMCID: PMC6843328 DOI: 10.3390/ijerph16203967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
Background: Food safety is a major public health consideration during athletic events. On 27 June 2019, the Hellenic National Public Health Organization was notified of a cluster of gastroenteritis cases among athletes of four of the 47 teams participating at the Panhellenic Handball Championship for children. Methods: A retrospective cohort study among the members of the four teams was performed. The local public health authority visited the restaurants where common meals took place, amassed information on the preparation of meals, and collected samples of leftovers. Stool samples were tested for Salmonella spp. and Shigella spp. Results: Consumption of minced beef had a statistically significant association with disease occurrence [RR:8.29 (95%CI 1,31-52,7)]. Samples of meat were found positive for Clostridium perfringens. It was documented that the meat was not stored and re-heated as indicated. Stool samples were negative for Salmonella spp. and Shigella spp. and were not tested for the Clostridium perfringens toxin. Conclusion: Specific standards should be kept to prevent outbreaks during athletic events. This was the first time that a foodborne outbreak due to Clostridium perfringens was investigated in the country. Laboratory investigation for toxins should be enhanced, especially in foodborne outbreaks where clinical manifestations of cases are found to be compatible with infection caused by a toxin.
Collapse
Affiliation(s)
- Kassiani Mellou
- National Public Health Organisation (EODY), 15123 Athens, Greece.
| | - Maria Kyritsi
- Regional Public Health Laboratory (PEDY) of Thessaly, 41221 Thessaly, Greece.
- Department of Hygiene and Epidemiology, Medical School, University of Thessaly, 41500 Larissa, Greece.
| | | | | | | | - Christos Hadjichristodoulou
- Regional Public Health Laboratory (PEDY) of Thessaly, 41221 Thessaly, Greece.
- Department of Hygiene and Epidemiology, Medical School, University of Thessaly, 41500 Larissa, Greece.
| |
Collapse
|
45
|
|
46
|
|
47
|
Gao X, Ma Y, Wang Z, Bai J, Jia S, Feng B, Jiang Y, Cui W, Tang L, Li Y, Wang L, Xu Y. Oral immunization of mice with a probiotic Lactobacillus casei constitutively expressing the α-toxoid induces protective immunity against Clostridium perfringens α-toxin. Virulence 2019; 10:166-179. [PMID: 30806148 PMCID: PMC6422513 DOI: 10.1080/21505594.2019.1582975] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clostridium perfringens α-toxin is one of the major virulence factors during C. perfringens infection, causing hemolysis of erythrocytes in various species. Here, genetically engineered Lactobacillus casei (pPG-α/L. casei 393) constitutively expressing the toxoid of C. perfringens α-toxin was generated and its immunogenicity in mice for induction of protective immunity against the α-toxin was evaluated via oral immunization. The α-toxoid was constitutively expressed by pPG-α/L. casei 393 without a specific inducer, as confirmed by western blotting, laser confocal microscopy, and flow cytometry. In an experiment on BALB/c mice to evaluate the oral immunogenicity of pPG-α/L. casei 393, significant levels of a specific secretory IgA (sIgA) antibody in the intestinal mucus and feces and an IgG antibody in the serum of the probiotic vaccine group were detected after booster immunization (p < 0.05) as compared with the pPG/L. casei 393 and PBS control groups. These antibodies effectively neutralized C. perfringens natural α-toxin. Moreover, significantly higher levels of cytokines IL-2, IL-4, IL-10, IL-12, IL-17, and interferon (IFN) γ in the serum and increased proliferation of spleen lymphocytes obtained from mice orally immunized with pPG-α/L. casei 393 were detected. With a commercial C. perfringens type A inactivated vaccine as a control, immune protection provided by the probiotic vaccine against C. perfringens α-toxin was evaluated, and 90% and 80% protection rates were observed, respectively. Therefore, strain pPG-α/L. casei 393 effectively elicited mucosal, humoral, and cellular immunity, suggesting that pPG-α/L. casei 393 is a promising candidate for development of a vaccine against C. perfringens α-toxin.
Collapse
Affiliation(s)
- Xuwen Gao
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yingying Ma
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Zhuo Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Jing Bai
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Shuo Jia
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Baohua Feng
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yanping Jiang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Wen Cui
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Lijie Tang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yijing Li
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , P.R. China
| | - Li Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yigang Xu
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , P.R. China.,c Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University , Harbin , P.R. China
| |
Collapse
|
48
|
Mahamat Abdelrahim A, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, Fach P, Hennekinne JA, Mistou MY, Firmesse O. Large-Scale Genomic Analyses and Toxinotyping of Clostridium perfringens Implicated in Foodborne Outbreaks in France. Front Microbiol 2019; 10:777. [PMID: 31057505 PMCID: PMC6481350 DOI: 10.3389/fmicb.2019.00777] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens is both an ubiquitous environmental bacterium and the fourth most common causative agent of foodborne outbreaks (FBOs) in France and Europe. These outbreaks are known to be caused by C. perfringens enterotoxin (CPE) encoded by the cpe gene. However, additional information on the toxin/virulence gene content of C. perfringens has become available in the last few years. Therefore, to understand the enteropathogenicity of this bacterium, we need to describe the toxin and virulence genes content of strains involved in FBOs. In this study, we used a new real-time PCR typing technique based on a comprehensive set of 17 genes encoding virulence factors. The analysis was performed on a collection of 141 strains involved in 42 FBOs in the Paris region. It was combined with whole genome sequence (WGS) phylogenomic reconstruction, based on the coregenome single nucleotide polymorphisms (SNPs) of 58 isolates, representatives of the identified virulence gene profiles. Two or three different virulence gene profiles were detected in 10 FBOs, demonstrating that C. perfringens FBOs may be associated with heterogeneous strains. cpe-positive strains were isolated in 23 outbreaks, confirming the prominent role of CPE in pathogenicity. However, while C. perfringens was the sole pathogen isolated from the incriminated food, the cpe gene was not detected in strains related to 13 outbreaks. This result indicates either that the standard method was not able to isolate cpe+ strains or that the cpe gene may not be the only determinant of the enterotoxigenic potential of C. perfringens strains. Using phylogenomic reconstruction, we identified two clades distinguishing chromosomal cpe-positive from cpe-negative and plasmid-borne cpe. Important epidemiological information was also garnered from this phylogenomic reconstruction that revealed unexpected links between different outbreaks associated with closely related strains (seven SNP differences) and having common virulence gene profiles. This study provides new insight into the characterization of foodborne C. perfringens and highlights the potential of WGS for the investigation of FBOs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olivier Firmesse
- Université PARIS-EST, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
49
|
Park M, Rafii F. The prevalence of plasmid-coded cpe enterotoxin, β 2 toxin, tpeL toxin, and tetracycline resistance in Clostridium perfringens strains isolated from different sources. Anaerobe 2019; 56:124-129. [PMID: 30802555 DOI: 10.1016/j.anaerobe.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 02/09/2023]
Abstract
Clostridium perfringens, an anaerobic, spore-forming bacterium, causes infections in humans and animals by producing several toxins encoded by genes found either on the chromosomes or on diverse plasmids. The plasmids may code for more than one toxin gene or antimicrobial-resistance gene. In this study, the prevalence of the β2, cpe and tpeL toxin genes and the tetA(P), tetB(P) and tetM tetracycline-resistance genes, in 56 strains of C. perfringens type A isolated from diseased domestic animals and 15 strains isolated from chickens, was compared with that in 74 strains isolated from other sources. The frequency of chromosome-associated cpe enterotoxin genes was higher in strains not isolated from diseased domestic animals; however, plasmid-associated cpe genes were found in strains from some animal sources more than others. Enterotoxin production was detected in some strains that had chromosomal or plasmid cpe genes, but not in all. The percentages of strains carrying β2 toxin genes among chicken, swine, human patient and soil isolates were higher than those among bovine, canine and food isolates. The incidence of the tpeL toxin gene was lower than that of the β2 gene. Phenotypic resistance to tetracycline was found in more than 50% of the porcine, bovine, and canine isolates, which carried a wide range of plasmids of 2-100 kb size, most of which had the tcpH clostridial transfer gene. PCR amplified tetA(P) and tetB(P) genes from most isolates from diseased animals. Some strains that carried <40 kb plasmids and had the tcpH gene also had one or more toxin genes or tetracycline-resistance gene. This study shows that the prevalence of plasmid-borne toxins and antimicrobial resistance genes varied among C. perfringens strains isolated from different sources. Plasmids of smaller size than those previously reported in strains of C. perfringens type A may also harbor toxin genes and antimicrobial-resistance genes.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR, 72079, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR, 72079, USA.
| |
Collapse
|
50
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|