1
|
Tomizuka H, Yamawo A, Tachiki Y. Altruism or selfishness: floral behaviour based on genetic relatedness with neighbouring plants. J Evol Biol 2025; 38:492-503. [PMID: 39945186 DOI: 10.1093/jeb/voaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 04/22/2025]
Abstract
Kin recognition in plants may lead to plastic changes in their behaviour, such as altering their floral display size. In this study, we conducted evolutionary simulations of the 2 floral tactics utilized by plants depending on the genetic relatedness of their neighbouring plants. We found that the evolutionary consequences of the floral display size in plants can be classified into 4 types, based on whether the floral display size increased or decreased in comparison with the case of plants disabled of kin recognition. As a typical result, the plants that grew with kin behaved altruistically by increasing their floral display size, whereas those that coexisted with strangers behaved selfishly by reducing their floral display size, as is observed in the field. The kin recognition and resultant evolution of the floral display size had a spillover effect on the population scale. Kin recognition generally increased the intraspecific variation in the floral display size and seed production and decreased the genetic diversity of plant populations.
Collapse
Affiliation(s)
- Haruto Tomizuka
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akira Yamawo
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Yuuya Tachiki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
2
|
Rinkevich B, Goulet TL. Micro-to multi-chimerism: the multiple facets of a singular phenomenon. Semin Immunopathol 2025; 47:17. [PMID: 39966117 DOI: 10.1007/s00281-025-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Natural chimeras are prevalent in nature (> 10 phyla of protists, plants, invertebrates, and vertebrates), disrupting the conventional believe that genetically homogeneous entities are selected to prevent conflicts within an organism. Chimerism emerges as a significant ecological/evolutionary mechanism, shaping the life history characteristics of metazoans, and it develops in various forms, one of which is called 'microchimerism'. Furthermore, chimerism is a pivotal phenomenon, presenting complex biological and ecological expressions akin to a "double-edged sword", bypassing both innate and adaptive immune responses. Considering the proportionate contribution of chimeric partners and their spatial arrangements within chimeras, unveils six somatic states of chimerism (purged-chimerism, sectorial-chimerism, mosaic-chimerism, mixed-chimerism, microchimerism and multi-chimerism) and three states of germline chimerism (mixed-chimerism, male/female chimerism and parasitic germline chimerism). These diverse chimeric states are categorized into two distinct series of continua, namely 'somatic cell chimerism' and 'germline chimerism' scenarios where dynamic chimeric states transit into other states, and vice versa, within a specific continuum that relies on the concept of an endless 'Escherian stairwell' of chimerism states. Also, the same chimera may portray simultaneously, different chimeric states in various parts/organs. We further reviewed the evolutionary perspectives for chimerism, raising five commonly shared features of chimerism (multichimerism, ontogenic windows, reproductive chimerism, transmissible chimerism, germline hitchhiking) and 'costs' and 'benefits' accrued to chimerism, shared between invertebrates and vertebrates, including humans. We contest that 'microchimerism' lacks any quantitative definition, represents just a single facet in the multi-facet panorama of chimeric phenomena that demonstrate transitions over time into other states. All of the above carry evolutionary and clinical implications.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 2336, Tel Shikmona, Haifa, 3102201, Israel.
| | - Tamar L Goulet
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677‑1848, USA
| |
Collapse
|
3
|
Scholtmeijer K, Auxier B, Debets AJM, Aanen DK, Baars JJP, van Peer AF. An agar medium-based method for screening somatic incompatibility in Agaricus bisporus. Fungal Biol 2025; 129:101522. [PMID: 39826974 DOI: 10.1016/j.funbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings. As it is known that co-cultivation of mixed individuals leads to reduced yield, we compared small-scale cultivation experiments to the results of our laboratory assay. Co-cultivation of strains whose interaction produced noticeable Evans blue staining also produced low yield when mixed. However, a combination that did not produce noticeable Evans blue staining still produced an incompatible-like phenotype (reduced yield) when mixed under cultivation conditions. Together, these results suggest that while our Evans blue assay can discriminate between self and nonself pairings, it alone does not encompass all aspects of this interaction. However, this method can facilitate future research into the genetics and physiology of the incompatibility phenotype in this economically important fungus.
Collapse
Affiliation(s)
- Karin Scholtmeijer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Arend F van Peer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands.
| |
Collapse
|
4
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
6
|
Hai D, Li J, Jiang D, Cheng J, Fu Y, Xiao X, Yin H, Lin Y, Chen T, Li B, Yu X, Cai Q, Chen W, Kotta-Loizou I, Xie J. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat Commun 2024; 15:4748. [PMID: 38834585 DOI: 10.1038/s41467-024-49110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.
Collapse
Affiliation(s)
- Du Hai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jincang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ioly Kotta-Loizou
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Zhang YD, Ji XB, Zong J, Dai XF, Klosterman SJ, Subbarao KV, Zhang DD, Chen JY. Functional analysis of the mating type genes in Verticillium dahliae. BMC Biol 2024; 22:108. [PMID: 38714997 PMCID: PMC11077750 DOI: 10.1186/s12915-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.
Collapse
Affiliation(s)
- Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Bin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Zong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
8
|
Auxier B, Zhang J, Marquez FR, Senden K, van den Heuvel J, Aanen DK, Snelders E, Debets AJM. The Narrow Footprint of Ancient Balancing Selection Revealed by Heterokaryon Incompatibility Genes in Aspergillus fumigatus. Mol Biol Evol 2024; 41:msae079. [PMID: 38652808 PMCID: PMC11138114 DOI: 10.1093/molbev/msae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jianhua Zhang
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Kira Senden
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
9
|
Wu M, Flores-Fernandez JM, Wang Y, Ahmed H, Wille H, Stepanova M. SERS probing of fungal HET-s fibrils formed at neutral and acidic pH conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123817. [PMID: 38211445 DOI: 10.1016/j.saa.2023.123817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Advances in precision medical diagnostics require accurate and sensitive characterization of pathogens. In particular, health conditions associated with protein misfolding require an identification of proteinaceous amyloid fibrils or their precursors. These pathogenic entities express specific molecular structures, which require ultra-sensitive, molecular-level detection methods. A potentially transformative technique termed nanoplasmonics employs electro-optical phenomena in the vicinity of specially engineered metal nanostructures. A signature application of nanoplasmonics exploits enhancement of inelastic scattering of light in specific locations near metallic nanostructures, known as surface-enhanced Raman scattering (SERS). We applied SERS complemented with confocal microscopy imaging for ultra-sensitive, non-invasive, and label-free characterization of the fungal prion HET-s (218-289) as a model for β-sheet rich amyloid structures. This characterization employed Au-coated dielectric supports as plasmonic substrates. After confirming the formation of HET-s fibrils at both pH 7.5 and 2.8 using negative staining transmission electron microscopy, we subjected the fibril-containing solutions to multimodal analysis using confocal microscopy and SERS. The SERS spectral fingerprints from all HET-s samples expressed vibrational markers for β-structure, unstructured backbone, and aromatic side-chains. However, relative intensities of major SERS bands were pronouncedly different for the two pH levels. We have analyzed potential origins of the most pronounced SERS bands and proposed hypothetical mechanistic models that could explain the observed SERS fingerprints from HET-s fibrils grown at pH 7.5 and 2.8.
Collapse
Affiliation(s)
- Min Wu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada
| | - Jose Miguel Flores-Fernandez
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, AB, Canada; Department of Research and Innovation, Universidad Tecnológica de Oriental, Oriental 75020, Mexico
| | - YongLiang Wang
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, AB, Canada
| | - Haseeb Ahmed
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 1H9, AB, Canada.
| |
Collapse
|
10
|
Sridhar PS, Vasquez V, Monteil-Rivera F, Allingham JS, Loewen MC. A peroxidase-derived ligand that induces Fusarium graminearum Ste2 receptor-dependent chemotropism. Front Cell Infect Microbiol 2024; 13:1287418. [PMID: 38239502 PMCID: PMC10794396 DOI: 10.3389/fcimb.2023.1287418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The fungal G protein-coupled receptors Ste2 and Ste3 are vital in mediating directional hyphal growth of the agricultural pathogen Fusarium graminearum towards wheat plants. This chemotropism is induced by a catalytic product of peroxidases secreted by the wheat. Currently, the identity of this product, and the substrate it is generated from, are not known. Methods and results We provide evidence that a peroxidase substrate is derived from F. graminearum conidia and report a simple method to extract and purify the FgSte2-activating ligand for analyses by mass spectrometry. The mass spectra arising from t he ligand extract are characteristic of a 400 Da carbohydrate moiety. Consistent with this type of molecule, glycosidase treatment of F. graminearum conidia prior to peroxidase treatment significantly reduced the amount of ligand extracted. Interestingly, availability of the peroxidase substrate appears to depend on the presence of both FgSte2 and FgSte3, as knockout of one or the other reduces the chemotropism-inducing effect of the extracts. Conclusions While further characterization is necessary, identification of the F. graminearum-derived peroxidase substrate and the FgSte2-activating ligand will unearth deeper insights into the intricate mechanisms that underlie fungal pathogenesis in cereal crops, unveiling novel avenues for inhibitory interventions.
Collapse
Affiliation(s)
- Pooja S. Sridhar
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Vinicio Vasquez
- National Research Council of Canada, Aquatic and Crop Resources Development, Montreal, QC, Canada
| | - Fanny Monteil-Rivera
- National Research Council of Canada, Aquatic and Crop Resources Development, Montreal, QC, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Michele C. Loewen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- National Research Council of Canada, Aquatic and Crop Resources Development, Ottawa, ON, Canada
| |
Collapse
|
11
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
12
|
Khan HA, Baig DI, Bhatti MF. An Overview of Mycoviral Curing Strategies Used in Evaluating Fungal Host Fitness. Mol Biotechnol 2023; 65:1547-1564. [PMID: 36841858 PMCID: PMC9963364 DOI: 10.1007/s12033-023-00695-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023]
Abstract
The number of novel mycoviruses is increasing at a high pace due to advancements in sequencing technologies. As a result, an uncountable number of mycoviral sequences are available in public sequence repositories. However, only genomic information is not sufficient to understand the impact of mycoviruses on their host biology. Biological characterization is required to determine the nature of mycoviruses (cryptic, hypervirulent, or hypovirulent) and to search for mycoviruses with biocontrol and therapeutic potential. Currently, no particular selective method is used as the gold standard against these mycoviral infections. Given the importance of curing, we present an overview of procedures used in preparation of isogenic lines, along with their benefits and drawbacks. We concluded that a combination of single-spore isolation and hyphal tipping is the best fit for preparation of isogenic lines. Furthermore, recent bioinformatic approaches should be introduced in the field of mycovirology to predict virus-specific antivirals to get robust results.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
- Department of Biotechnology, University of Mianwali, Punjab, 42200 Pakistan
| | - Danish Ilyas Baig
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| |
Collapse
|
13
|
Son M, Han S, Lee S. Prions in Microbes: The Least in the Most. J Microbiol 2023; 61:881-889. [PMID: 37668956 DOI: 10.1007/s12275-023-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.
Collapse
Affiliation(s)
- Moonil Son
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sia Han
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyeon Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
14
|
Zheng Q, Daskalov A. Microbial gasdermins: More than a billion years of pyroptotic-like cell death. Semin Immunol 2023; 69:101813. [PMID: 37480832 DOI: 10.1016/j.smim.2023.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In the recent past, the concept of immunity has been extended to eukaryotic and prokaryotic microorganisms, like fungi and bacteria. The latest findings have drawn remarkable evolutionary parallels between metazoan and microbial defense-related genes, unveiling a growing number of shared transkingdom components of immune systems. One such component is the gasdermin family of pore-forming proteins - executioners of a highly inflammatory immune cell death program in mammals, termed pyroptosis. Pyroptotic cell death limits the spread of intracellular pathogens by eliminating infected cells and coordinates the broader inflammatory response to infection. The microbial gasdermins have similarly been implicated in defense-related cell death reactions in fungi, bacteria and archaea. Moreover, the discovery of the molecular regulators of gasdermin cytotoxicity in fungi and bacteria, has established additional evolutionary links to mammalian pyroptotic pathways. Here, we focus on the gasdermin proteins in microorganisms and their role in organismal defense and provide perspective on this remarkable case study in comparative immunology.
Collapse
Affiliation(s)
- Qi Zheng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
15
|
Mela AP, Glass NL. Permissiveness and competition within and between Neurospora crassa syncytia. Genetics 2023; 224:iyad112. [PMID: 37313736 PMCID: PMC10411585 DOI: 10.1093/genetics/iyad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
Collapse
Affiliation(s)
- Alexander P Mela
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
- The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Popović M, Nuskern L, Peranić K, Vuković R, Katanić Z, Krstin L, Ćurković-Perica M, Leigh DM, Poljak I, Idžojtić M, Rigling D, Ježić M. Physiological variations in hypovirus-infected wild and model long-term laboratory strains of Cryphonectria parasitica. Front Microbiol 2023; 14:1192996. [PMID: 37426020 PMCID: PMC10324583 DOI: 10.3389/fmicb.2023.1192996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Forest ecosystems are highly threatened by the simultaneous effects of climate change and invasive pathogens. Chestnut blight, caused by the invasive phytopathogenic fungus Cryphonectria parasitica, has caused severe damage to European chestnut groves and catastrophic dieback of American chestnut in North America. Within Europe, the impacts of the fungus are widely mitigated through biological control that utilizes the RNA mycovirus: Cryphonectria hypovirus 1 (CHV1). Viral infections, similarly to abiotic factors, can cause oxidative stress in their hosts leading to physiological attrition through stimulating ROS (reactive oxygen species) and NOx production. Methods To fully understand the interactions leading to the biocontrol of chestnut blight, it is vital to determine oxidative stress damage arising during CHV1 infection, especially considering that other abiotic factors, like long-term cultivation of model fungal strains, can also impact oxidative stress. Our study compared CHV1-infected C. parasitica isolates from two Croatian wild populations with CHV1-infected model strains (EP713, Euro7 and CR23) that have experienced long-term laboratory cultivation. Results and Discussion We determined the level of oxidative stress in the samples by measuring stress enzymes' activity and oxidative stress biomarkers. Furthermore, for the wild populations, we studied the activity of fungal laccases, expression of the laccase gene lac1, and a possible effect of CHV1 intra-host diversity on the observed biochemical responses. Relative to the wild isolates, the long-term model strains had lower enzymatic activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), and higher content of malondialdehyde (MDA) and total non-protein thiols. This indicated generally higher oxidative stress, likely arising from their decades-long history of subculturing and freeze-thaw cycles. When comparing the two wild populations, differences between them in stress resilience and levels of oxidative stress were also observed, as evident from the different MDA content. The intra-host genetic diversity of the CHV1 had no discernible effect on the stress levels of the virus-infected fungal cultures. Our research indicated that an important determinant modulating both lac1 expression and laccase enzyme activity is intrinsic to the fungus itself, possibly related to the vc type of the fungus, i.e., vegetative incompatibility genotype.
Collapse
Affiliation(s)
- Maja Popović
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karla Peranić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zorana Katanić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ljiljana Krstin
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | | | - Igor Poljak
- Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Marilena Idžojtić
- Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Bao Y, Akbar S, Yao W, Xu Y, Xu J, Powell CA, Chen B, Zhang M. Genetic Diversity and Pathogenicity of Fusarium fujikuroi Species Complex (FFSC) Causing Sugarcane Pokkah Boeng Disease (PBD) in China. PLANT DISEASE 2023:PDIS07221639SR. [PMID: 36410020 DOI: 10.1094/pdis-07-22-1639-sr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.
Collapse
Affiliation(s)
- Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sehrish Akbar
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Yuzhi Xu
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, U.S.A
| |
Collapse
|
20
|
Martinossi-Allibert I, Ament-Velásquez SL, Saupe SJ, Johannesson H. To self or not to self? Absence of mate choice despite costly outcrossing in the fungus Podospora anserina. J Evol Biol 2023; 36:238-250. [PMID: 36263943 PMCID: PMC10092876 DOI: 10.1111/jeb.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.
Collapse
Affiliation(s)
- Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France.,Department of Biology, Realfagbygget, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Fleißner A, Oostlander AG, Well L. Highly conserved, but highly specific: Somatic cell-cell fusion in filamentous fungi. Curr Opin Cell Biol 2022; 79:102140. [PMID: 36347130 DOI: 10.1016/j.ceb.2022.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
The development of ascomycete fungal colonies involves cell-cell fusion at different growth stages. In the model fungus Neurospora crassa, communication of two fusing cells is mediated by an unusual signaling mechanism, in which the two partners take turns in signal sending and receiving. In recent years, the molecular basis of this unusual cellular behavior has started to unfold, indicating the presence of an excitable signaling network. New evidence suggests that this communication system is highly conserved in ascomycete fungi and, unexpectedly, even mediates interspecies interactions. At the same time, intricate allorecognition mechanisms were identified, which prevent the fusion of genetically unlike individuals. These observations suggest that signal specificity during fungal social behavior has not evolved on the level of signals and receptors, but is achieved at downstream checkpoints. Despite growing insight into the molecular mechanisms controlling self and non-self fungal interactions, their role in natural environments remains largely unknown.
Collapse
Affiliation(s)
- André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Anne G Oostlander
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lucas Well
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
22
|
Lerer V, Shlezinger N. Inseparable companions: Fungal viruses as regulators of fungal fitness and host adaptation. Front Cell Infect Microbiol 2022; 12:1020608. [PMID: 36310864 PMCID: PMC9606465 DOI: 10.3389/fcimb.2022.1020608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 08/01/2023] Open
|
23
|
Gostinčar C, Sun X, Černoša A, Fang C, Gunde-Cimerman N, Song Z. Clonality, inbreeding, and hybridization in two extremotolerant black yeasts. Gigascience 2022; 11:giac095. [PMID: 36200832 PMCID: PMC9535773 DOI: 10.1093/gigascience/giac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The great diversity of lifestyles and survival strategies observed in fungi is reflected in the many ways in which they reproduce and recombine. Although a complete absence of recombination is rare, it has been reported for some species, among them 2 extremotolerant black yeasts from Dothideomycetes: Hortaea werneckii and Aureobasidium melanogenum. Therefore, the presence of diploid strains in these species cannot be explained as the product of conventional sexual reproduction. RESULTS Genome sequencing revealed that the ratio of diploid to haploid strains in both H. werneckii and A. melanogenum is about 2:1. Linkage disequilibrium between pairs of polymorphic loci and a high degree of concordance between the phylogenies of different genomic regions confirmed that both species are clonal. Heterozygosity of diploid strains is high, with several hybridizing genome pairs reaching the intergenomic distances typically seen between different fungal species. The origin of diploid strains collected worldwide can be traced to a handful of hybridization events that produced diploids, which were stable over long periods of time and distributed over large geographic areas. CONCLUSIONS Our results, based on the genomes of over 100 strains of 2 black yeasts, show that although they are clonal, they occasionally form stable and highly heterozygous diploid intraspecific hybrids. The mechanism of these apparently rare hybridization events, which are not followed by meiosis or haploidization, remains unknown. Both extremotolerant yeasts, H. werneckii and even more so A. melanogenum, a close relative of the intensely recombining and biotechnologically relevant Aureobasidium pullulans, provide an attractive model for studying the role of clonality and ploidy in extremotolerant fungi.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Xiaohuan Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chao Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| |
Collapse
|
24
|
Seekles SJ, Punt M, Savelkoel N, Houbraken J, Wösten HAB, Ohm RA, Ram AFJ. Genome sequences of 24 Aspergillus niger sensu stricto strains to study strain diversity, heterokaryon compatibility, and sexual reproduction. G3 (BETHESDA, MD.) 2022; 12:jkac124. [PMID: 35608315 PMCID: PMC9258588 DOI: 10.1093/g3journal/jkac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
Mating-type distribution within a phylogenetic tree, heterokaryon compatibility, and subsequent diploid formation were studied in 24 Aspergillus niger sensu stricto strains. The genomes of the 24 strains were sequenced and analyzed revealing an average of 6.1 ± 2.0 variants/kb between Aspergillus niger sensu stricto strains. The genome sequences were used together with available genome data to generate a phylogenetic tree revealing 3 distinct clades within Aspergillus niger sensu stricto. The phylogenetic tree revealed that both MAT1-1 and MAT1-2 mating types were present in each of the 3 clades. The phylogenetic differences were used to select for strains to analyze heterokaryon compatibility. Conidial color markers (fwnA and brnA) and auxotrophic markers (pyrG and nicB) were introduced via CRISPR/Cas9-based genome editing in a selection of strains. Twenty-three parasexual crosses using 11 different strains were performed. Only a single parasexual cross between genetically highly similar strains resulted in a successful formation of heterokaryotic mycelium and subsequent diploid formation, indicating widespread heterokaryon incompatibility as well as multiple active heterokaryon incompatibility systems between Aspergillus niger sensu stricto strains. The 2 vegetatively compatible strains were of 2 different mating types and a stable diploid was isolated from this heterokaryon. Sclerotium formation was induced on agar media containing Triton X-100; however, the sclerotia remained sterile and no ascospores were observed. Nevertheless, this is the first report of a diploid Aspergillus niger sensu stricto strain with 2 different mating types, which offers the unique possibility to screen for conditions that might lead to ascospore formation in A. niger.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Maarten Punt
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Niki Savelkoel
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Jos Houbraken
- TIFN, 6708 PW, Wageningen, the Netherlands
- Applied & Industrial Mycology, Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht, the Netherlands
| | - Han A B Wösten
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Robin A Ohm
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Arthur F J Ram
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
25
|
iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death. Cells 2022; 11:cells11132018. [PMID: 35805101 PMCID: PMC9265749 DOI: 10.3390/cells11132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD) is an essential biological process involved in many human pathologies. According to the continuous discovery of new PCD forms, a large number of proteins have been found to regulate PCD. Notably, post-translational modifications play critical roles in PCD process and the rapid advances in proteomics have facilitated the discovery of new PCD proteins. However, an integrative resource has yet to be established for maintaining these regulatory proteins. Here, we briefly summarize the mainstream PCD forms, as well as the current progress in the development of public databases to collect, curate and annotate PCD proteins. Further, we developed a comprehensive database, with integrated annotations for programmed cell death (iPCD), which contained 1,091,014 regulatory proteins involved in 30 PCD forms across 562 eukaryotic species. From the scientific literature, we manually collected 6493 experimentally identified PCD proteins, and an orthologous search was then conducted to computationally identify more potential PCD proteins. Additionally, we provided an in-depth annotation of PCD proteins in eight model organisms, by integrating the knowledge from 102 additional resources that covered 16 aspects, including post-translational modification, protein expression/proteomics, genetic variation and mutation, functional annotation, structural annotation, physicochemical property, functional domain, disease-associated information, protein–protein interaction, drug–target relation, orthologous information, biological pathway, transcriptional regulator, mRNA expression, subcellular localization and DNA and RNA element. With a data volume of 125 GB, we anticipate that iPCD can serve as a highly useful resource for further analysis of PCD in eukaryotes.
Collapse
|
26
|
Chai H, Liu P, Ma Y, Chen W, Tao N, Zhao Y. Characterization of Vegetative Incompatibility in Morchella importuna and Location of the Related-Genes by Bulk Segregant Analysis. Front Microbiol 2022; 13:828514. [PMID: 35330770 PMCID: PMC8940278 DOI: 10.3389/fmicb.2022.828514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Vegetative incompatibility (VI) is a widespread phenomenon developed in Morchella importuna, a species of ascomycete fungus that is cultivated on a rapidly expanding scale in China. Understanding the genetic bases of this nonself-recognition phenomenon is beneficial for resolving some problems that are associated with the production of this highly prized edible fungus, such as crossbreeding, strain classification, and pathogen transmission. VI is genetically controlled by het genes, organized in two different systems, namely allelic and nonallelic. These het genes have been well characterized in Podospora anserina and Neurospora crassa. In this work, putative het-homologs were identified in the genome of M. importuna, but their low allelic polymorphism in different vegetative compatibility groups (VCGs) suggested that VI in this fungus might not be regulated by these het genes. The progeny derived from vegetative compatible parents became a VCG, while the single-ascospore strains from vegetative incompatible parents were divided into four VCGs, and the interaction between the inter-group strains led to the formation of two types of barrages, viz., thin dark line and raised aggregate of hyphae. The Bulk Segregant Analysis confirmed that the genes mimpvic32 and mimpvic33 were linked to VI reactions in M. importuna; nevertheless, the formation of barrages also occurred between the pairs carrying the same allele of these two genes. In sum, the VI control system in M. importuna was complicated, and there were more other allelic or non-allelic VI-related genes.
Collapse
Affiliation(s)
- Hongmei Chai
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| | - Ping Liu
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| | - Yuanhao Ma
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| | - Weimin Chen
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| | - Nan Tao
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| | - Yongchang Zhao
- Biotechnology and Germplasmic Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming, China.,Key Laboratory of Southwestern Crop Resource Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming, China
| |
Collapse
|
27
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
28
|
Clavé C, Dyrka W, Turcotte EA, Granger-Farbos A, Ibarlosa L, Pinson B, Vance RE, Saupe SJ, Daskalov A. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc Natl Acad Sci U S A 2022; 119:e2109418119. [PMID: 35135876 PMCID: PMC8851545 DOI: 10.1073/pnas.2109418119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.
Collapse
Affiliation(s)
- Corinne Clavé
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| | - Witold Dyrka
- Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, 50-370 Wrocław, Poland
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Alexandra Granger-Farbos
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Léa Ibarlosa
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- UMR 5095, CNRS, Genetics of Metabolic Pathways, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720
- Cancer Research Laboratory, University of California, Berkeley, CA 94720
| | - Sven J Saupe
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Asen Daskalov
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| |
Collapse
|
29
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
30
|
Witte TE, Shields S, Heberlig GW, Darnowski MG, Belov A, Sproule A, Boddy CN, Overy DP, Smith ML. A metabolomic study of vegetative incompatibility in Cryphonectria parasitica. Fungal Genet Biol 2021; 157:103633. [PMID: 34619360 DOI: 10.1016/j.fgb.2021.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Vegetative incompatibility (VI) is a form of non-self allorecognition in filamentous fungi that restricts conspecific hyphal fusion and the formation of heterokaryons. In the chestnut pathogenic fungus, Cryphonectria parasitica, VI is controlled by six vic loci and has been of particular interest because it impedes the spread of hypoviruses and thus biocontrol strategies. We use nuclear magnetic resonance and high-resolution mass spectrometry to characterize alterations in the metabolome of C. parasitica over an eight-day time course of vic3 incompatibility. Our findings support transcriptomic data that indicated remodeling of secondary metabolite profiles occurs during vic3 -associated VI. VI-associated secondary metabolites include novel forms of calbistrin, decumbenone B, a sulfoxygenated farnesyl S-cysteine analog, lysophosphatidylcholines, and an as-yet unidentified group of lipid disaccharides. The farnesyl S-cysteine analog is structurally similar to pheromones predicted to be produced during VI and is here named 'crypheromonin'. Mass features associated with C. parasitica secondary metabolites skyrin, rugulosin and cryphonectric acid were also detected but were not VI specific. Partitioning of VI-associated secondary metabolites was observed, with crypheromonins and most calbistrins accumulating in the growth medium over time, whereas lysophosphatidylcholines, lipid disaccharide-associated mass features and other calbistrin-associated mass features peaked at distinct time points in the mycelium. Secondary metabolite biosynthetic gene clusters and potential biological roles associated with the detected secondary metabolites are discussed.
Collapse
Affiliation(s)
- Thomas E Witte
- Carleton University, Department of Biology, Ottawa, Canada.
| | - Sam Shields
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada.
| | - Graham W Heberlig
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, Canada.
| | - Mike G Darnowski
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, Canada.
| | - Anatoly Belov
- Carleton University, Department of Biology, Ottawa, Canada
| | - Amanda Sproule
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada.
| | - Christopher N Boddy
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, Canada.
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Canada.
| | - Myron L Smith
- Carleton University, Department of Biology, Ottawa, Canada.
| |
Collapse
|
31
|
Vangalis V, Likhotkin I, Knop M, Typas MA, Papaioannou IA. Starvation-induced cell fusion and heterokaryosis frequently escape imperfect allorecognition systems in an asexual fungal pathogen. BMC Biol 2021; 19:169. [PMID: 34429100 PMCID: PMC8385987 DOI: 10.1186/s12915-021-01101-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
Background Asexual fungi include important pathogens of plants and other organisms, and their effective management requires understanding of their evolutionary dynamics. Genetic recombination is critical for adaptability and could be achieved via heterokaryosis — the co-existence of genetically different nuclei in a cell resulting from fusion of non-self spores or hyphae — and the parasexual cycle in the absence of sexual reproduction. Fusion between different strains and establishment of viable heterokaryons are believed to be rare due to non-self recognition systems. Here, we investigate the extent and mechanisms of cell fusion and heterokaryosis in the important asexual plant pathogen Verticillium dahliae. Results We used live-cell imaging and genetic complementation assays of tagged V. dahliae strains to analyze the extent of non-self vegetative fusion, heterokaryotic cell fate, and nuclear behavior. An efficient CRISPR/Cas9-mediated system was developed to investigate the involvement of autophagy in heterokaryosis. Under starvation, non-self fusion of germinating spores occurs frequently regardless of the previously assessed vegetative compatibility of the partners. Supposedly “incompatible” fusions often establish viable heterokaryotic cells and mosaic mycelia, where nuclei can engage in fusion or transfer of genetic material. The molecular machinery of autophagy has a protective function against the destruction of “incompatible” heterokaryons. Conclusions We demonstrate an imperfect function of somatic incompatibility systems in V. dahliae. These systems frequently tolerate the establishment of heterokaryons and potentially the initiation of the parasexual cycle even between strains that were previously regarded as “incompatible.” Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01101-5.
Collapse
Affiliation(s)
- Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilya Likhotkin
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
32
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
33
|
Azole-Resistance Development; How the Aspergillus fumigatus Lifecycle Defines the Potential for Adaptation. J Fungi (Basel) 2021; 7:jof7080599. [PMID: 34436138 PMCID: PMC8397044 DOI: 10.3390/jof7080599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023] Open
Abstract
In order to successfully infect or colonize human hosts or survive changing environments, Aspergillus fumigatus needs to adapt through genetic changes or phenotypic plasticity. The genomic changes are based on the capacity of the fungus to produce genetic variation, followed by selection of the genotypes that are most fit to the new environment. Much scientific work has focused on the metabolic plasticity, biofilm formation or the particular genetic changes themselves leading to adaptation, such as antifungal resistance in the host. Recent scientific work has shown advances made in understanding the natural relevance of parasex and how both the asexual and sexual reproduction can lead to tandem repeat elongation in the target gene of the azoles: the cyp51A gene. In this review, we will explain how the fungus can generate genetic variation that can lead to adaptation. We will discuss recent advances that have been made in the understanding of the lifecycle of A. fumigatus to explain the differences observed in speed and type of mutations that are generated under different environments and how this can facilitate adaptation, such as azole-resistance selection.
Collapse
|
34
|
Empirical Support for the Pattern of Competitive Exclusion between Insect Parasitic Fungi. J Fungi (Basel) 2021; 7:jof7050385. [PMID: 34069271 PMCID: PMC8157078 DOI: 10.3390/jof7050385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal entomopathogens are largely facultative parasites and play an important role in controlling the density of insect populations in nature. A few species of these fungi have been used for biocontrol of insect pests. The pattern of the entomopathogen competition for insect individuals is still elusive. Here, we report the empirical competition for hosts or niches between the inter- and intra-species of the entomopathogens Metarhizium robertsii and Beauveria bassiana. It was found that the synergistic effect of coinfection on virulence increase was not evident, and the insects were largely killed and mycosed by M. robertsii independent of its initial co-inoculation dosage and infection order. For example, >90% dead insects were mycosed by M. robertsii even after immersion in a spore suspension with a mixture ratio of 9:1 for B. bassiana versus M. robertsii. The results thus support the pattern of competitive exclusion between insect pathogenic fungi that occurred from outside to inside the insect hosts. Even being inferior to compete for insects, B. bassiana could outcompete M. robertsii during co-culturing in liquid medium. It was also found that the one-sided mycosis of insects occurred during coinfection with different genotypic strains of either fungi. However, parasexual recombination was evident to take place between the compatible strains after coinfection. The data of this study can help explain the phenomena of the exclusive mycosis of insect individuals, but co-occurrence of entomopathogens in the fields, and suggest that the synergistic effect is questionable regarding the mixed use of fungal parasites for insect pest control.
Collapse
|
35
|
Paganini J, Pontarotti P. Search for MHC/TCR-Like Systems in Living Organisms. Front Immunol 2021; 12:635521. [PMID: 34017326 PMCID: PMC8129030 DOI: 10.3389/fimmu.2021.635521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Highly polymorphic loci evolved many times over the history of species. These polymorphic loci are involved in three types of functions: kind recognition, self-incompatibility, and the jawed vertebrate adaptive immune system (AIS). In the first part of this perspective, we reanalyzed and described some cases of polymorphic loci reported in the literature. There is a convergent evolution within each functional category and between functional categories, suggesting that the emergence of these self/non-self recognition loci has occurred multiple times throughout the evolutionary history. Most of the highly polymorphic loci are coding for proteins that have a homophilic interaction or heterophilic interaction between linked loci, leading to self or non-self-recognition. The highly polymorphic MHCs, which are involved in the AIS have a different functional mechanism, as they interact through presented self or non-self-peptides with T cell receptors, whose diversity is generated by somatic recombination. Here we propose a mechanism called “the capacity of recognition competition mechanism” that might contribute to the evolution of MHC polymorphism. We propose that the published cases corresponding to these three biological categories represent a small part of what can be found throughout the tree of life, and that similar mechanisms will be found many times, including the one where polymorphic loci interact with somatically generated loci.
Collapse
Affiliation(s)
| | - Pierre Pontarotti
- XEGEN, Gemenos, France.,Aix Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,SNC5039 CNRS, Marseille, France
| |
Collapse
|
36
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
37
|
The Predicted Mannosyltransferase GT69-2 Antagonizes RFW-1 To Regulate Cell Fusion in Neurospora crassa. mBio 2021; 12:mBio.00307-21. [PMID: 33727349 PMCID: PMC8092235 DOI: 10.1128/mbio.00307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi undergo somatic cell fusion to create a syncytial, interconnected hyphal network which confers a fitness benefit during colony establishment. However, barriers to somatic cell fusion between genetically different cells have evolved that reduce invasion by parasites or exploitation by maladapted genetic entities (cheaters). Here, we identified a predicted mannosyltransferase, glycosyltransferase family 69 protein (GT69-2) that was required for somatic cell fusion in Neurospora crassa Cells lacking GT69-2 prematurely ceased chemotropic signaling and failed to complete cell wall dissolution and membrane merger in pairings with wild-type cells or between Δgt69-2 cells (self fusion). However, loss-of-function mutations in the linked regulator of cell fusion and cell wall remodeling-1 (rfw-1) locus suppressed the self-cell-fusion defects of Δgt69-2 cells, although Δgt69-2 Δrfw-1 double mutants still failed to undergo fusion with wild-type cells. Both GT69-2 and RFW-1 localized to the Golgi apparatus. Genetic analyses indicated that RFW-1 negatively regulates cell wall remodeling-dependent processes, including cell wall dissolution during cell fusion, separation of conidia during asexual sporulation, and conidial germination. GT69-2 acts as an antagonizer to relieve or prevent negative functions on cell fusion by RFW-1. In Neurospora species and N. crassa populations, alleles of gt69-2 were highly polymorphic and fell into two discrete haplogroups. In all isolates within haplogroup I, rfw-1 was conserved and linked to gt69-2 All isolates within haplogroup II lacked rfw-1. These data indicated that gt69-2/rfw-1 are under balancing selection and provide new mechanisms regulating cell wall remodeling during cell fusion and conidial separation.IMPORTANCE Cell wall remodeling is a dynamic process that balances cell wall integrity versus cell wall dissolution. In filamentous fungi, cell wall dissolution is required for somatic cell fusion and conidial separation during asexual sporulation. In the filamentous fungus Neurospora crassa, allorecognition checkpoints regulate the cell fusion process between genetically different cells. Our study revealed two linked loci with transspecies polymorphisms and under coevolution, rfw-1 and gt69-2, which form a coordinated system to regulate cell wall remodeling during somatic cell fusion, conidial separation, and asexual spore germination. RFW-1 acts as a negative regulator of these three processes, while GT69-2 functions antagonistically to RFW-1. Our findings provide new insight into the mechanisms involved in regulation of fungal cell wall remodeling during growth and development.
Collapse
|
38
|
Wang L, Xie S, Zhang Y, Kang R, Zhang M, Wang M, Li H, Chen L, Yuan H, Ding S, Liang S, Li H. The FpPPR1 Gene Encodes a Pentatricopeptide Repeat Protein That Is Essential for Asexual Development, Sporulation, and Pathogenesis in Fusarium pseudograminearum. Front Genet 2021; 11:535622. [PMID: 33584782 PMCID: PMC7874006 DOI: 10.3389/fgene.2020.535622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fusarium crown rot (FCR) and Fusarium head blight (FHB) are caused by Fusarium pseudograminearum and are newly emerging diseases of wheat in China. In this study, we characterized FpPPR1, a gene that encodes a protein with 12 pentatricopeptide repeat (PPR) motifs. The radial growth rate of the ΔFpppr1 deletion mutant was significantly slower than the wild type strain WZ-8A on potato dextrose agar plates and exhibited significantly smaller colonies with sector mutations. The aerial mycelium of the mutant was almost absent in culture tubes. The ΔFpppr1 mutant was able to produce spores, but spores of abnormal size and altered conidium septum shape were produced with a significant reduction in sporulation compared to wild type. ΔFpppr1 failed to cause disease on wheat coleoptiles and barley leaves using mycelia plugs or spore suspensions. The mutant phenotypes were successfully restored to the wild type levels in complemented strains. FpPpr1-GFP signals in spores and mycelia predominantly overlapped with Mito-tracker signals, which substantiated the mitochondria targeting signal prediction of FpPpr1. RNAseq revealed significant transcriptional changes in the ΔFpppr1 mutant with 1,367 genes down-regulated and 1,333 genes up-regulated. NAD-binding proteins, thioredoxin, 2Fe-2S iron-sulfur cluster binding domain proteins, and cytochrome P450 genes were significantly down-regulated in ΔFpppr1, implying the dysfunction of mitochondria-mediated reductase redox stress in the mutant. The mating type idiomorphic alleles MAT1-1-1, MAT1-1-2, and MAT1-1-3 in F. pseudograminearum were also down-regulated after deletion of FpPPR1 and validated by real-time quantitative PCR. Additionally, 21 genes encoding putative heterokaryon incompatibility proteins were down-regulated. The yellow pigmentation of the mutant was correlated with reduced expression of PKS12 cluster genes. Taken together, our findings on FpPpr1 indicate that this PPR protein has multiple functions in fungal asexual development, regulation of heterokaryon formation, mating-type, and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunpei Xie
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China.,Xuchang Vocational Technical College, Xuchang, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Haiyang Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
39
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
40
|
Mela AP, Rico-Ramírez AM, Glass NL. Syncytia in Fungi. Cells 2020; 9:cells9102255. [PMID: 33050028 PMCID: PMC7600787 DOI: 10.3390/cells9102255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.
Collapse
Affiliation(s)
- Alexander P. Mela
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - Adriana M. Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
41
|
Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis. Microbiol Res 2020; 239:126550. [DOI: 10.1016/j.micres.2020.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
|
42
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
43
|
The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036442. [PMID: 31818855 DOI: 10.1101/cshperspect.a036442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Programmed cell death (PCD) pathways are found in many phyla, ranging from developmentally programmed apoptosis in animals to cell-autonomous programmed necrosis pathways that limit the spread of biotrophic pathogens in multicellular assemblies. Prominent examples for the latter include animal necroptosis and pyroptosis, plant hypersensitive response (HR), and fungal heterokaryon incompatibility (HI) pathways. PCD pathways in the different kingdoms show fundamental differences in execution mechanism, morphology of the dying cells, and in the biological sequelae. Nevertheless, recent studies have revealed remarkable evolutionary parallels, including a striking sequence relationship between the "HeLo" domains found in the pore-forming components of necroptosis and some types of plant HR and fungal HI pathways. Other PCD execution components show cross-kingdom conservation as well, or are derived from prokaryotic ancestors. The currently available data suggest a model, wherein the primordial eukaryotic PCD pathway used proteins similar to present-day plant R-proteins and caused necrotic cell death by direct action of Toll and IL-1 receptor (TIR) and HeLo-like domains.
Collapse
|
44
|
Luis JM, Carbone I, Payne GA, Bhatnagar D, Cary JW, Moore GG, Lebar MD, Wei Q, Mack B, Ojiambo PS. Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus. Mycologia 2020; 112:908-920. [PMID: 32821029 DOI: 10.1080/00275514.2020.1800361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aspergillus flavus contaminates agricultural products worldwide with carcinogenic aflatoxins that pose a serious health risk to humans and animals. The fungus survives adverse environmental conditions through production of sclerotia. When fertilized by a compatible conidium of an opposite mating type, a sclerotium transforms into a stroma within which ascocarps, asci, and ascospores are formed. However, the transition from a sclerotium to a stroma during sexual reproduction in A. flavus is not well understood. Early events during the interaction between sexually compatible strains of A. flavus were visualized using conidia of a green fluorescent protein (GFP)-labeled MAT1-1 strain and sclerotia of an mCherry-labeled MAT1-2 strain. Both conidia and sclerotia of transformed strains germinated to produce hyphae within 24 h of incubation. Hyphal growth of these two strains produced what appeared to be a network of interlocking hyphal strands that were observed at the base of the mCherry-labeled sclerotia (i.e., region in contact with agar surface) after 72 h of incubation. At 5 wk following incubation, intracellular green-fluorescent hyphal strands were observed within the stromatal matrix of the mCherry-labeled strain. Scanning electron microscopy of stromata from a high- and low-fertility cross and unmated sclerotia was used to visualize the formation and development of sexual structures within the stromatal and sclerotial matrices, starting at the time of crossing and thereafter every 2 wk until 8 wk of incubation. Morphological differences between sclerotia and stromata became apparent at 4 wk of incubation. Internal hyphae and croziers were detected inside multiple ascocarps that developed within the stromatal matrix of the high-fertility cross but were not detected in the matrix of the low-fertility cross or the unmated sclerotia. At 6 to 8 wk of incubation, hyphal tips produced numerous asci, each containing one to eight ascospores that emerged out of an ascus following the breakdown of the ascus wall. These observations broaden our knowledge of early events during sexual reproduction and suggest that hyphae from the conidium-producing strain may be involved in the early stages of sexual reproduction in A. flavus. When combined with omics data, these findings could be useful in further exploration of the molecular and biochemical mechanisms underlying sexual reproduction in A. flavus.
Collapse
Affiliation(s)
- Jane Marian Luis
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Gary A Payne
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Deepak Bhatnagar
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Jeffrey W Cary
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Matthew D Lebar
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Qijian Wei
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Brian Mack
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Peter S Ojiambo
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| |
Collapse
|
45
|
Francisco CS, Zwyssig MM, Palma-Guerrero J. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biol 2020; 18:99. [PMID: 32782023 PMCID: PMC7477884 DOI: 10.1186/s12915-020-00838-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.
Collapse
Affiliation(s)
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- New Address: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
46
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
47
|
Skuodas S, Clemons A, Hayes M, Goll A, Zora B, Weeks DL, Phillips BT, Fassler JS. The ABCF gene family facilitates disaggregation during animal development. Mol Biol Cell 2020; 31:1324-1345. [PMID: 32320318 PMCID: PMC7353142 DOI: 10.1091/mbc.e19-08-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.
Collapse
Affiliation(s)
- Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Michael Hayes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Ashley Goll
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Betul Zora
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
48
|
Abstract
Amyloids and their infectious subset, prions, represent fibrillary aggregates with regular structure. They are formed by proteins that are soluble in their normal state. In amyloid form, all or part of the polypeptide sequence of the protein is resistant to treatment with proteinase K (PK). Amyloids can have structural variants, which can be distinguished by the patterns of their digestion by PK. In this review, we describe and compare studies of the resistant cores of various amyloids from different organisms. These data provide insight into the fine structure of amyloids and their variants as well as raise interesting questions, such as those concerning the differences between amyloids obtained ex vivo and in vitro, as well as the manner in which folding of one region of the amyloid can affect other regions.
Collapse
Affiliation(s)
- Vitaly V Kushnirov
- Research Center of Biotechnology of Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Alexander A Dergalev
- Research Center of Biotechnology of Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Alexander I Alexandrov
- Research Center of Biotechnology of Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
49
|
Mori N, Katayama T, Saito R, Iwashita K, Maruyama JI. Inter-strain expression of sequence-diverse HET domain genes severely inhibits growth of Aspergillus oryzae. Biosci Biotechnol Biochem 2019; 83:1557-1569. [DOI: 10.1080/09168451.2019.1580138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
In the Pezizomycotina (filamentous ascomycete) species, genes that encode proteins with an HET domain (Pfam: PF06985) are reportedly involved in heterokaryon incompatibility (HI) in which cell death or growth defects are induced after fusion of cells that are genetically incompatible owing to diversities in their nucleotide sequence. HET domain genes are commonly found in Pezizomycotina genomes and are functionally characterized in only a few species. Here, we compared 44 HET domain genes between an incompatible strain pair of Aspergillus oryzae RIB40 and RIB128 and performed inter-strain expression of 37 sequence-diverse genes for mimicking HI. Four HET domain genes were identified to cause severe growth inhibition in a strain- or sequence-specific manner. Furthermore, SNPs responsible for the inhibition of cell growth were identified. This study provides an important insight into the physiological significance of sequence diversity of HET domain genes and their potential functions in HI of A. oryzae.
Collapse
Affiliation(s)
- Noriko Mori
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Ryota Saito
- Division of Fundamental Research, National Research Institute of Brewing (NRIB), Hiroshima, Japan
| | - Kazuhiro Iwashita
- Division of Fundamental Research, National Research Institute of Brewing (NRIB), Hiroshima, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Avni A, Swasthi HM, Majumdar A, Mukhopadhyay S. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:109-143. [PMID: 31521230 DOI: 10.1016/bs.pmbts.2019.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloids are nanoscopic ordered self-assemblies of misfolded proteins that are formed via aggregation of partially unfolded or intrinsically disordered proteins (IDPs) and are commonly linked to devastating human diseases. An enlarging body of recent research has demonstrated that certain amyloids can be beneficial and participate in a wide range of physiological functions from bacteria to humans. These amyloids are termed as functional amyloids. Like disease-associated amyloids, a vast majority of functional amyloids are derived from a range of IDPs or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs). In this chapter, we describe an account of recent studies on the aggregation behavior of IDPs resulting in the formation of functional amyloids in a diverse range of organisms from bacteria to human. We also discuss the strategies that are used by these organisms to regulate the spatiotemporal amyloid assembly in their physiological functions.
Collapse
Affiliation(s)
- Anamika Avni
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Hema M Swasthi
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|