1
|
Ding J, Tan L, Wu L, Li J, Zhang Y, Shen Z, Zhang C, Zhao C, Gao L. Regulation of tryptophan-indole metabolic pathway in Porphyromonas gingivalis virulence and microbiota dysbiosis in periodontitis. NPJ Biofilms Microbiomes 2025; 11:37. [PMID: 40011497 PMCID: PMC11865485 DOI: 10.1038/s41522-025-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
Pathogenesis of periodontitis is marked by microbiota dysbiosis and disrupted host responses. Porphyromonas gingivalis is a keystone pathogen of periodontitis which expresses various crucial virulence factors. This study aimed to clarify the role and mechanisms of P. gingivalis tryptophan-indole metabolic pathway in the pathogenesis of periodontitis. This study showed that periodontitis patients exhibited elevated tryptophan metabolism and salivary pathogen abundance. Tryptophanase gene-deficiency altered proteome and metabolome of P. gingivalis, inhibited P. gingivalis virulent factors expression, biofilm growth, hemin utilization, cell adhesion/invasion and pro-inflammation ability. Tryptophan-indole pathway of P. gingivalis stimulated periodontitis biofilm formation and induced oral microbiota dysbiosis. In periodontitis mice, this pathway of P. gingivalis aggravated alveolar bone loss and gingival tissue destruction, causing oral and gut microbiota dysbiosis. This study indicates that the tryptophan-indole pathway serves as a significant regulator of P. gingivalis virulence and oral microbiota dysbiosis, which is also associated with gut dysbiosis.
Collapse
Affiliation(s)
- Jing Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lingping Tan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lingzhi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Li Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ding J, Li J, Zhang C, Tan L, Zhao C, Gao L. High-Throughput Combined Analysis of Saliva Microbiota and Metabolomic Profile in Chinese Periodontitis Patients: A Pilot Study. Inflammation 2024; 47:874-890. [PMID: 38148454 DOI: 10.1007/s10753-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The onset and progression of periodontitis involves complicated interactions between the dysbiotic oral microbiota and disrupted host immune-inflammatory response, which can be mirrored by the changes in salivary metabolites profile. This pilot study sought to examine the saliva microbiome and metabolome in the Chinese population by the combined approach of 16s rRNA sequencing and high-throughput targeted metabolomics to discover potential cues for host-microbe metabolic interactions. Unstimulated whole saliva samples were collected from eighteen Stage III and IV periodontitis patients and thirteen healthy subjects. Full-mouth periodontal parameters were recorded. The taxonomic composition of microbiota was obtained by 16s rRNA sequencing, and the metabolites were identified and measured by ultra-high performance liquid chromatography and mass spectrometry-based metabolomic analysis. The oral microbiota composition displayed marked changes where the abundance of 93 microbial taxa differed significantly between the periodontitis and healthy group. Targeted metabolomics identified 103 differential metabolites between the patients and healthy individuals. Functional enrichment analysis demonstrated the upregulation of protein digestion and absorption, histidine metabolism, and nicotinate and nicotinamide metabolism pathways in the dysbiotic microbiota, while the ferroptosis, tryptophan metabolism, glutathione metabolism, and carbon metabolism pathways were upregulated in the patients. Correlation analysis confirmed positive relationships between the clinical parameters, pathogen abundances, and disease-related metabolite levels. The integral analysis of the saliva microbiome and metabolome yielded an accurate presentation of the dysbiotic oral microbiome and functional alterations in host-microbe metabolism. The microbial and metabolic profiling of the saliva could be a potential tool in the diagnosis, prognosis evaluation, and pathogenesis study of periodontitis.
Collapse
Affiliation(s)
- Jing Ding
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Li Gao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Li P, Zhang Y, Chen D, Lin H. Investigation of a novel biofilm model close to the original oral microbiome. Appl Microbiol Biotechnol 2024; 108:330. [PMID: 38730049 PMCID: PMC11087337 DOI: 10.1007/s00253-024-13149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/13/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
A more optimized culture medium used in vitro to mimic the bacterial composition of original oral flora as similar as possible remains difficult at present, and the goal of this study is to develop a novel oral biofilm medium to restore the original oral microbiome. Firstly, we conducted a systematic literature review by searching PubMed and summarized the current reported culture media in vitro. Seven culture media were found. We used mixed saliva as the origin of oral species to compare the effects of the above media in culturing oral multispecies biofilms. Results indicated that among the seven media brain heart infusion containing 1% sucrose (BHIs) medium, PG medium, artificial saliva (AS) medium, and SHI medium could obviously gain large oral biofilm in vitro. The nutrients contained in different culture media may be suitable for the growth of different oral bacteria; therefore, we optimized several novel media accordingly. Notably, results of crystal violet staining showed that the biofilm cultured in our modified artificial saliva (MAS) medium had the highest amount of biofilm biomass. 16S rRNA gene sequencing showed that the operational taxonomic units (OTUs) and Shannon index of biofilm cultured in MAS medium were also the highest among all the tested media. More importantly, the 16S rRNA gene sequencing analysis indicated that the biofilm cultured in MAS medium was closer to the original saliva species. Besides, biofilm cultured by MAS was denser and produced more exopolysaccharides. MAS supported stable biofilm formation on different substrata. In conclusion, this study demonstrated a novel MAS medium that could culture oral biofilm in vitro closer to the original oral microbiome, showing a good application prospect. KEY POINTS: • We compare the effects of different media in culturing oral biofilms • A novel modified artificial saliva (MAS) medium was obtained in our study • The MAS medium could culture biofilm that was closer to oral microbiome.
Collapse
Affiliation(s)
- Pengpeng Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yuwen Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Dongru Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| | - Huancai Lin
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Matsuo T, Nakao K, Hara K. Inhibitory Effects of the Heat-Killed Lactic Acid Bacterium Enterococcus faecalis on the Growth of Porphyromonas gingivalis. CURRENT THERAPEUTIC RESEARCH 2024; 100:100731. [PMID: 38380421 PMCID: PMC10877105 DOI: 10.1016/j.curtheres.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Background Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is a major pathogen involved in the onset and progression of periodontal disease, a chronic inflammatory disorder observed in approximately two-thirds of the Japanese population older than age 30 years. P gingivalis cells produce and secrete gingipain, a powerful proteolytic enzyme, on their surfaces and in external environments. Objectives The effects of heat-killed Enterococcus faecalis (HkEf), a lactic acid bacterium, on the growth of P gingivalis were evaluated in vitro by measuring the viable cell count of P gingivalis and gingipain activity. Methods HkEf solution (1.63 or 163 mg/mL) was added to 1 mL P gingivalis culture to generate a final HkEf concentration of 0.64 or 64 mg/mL. The cultures were incubated anaerobically. The number of viable P gingivalis cells and gingipain activity were measured after incubation for 0, 12, 24, 48, and 72 hours. The number of viable P gingivalis cells was calculated by counting the number of colonies after culture. Gingipain activity was quantified by adding a chromogenic substrate to P gingivalis culture medium and measuring the absorbance of the reaction solution with a plate reader. Mean (SE) was calculated for viable cell counts and gingipain activity, and Wilcoxon rank-sum test was used to test for significant differences. Results The counts of viable P gingivalis cells in the control group increased as incubation time progressed for 12, 24, 48, and 72 hours; similar results were observed in the low-concentration HkEf group. In the high-concentration HkEf group, the increase in the viable cell count was significantly inhibited compared with that of the control group. Furthermore, gingipain activity in the low- and high-concentration HkEf groups was significantly inhibited over time compared with that of the control group. Although the pH of the culture solution tended to decrease in the high-concentration HkEf group, it was not considered to have affected the growth of P gingivalis. Conclusions HkEf exhibits inhibitory effects on the growth of P gingivalis and gingipain activity.
Collapse
Affiliation(s)
| | - Koji Nakao
- Academic Division, NUTRI Co Ltd, Tokyo, Japan
| | - Kosuke Hara
- Academic Division, NUTRI Co Ltd, Tokyo, Japan
| |
Collapse
|
5
|
Cornejo Ulloa P, van der Veen MH, Brandt BW, Buijs MJ, Krom BP. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023; 6:100139. [PMID: 37621393 PMCID: PMC10447177 DOI: 10.1016/j.bioflm.2023.100139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Sex steroid hormones (SSH) such as oestrogen, progesterone and testosterone are cholesterol derived molecules that regulate various physiological processes. They are present in both blood and saliva, where they come in contact with oral tissues and oral microorganisms. Several studies have confirmed the effect of these hormones on different periodontal-disease-associated bacteria, using single-species models. Bacteria can metabolize SSH, use them as alternative for vitamin K and also use them to induce the expression of virulence factors. However, it is still unclear what the effects of SSH are on the oral microbiome. In this study, we investigated the effects of four SSH on commensal in vitro oral biofilms. Saliva-derived oral biofilms were grown in Mc Bain medium without serum or menadione using the Amsterdam Active-Attachment model. After initial attachment in absence of SSH, the biofilms were grown in medium containing either oestradiol, oestriol, progesterone or testosterone at a 100-fold physiological concentration. Menadione or ethanol were included as positive control and negative control, respectively. After 12 days with daily medium refreshments, biofilm formation, biofilm red fluorescence and microbial composition were determined. The supernatants were tested for proteolytic activity using the Fluorescence Resonance Energy Transfer Analysis (FRET). No significant differences were found in biofilm formation, red fluorescence or microbial composition in any of the tested groups. Samples grown in presence of progesterone and oestradiol showed proteolytic activity comparable to biofilms supplemented with menadione. In contrast, testosterone and oestriol showed a decreased proteolytic activity compared to biofilms grown in presence of menadione. None of the tested SSH had large effects on the ecology of in vitro oral biofilms, therefore a direct translation of our results into in vivo effects is not possible. Future experiments should include other host factors such as oral tissues, immune cells and combinations of SSH as present in saliva, in order to have a more accurate picture of the phenomena taking place in both males and females.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Monique H. van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Koyanagi K, Kataoka K, Yoshimatsu H, Fujihashi K, Miyake T. Human salivary protein-derived peptides specific-salivary SIgA antibodies enhanced by nasal double DNA adjuvant in mice play an essential role in preventing Porphyromonas gingivalis colonization: an in-vitro study. BMC Oral Health 2023; 23:123. [PMID: 36829152 PMCID: PMC9950703 DOI: 10.1186/s12903-023-02821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND We previously showed that fimbriae-bore from Poryphyromonas gingivalis (Pg), one of the putative periodontopathogenic bacteria specifically bound to a peptide domain (stat23, prp21) shared on statherin or acidic proline-rich protein 1 (PRP1) molecule of human salivary proteins (HSPs). Here, we investigated whether the nasal administration of DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 as double DNA adjuvant (dDA) with stat23 and prpr21 induces antigen (Ag)-specific salivary secretory IgA (SIgA) antibodies (Abs) in mice. Further, we examined that stat23- and prpr21-specific salivary SIgA Abs induced by dDA have an impact on Pg-binding to human whole saliva-coated hydroxyapatite beads (wsHAPs). MATERIAL AND METHODS C57BL/6N mice were nasally immunized with dDA plus sta23 or/and prp21 peptide as Ag four times at weekly intervals. Saliva was collected one week after the final immunization and was subjected to Ag-specific ELISA. To examine the functional applicability of Ag-specific SIgA Abs, SIgA-enriched saliva samples were subjected to Pg binding inhibition assay to wsHAPs. RESULTS Significantly elevated levels of salivary SIgA Ab to stat23 or prp21 were seen in mice given nasal stat23 or prp21 with dDA compared to those in mice given Ag alone. Of interest, mice nasally given the mixture of stat23 and prp21 as double Ags plus dDA, resulted in both stat23- and prp21-specific salivary SIgA Ab responses, which are mediated through significantly increased numbers of CD11c+ dendritic cell populations and markedly elevated Th1 and Th2 cytokines production by CD4+ T cells in the mucosal inductive and effector tissues. The SIgA Ab-enriched saliva showed significantly reduced numbers of live Pg cells binding to wsHAPs as compared with those in mice given double Ags without dDA or naïve mice. Additionally, saliva from IgA-deficient mice given nasal double Ags plus dDA indicated no decrease of live Pg binding to wsHAPs. CONCLUSION These findings show that HSP-derived peptides-specific salivary SIgA Abs induced by nasal administration of stat23 and prp21 peptides plus dDA, play an essential role in preventing Pg attachment and colonization on the surface of teeth, suggesting a potency that the SIgA may interrupt and mask fimbriae-binding domains in HSPs on the teeth.
Collapse
Affiliation(s)
- Kayo Koyanagi
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| | - Kosuke Kataoka
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan. .,Department of Oral Health Science and Social Welfare, Graduate School of Oral Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi, Tokushima, 770-8504, Japan.
| | - Hideki Yoshimatsu
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, Japan.,Division of Mucosal Vaccine, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato-Ku, Tokyo, 108-8639, Japan.,Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, 1919 7Th Avenue South, Birmingham, AL, 35233, USA
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| |
Collapse
|
7
|
Movilla S, Martí S, Roca M, Moliner V. Computational Study of the Inhibition of RgpB Gingipain, a Promising Target for the Treatment of Alzheimer's Disease. J Chem Inf Model 2023; 63:950-958. [PMID: 36648276 PMCID: PMC10882967 DOI: 10.1021/acs.jcim.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease represents one of the most ambitious challenges for biomedical sciences due to the growing number of cases worldwide in the elderly population and the lack of efficient treatments. One of the recent attempts to develop a treatment points to the cysteine protease RgpB as a promising drug target. In this attempt, several small-molecule covalent inhibitors of this enzyme have been proposed. Here, we report a computational study at the atomic level of the inhibition mechanism of the most promising reported compounds. Molecular dynamics simulations were performed on six of them, and their binding energies in the active site of the protein were computed. Contact maps and interaction energies were decomposed by residues to disclose those key interactions with the enzyme. Finally, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were performed to evaluate the reaction mechanism by which these drug candidates lead to covalently bound complexes, inhibiting the RgpB protease. The results provide a guide for future re-design of prospective and efficient inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
8
|
Ghods S, Moradali MF, Duryea D, Walker AR, Davey ME. Growth of Porphyromonas gingivalis on human serum albumin triggers programmed cell death. J Oral Microbiol 2022; 15:2161182. [PMID: 36570975 PMCID: PMC9788703 DOI: 10.1080/20002297.2022.2161182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims Gingival crevicular fluid (GCF) constitutes the primary growth substrate for Porphyromonas gingivalis in vivo. The goal of this work was to evaluate the growth of different strains of P. gingivalis on human serum albumin (HSA), a major constituent of GCF. Methods Growth of five different strains of P. gingivalis in the HSA medium was examined and, surprisingly, three of the strains underwent autolysis within 24 h. Comparative transcriptomic analysis was used to identify genes involved in autolysis. Results Two highly related reference strains (W50 and W83) differed dramatically in their survival when grown on HSA. Strain W83 grew fast and lysed within 24 h, while W50 survived for an additional 20 h. Differential gene expression analysis led us to a gene cluster containing enzymes involved in arginine metabolism and a gene predicted to be lytic murein transglycosylase, which are known to play a role in autolysis. Deletion of this gene (PG0139) resulted in a mutant that did not lyse, and complementation restored the HSA lysis phenotype, indicating that this enzyme plays a central role in the autolysis of P. gingivalis. Conclusions P. gingivalis undergoes autolysis when provided with HSA as a substrate for growth.
Collapse
Affiliation(s)
| | | | | | | | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA,CONTACT Mary E. Davey The Forsyth Institute, Cambridge, MA02142, USA
| |
Collapse
|
9
|
Reis Ferreira M, Pasto A, Ng T, Patel V, Guerrero Urbano T, Sears C, Wade WG. The microbiota and radiotherapy for head and neck cancer: What should clinical oncologists know? Cancer Treat Rev 2022; 109:102442. [PMID: 35932549 DOI: 10.1016/j.ctrv.2022.102442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Radiotherapy is a linchpin in head and neck squamous cell carcinoma (HN-SCC) treatment. Modulating tumour and/or normal tissue biology offers opportunities to further develop HN-SCC radiotherapy. The microbiota, which can exhibit homeostatic properties and be a modulator of immunity, has recently received considerable interest from the Oncology community. Microbiota research in head and neck oncology has also flourished. However, available data are difficult to interpret for clinical and radiation oncologists. In this review, we focus on how microbiota research can contribute to the improvement of radiotherapy for HN-SCC, focusing on how current and future research can be translated back to the clinic. We include in-depth discussions about the microbiota, its multiple habitats and relevance to human physiology, mechanistic interactions with HN-SCC, available evidence on microbiota and HNC oncogenesis, efficacy and toxicity of treatment. We discuss clinically-relevant areas such as the role of the microbiota as a predictive and prognostic biomarker, as well as the potential of leveraging the microbiota and its interactions with immunity to improve treatment results. Importantly, we draw parallels with other cancers where research is more mature. We map out future directions of research and explain clinical implications in detail.
Collapse
Affiliation(s)
- Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK.
| | | | - Tony Ng
- King's College London, London, UK
| | - Vinod Patel
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | | | - Cynthia Sears
- Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, USA
| | | |
Collapse
|
10
|
Movilla S, Martí S, Roca M, Moliner V. Unrevealing the Proteolytic Activity of RgpB Gingipain from Computational Simulations. J Chem Inf Model 2021; 61:4582-4593. [PMID: 34472342 DOI: 10.1021/acs.jcim.1c00666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease represents one of the greatest medical concerns for today's population and health services. Its multifactorial inherent nature represents a challenge for its treatment and requires the development of a broad spectrum of drugs. Recently, the cysteine protease gingipain RgpB has been related to neurodegenerative diseases, including Alzheimer's disease, and its inhibition appears to be a promising neuroprotective strategy. Given these features, a computational study that integrates molecular dynamics (MD) simulations with classical and hybrid quantum mechanics/molecular mechanics (QM/MM) potentials was carried out to unravel the atomistic details of RgpB activity. First, a preliminary study based on principal component analysis (PCA), determined the protonation state of the Cys/His catalytic dyad, as well as the crucial role of a flexible loop that favors reactive interactions of the catalytic residues and the peptide in the precatalytic state in its closed conformation. Then, different mechanisms were explored by means of QM/MM MD simulations. The most favorable mechanism consists of two stages. First is an acylation stage that takes place in two steps where, initially, the sulfur atom of the C244 residue attacks the carbonylic carbon of the peptide and the proton of the C244 residue is transferred to the amino group of the peptide in a concerted manner. Subsequently, the peptide bond is broken, and a fragment of the peptide is released. After that, the deacylation stage takes place in a single step where a water molecule attacks the carbonylic carbon of the peptide and a proton of the water is transferred to the C244 residue. The free energy barrier of the rate limiting step is in very good agreement with available experimental data. The mechanism exhibits an unusual role of H211 residue compared with other cysteine proteases but a crucial role of the peptide in triggering the catalysis. Notably, the atomic and energetic particularities found represent a significant contribution to the comprehension of the reaction mechanism and a great opportunity for the design of efficient inhibitors of gingipain RgpB.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| |
Collapse
|
11
|
Saliva-derived microcosm biofilms grown on different oral surfaces in vitro. NPJ Biofilms Microbiomes 2021; 7:74. [PMID: 34504090 PMCID: PMC8429667 DOI: 10.1038/s41522-021-00246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The microbial composition of a specific oral niche could be influenced by initial bacterial adherence, nutrient and physiological property of the local surface. To investigate the influence of nutrient and surface properties on microbial composition, saliva-derived biofilms were grown in agar on three substrata: Reconstructed Human Gingiva (RHG), a hydroxyapatite (HAP) surface, and a titanium (TI) surface. Agar was mixed with either Brain Heart Infusion (BHI) or Thompson (TP) medium. After 1, 3, or 5 days, biofilm viability (by colony forming units) and microbiome profiles (by 16 S rDNA amplicon sequencing) were determined. On RHG, biofilm viability and composition were similar between BHI and TP. However, on the abiotic substrata, biofilm properties greatly depended on the type of medium and substratum. In BHI, the viability of HAP-biofilm first decreased and then increased, whereas that of TI-biofilm decreased in time until a 6-log reduction. In TP, either no or a 2-log reduction in viability was observed for HAP- or TI-biofilms respectively. Furthermore, different bacterial genera (or higher level) were differentially abundant in the biofilms on 3 substrata: Haemophilus and Porphyromonas for RHG; Bacilli for HAP and Prevotella for TI. In conclusion, RHG, the biotic substratum, is able to support a highly viable and diverse microbiome. In contrast, the viability and diversity of the biofilms on the abiotic substrata were influenced by the substrata type, pH of the environment and the richness of the growth media. These results suggest that the host (oral mucosa) plays a vital role in the oral ecology.
Collapse
|
12
|
Abstract
The human mouth harbors a complex microbiota, the composition of which is potentially influenced by a wide range of factors, including the intake of food and drink, the availability of endogenous nutrients, the host immune system, drug treatments, and systemic diseases. Despite these possible influences, the oral microbiota is remarkably resilient, particularly in comparison with the microbiota of the large intestine. Diet, with the exception of excessive and/or frequent consumption of fermentable carbohydrate or supplementation with nitrate, has minimal impact on the composition of the oral bacterial community. The common oral diseases dental caries and the periodontal diseases is associated with modification of the oral microbiota primarily as a result of the ecological changes induced by excessive acid production and inflammation, respectively. Systemically-administered antimicrobials have only a small effect on the composition of the oral bacterial community, and while locally delivered antimicrobials can have some clinical benefits, the biofilm lifestyle of oral bacteria lends them substantial resistance to the agents used. Saliva plays an important role in oral microbial ecology, by supplying nutrients and providing protection against colonization by nonoral organisms. Dry mouth is one condition that has a major effect on the microbiota, resulting in increased colonization by opportunistic pathogens. Some systemic diseases do affect the oral microbiome, notably diabetes, in which raised levels of glucose in saliva and tissue impact on bacterial nutrition.
Collapse
Affiliation(s)
- William G Wade
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Microbiology, Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
13
|
Manipulation of Saliva-Derived Microcosm Biofilms To Resemble Dysbiotic Subgingival Microbiota. Appl Environ Microbiol 2021; 87:AEM.02371-20. [PMID: 33158898 PMCID: PMC7848911 DOI: 10.1128/aem.02371-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. Periodontitis is a highly prevalent oral inflammatory disease triggered by dysbiotic subgingival microbiota. For the development of microbiome modulators that can reverse the dysbiotic state and reestablish a health-associated microbiota, a high-throughput in vitro multispecies biofilm model is needed. Our aim is to establish a model that resembles a dysbiotic subgingival microbial biofilm by incorporating the major periodontal pathogen Porphyromonas gingivalis into microcosm biofilms cultured from pooled saliva of healthy volunteers. The biofilms were grown for 3, 7, and 10 days and analyzed for their microbial composition by 16S rRNA gene amplicon sequencing as well as measurement of dipeptidyl peptidase IV (DPP4) activity and butyric acid production. The addition of P. gingivalis increased its abundance in saliva-derived microcosm biofilms from 2.7% on day 3 to >50% on day 10, which significantly reduced the Shannon diversity but did not affect the total number of operational taxonomic units (OTUs). The P. gingivalis-enriched biofilms displayed altered microbial composition as revealed by principal-component analysis and reduced interactions among microbial species. Moreover, these biofilms exhibited enhanced DPP4 activity and butyric acid production. In conclusion, by adding P. gingivalis to saliva-derived microcosm biofilms, we established an in vitro pathogen-enriched dysbiotic microbiota which resembles periodontitis-associated subgingival microbiota in terms of increased P. gingivalis abundance and higher DPP4 activity and butyric acid production. This model may allow for investigating factors that accelerate or hinder a microbial shift from symbiosis to dysbiosis and for developing microbiome modulation strategies. IMPORTANCE In line with the new paradigm of the etiology of periodontitis, an inflammatory disorder initiated by dysbiotic subgingival microbiota, novel therapeutic strategies have been proposed targeting reversing dysbiosis and restoring host-compatible microbiota rather than eliminating the biofilms unselectively. Thus, appropriate laboratory models are required to evaluate the efficacy of potential microbiome modulators. In the present study, we used the easily obtainable saliva as an inoculum, spiked the microcosm biofilms with the periodontal pathogen Porphyromonas gingivalis, and obtained a P. gingivalis-enriched microbiota, which resembles the in vivo pathogen-enriched subgingival microbiota in severe periodontitis. This biofilm model circumvents the difficulties encountered when using subgingival plaque as the inoculum and achieves microbiota in a dysbiotic state in a controlled and reproducible manner, which is required for high-throughput and large-scale evaluation of strategies that can potentially modulate microbial ecology.
Collapse
|
14
|
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, Baslé A, Ranson NA, Potempa J, van den Berg B. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol 2020; 5:1016-1025. [PMID: 32393857 PMCID: PMC7610489 DOI: 10.1038/s41564-020-0716-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.
Collapse
Affiliation(s)
- Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shaun Rawson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karunakar Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Kobuchi K, Kataoka K, Taguchi Y, Miyake T, Umeda M. Nasal double DNA adjuvant induces salivary FimA-specific secretory IgA antibodies in young and aging mice and blocks Porphyromonas gingivalis binding to a salivary protein. BMC Oral Health 2019; 19:188. [PMID: 31426773 PMCID: PMC6700810 DOI: 10.1186/s12903-019-0886-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously showed that nasal administration of a combination of dendritic cell (DC) targeted DNA plasmid expressing Flt3 ligand and CpG oligodeoxynucleotides 1826 as a mucosal adjuvant (double adjuvant, DA) provoked protective immunity in the upper respiratory tract of young adult and aging mice. Here, we investigated whether the nasal DA system induces secretory (S)IgA antibodies (Abs) toward recombinant fimbrillin (rFimA) of Porphyromonas gingivalis (P. gingivalis) in the saliva of young adult and aging mice. Further, we examined the functional applicability of rFimA-specific salivary SIgA Abs. METHODS BALB/c mice (8- or 48-week-old) were nasally immunized with rFimA plus DA three times at weekly intervals. Control mice were nasally administered rFimA alone. Saliva samples were collected 1 week after the final immunization, and were subjected to rFimA-specific ELISA. To examine the functional applicability of rFimA-specific SIgA Abs, IgA-enriched saliva samples were subjected to an inhibition assay in order to assess the numbers of P. gingivalis cells bound to the salivary protein statherin. RESULTS The 8- and 48-week-old mice administered nasal rFimA plus DA showed significantly increased levels of rFimA-specific SIgA Abs in saliva and elevated numbers of CD11c+ DCs in sublingual glands (SLGs), periglandular lymph nodes (PGLNs) and submandibular glands (SMGs) as well as nasopharyngeal-associated lymphoid tissues (NALT) compared to mice administered rFimA alone. Further, rFimA-specific SIgA Abs-containing saliva, in which IgG Abs of 8- and 48-week-old mice administered nasal rFimA plus DA were removed, significantly inhibited binding of P. gingivalis to the salivary protein. CONCLUSIONS These findings show that this DA system could be an effective nasal vaccine strategy for the enhancement of P. gingivalis-specific protective immunity in the oral cavity of adolescents and older individuals.
Collapse
Affiliation(s)
- Kenjiro Kobuchi
- Graduate School of Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Kosuke Kataoka
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, 573-1121 Japan
| |
Collapse
|
16
|
Cieplik F, Zaura E, Brandt BW, Buijs MJ, Buchalla W, Crielaard W, Laine ML, Deng DM, Exterkate RAM. Microcosm biofilms cultured from different oral niches in periodontitis patients. J Oral Microbiol 2018; 11:1551596. [PMID: 30598734 PMCID: PMC6263112 DOI: 10.1080/20022727.2018.1551596] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Periodontal diseases are triggered by dysbiotic microbial biofilms. Therefore, it is essential to develop appropriate biofilm models. Aim of the present study was to culture microcosm biofilms inoculated from different niches in periodontitis patients and compare their microbial composition to those inoculated from subgingival plaque. Methods: Saliva, subgingival plaque, tongue and tonsils were sampled in five periodontitis patients to serve as inocula for culturing biofilms in vitro in an active attachment model. Biofilms were grown for 14 or 28 d and analyzed for their microbial composition by 16S rDNA sequencing. Results: As classified by HOMD, all biofilms were dominated by periodontitis-associated taxa, irrespective which niche had been used for inoculation. There was a low similarity between 14 d biofilms and their respective inocula (Bray-Curtis similarity 0.26), while biofilms cultured for 14 and 28 d shared high similarity (0.69). Principal components analysis showed much stronger clustering per patient than per niche indicating that the choice of patients may be more crucial than choice of the respective niches in these patients. Conclusion: Saliva, tongue scrapings or tonsil swabs may represent sufficient alternative inocula for growing microcosm biofilms resembling periodontitis-associated microbial communities in cases when sampling subgingival plaque is not possible.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob A M Exterkate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Kim HY, Seo J, Kim TH, Shim B, Cha SM, Yu S. Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:232-239. [PMID: 28249748 DOI: 10.1016/j.scitotenv.2017.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock.
Collapse
Affiliation(s)
- Hyun Young Kim
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do 56212, Republic of Korea
| | - Jiyoung Seo
- Reliability Test Center, Defense Agency for Technology and Quality, Seoul 02455, Republic of Korea
| | - Tae-Hun Kim
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do 56212, Republic of Korea
| | - Bomi Shim
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do 56212, Republic of Korea
| | - Seok Mun Cha
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do 56212, Republic of Korea
| | - Seungho Yu
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do 56212, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%.
Collapse
|
19
|
Abstract
Porphyromonas gingivalis is associated with both oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes do not reliably predict disease presentation during in vivo studies. Here, we present the genome sequence of 381, a common laboratory strain, with a single contig of 2,378,872 bp and a G+C content of 48.36%.
Collapse
|
20
|
Loos BG, Dyer DW. Restriction Fragment Length Polymorphism Analysis of the Fimbrillin Locus, fimA, of Porphyromonas gingivalis. J Dent Res 2016; 71:1173-81. [PMID: 1351483 DOI: 10.1177/00220345920710050901] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With hybridization probes derived from the fimbrial locus of Porphyromonas gingivalis strain 381, fimA381' restriction fragment length polymorphisms (RFLPs) were examined at the fimbrillin locus in 39 human and animal strains of this species. The 39 strains were subdivided into nine RFLP groups (I-IX) after genomic digests were probed with the internal coding sequence of the fimA381 gene. Thirty-three strains showed one or more AluI fragments of moderate-to-high homology (≥77%) with the internal coding sequence of fimA381. These strains were distributed into the first seven RFLP groups, based solely on the size of the major hybridizing AluI fragment. Five human strains (RFLP Group VIII) had only one Alu I fragment that hybridized very poorly with this probe. One animal strain did not have homology at all (RFLP Group IX). When all AluI fragments that hybridized with fimA381 were analyzed, RFLP groups I-VIII were further differentiated into 25 distinct RFLP patterns. Hybridizations were also performed with the internal coding sequence of fimA381 to probe PstI genomic digests of selected strains that appeared to have lesser homology with fimA381. These hybridizations were performed to determine the level and location of the region of poor homology within the fimA genes of these strains. The results suggested that fimbrial coding sequences are more commonly conserved between these strains in the 5'-region of the fimA locus (≥92% sequence homology). However, the five human strains of RFLP Group VIII had only one PstI fragment that hybridized very poorly with a probe derived from fimA381 coding sequence, and this sequence homology (only > 66%) was located in the central or 3'-end of the fimA gene. The 5'-region of the fimA allele in Group VIII strains did not have any detectable sequence homology. In contrast, the Group VIII strains were highly homologous with the sequences flanking the fimA381 gene. This indicates that these strains do possess a fimA allele at the same chromosomal location as fimA381.
Collapse
Affiliation(s)
- B G Loos
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo 14214
| | | |
Collapse
|
21
|
Nakao R, Hasegawa H, Dongying B, Ohnishi M, Senpuku H. Assessment of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as possible mucosal immunogen. Vaccine 2016; 34:4626-4634. [PMID: 27461458 DOI: 10.1016/j.vaccine.2016.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Periodontitis is the most prevalent infectious disease and related to oral and systemic health, therefore novel prophylaxis to prevent the disease is highly desirable. Here, we assessed the outer membrane vesicles (OMVs) of a keystone periodontal pathogen, Porphyromonas gingivalis, as a candidate mucosal immunogen and adjuvant for a periodontitis vaccine. The structural and functional stability of OMVs, demonstrated by proteinase K resistance and ability to withstand long-term storage, are considered advantageous for carrying the OMV components into the host immune system. Intranasal vaccination of OMVs in mice elicited production of P. gingivalis-specific antibodies in blood and saliva by OMVs in a dose-dependent manner, which was dramatically enhanced by addition of a TLR3 agonist, Poly(I:C). Serum samples from mice immunized with OMVs plus Poly(I:C) adjuvant [OMV+Poly(I:C)] showed significant inhibition of gingipain proteolytic activity of not only the vaccine strain, but also heterologous strains. The viability of P. gingivalis was also decreased by preincubation with OMV+Poly(I:C)-immunized sera, while the killing effect was partially blocked by heat-inactivation of the sera. Saliva samples from mice immunized with OMV+Poly(I:C) enhanced bacterial agglutination of both the vaccine and heterologous strains. In an oral infection mouse model, the numbers of P. gingivalis in the oral cavity were significantly decreased in mice intranasally immunized with OMV+Poly(I:C) as compared to mock (only Poly[I:C])-immunized mice. The high levels of serum IgG (including IgG1 and IgG2a) and salivary S-IgA were elicited in mice intranasally immunized with OMV+Poly(I:C), which were maintained for at least 28 and 18weeks, respectively, after immunization. An experiment examining the accumulation of OMVs after intranasal immunization in proximal organs and an intracerebral injection experiment confirmed the safety of OMVs. Based on our results, we propose that intranasal immunization with OMV+Poly(I:C) is a feasible vaccine strategy in the context of bacterial clearance and safety.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Bai Dongying
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
22
|
MicroRNAs as Salivary Markers for Periodontal Diseases: A New Diagnostic Approach? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1027525. [PMID: 27429973 PMCID: PMC4939343 DOI: 10.1155/2016/1027525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The aim of this review is to discuss current findings regarding the roles of miRNAs in periodontal diseases and the potential use of saliva as a diagnostic medium for corresponding miRNA investigations. For periodontal disease, investigations have been restricted to tissue samples and five miRNAs, that is, miR-142-3p, miR-146a, miR-155, miR-203, and miR-223, were repeatedly validated in vivo and in vitro by different validation methods. Particularly noticeable are the small sample sizes, different internal controls, and different case definitions of periodontitis in in vivo studies. Beside of that, the validated miRNAs are associated with inflammation and therefore with various diseases. Furthermore, several studies successfully explored the use of salivary miRNA species for the diagnosis of oral cancer. Different cancer types were investigated and heterogeneous methodology was used; moreover, no overlap of results was found. In conclusion, five miRNAs have consistently been reported for periodontitis; however, their disease specificity, detectability, and expression in saliva and their importance as noninvasive markers are questionable. In principle, a salivary miRNA diagnostic method seems feasible. However, standardized criteria and protocols for preanalytics, measurements, and analysis should be established to obtain comparable results across different studies.
Collapse
|
23
|
Nemoto TK, Ohara-Nemoto Y. Exopeptidases and gingipains in Porphyromonas gingivalis as prerequisites for its amino acid metabolism. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:22-29. [PMID: 28408952 PMCID: PMC5382784 DOI: 10.1016/j.jdsr.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/22/2023] Open
Abstract
Porphyromonas gingivalis, an asaccharolytic bacterium, utilizes amino acids as energy and carbon sources. Since amino acids are incorporated into the bacterial cells mainly as di- and tri-peptides, exopeptidases including dipeptidyl-peptidase (DPP) and tripeptidyl-peptidase are considered to be prerequisite components for their metabolism. We recently discovered DPP11, DPP5, and acylpeptidyl oligopeptidase in addition to previously reported DPP4, DPP7, and prolyl tripeptidyl peptidase A. DPP11 is a novel enzyme specific for acidic P1 residues (Asp and Glu) and distributed ubiquitously in eubacteria, while DPP5 is preferential for the hydrophobic P1 residue and the first entity identified in prokaryotes. Recently, acylpeptidyl oligopeptidase with a preference for hydrophobic P1 residues was found to release N-terminally blocked di- and tri-peptides. Furthermore, we also demonstrated that gingipains R and K contribute to P1-basic dipeptide production. These observations implicate that most, if not all, combinations of di- and tri-peptides are produced from extracellular oligopeptides even with an N-terminal modification. Here, we review P. gingivalis exopeptidases mainly in regard to their enzymatic characteristics. These exopeptidases with various substrate specificities benefit P. gingivalis for obtaining energy and carbon sources from the nutritionally limited subgingival environment.
Collapse
Affiliation(s)
- Takayuki K. Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | |
Collapse
|
24
|
Wunsch CM, Lewis JP. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J Vis Exp 2015:e53408. [PMID: 26709454 DOI: 10.3791/53408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Collapse
Affiliation(s)
| | - Janina P Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University; Department of Microbiology and Immunology, Virginia Commonwealth University; Department of Biochemistry, Virginia Commonwealth University;
| |
Collapse
|
25
|
Abstract
Porphyromonas gingivalis is associated with oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes have been correlated with disease presentation in infected laboratory animals. Here, we present the genome sequence of AJW4, a minimally invasive strain, with a single contig of 2,372,492 bp and a G+C content of 48.27%.
Collapse
|
26
|
Kistler JO, Pesaro M, Wade WG. Development and pyrosequencing analysis of an in-vitro oral biofilm model. BMC Microbiol 2015; 15:24. [PMID: 25880819 PMCID: PMC4332733 DOI: 10.1186/s12866-015-0364-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022] Open
Abstract
Background Dental caries and periodontal disease are the commonest bacterial diseases of man and can result in tooth loss. The principal method of prevention is the mechanical removal of dental plaque augmented by active agents incorporated into toothpastes and mouthrinses. In-vitro assays that include complex oral bacterial biofilms are required to accurately predict the efficacy of novel active agents in vivo. The aim of this study was to develop an oral biofilm model using the Calgary biofilm device (CBD) seeded with a natural saliva inoculum and analysed by next generation sequencing. The specific objectives were to determine the reproducibility and stability of the model by comparing the composition of the biofilms over time derived from (i) the same volunteers at different time points, and (ii) different panels of volunteers. Results Pyrosequencing yielded 280,093 sequences with a mean length of 432 bases after filtering. A mean of 320 and 250 OTUs were detected in pooled saliva and biofilm samples, respectively. Principal coordinates analysis (PCoA) plots based on community membership and structure showed that replicate biofilm samples were highly similar and clustered together. In addition, there were no significant differences between biofilms derived from the same panel at different times using analysis of molecular variance (AMOVA). There were significant differences between biofilms from different panels (AMOVA, P < 0.002). PCoA revealed that there was a shift in biofilm composition between seven and 14 days (AMOVA, P < 0.001). Veillonella parvula, Veillonella atypica/dispar/parvula and Peptostreptococcus stomatis were the predominant OTUs detected in seven-day biofilms, whilst Prevotella oralis, V. parvula and Streptococcus constellatus were predominant in 14-day biofilms. Conclusions Diverse oral biofilms were successfully grown and maintained using the CBD. Biofilms derived from the same panel of volunteers were highly reproducible. This model could be used to screen both antimicrobial-containing oral care products and also novel approaches aiming to modify plaque composition, such as pre- or probiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0364-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James O Kistler
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | - William G Wade
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147:1055-63.e8. [PMID: 25046162 PMCID: PMC4252572 DOI: 10.1053/j.gastro.2014.07.020] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota. METHODS We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S ribosomal RNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples. RESULTS Average Po2 values in the lumen of the cecum were extremely low (<1 mm Hg). In altering oxygenation of mouse intestines, we observed that oxygen diffused from intestinal tissue and established a radial gradient that extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbiota in mice. In human beings, 16S ribosomal RNA gene analyses showed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with rectal mucosa, compared with feces. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be owing to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium. CONCLUSIONS In an analysis of intestinal microbiota of mice and human beings, we observed a radial gradient of microbes linked to the distribution of oxygen and nutrients provided by host tissue.
Collapse
Affiliation(s)
- Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colleen P Judge
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Chen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alice Laughlin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie Grunberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James D Lewis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Li N, Collyer CA. Gingipains from Porphyromonas gingivalis - Complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2014; 1:41-58. [PMID: 24466435 DOI: 10.1556/eujmi.1.2011.1.7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gingipains, a group of arginine or lysine specific cysteine proteinases (also known as RgpA, RgpB and Kgp), have been recognized as major virulence factors in Porphyromonas gingivalis. This bacterium is one of a handful of pathogens that cause chronic periodontitis. Gingipains are involved in adherence to and colonization of epithelial cells, haemagglutination and haemolysis of erythrocytes, disruption and manipulation of the inflammatory response, and the degradation of host proteins and tissues. RgpA and Kgp are multi-domain proteins composed of catalytic domains and haemagglutinin/adhesin (HA) regions. The structure of the HA regions have previously been defined by a gingipain domain structure hypothesis which is a set of putative domain boundaries derived from the sequences of fragments of these proteins extracted from the cell surface. However, multiple sequence alignments and hidden Markov models predict an alternative domain architecture for the HA regions of gingipains. In this alternate model, two or three repeats of the so-called "cleaved adhesin" domains (and one other undefined domain in some strains) are the modules which constitute the substructure of the HA regions. Recombinant forms of these putative cleaved adhesin domains are indeed stable folded protein modules and recently determined crystal structures support the hypothesis of a modular organisation of the HA region. Based on the observed K2 and K3 structures as well as multiple sequence alignments, it is proposed that all the cleaved adhesin domains in gingipains will share the same β-sandwich jelly roll fold. The new domain model of the structure for gingipains and the haemagglutinin (HagA) proteins of P. gingivalis will guide future functional studies of these virulence factors.
Collapse
Affiliation(s)
- N Li
- School of Molecular Bioscience, University of Sydney NSW Australia
| | - C A Collyer
- School of Molecular Bioscience, University of Sydney NSW Australia
| |
Collapse
|
29
|
Belibasakis G, Thurnheer T, Bostanci N. Porphyromonas gingivalis: a heartful oral pathogen? Virulence 2014; 5:463-4. [PMID: 24759693 PMCID: PMC4063808 DOI: 10.4161/viru.28930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Georgios Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| |
Collapse
|
30
|
Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions. Int J Oral Sci 2013; 5:130-40. [PMID: 23867843 PMCID: PMC3967327 DOI: 10.1038/ijos.2013.28] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/22/2013] [Indexed: 11/15/2022] Open
Abstract
Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.
Collapse
|
31
|
Ohara-Nemoto Y, Shimoyama Y, Kimura S, Kon A, Haraga H, Ono T, Nemoto TK. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources. J Biol Chem 2011; 286:38115-38127. [PMID: 21896480 DOI: 10.1074/jbc.m111.278572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588.
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Asako Kon
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Hiroshi Haraga
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| |
Collapse
|
32
|
Ferraz CCR, Henry MA, Hargreaves KM, Diogenes A. Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicin-sensitive nociceptors. J Endod 2011; 37:45-8. [PMID: 21146075 PMCID: PMC3032989 DOI: 10.1016/j.joen.2007.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/09/2007] [Indexed: 01/31/2023]
Abstract
Although odontogenic infections are often accompanied by pain, little is known about the potential mechanisms mediating this effect. In this study we tested the hypothesis that trigeminal nociceptive neurons are directly sensitized by lipopolysaccharide (LPS) isolated from an endodontic pathogen, Porphyromonas gingivalis. In vitro studies conducted with cultures of rat trigeminal neurons demonstrated that pretreatment with LPS produced a significant increase in the capsaicin-evoked release of calcitonin gene-related peptide (CGRP) when compared with vehicle pretreatment, thus showing sensitization of the capsaicin receptor, TRPV1, by LPS. Furthermore, confocal microscopic examination of human tooth pulp samples showed the colocalization of the LPS receptor (toll-like receptor 4, TLR4) with CGRP-containing nerve fibers. Collectively, these results suggest the direct sensitization of nociceptors by LPS at concentrations found in infected canal systems as one mechanism responsible for the pain associated with bacterial infections.
Collapse
Affiliation(s)
- Caio Cezar Randi Ferraz
- Department of Endodontics, Piracicaba School of Dentistry, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Oishi S, Miyashita M, Kiso A, Kikuchi Y, Ueda O, Hirai K, Shibata Y, Fujimura S. Cellular locations of proteinases and association with vesicles in Porphyromonas gingivalis. Eur J Med Res 2010; 15:397-402. [PMID: 20952349 PMCID: PMC3351907 DOI: 10.1186/2047-783x-15-9-397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We found that locations of arginine-specific gingipain (RGP) in the cellular fractions in the crude extract, envelope, vesicles, and culture supernatants were 48%, 16%, 17%, and 31%, respectively, and the corresponding values of lysine-specific gingipain (KGP) were 47%, 10%, 7%, and 36%, respectively. Although the molecular mass of RGP in the culture supernatant had been determined as 43 kDa, and that of KGP had been as 48 kDa, molecular masses of both proteinases solubilized from the vesicles were estimated to be over 1,500 kDa, since they eluted in the void volume of the column in the gel filtration on Sephacryl S-300. There was no reduction of molecular size by the following treatment with SDS, high-concentration NaCl, or urea. Interestingly, the occurrence of the macromolecular forms could not observed in other enzymes tested such as monopeptidyl, dipeptidyl, and tripeptidyl peptidases, as well as alkaline phosphatase. Therefore, occurrence of the macromolecular forms may be restricted to the proteinases. When the vesicle and culture supernatants containing free RGP and KGP were mixed and incubated, neither RGP nor KGP seemed to bind to vesicles. RGP bound to the vesicle was found to be more stable to heat treatment than the free form, suggesting that association of RGP with the vesicle caused heat stability of this enzyme.
Collapse
Affiliation(s)
- S Oishi
- Department of Oral Health, Graduate School of Oral Medicine, Shiojiri-Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Daep CA, Novak EA, Lamont RJ, Demuth DR. Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis. Peptides 2010; 31:2173-8. [PMID: 20800634 PMCID: PMC2967622 DOI: 10.1016/j.peptides.2010.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The interaction of the periodontal pathogen, Porphyromonas gingivalis, with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S. gordonii was a potent competitive inhibitor of P. gingivalis adherence to S. gordonii and subsequent biofilm formation. Here we show that despite its inhibitory activity, BAR is rapidly degraded by intact P. gingivalis cells in vitro. However, in the presence of soluble Mfa protein, the P. gingivalis receptor for BAR, the peptide is protected from proteolytic degradation suggesting that the affinity of BAR for Mfa is higher than for P. gingivalis proteases. The rate of BAR degradation was reduced when the P. gingivalis lysine-specific gingipain was inhibited using the specific protease inhibitor, z-FKcK, or when the gene encoding the Lys-gingipain was inactivated. In addition, substituting d-Lys for l-Lys residues in BAR prevented degradation of the peptide when incubated with the Lys-gingipain and increased its specific adherence inhibitory activity in a S. gordonii-P. gingivalis dual species biofilm model. These results suggest that Lys-gingipain accounts in large part for P. gingivalis-mediated degradation of BAR and that more effective peptide inhibitors of P. gingivalis adherence to streptococci can be produced by introducing modifications that limit the susceptibility of BAR to the Lys-gingipain and other P. gingivalis associated proteases.
Collapse
Affiliation(s)
- Carlo Amorin Daep
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
| | - Elizabeth A. Novak
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
| | | | - Donald R. Demuth
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
| |
Collapse
|
35
|
Johnson NA, McKenzie RME, Fletcher HM. The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol Oral Microbiol 2010; 26:62-77. [PMID: 21214873 DOI: 10.1111/j.2041-1014.2010.00596.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of Porphyromonas gingivalis to overcome oxidative stress in the inflammatory environment of the periodontal pocket is critical for its survival. We have previously demonstrated that the recA locus, which carries the bacterioferritin co-migratory protein (bcp) gene and has a unique genetic architecture, plays a role in virulence regulation and oxidative stress resistance in P. gingivalis. To further characterize the bcp gene, which was confirmed to be part of the bcp-recA-vimA-vimE-vimF operon, we created a P. gingivalis bcp-defective isogenic mutant (FLL302) by allelic exchange. Compared with the wild-type, FLL302 had a similar growth rate, black pigmentation, β-hemolysis and UV sensitivity. Although there was no change in the distribution of gingipain activity, there was a 30% reduction in both Arg-X and Lys-X activities in the mutant strain compared with the wild-type. When exposed to 0.25 mm hydrogen peroxide, P. gingivalis FLL302 was more sensitive than the wild-type. In addition, the cloned P. gingivalis bcp gene increased resistance to 0.25 mm hydrogen peroxide in a bcp-defective Escherichia coli mutant. The mutant also demonstrated decreased aerotolerance when compared with the wild-type. Porphyromonas gingivalis FLL302 and the wild-type strain had similar virulence profiles in a mouse model of virulence. These observations suggest that the bcp gene may play a role in oxidative stress resistance but has a decreased functional significance in the pathogenic potential of P. gingivalis.
Collapse
Affiliation(s)
- N A Johnson
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
36
|
Olczak T, Wójtowicz H, Ciuraszkiewicz J, Olczak M. Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol 2010; 10:134. [PMID: 20438645 PMCID: PMC2873494 DOI: 10.1186/1471-2180-10-134] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/04/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis is a major etiological agent of chronic periodontitis. The aim of this study was to examine the species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of the P. gingivalis heme-binding protein HmuY. RESULTS HmuY is a unique protein of P. gingivalis since only low amino-acid sequence homology has been found to proteins encoded in other species. It is exposed on the cell surface and highly abundant in the outer membrane of the cell, in outer-membrane vesicles, and is released into culture medium in a soluble form. The protein is produced constitutively at low levels in bacteria grown under high-iron/heme conditions and at higher levels in bacteria growing under the low-iron/heme conditions typical of dental plaque. HmuY is immunogenic and elicits high IgG antibody titers in rabbits. It is also engaged in homotypic biofilm formation by P. gingivalis. Anti-HmuY antibodies exhibit inhibitory activity against P. gingivalis growth and biofilm formation. CONCLUSIONS Here it is demonstrated that HmuY may play a significant role not only in heme acquisition, but also in biofilm accumulation on abiotic surfaces. The data also suggest that HmuY, as a surface-exposed protein, would be available for recognition by the immune response during chronic periodontitis and the production of anti-HmuY antibodies may inhibit biofilm formation.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Halina Wójtowicz
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Justyna Ciuraszkiewicz
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| |
Collapse
|
37
|
Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 2009; 77:4761-70. [PMID: 19737899 DOI: 10.1128/iai.00841-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.
Collapse
|
38
|
Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect Immun 2009; 77:4187-96. [PMID: 19651865 DOI: 10.1128/iai.00009-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.
Collapse
|
39
|
Wilton JMA, Slaney JM, Sterne JAC, Griffiths GS, Johnson NW. Serum IgG Antibodies Reactive with Potential Periodontal Pathogens and Other Subgingival Plaque Bacteria in a Population of Male British Adolescents with Minimal Destructive Periodontitis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609109140153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- J. M. A. Wilton
- Medical Research Unit Dental Research Unit, Periodontal Diseases Programme, 30/32 Newark Street, London, El 2AA, UK
| | - J. M. Slaney
- Medical Research Unit Dental Research Unit, Periodontal Diseases Programme, 30/32 Newark Street, London, El 2AA, UK
| | - J. A. C. Sterne
- Medical Research Unit Dental Research Unit, Periodontal Diseases Programme, 30/32 Newark Street, London, El 2AA, UK
| | - G. S. Griffiths
- Medical Research Unit Dental Research Unit, Periodontal Diseases Programme, 30/32 Newark Street, London, El 2AA, UK
| | - N. W. Johnson
- Medical Research Unit Dental Research Unit, Periodontal Diseases Programme, 30/32 Newark Street, London, El 2AA, UK
| |
Collapse
|
40
|
Busch L, Miozza V, Sterin-Borda L, Borda E. Increased leukotriene concentration in submandibular glands from rats with experimental periodontitis. Inflamm Res 2009; 58:423-30. [PMID: 19347252 DOI: 10.1007/s00011-009-0008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/20/2008] [Accepted: 12/15/2008] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN In the present study, we investigated the relation between the inflammatory mediators such as nitric oxide, prostaglandins, and cysteinyl-leukotrienes with mucin release and the sympathetic system in submandibular glands from rats with experimental periodontitis. MATERIALS OR SUBJECTS Submandibular glands from rats with experimental periodontitis. TREATMENT For the first experiment, rats were treated with hydrocortisone sc, 1 mg/kg for 3 days. All other experiments were carried out in isolated submandibular glands from untreated rats. Submandibular glands were treated with cysteinyl-leukotrienes, isoproterenol, NDGA, FPL 55712, L-NMMA, Nio, Nz, AMG, indomethacin, DuP 697 and atenolol. METHODS Nitric oxide synthase activity, prostaglandin and cysteinyl-leukotriene productions and mucin secretion were determined. The Newman-Keuls statistical test was applied after analysis of variance. RESULTS In rats with periodontitis hydrocortisone-induced a 36.6% (P < 0.05) decrease in mucin release. Only cysteinyl-leukotriene production was increased in rats with ligature (79.2%, P < 0.001). Either the inhibition of cysteinyl-leukotriene production or the block of leukotriene receptor abolished the increase in mucin secretion by 25.6% (P < 0.05) and 37% (P < 0.01), respectively, in glands from rats with ligature. On the other hand, the presence of cysteinyl-leukotrienes in the incubation medium induced mucin release from submandibular glands. Atenolol diminished by 24% (P < 0.05), the increase in cysteinyl-leukotrienes observed in rats with periodontitis. Besides, isoproterenol induced cysteinyl-leukotriene production in both groups. CONCLUSION In submandibular glands from rats with periodontitis, the increment in mucin release and cysteinyl-leukotrienes production are related events and both are associated with the sympathetic system.
Collapse
Affiliation(s)
- Lucila Busch
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
41
|
Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a concentration-dependent manner. Infect Immun 2008; 77:1246-61. [PMID: 19114547 DOI: 10.1128/iai.01038-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis were observed, using immunostaining, in human gingival tissue associated with periodontitis but not in healthy tissue. The staining pattern suggested a concentration gradient from the subgingival plaque into the subjacent gingival connective tissue. Intense immunostaining was observed in areas displaying gross disturbance of tissue architecture. P. gingivalis cells and the RgpA-Kgp complexes at low concentrations were shown to stimulate secretory intercellular adhesion molecule 1, interleukin-8 (IL-8), IL-6, and macrophage chemoattractant protein secretion from cultured human epithelial (KB) and fibroblast (MRC-5) cells. However, at high concentrations a reduction in the level of these mediators was observed. In contrast, macrophage inflammatory protein 1alpha and IL-1alpha were stimulated only at high P. gingivalis cell concentrations. P. gingivalis cells and the RgpA-Kgp complexes were shown to induce apoptosis in KB and MRC-5 cells in a time- and dose-dependent manner. These data suggest that the RgpA-Kgp complexes penetrate the gingival connective tissue; at low concentrations distal from the plaque the complexes stimulate the secretion of proinflammatory mediators, while at high concentrations proximal to the plaque they induce apoptosis and attenuate the secretion of proinflammatory mediators.
Collapse
|
42
|
Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS. Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 2008; 275:3827-35. [DOI: 10.1111/j.1742-4658.2008.06530.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Naito M, Hirakawa H, Yamashita A, Ohara N, Shoji M, Yukitake H, Nakayama K, Toh H, Yoshimura F, Kuhara S, Hattori M, Hayashi T, Nakayama K. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 2008; 15:215-25. [PMID: 18524787 PMCID: PMC2575886 DOI: 10.1093/dnares/dsn013] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The gram-negative anaerobic bacterium Porphyromonas gingivalis is a major causative agent of chronic periodontitis. Porphyromonas gingivalis strains have been classified into virulent and less-virulent strains by mouse subcutaneous soft tissue abscess model analysis. Here, we present the whole genome sequence of P. gingivalis ATCC 33277, which is classified as a less-virulent strain. We identified 2090 protein-coding sequences (CDSs), 4 RNA operons, and 53 tRNA genes in the ATCC 33277 genome. By genomic comparison with the virulent strain W83, we identified 461 ATCC 33277-specific and 415 W83-specific CDSs. Extensive genomic rearrangements were observed between the two strains: 175 regions in which genomic rearrangements have occurred were identified. Thirty-five of those genomic rearrangements were inversion or translocation and 140 were simple insertion, deletion, or replacement. Both strains contained large numbers of mobile elements, such as insertion sequences, miniature inverted-repeat transposable elements (MITEs), and conjugative transposons, which are frequently associated with genomic rearrangements. These findings indicate that the mobile genetic elements have been deeply involved in the extensive genome rearrangement of P. gingivalis and the occurrence of many of the strain-specific CDSs. We also describe here a very unique feature of MITE400, which we renamed MITEPgRS (MITE of P. gingivalis with Repeating Sequences).
Collapse
Affiliation(s)
- Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ishida Y, Hu J, Sakai E, Kadowaki T, Yamamoto K, Tsukuba T, Kato Y, Nakayama K, Okamoto K. Determination of active site of lysine-specific cysteine proteinase (Lys-gingipain) by use of a Porphyromonas gingivalis plasmid system. Arch Oral Biol 2008; 53:538-44. [PMID: 18295742 DOI: 10.1016/j.archoralbio.2008.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis, a major etiological bacterium of periodontal diseases, produces a unique lysine-specific cysteine proteinase (Lys-gingipain, Kgp) implicated in the virulence of this organism. Our observations show the expression of a catalytically active recombinant Kgp in a P. gingivalis Kgp-null mutant and the restoration of its functions by the use of a shuttle plasmid vector stable in P. gingivalis. The Kgp-expressing mutant exhibited a similar catalytic activity to that of the wild-type strain. This mutant also restored the ability to form black-pigmented colonies on blood agar plates and to generate a 19-kDa haemoglobin receptor protein responsible for haemoglobin binding. In order to establish the importance of the active-site Cys residue and elucidate its role in bacterial black pigmentation we constructed three Kgp mutants with changed potential active-site Cys residues. The cells expressing a single mutation (C476A) showed the high Kgp activity and the black pigmentation. In contrast, the cells expressing the single mutant (C477A) and the double mutant (C476A/C477A) exhibited neither Kgp activity nor black pigmentation. These results indicate that the 477th Cys residue is essential for both the Kgp activity and the black pigmentation of P. gingivalis.
Collapse
Affiliation(s)
- Yutaka Ishida
- Department of Oral Pathopharmacology, Unit of Basic Medical Sciences, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Growth and pigment production on D-tryptophan medium by Cryptococcus gattii, Cryptococcus neoformans, and Candida albicans. J Clin Microbiol 2007; 46:255-64. [PMID: 17989195 DOI: 10.1128/jcm.01721-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the increasing prevalence of cryptococcosis caused by Cryptococcus gattii (serotypes B and C) strains, there is a need for rapid and reliable tests that discriminate C. gattii from Cryptococcus neoformans (serotypes A, D, and AD). Seventy-two C. neoformans strains, sixty-seven C. gattii strains, and five Candida albicans strains were analyzed for their ability to grow and produce pigment on minimal D-tryptophan D-proline (m-DTDP) medium, on yeast carbon base D-tryptophan D-proline (YCB-DTDP) medium, and on fructose D-tryptophan glycine (m-FDTG) medium. Of the C. gattii and C. neoformans isolates, 94% and 0% grew on m-DTDP agar, respectively, and 98% and 0% grew in YCB-DTDP medium, respectively. C. gattii produced large amounts of brown intracellular pigment(s) on m-DTDP agar and smaller amounts of yellow-brown (amber) extracellular pigment(s). C. albicans grew on both media and produced a pink photoactivated pigment on m-DTDP agar. C. gattii produced large amounts of brown intracellular pigments on the differential medium m-FDTG, whereas C. neoformans produced smaller amounts of the brown pigments and C. albicans produced a pink pigment. The pigments produced by C. gattii from D-tryptophan were distinct and were not related to melanin formation from 3,4-dihydroxyphenylalanine. Thin-layer chromatography of the methanol-extracted C. gattii cells detected four different pigments, including brown (two types), yellow, and pink-purple compounds. We conclude that tryptophan-derived pigments are not melanins and that growth on m-DTDP or YCB-DTDP agar can be used to rapidly differentiate C. gattii from C. neoformans.
Collapse
|
46
|
Kiji M, Nagasawa T, Hormdee D, Yashiro R, Kobayashi H, Noguchi K, Nitta H, Izumi Y, Ishikawa I. Internal prostaglandin synthesis augments osteoprotegerin production in human gingival fibroblasts stimulated by lipopolysaccharide. Clin Exp Immunol 2007; 149:327-34. [PMID: 17550374 PMCID: PMC1941953 DOI: 10.1111/j.1365-2249.2007.03414.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is an inflammatory bone disease caused by Gram-negative anaerobic bacteria. Osteoclast differentiation is regulated by the balance between receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG). The purpose of this study was to examine the mechanism of OPG production in human gingival fibroblasts (HGF) stimulated by lipopolysaccharide (LPS) from periodontopathic bacteria. The expressions of Toll-like receptor 2 (TLR-2) and TLR-4 in HGF were examined using flow-cytometry. HGF were stimulated with whole cell extracts or LPS from Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis with or without polymyxin B, a LPS inhibitor. In addition, HGF were stimulated with LPS, prostaglandin E(2) (PGE(2)), various agonists of PGE receptors (EP1, EP2, EP3 and EP4 agonists) with or without indomethacin (IND), a prostaglandin synthesis inhibitor. OPG and PGE(2) production was measured using an enzyme-linked immunosorbent assay (ELISA). HGF expressed both TLR-2 and TLR-4. Both A. actinomycetemcomitans and P. gingivalis LPS augmented OPG expression in HGF. Whole cell extracts from A. actinomycetemcomitans and P. gingivalis augmented OPG production by HGF; the augmentation was suppressed by polymyxin B. IND suppressed OPG production in LPS-stimulated HGF. PGE(2) stimulated HGF to produce OPG. EP1 and EP2 agonists, but not EP3 and EP4 agonists, increased OPG production by HGF. These results suggest that LPS-induced OPG production by HGF is regulated via EP1 and/or EP2 receptors by endogenously generated PGE(2).
Collapse
Affiliation(s)
- M Kiji
- Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miyachi K, Ishihara K, Kimizuka R, Okuda K. Arg-gingipain A DNA vaccine prevents alveolar bone loss in mice. J Dent Res 2007; 86:446-50. [PMID: 17452566 DOI: 10.1177/154405910708600511] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One major pathogenic factor of Porphyromonas gingivalis is Arg-gingipain (Rgp), an arginine-specific cysteine proteinase. To clarify the effect of rgpA DNA vaccine, we immunized BALB/c mice via the abdomen with a Gene Gun or via the nasal cavity weekly for 6 weeks. After immunization, the mice were challenged orally with P. gingivalis. Immunization elicited IgG responses against P. gingivalis in both groups. Nasal immunization also induced sIgA against P. gingivalis, although Gene Gun immunization did not. Reduction of alveolar bone loss was observed in both groups at 42 days following initial infection. This effect was more pronounced in the intranasal immunization group than in the Gene Gun group. The results of this study suggest that immunization with rgpA DNA vaccine via the nasal cavity is an effective method for preventing alveolar bone loss incurred by infection with P. gingivalis.
Collapse
Affiliation(s)
- K Miyachi
- Department of Microbiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba, 261-8502, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
Extracellular secretion of products is the major mechanism by which Gram-negative pathogens communicate with and intoxicate host cells. Vesicles released from the envelope of growing bacteria serve as secretory vehicles for proteins and lipids of Gram-negative bacteria. Vesicle production occurs in infected tissues and is influenced by environmental factors. Vesicles play roles in establishing a colonization niche, carrying and transmitting virulence factors into host cells, and modulating host defense and response. Vesicle-mediated toxin delivery is a potent virulence mechanism exhibited by diverse Gram-negative pathogens. The biochemical and functional properties of pathogen-derived vesicles reveal their potential to critically impact disease.
Collapse
Affiliation(s)
- Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
49
|
Abstract
Outer membrane vesicles (blebs) are produced by Escherichia coli, Salmonella, and all other gram-negative bacteria both in vitro and in vivo. Most of the research in the field has focused on the properties of vesicles derived from pathogenic bacteria and their interactions with eukaryotic cells. These data indicate that vesicles are able to contribute to pathogenesis. Thus, it appears that pathogenic gram-negative bacteria have co-opted vesicles for the dissemination of virulence determinants. However, the role of vesicle production by nonpathogenic bacteria is less obvious. This section reviews the data demonstrating the mechanistic and physiological basis of outer membrane vesicle production by bacteria. Vesiculation can be seen as a mechanism for cells to react to conditions in the surrounding environment by carrying away unnecessary components and allowing rapid modification of the outer membrane composition. In addition, vesicles can transmit biological activities distant from the originating cell. Vesicles could act to bind and deplete host immune factors at the site of infection that would otherwise attack the bacteria. Vesicles in the area surrounding the cell may also provide the cell protection inside a human or animal host. The concept of vesicles as virulence factors has received considerable attention, and they are likely to play a significant role in the pathogenesis of gram-negative bacteria. By analysis of their composition, mechanism of formation, regulation, and physiological function, progress is being made in understanding the ubiquitous nature of outer membrane vesicles produced by gram-negative bacteria.
Collapse
Affiliation(s)
- Amanda J McBroom
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710
| | | |
Collapse
|
50
|
Vanterpool E, Roy F, Fletcher HM. Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun 2005; 73:3971-82. [PMID: 15972484 PMCID: PMC1168568 DOI: 10.1128/iai.73.7.3971-3982.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|